gecko/js/src/jsinfer.cpp

6231 lines
196 KiB
C++

/* -*- Mode: c++; c-basic-offset: 4; tab-width: 40; indent-tabs-mode: nil -*- */
/* vim: set ts=40 sw=4 et tw=99: */
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the Mozilla SpiderMonkey bytecode type inference
*
* The Initial Developer of the Original Code is
* Mozilla Foundation
* Portions created by the Initial Developer are Copyright (C) 2010
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Brian Hackett <bhackett@mozilla.com>
*
* Alternatively, the contents of this file may be used under the terms of
* either of the GNU General Public License Version 2 or later (the "GPL"),
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#include "jsapi.h"
#include "jsautooplen.h"
#include "jsbool.h"
#include "jsdate.h"
#include "jsexn.h"
#include "jsfriendapi.h"
#include "jsgc.h"
#include "jsgcmark.h"
#include "jsinfer.h"
#include "jsmath.h"
#include "jsnum.h"
#include "jsobj.h"
#include "jsscript.h"
#include "jscntxt.h"
#include "jsscope.h"
#include "jsstr.h"
#include "jsiter.h"
#include "frontend/TokenStream.h"
#include "methodjit/MethodJIT.h"
#include "methodjit/Retcon.h"
#include "jsatominlines.h"
#include "jsgcinlines.h"
#include "jsinferinlines.h"
#include "jsobjinlines.h"
#include "jsscriptinlines.h"
#include "vm/Stack-inl.h"
#ifdef JS_HAS_XML_SUPPORT
#include "jsxml.h"
#endif
#ifdef __SUNPRO_CC
#include <alloca.h>
#endif
using namespace js;
using namespace js::types;
using namespace js::analyze;
static inline jsid
id_prototype(JSContext *cx) {
return ATOM_TO_JSID(cx->runtime->atomState.classPrototypeAtom);
}
static inline jsid
id_arguments(JSContext *cx) {
return ATOM_TO_JSID(cx->runtime->atomState.argumentsAtom);
}
static inline jsid
id_length(JSContext *cx) {
return ATOM_TO_JSID(cx->runtime->atomState.lengthAtom);
}
static inline jsid
id___proto__(JSContext *cx) {
return ATOM_TO_JSID(cx->runtime->atomState.protoAtom);
}
static inline jsid
id_constructor(JSContext *cx) {
return ATOM_TO_JSID(cx->runtime->atomState.constructorAtom);
}
static inline jsid
id_caller(JSContext *cx) {
return ATOM_TO_JSID(cx->runtime->atomState.callerAtom);
}
static inline jsid
id_toString(JSContext *cx)
{
return ATOM_TO_JSID(cx->runtime->atomState.toStringAtom);
}
static inline jsid
id_toSource(JSContext *cx)
{
return ATOM_TO_JSID(cx->runtime->atomState.toSourceAtom);
}
#ifdef DEBUG
const char *
types::TypeIdStringImpl(jsid id)
{
if (JSID_IS_VOID(id))
return "(index)";
if (JSID_IS_EMPTY(id))
return "(new)";
static char bufs[4][100];
static unsigned which = 0;
which = (which + 1) & 3;
PutEscapedString(bufs[which], 100, JSID_TO_FLAT_STRING(id), 0);
return bufs[which];
}
#endif
/////////////////////////////////////////////////////////////////////
// Logging
/////////////////////////////////////////////////////////////////////
static bool InferSpewActive(SpewChannel channel)
{
static bool active[SPEW_COUNT];
static bool checked = false;
if (!checked) {
checked = true;
PodArrayZero(active);
const char *env = getenv("INFERFLAGS");
if (!env)
return false;
if (strstr(env, "ops"))
active[ISpewOps] = true;
if (strstr(env, "result"))
active[ISpewResult] = true;
if (strstr(env, "full")) {
for (unsigned i = 0; i < SPEW_COUNT; i++)
active[i] = true;
}
}
return active[channel];
}
#ifdef DEBUG
static bool InferSpewColorable()
{
/* Only spew colors on xterm-color to not screw up emacs. */
const char *env = getenv("TERM");
if (!env)
return false;
return strcmp(env, "xterm-color") == 0;
}
const char *
types::InferSpewColorReset()
{
if (!InferSpewColorable())
return "";
return "\x1b[0m";
}
const char *
types::InferSpewColor(TypeConstraint *constraint)
{
/* Type constraints are printed out using foreground colors. */
static const char *colors[] = { "\x1b[31m", "\x1b[32m", "\x1b[33m",
"\x1b[34m", "\x1b[35m", "\x1b[36m",
"\x1b[37m" };
if (!InferSpewColorable())
return "";
return colors[DefaultHasher<TypeConstraint *>::hash(constraint) % 7];
}
const char *
types::InferSpewColor(TypeSet *types)
{
/* Type sets are printed out using bold colors. */
static const char *colors[] = { "\x1b[1;31m", "\x1b[1;32m", "\x1b[1;33m",
"\x1b[1;34m", "\x1b[1;35m", "\x1b[1;36m",
"\x1b[1;37m" };
if (!InferSpewColorable())
return "";
return colors[DefaultHasher<TypeSet *>::hash(types) % 7];
}
const char *
types::TypeString(Type type)
{
if (type.isPrimitive()) {
switch (type.primitive()) {
case JSVAL_TYPE_UNDEFINED:
return "void";
case JSVAL_TYPE_NULL:
return "null";
case JSVAL_TYPE_BOOLEAN:
return "bool";
case JSVAL_TYPE_INT32:
return "int";
case JSVAL_TYPE_DOUBLE:
return "float";
case JSVAL_TYPE_STRING:
return "string";
case JSVAL_TYPE_MAGIC:
return "lazyargs";
default:
JS_NOT_REACHED("Bad type");
return "";
}
}
if (type.isUnknown())
return "unknown";
if (type.isAnyObject())
return " object";
static char bufs[4][40];
static unsigned which = 0;
which = (which + 1) & 3;
if (type.isSingleObject())
JS_snprintf(bufs[which], 40, "<0x%p>", (void *) type.singleObject());
else
JS_snprintf(bufs[which], 40, "[0x%p]", (void *) type.typeObject());
return bufs[which];
}
const char *
types::TypeObjectString(TypeObject *type)
{
return TypeString(Type::ObjectType(type));
}
unsigned JSScript::id() {
if (!id_) {
id_ = ++compartment()->types.scriptCount;
InferSpew(ISpewOps, "script #%u: %p %s:%d",
id_, this, filename ? filename : "<null>", lineno);
}
return id_;
}
void
types::InferSpew(SpewChannel channel, const char *fmt, ...)
{
if (!InferSpewActive(channel))
return;
va_list ap;
va_start(ap, fmt);
fprintf(stdout, "[infer] ");
vfprintf(stdout, fmt, ap);
fprintf(stdout, "\n");
va_end(ap);
}
bool
types::TypeHasProperty(JSContext *cx, TypeObject *obj, jsid id, const Value &value)
{
/*
* Check the correctness of the type information in the object's property
* against an actual value.
*/
if (cx->typeInferenceEnabled() && !obj->unknownProperties() && !value.isUndefined()) {
id = MakeTypeId(cx, id);
/* Watch for properties which inference does not monitor. */
if (id == id___proto__(cx) || id == id_constructor(cx) || id == id_caller(cx))
return true;
/*
* If we called in here while resolving a type constraint, we may be in the
* middle of resolving a standard class and the type sets will not be updated
* until the outer TypeSet::add finishes.
*/
if (cx->compartment->types.pendingCount)
return true;
Type type = GetValueType(cx, value);
AutoEnterTypeInference enter(cx);
/*
* We don't track types for properties inherited from prototypes which
* haven't yet been accessed during analysis of the inheriting object.
* Don't do the property instantiation now.
*/
TypeSet *types = obj->maybeGetProperty(cx, id);
if (!types)
return true;
/*
* If the types inherited from prototypes are not being propagated into
* this set (because we haven't analyzed code which accesses the
* property), skip.
*/
if (!types->hasPropagatedProperty())
return true;
if (!types->hasType(type)) {
TypeFailure(cx, "Missing type in object %s %s: %s",
TypeObjectString(obj), TypeIdString(id), TypeString(type));
}
}
return true;
}
#endif
void
types::TypeFailure(JSContext *cx, const char *fmt, ...)
{
char msgbuf[1024]; /* Larger error messages will be truncated */
char errbuf[1024];
va_list ap;
va_start(ap, fmt);
JS_vsnprintf(errbuf, sizeof(errbuf), fmt, ap);
va_end(ap);
JS_snprintf(msgbuf, sizeof(msgbuf), "[infer failure] %s", errbuf);
/* Dump type state, even if INFERFLAGS is unset. */
cx->compartment->types.print(cx, true);
/* Always active, even in release builds */
JS_Assert(msgbuf, __FILE__, __LINE__);
*((volatile int *)NULL) = 0; /* Should never be reached */
}
/////////////////////////////////////////////////////////////////////
// TypeSet
/////////////////////////////////////////////////////////////////////
TypeSet *
TypeSet::make(JSContext *cx, const char *name)
{
JS_ASSERT(cx->compartment->activeInference);
TypeSet *res = cx->typeLifoAlloc().new_<TypeSet>();
if (!res) {
cx->compartment->types.setPendingNukeTypes(cx);
return NULL;
}
InferSpew(ISpewOps, "typeSet: %sT%p%s intermediate %s",
InferSpewColor(res), res, InferSpewColorReset(),
name);
return res;
}
inline void
TypeSet::add(JSContext *cx, TypeConstraint *constraint, bool callExisting)
{
if (!constraint) {
/* OOM failure while constructing the constraint. */
cx->compartment->types.setPendingNukeTypes(cx);
return;
}
JS_ASSERT(cx->compartment->activeInference);
InferSpew(ISpewOps, "addConstraint: %sT%p%s %sC%p%s %s",
InferSpewColor(this), this, InferSpewColorReset(),
InferSpewColor(constraint), constraint, InferSpewColorReset(),
constraint->kind());
JS_ASSERT(constraint->next == NULL);
constraint->next = constraintList;
constraintList = constraint;
if (!callExisting)
return;
/* If any type is possible, there's no need to worry about specifics. */
if (flags & TYPE_FLAG_UNKNOWN) {
cx->compartment->types.addPending(cx, constraint, this, Type::UnknownType());
} else {
/* Enqueue type set members stored as bits. */
for (TypeFlags flag = 1; flag < TYPE_FLAG_ANYOBJECT; flag <<= 1) {
if (flags & flag) {
Type type = Type::PrimitiveType(TypeFlagPrimitive(flag));
cx->compartment->types.addPending(cx, constraint, this, type);
}
}
/* If any object is possible, skip specifics. */
if (flags & TYPE_FLAG_ANYOBJECT) {
cx->compartment->types.addPending(cx, constraint, this, Type::AnyObjectType());
} else {
/* Enqueue specific object types. */
unsigned count = getObjectCount();
for (unsigned i = 0; i < count; i++) {
TypeObjectKey *object = getObject(i);
if (object)
cx->compartment->types.addPending(cx, constraint, this,
Type::ObjectType(object));
}
}
}
cx->compartment->types.resolvePending(cx);
}
void
TypeSet::print(JSContext *cx)
{
if (flags & TYPE_FLAG_OWN_PROPERTY)
printf(" [own]");
if (flags & TYPE_FLAG_CONFIGURED_PROPERTY)
printf(" [configured]");
if (isDefiniteProperty())
printf(" [definite:%d]", definiteSlot());
if (baseFlags() == 0 && !baseObjectCount()) {
printf(" missing");
return;
}
if (flags & TYPE_FLAG_UNKNOWN)
printf(" unknown");
if (flags & TYPE_FLAG_ANYOBJECT)
printf(" object");
if (flags & TYPE_FLAG_UNDEFINED)
printf(" void");
if (flags & TYPE_FLAG_NULL)
printf(" null");
if (flags & TYPE_FLAG_BOOLEAN)
printf(" bool");
if (flags & TYPE_FLAG_INT32)
printf(" int");
if (flags & TYPE_FLAG_DOUBLE)
printf(" float");
if (flags & TYPE_FLAG_STRING)
printf(" string");
if (flags & TYPE_FLAG_LAZYARGS)
printf(" lazyargs");
uint32 objectCount = baseObjectCount();
if (objectCount) {
printf(" object[%u]", objectCount);
unsigned count = getObjectCount();
for (unsigned i = 0; i < count; i++) {
TypeObjectKey *object = getObject(i);
if (object)
printf(" %s", TypeString(Type::ObjectType(object)));
}
}
}
/////////////////////////////////////////////////////////////////////
// TypeSet constraints
/////////////////////////////////////////////////////////////////////
/* Standard subset constraint, propagate all types from one set to another. */
class TypeConstraintSubset : public TypeConstraint
{
public:
TypeSet *target;
TypeConstraintSubset(TypeSet *target)
: TypeConstraint("subset"), target(target)
{
JS_ASSERT(target);
}
void newType(JSContext *cx, TypeSet *source, Type type)
{
/* Basic subset constraint, move all types to the target. */
target->addType(cx, type);
}
};
void
TypeSet::addSubset(JSContext *cx, TypeSet *target)
{
add(cx, cx->typeLifoAlloc().new_<TypeConstraintSubset>(target));
}
/* Constraints for reads/writes on object properties. */
class TypeConstraintProp : public TypeConstraint
{
public:
JSScript *script;
jsbytecode *pc;
/*
* If assign is true, the target is used to update a property of the object.
* If assign is false, the target is assigned the value of the property.
*/
bool assign;
TypeSet *target;
/* Property being accessed. */
jsid id;
TypeConstraintProp(JSScript *script, jsbytecode *pc,
TypeSet *target, jsid id, bool assign)
: TypeConstraint("prop"), script(script), pc(pc),
assign(assign), target(target), id(id)
{
JS_ASSERT(script && pc && target);
}
void newType(JSContext *cx, TypeSet *source, Type type);
};
void
TypeSet::addGetProperty(JSContext *cx, JSScript *script, jsbytecode *pc,
TypeSet *target, jsid id)
{
add(cx, cx->typeLifoAlloc().new_<TypeConstraintProp>(script, pc, target, id, false));
}
void
TypeSet::addSetProperty(JSContext *cx, JSScript *script, jsbytecode *pc,
TypeSet *target, jsid id)
{
add(cx, cx->typeLifoAlloc().new_<TypeConstraintProp>(script, pc, target, id, true));
}
/*
* Constraints for updating the 'this' types of callees on CALLPROP/CALLELEM.
* These are derived from the types on the properties themselves, rather than
* those pushed in the 'this' slot at the call site, which allows us to retain
* correlations between the type of the 'this' object and the associated
* callee scripts at polymorphic call sites.
*/
class TypeConstraintCallProp : public TypeConstraint
{
public:
JSScript *script;
jsbytecode *callpc;
/* Property being accessed. */
jsid id;
TypeConstraintCallProp(JSScript *script, jsbytecode *callpc, jsid id)
: TypeConstraint("callprop"), script(script), callpc(callpc), id(id)
{
JS_ASSERT(script && callpc);
}
void newType(JSContext *cx, TypeSet *source, Type type);
};
void
TypeSet::addCallProperty(JSContext *cx, JSScript *script, jsbytecode *pc, jsid id)
{
/*
* For calls which will go through JSOP_NEW, don't add any constraints to
* modify the 'this' types of callees. The initial 'this' value will be
* outright ignored.
*/
jsbytecode *callpc = script->analysis()->getCallPC(pc);
UntrapOpcode untrap(cx, script, callpc);
if (JSOp(*callpc) == JSOP_NEW)
return;
add(cx, cx->typeLifoAlloc().new_<TypeConstraintCallProp>(script, callpc, id));
}
/*
* Constraints for generating 'set' property constraints on a SETELEM only if
* the element type may be a number. For SETELEM we only account for integer
* indexes, and if the element cannot be an integer (e.g. it must be a string)
* then we lose precision by treating it like one.
*/
class TypeConstraintSetElement : public TypeConstraint
{
public:
JSScript *script;
jsbytecode *pc;
TypeSet *objectTypes;
TypeSet *valueTypes;
TypeConstraintSetElement(JSScript *script, jsbytecode *pc,
TypeSet *objectTypes, TypeSet *valueTypes)
: TypeConstraint("setelement"), script(script), pc(pc),
objectTypes(objectTypes), valueTypes(valueTypes)
{
JS_ASSERT(script && pc);
}
void newType(JSContext *cx, TypeSet *source, Type type);
};
void
TypeSet::addSetElement(JSContext *cx, JSScript *script, jsbytecode *pc,
TypeSet *objectTypes, TypeSet *valueTypes)
{
add(cx, cx->typeLifoAlloc().new_<TypeConstraintSetElement>(script, pc, objectTypes,
valueTypes));
}
/*
* Constraints for watching call edges as they are discovered and invoking native
* function handlers, adding constraints for arguments, receiver objects and the
* return value, and updating script foundOffsets.
*/
class TypeConstraintCall : public TypeConstraint
{
public:
/* Call site being tracked. */
TypeCallsite *callsite;
TypeConstraintCall(TypeCallsite *callsite)
: TypeConstraint("call"), callsite(callsite)
{}
void newType(JSContext *cx, TypeSet *source, Type type);
};
void
TypeSet::addCall(JSContext *cx, TypeCallsite *site)
{
add(cx, cx->typeLifoAlloc().new_<TypeConstraintCall>(site));
}
/* Constraints for arithmetic operations. */
class TypeConstraintArith : public TypeConstraint
{
public:
/* Type set receiving the result of the arithmetic. */
TypeSet *target;
/* For addition operations, the other operand. */
TypeSet *other;
TypeConstraintArith(TypeSet *target, TypeSet *other)
: TypeConstraint("arith"), target(target), other(other)
{
JS_ASSERT(target);
}
void newType(JSContext *cx, TypeSet *source, Type type);
};
void
TypeSet::addArith(JSContext *cx, TypeSet *target, TypeSet *other)
{
add(cx, cx->typeLifoAlloc().new_<TypeConstraintArith>(target, other));
}
/* Subset constraint which transforms primitive values into appropriate objects. */
class TypeConstraintTransformThis : public TypeConstraint
{
public:
JSScript *script;
TypeSet *target;
TypeConstraintTransformThis(JSScript *script, TypeSet *target)
: TypeConstraint("transformthis"), script(script), target(target)
{}
void newType(JSContext *cx, TypeSet *source, Type type);
};
void
TypeSet::addTransformThis(JSContext *cx, JSScript *script, TypeSet *target)
{
add(cx, cx->typeLifoAlloc().new_<TypeConstraintTransformThis>(script, target));
}
/*
* Constraint which adds a particular type to the 'this' types of all
* discovered scripted functions.
*/
class TypeConstraintPropagateThis : public TypeConstraint
{
public:
JSScript *script;
jsbytecode *callpc;
Type type;
TypeSet *types;
TypeConstraintPropagateThis(JSScript *script, jsbytecode *callpc, Type type, TypeSet *types)
: TypeConstraint("propagatethis"), script(script), callpc(callpc), type(type), types(types)
{}
void newType(JSContext *cx, TypeSet *source, Type type);
};
void
TypeSet::addPropagateThis(JSContext *cx, JSScript *script, jsbytecode *pc, Type type, TypeSet *types)
{
/* Don't add constraints when the call will be 'new' (see addCallProperty). */
jsbytecode *callpc = script->analysis()->getCallPC(pc);
UntrapOpcode untrap(cx, script, callpc);
if (JSOp(*callpc) == JSOP_NEW)
return;
add(cx, cx->typeLifoAlloc().new_<TypeConstraintPropagateThis>(script, callpc, type, types));
}
/* Subset constraint which filters out primitive types. */
class TypeConstraintFilterPrimitive : public TypeConstraint
{
public:
TypeSet *target;
TypeSet::FilterKind filter;
TypeConstraintFilterPrimitive(TypeSet *target, TypeSet::FilterKind filter)
: TypeConstraint("filter"), target(target), filter(filter)
{}
void newType(JSContext *cx, TypeSet *source, Type type)
{
switch (filter) {
case TypeSet::FILTER_ALL_PRIMITIVES:
if (type.isPrimitive())
return;
break;
case TypeSet::FILTER_NULL_VOID:
if (type.isPrimitive(JSVAL_TYPE_NULL) || type.isPrimitive(JSVAL_TYPE_UNDEFINED))
return;
break;
case TypeSet::FILTER_VOID:
if (type.isPrimitive(JSVAL_TYPE_UNDEFINED))
return;
break;
default:
JS_NOT_REACHED("Bad filter");
}
target->addType(cx, type);
}
};
void
TypeSet::addFilterPrimitives(JSContext *cx, TypeSet *target, FilterKind filter)
{
add(cx, cx->typeLifoAlloc().new_<TypeConstraintFilterPrimitive>(target, filter));
}
/* If id is a normal slotful 'own' property of an object, get its shape. */
static inline const Shape *
GetSingletonShape(JSContext *cx, JSObject *obj, jsid id)
{
const Shape *shape = obj->nativeLookup(cx, id);
if (shape && shape->hasDefaultGetterOrIsMethod() && shape->slot != SHAPE_INVALID_SLOT)
return shape;
return NULL;
}
void
ScriptAnalysis::pruneTypeBarriers(JSContext *cx, uint32 offset)
{
TypeBarrier **pbarrier = &getCode(offset).typeBarriers;
while (*pbarrier) {
TypeBarrier *barrier = *pbarrier;
if (barrier->target->hasType(barrier->type)) {
/* Barrier is now obsolete, it can be removed. */
*pbarrier = barrier->next;
continue;
}
if (barrier->singleton) {
JS_ASSERT(barrier->type.isPrimitive(JSVAL_TYPE_UNDEFINED));
const Shape *shape = GetSingletonShape(cx, barrier->singleton, barrier->singletonId);
if (shape && !barrier->singleton->nativeGetSlot(shape->slot).isUndefined()) {
/*
* When we analyzed the script the singleton had an 'own'
* property which was undefined (probably a 'var' variable
* added to a global object), but now it is defined. The only
* way it can become undefined again is if an explicit assign
* or deletion on the property occurs, which will update the
* type set for the property directly and trigger construction
* of a normal type barrier.
*/
*pbarrier = barrier->next;
continue;
}
}
pbarrier = &barrier->next;
}
}
/*
* Cheesy limit on the number of objects we will tolerate in an observed type
* set before refusing to add new type barriers for objects.
* :FIXME: this heuristic sucks, and doesn't handle calls.
*/
static const uint32 BARRIER_OBJECT_LIMIT = 10;
void ScriptAnalysis::breakTypeBarriers(JSContext *cx, uint32 offset, bool all)
{
pruneTypeBarriers(cx, offset);
bool resetResolving = !cx->compartment->types.resolving;
if (resetResolving)
cx->compartment->types.resolving = true;
TypeBarrier **pbarrier = &getCode(offset).typeBarriers;
while (*pbarrier) {
TypeBarrier *barrier = *pbarrier;
if (barrier->target->hasType(barrier->type) ) {
/*
* Barrier is now obsolete, it can be removed. This is not
* redundant with the pruneTypeBarriers() call above, as breaking
* previous type barriers may have modified the target type set.
*/
*pbarrier = barrier->next;
} else if (all) {
/* Force removal of the barrier. */
barrier->target->addType(cx, barrier->type);
*pbarrier = barrier->next;
} else if (!barrier->type.isUnknown() &&
!barrier->type.isAnyObject() &&
barrier->type.isObject() &&
barrier->target->getObjectCount() >= BARRIER_OBJECT_LIMIT) {
/* Maximum number of objects in the set exceeded. */
barrier->target->addType(cx, barrier->type);
*pbarrier = barrier->next;
} else {
pbarrier = &barrier->next;
}
}
if (resetResolving) {
cx->compartment->types.resolving = false;
cx->compartment->types.resolvePending(cx);
}
}
void ScriptAnalysis::breakTypeBarriersSSA(JSContext *cx, const SSAValue &v)
{
if (v.kind() != SSAValue::PUSHED)
return;
uint32 offset = v.pushedOffset();
if (JSOp(script->code[offset]) == JSOP_GETPROP)
breakTypeBarriersSSA(cx, poppedValue(offset, 0));
breakTypeBarriers(cx, offset, true);
}
/*
* Subset constraint for property reads and argument passing which can add type
* barriers on the read instead of passing types along.
*/
class TypeConstraintSubsetBarrier : public TypeConstraint
{
public:
JSScript *script;
jsbytecode *pc;
TypeSet *target;
TypeConstraintSubsetBarrier(JSScript *script, jsbytecode *pc, TypeSet *target)
: TypeConstraint("subsetBarrier"), script(script), pc(pc), target(target)
{}
void newType(JSContext *cx, TypeSet *source, Type type)
{
if (!target->hasType(type))
script->analysis()->addTypeBarrier(cx, pc, target, type);
}
};
void
TypeSet::addSubsetBarrier(JSContext *cx, JSScript *script, jsbytecode *pc, TypeSet *target)
{
add(cx, cx->typeLifoAlloc().new_<TypeConstraintSubsetBarrier>(script, pc, target));
}
/*
* Constraint which marks a pushed ARGUMENTS value as unknown if the script has
* an arguments object created in the future.
*/
class TypeConstraintLazyArguments : public TypeConstraint
{
public:
TypeSet *target;
TypeConstraintLazyArguments(TypeSet *target)
: TypeConstraint("lazyArgs"), target(target)
{}
void newType(JSContext *cx, TypeSet *source, Type type) {}
void newObjectState(JSContext *cx, TypeObject *object, bool force)
{
if (object->hasAnyFlags(OBJECT_FLAG_CREATED_ARGUMENTS))
target->addType(cx, Type::UnknownType());
}
};
void
TypeSet::addLazyArguments(JSContext *cx, TypeSet *target)
{
add(cx, cx->typeLifoAlloc().new_<TypeConstraintLazyArguments>(target));
}
/////////////////////////////////////////////////////////////////////
// TypeConstraint
/////////////////////////////////////////////////////////////////////
/* Get the object to use for a property access on type. */
static inline TypeObject *
GetPropertyObject(JSContext *cx, JSScript *script, Type type)
{
if (type.isTypeObject())
return type.typeObject();
/* Force instantiation of lazy types for singleton objects. */
if (type.isSingleObject())
return type.singleObject()->getType(cx);
/*
* Handle properties attached to primitive types, treating this access as a
* read on the primitive's new object.
*/
TypeObject *object = NULL;
switch (type.primitive()) {
case JSVAL_TYPE_INT32:
case JSVAL_TYPE_DOUBLE:
object = TypeScript::StandardType(cx, script, JSProto_Number);
break;
case JSVAL_TYPE_BOOLEAN:
object = TypeScript::StandardType(cx, script, JSProto_Boolean);
break;
case JSVAL_TYPE_STRING:
object = TypeScript::StandardType(cx, script, JSProto_String);
break;
default:
/* undefined, null and lazy arguments do not have properties. */
return NULL;
}
if (!object)
cx->compartment->types.setPendingNukeTypes(cx);
return object;
}
static inline bool
UsePropertyTypeBarrier(jsbytecode *pc)
{
/*
* At call opcodes, type barriers can only be added for the call bindings,
* which TypeConstraintCall will add barrier constraints for directly.
*/
uint32 format = js_CodeSpec[*pc].format;
return (format & JOF_TYPESET) && !(format & JOF_INVOKE);
}
static inline void
MarkPropertyAccessUnknown(JSContext *cx, JSScript *script, jsbytecode *pc, TypeSet *target)
{
if (UsePropertyTypeBarrier(pc))
script->analysis()->addTypeBarrier(cx, pc, target, Type::UnknownType());
else
target->addType(cx, Type::UnknownType());
}
/*
* Handle a property access on a specific object. All property accesses go through
* here, whether via x.f, x[f], or global name accesses.
*/
static inline void
PropertyAccess(JSContext *cx, JSScript *script, jsbytecode *pc, TypeObject *object,
bool assign, TypeSet *target, jsid id)
{
/* Reads from objects with unknown properties are unknown, writes to such objects are ignored. */
if (object->unknownProperties()) {
if (!assign)
MarkPropertyAccessUnknown(cx, script, pc, target);
return;
}
/* Capture the effects of a standard property access. */
TypeSet *types = object->getProperty(cx, id, assign);
if (!types)
return;
if (assign) {
target->addSubset(cx, types);
} else {
if (!types->hasPropagatedProperty())
object->getFromPrototypes(cx, id, types);
if (UsePropertyTypeBarrier(pc)) {
types->addSubsetBarrier(cx, script, pc, target);
if (object->singleton && !JSID_IS_VOID(id)) {
/*
* Add a singleton type barrier on the object if it has an
* 'own' property which is currently undefined. We'll be able
* to remove the barrier after the property becomes defined,
* even if no undefined value is ever observed at pc.
*/
const Shape *shape = GetSingletonShape(cx, object->singleton, id);
if (shape && object->singleton->nativeGetSlot(shape->slot).isUndefined())
script->analysis()->addSingletonTypeBarrier(cx, pc, target, object->singleton, id);
}
} else {
types->addSubset(cx, target);
}
}
}
/* Whether the JSObject/TypeObject referent of an access on type cannot be determined. */
static inline bool
UnknownPropertyAccess(JSScript *script, Type type)
{
return type.isUnknown()
|| type.isAnyObject()
|| (!type.isObject() && !script->hasGlobal());
}
void
TypeConstraintProp::newType(JSContext *cx, TypeSet *source, Type type)
{
UntrapOpcode untrap(cx, script, pc);
if (UnknownPropertyAccess(script, type)) {
/*
* Access on an unknown object. Reads produce an unknown result, writes
* need to be monitored.
*/
if (assign)
cx->compartment->types.monitorBytecode(cx, script, pc - script->code);
else
MarkPropertyAccessUnknown(cx, script, pc, target);
return;
}
if (type.isPrimitive(JSVAL_TYPE_MAGIC)) {
/* Ignore cases which will be accounted for by the followEscapingArguments analysis. */
if (assign || (id != JSID_VOID && id != id_length(cx)))
return;
if (id == JSID_VOID)
MarkPropertyAccessUnknown(cx, script, pc, target);
else
target->addType(cx, Type::Int32Type());
return;
}
TypeObject *object = GetPropertyObject(cx, script, type);
if (object)
PropertyAccess(cx, script, pc, object, assign, target, id);
}
void
TypeConstraintCallProp::newType(JSContext *cx, TypeSet *source, Type type)
{
UntrapOpcode untrap(cx, script, callpc);
/*
* For CALLPROP, we need to update not just the pushed types but also the
* 'this' types of possible callees. If we can't figure out that set of
* callees, monitor the call to make sure discovered callees get their
* 'this' types updated.
*/
if (UnknownPropertyAccess(script, type)) {
cx->compartment->types.monitorBytecode(cx, script, callpc - script->code);
return;
}
TypeObject *object = GetPropertyObject(cx, script, type);
if (object) {
if (object->unknownProperties()) {
cx->compartment->types.monitorBytecode(cx, script, callpc - script->code);
} else {
TypeSet *types = object->getProperty(cx, id, false);
if (!types)
return;
if (!types->hasPropagatedProperty())
object->getFromPrototypes(cx, id, types);
/* Bypass addPropagateThis, we already have the callpc. */
types->add(cx, cx->typeLifoAlloc().new_<TypeConstraintPropagateThis>(
script, callpc, type, (TypeSet *) NULL));
}
}
}
void
TypeConstraintSetElement::newType(JSContext *cx, TypeSet *source, Type type)
{
if (type.isUnknown() ||
type.isPrimitive(JSVAL_TYPE_INT32) ||
type.isPrimitive(JSVAL_TYPE_DOUBLE)) {
objectTypes->addSetProperty(cx, script, pc, valueTypes, JSID_VOID);
}
}
void
TypeConstraintCall::newType(JSContext *cx, TypeSet *source, Type type)
{
JSScript *script = callsite->script;
jsbytecode *pc = callsite->pc;
if (type.isUnknown() || type.isAnyObject()) {
/* Monitor calls on unknown functions. */
cx->compartment->types.monitorBytecode(cx, script, pc - script->code);
return;
}
JSFunction *callee = NULL;
if (type.isSingleObject()) {
JSObject *obj = type.singleObject();
if (!obj->isFunction()) {
/* Calls on non-functions are dynamically monitored. */
return;
}
if (obj->getFunctionPrivate()->isNative()) {
/*
* The return value and all side effects within native calls should
* be dynamically monitored, except when the compiler is generating
* specialized inline code or stub calls for a specific natives and
* knows about the behavior of that native.
*/
cx->compartment->types.monitorBytecode(cx, script, pc - script->code, true);
/*
* Add type constraints capturing the possible behavior of
* specialized natives which operate on properties. :XXX: use
* better factoring for both this and the compiler code itself
* which specializes particular natives.
*/
Native native = obj->getFunctionPrivate()->native();
if (native == js::array_push) {
for (size_t i = 0; i < callsite->argumentCount; i++) {
callsite->thisTypes->addSetProperty(cx, script, pc,
callsite->argumentTypes[i], JSID_VOID);
}
}
if (native == js::array_pop || native == js::array_shift)
callsite->thisTypes->addGetProperty(cx, script, pc, callsite->returnTypes, JSID_VOID);
if (native == js_Array) {
TypeObject *res = TypeScript::InitObject(cx, script, pc, JSProto_Array);
if (!res)
return;
callsite->returnTypes->addType(cx, Type::ObjectType(res));
if (callsite->argumentCount >= 2) {
for (unsigned i = 0; i < callsite->argumentCount; i++) {
PropertyAccess(cx, script, pc, res, true,
callsite->argumentTypes[i], JSID_VOID);
}
}
}
return;
}
callee = obj->getFunctionPrivate();
} else if (type.isTypeObject()) {
callee = type.typeObject()->interpretedFunction;
if (!callee)
return;
} else {
/* Calls on non-objects are dynamically monitored. */
return;
}
if (!callee->script()->ensureHasTypes(cx, callee))
return;
unsigned nargs = callee->nargs;
/* Add bindings for the arguments of the call. */
for (unsigned i = 0; i < callsite->argumentCount && i < nargs; i++) {
TypeSet *argTypes = callsite->argumentTypes[i];
TypeSet *types = TypeScript::ArgTypes(callee->script(), i);
argTypes->addSubsetBarrier(cx, script, pc, types);
}
/* Add void type for any formals in the callee not supplied at the call site. */
for (unsigned i = callsite->argumentCount; i < nargs; i++) {
TypeSet *types = TypeScript::ArgTypes(callee->script(), i);
types->addType(cx, Type::UndefinedType());
}
TypeSet *thisTypes = TypeScript::ThisTypes(callee->script());
TypeSet *returnTypes = TypeScript::ReturnTypes(callee->script());
if (callsite->isNew) {
/*
* If the script does not return a value then the pushed value is the
* new object (typical case). Note that we don't model construction of
* the new value, which is done dynamically; we don't keep track of the
* possible 'new' types for a given prototype type object.
*/
thisTypes->addSubset(cx, callsite->returnTypes);
returnTypes->addFilterPrimitives(cx, callsite->returnTypes,
TypeSet::FILTER_ALL_PRIMITIVES);
} else {
/*
* Add a binding for the return value of the call. We don't add a
* binding for the receiver object, as this is done with PropagateThis
* constraints added by the original JSOP_CALL* op. The type sets we
* manipulate here have lost any correlations between particular types
* in the 'this' and 'callee' sets, which we want to maintain for
* polymorphic JSOP_CALLPROP invocations.
*/
returnTypes->addSubset(cx, callsite->returnTypes);
}
}
void
TypeConstraintPropagateThis::newType(JSContext *cx, TypeSet *source, Type type)
{
if (type.isUnknown() || type.isAnyObject()) {
/*
* The callee is unknown, make sure the call is monitored so we pick up
* possible this/callee correlations. This only comes into play for
* CALLPROP, for other calls we are past the type barrier and a
* TypeConstraintCall will also monitor the call.
*/
cx->compartment->types.monitorBytecode(cx, script, callpc - script->code);
return;
}
/* Ignore calls to natives, these will be handled by TypeConstraintCall. */
JSFunction *callee = NULL;
if (type.isSingleObject()) {
JSObject *object = type.singleObject();
if (!object->isFunction() || !object->getFunctionPrivate()->isInterpreted())
return;
callee = object->getFunctionPrivate();
} else if (type.isTypeObject()) {
TypeObject *object = type.typeObject();
if (!object->interpretedFunction)
return;
callee = object->interpretedFunction;
} else {
/* Ignore calls to primitives, these will go through a stub. */
return;
}
if (!callee->script()->ensureHasTypes(cx, callee))
return;
TypeSet *thisTypes = TypeScript::ThisTypes(callee->script());
if (this->types)
this->types->addSubset(cx, thisTypes);
else
thisTypes->addType(cx, this->type);
}
void
TypeConstraintArith::newType(JSContext *cx, TypeSet *source, Type type)
{
/*
* We only model a subset of the arithmetic behavior that is actually
* possible. The following need to be watched for at runtime:
*
* 1. Operations producing a double where no operand was a double.
* 2. Operations producing a string where no operand was a string (addition only).
* 3. Operations producing a value other than int/double/string.
*/
if (other) {
/*
* Addition operation, consider these cases:
* {int,bool} x {int,bool} -> int
* double x {int,bool,double} -> double
* string x any -> string
*/
if (type.isUnknown() || other->unknown()) {
target->addType(cx, Type::UnknownType());
} else if (type.isPrimitive(JSVAL_TYPE_DOUBLE)) {
if (other->hasAnyFlag(TYPE_FLAG_UNDEFINED | TYPE_FLAG_NULL |
TYPE_FLAG_INT32 | TYPE_FLAG_DOUBLE | TYPE_FLAG_BOOLEAN |
TYPE_FLAG_ANYOBJECT) ||
other->getObjectCount() != 0) {
target->addType(cx, Type::DoubleType());
}
} else if (type.isPrimitive(JSVAL_TYPE_STRING)) {
target->addType(cx, Type::StringType());
} else {
if (other->hasAnyFlag(TYPE_FLAG_UNDEFINED | TYPE_FLAG_NULL |
TYPE_FLAG_INT32 | TYPE_FLAG_BOOLEAN |
TYPE_FLAG_ANYOBJECT) ||
other->getObjectCount() != 0) {
target->addType(cx, Type::Int32Type());
}
if (other->hasAnyFlag(TYPE_FLAG_DOUBLE))
target->addType(cx, Type::DoubleType());
}
} else {
if (type.isUnknown())
target->addType(cx, Type::UnknownType());
else if (type.isPrimitive(JSVAL_TYPE_DOUBLE))
target->addType(cx, Type::DoubleType());
else
target->addType(cx, Type::Int32Type());
}
}
void
TypeConstraintTransformThis::newType(JSContext *cx, TypeSet *source, Type type)
{
if (type.isUnknown() || type.isAnyObject() || type.isObject() || script->strictModeCode) {
target->addType(cx, type);
return;
}
/*
* Note: if |this| is null or undefined, the pushed value is the outer window. We
* can't use script->getGlobalType() here because it refers to the inner window.
*/
if (!script->hasGlobal() ||
type.isPrimitive(JSVAL_TYPE_NULL) ||
type.isPrimitive(JSVAL_TYPE_UNDEFINED)) {
target->addType(cx, Type::UnknownType());
return;
}
TypeObject *object = NULL;
switch (type.primitive()) {
case JSVAL_TYPE_INT32:
case JSVAL_TYPE_DOUBLE:
object = TypeScript::StandardType(cx, script, JSProto_Number);
break;
case JSVAL_TYPE_BOOLEAN:
object = TypeScript::StandardType(cx, script, JSProto_Boolean);
break;
case JSVAL_TYPE_STRING:
object = TypeScript::StandardType(cx, script, JSProto_String);
break;
default:
return;
}
if (!object) {
cx->compartment->types.setPendingNukeTypes(cx);
return;
}
target->addType(cx, Type::ObjectType(object));
}
/////////////////////////////////////////////////////////////////////
// Freeze constraints
/////////////////////////////////////////////////////////////////////
/* Constraint which triggers recompilation of a script if any type is added to a type set. */
class TypeConstraintFreeze : public TypeConstraint
{
public:
JSScript *script;
/* Whether a new type has already been added, triggering recompilation. */
bool typeAdded;
TypeConstraintFreeze(JSScript *script)
: TypeConstraint("freeze"), script(script), typeAdded(false)
{}
void newType(JSContext *cx, TypeSet *source, Type type)
{
if (typeAdded)
return;
typeAdded = true;
cx->compartment->types.addPendingRecompile(cx, script);
}
};
void
TypeSet::addFreeze(JSContext *cx)
{
add(cx, cx->typeLifoAlloc().new_<TypeConstraintFreeze>(
cx->compartment->types.compiledScript), false);
}
/*
* Constraint which triggers recompilation of a script if a possible new JSValueType
* tag is realized for a type set.
*/
class TypeConstraintFreezeTypeTag : public TypeConstraint
{
public:
JSScript *script;
/*
* Whether the type tag has been marked unknown due to a type change which
* occurred after this constraint was generated (and which triggered recompilation).
*/
bool typeUnknown;
TypeConstraintFreezeTypeTag(JSScript *script)
: TypeConstraint("freezeTypeTag"), script(script), typeUnknown(false)
{}
void newType(JSContext *cx, TypeSet *source, Type type)
{
if (typeUnknown)
return;
if (!type.isUnknown() && !type.isAnyObject() && type.isObject()) {
/* Ignore new objects when the type set already has other objects. */
if (source->getObjectCount() >= 2)
return;
}
typeUnknown = true;
cx->compartment->types.addPendingRecompile(cx, script);
}
};
static inline JSValueType
GetValueTypeFromTypeFlags(TypeFlags flags)
{
switch (flags) {
case TYPE_FLAG_UNDEFINED:
return JSVAL_TYPE_UNDEFINED;
case TYPE_FLAG_NULL:
return JSVAL_TYPE_NULL;
case TYPE_FLAG_BOOLEAN:
return JSVAL_TYPE_BOOLEAN;
case TYPE_FLAG_INT32:
return JSVAL_TYPE_INT32;
case (TYPE_FLAG_INT32 | TYPE_FLAG_DOUBLE):
return JSVAL_TYPE_DOUBLE;
case TYPE_FLAG_STRING:
return JSVAL_TYPE_STRING;
case TYPE_FLAG_LAZYARGS:
return JSVAL_TYPE_MAGIC;
case TYPE_FLAG_ANYOBJECT:
return JSVAL_TYPE_OBJECT;
default:
return JSVAL_TYPE_UNKNOWN;
}
}
JSValueType
TypeSet::getKnownTypeTag(JSContext *cx)
{
TypeFlags flags = baseFlags();
JSValueType type;
if (baseObjectCount())
type = flags ? JSVAL_TYPE_UNKNOWN : JSVAL_TYPE_OBJECT;
else
type = GetValueTypeFromTypeFlags(flags);
/*
* If the type set is totally empty then it will be treated as unknown,
* but we still need to record the dependency as adding a new type can give
* it a definite type tag. This is not needed if there are enough types
* that the exact tag is unknown, as it will stay unknown as more types are
* added to the set.
*/
bool empty = flags == 0 && baseObjectCount() == 0;
JS_ASSERT_IF(empty, type == JSVAL_TYPE_UNKNOWN);
if (cx->compartment->types.compiledScript && (empty || type != JSVAL_TYPE_UNKNOWN)) {
add(cx, cx->typeLifoAlloc().new_<TypeConstraintFreezeTypeTag>(
cx->compartment->types.compiledScript), false);
}
return type;
}
/* Constraint which triggers recompilation if an object acquires particular flags. */
class TypeConstraintFreezeObjectFlags : public TypeConstraint
{
public:
JSScript *script;
/* Flags we are watching for on this object. */
TypeObjectFlags flags;
/* Whether the object has already been marked as having one of the flags. */
bool *pmarked;
bool localMarked;
TypeConstraintFreezeObjectFlags(JSScript *script, TypeObjectFlags flags, bool *pmarked)
: TypeConstraint("freezeObjectFlags"), script(script), flags(flags),
pmarked(pmarked), localMarked(false)
{}
TypeConstraintFreezeObjectFlags(JSScript *script, TypeObjectFlags flags)
: TypeConstraint("freezeObjectFlags"), script(script), flags(flags),
pmarked(&localMarked), localMarked(false)
{}
void newType(JSContext *cx, TypeSet *source, Type type) {}
void newObjectState(JSContext *cx, TypeObject *object, bool force)
{
if (object->hasAnyFlags(flags) && !*pmarked) {
*pmarked = true;
cx->compartment->types.addPendingRecompile(cx, script);
} else if (force) {
cx->compartment->types.addPendingRecompile(cx, script);
}
}
};
/*
* Constraint which triggers recompilation if any object in a type set acquire
* particular flags.
*/
class TypeConstraintFreezeObjectFlagsSet : public TypeConstraint
{
public:
JSScript *script;
TypeObjectFlags flags;
bool marked;
TypeConstraintFreezeObjectFlagsSet(JSScript *script, TypeObjectFlags flags)
: TypeConstraint("freezeObjectKindSet"), script(script), flags(flags), marked(false)
{}
void newType(JSContext *cx, TypeSet *source, Type type)
{
if (marked) {
/* Despecialized the kind we were interested in due to recompilation. */
return;
}
if (type.isUnknown() || type.isAnyObject()) {
/* Fallthrough and recompile. */
} else if (type.isObject()) {
TypeObject *object = type.isSingleObject()
? type.singleObject()->getType(cx)
: type.typeObject();
if (!object->hasAnyFlags(flags)) {
/*
* Add a constraint on the the object to pick up changes in the
* object's properties.
*/
TypeSet *types = object->getProperty(cx, JSID_EMPTY, false);
if (!types)
return;
types->add(cx, cx->typeLifoAlloc().new_<TypeConstraintFreezeObjectFlags>(
script, flags, &marked), false);
return;
}
} else {
return;
}
marked = true;
cx->compartment->types.addPendingRecompile(cx, script);
}
};
bool
TypeSet::hasObjectFlags(JSContext *cx, TypeObjectFlags flags)
{
if (unknownObject())
return true;
/*
* Treat type sets containing no objects as having all object flags,
* to spare callers from having to check this.
*/
if (baseObjectCount() == 0)
return true;
unsigned count = getObjectCount();
for (unsigned i = 0; i < count; i++) {
TypeObject *object = getTypeObject(i);
if (!object) {
JSObject *obj = getSingleObject(i);
if (obj)
object = obj->getType(cx);
}
if (object && object->hasAnyFlags(flags))
return true;
}
/*
* Watch for new objects of different kind, and re-traverse existing types
* in this set to add any needed FreezeArray constraints.
*/
add(cx, cx->typeLifoAlloc().new_<TypeConstraintFreezeObjectFlagsSet>(
cx->compartment->types.compiledScript, flags));
return false;
}
bool
TypeSet::HasObjectFlags(JSContext *cx, TypeObject *object, TypeObjectFlags flags)
{
if (object->hasAnyFlags(flags))
return true;
TypeSet *types = object->getProperty(cx, JSID_EMPTY, false);
if (!types)
return true;
types->add(cx, cx->typeLifoAlloc().new_<TypeConstraintFreezeObjectFlags>(
cx->compartment->types.compiledScript, flags), false);
return false;
}
void
types::MarkArgumentsCreated(JSContext *cx, JSScript *script)
{
JS_ASSERT(!script->createdArgs);
script->createdArgs = true;
script->uninlineable = true;
MarkTypeObjectFlags(cx, script->function(),
OBJECT_FLAG_CREATED_ARGUMENTS | OBJECT_FLAG_UNINLINEABLE);
if (!script->usedLazyArgs)
return;
AutoEnterTypeInference enter(cx);
#ifdef JS_METHODJIT
mjit::ExpandInlineFrames(cx->compartment);
#endif
if (!script->ensureRanAnalysis(cx))
return;
ScriptAnalysis *analysis = script->analysis();
for (FrameRegsIter iter(cx); !iter.done(); ++iter) {
StackFrame *fp = iter.fp();
if (fp->isScriptFrame() && fp->script() == script) {
/*
* Check locals and stack slots, assignment to individual arguments
* is treated as an escape on the arguments.
*/
Value *sp = fp->base() + analysis->getCode(iter.pc()).stackDepth;
for (Value *vp = fp->slots(); vp < sp; vp++) {
if (vp->isMagicCheck(JS_LAZY_ARGUMENTS)) {
if (!js_GetArgsValue(cx, fp, vp))
vp->setNull();
}
}
}
}
}
static inline void
ObjectStateChange(JSContext *cx, TypeObject *object, bool markingUnknown, bool force)
{
if (object->unknownProperties())
return;
/* All constraints listening to state changes are on the empty id. */
TypeSet *types = object->maybeGetProperty(cx, JSID_EMPTY);
/* Mark as unknown after getting the types, to avoid assertion. */
if (markingUnknown)
object->flags |= OBJECT_FLAG_DYNAMIC_MASK | OBJECT_FLAG_UNKNOWN_PROPERTIES;
if (types) {
TypeConstraint *constraint = types->constraintList;
while (constraint) {
constraint->newObjectState(cx, object, force);
constraint = constraint->next;
}
}
}
void
TypeSet::WatchObjectStateChange(JSContext *cx, TypeObject *obj)
{
JS_ASSERT(!obj->unknownProperties());
TypeSet *types = obj->getProperty(cx, JSID_EMPTY, false);
if (!types)
return;
/*
* Use a constraint which triggers recompilation when markStateChange is
* called, which will set 'force' to true.
*/
types->add(cx, cx->typeLifoAlloc().new_<TypeConstraintFreezeObjectFlags>(
cx->compartment->types.compiledScript,
0));
}
class TypeConstraintFreezeOwnProperty : public TypeConstraint
{
public:
JSScript *script;
bool updated;
bool configurable;
TypeConstraintFreezeOwnProperty(JSScript *script, bool configurable)
: TypeConstraint("freezeOwnProperty"),
script(script), updated(false), configurable(configurable)
{}
void newType(JSContext *cx, TypeSet *source, Type type) {}
void newPropertyState(JSContext *cx, TypeSet *source)
{
if (updated)
return;
if (source->isOwnProperty(configurable)) {
updated = true;
cx->compartment->types.addPendingRecompile(cx, script);
}
}
};
static void
CheckNewScriptProperties(JSContext *cx, TypeObject *type, JSFunction *fun);
bool
TypeSet::isOwnProperty(JSContext *cx, TypeObject *object, bool configurable)
{
/*
* Everywhere compiled code depends on definite properties associated with
* a type object's newScript, we need to make sure there are constraints
* in place which will mark those properties as configured should the
* definite properties be invalidated.
*/
if (object->flags & OBJECT_FLAG_NEW_SCRIPT_REGENERATE) {
if (object->newScript) {
CheckNewScriptProperties(cx, object, object->newScript->fun);
} else {
JS_ASSERT(object->flags & OBJECT_FLAG_NEW_SCRIPT_CLEARED);
object->flags &= ~OBJECT_FLAG_NEW_SCRIPT_REGENERATE;
}
}
if (isOwnProperty(configurable))
return true;
add(cx, cx->typeLifoAlloc().new_<TypeConstraintFreezeOwnProperty>(
cx->compartment->types.compiledScript,
configurable), false);
return false;
}
bool
TypeSet::knownNonEmpty(JSContext *cx)
{
if (baseFlags() != 0 || baseObjectCount() != 0)
return true;
addFreeze(cx);
return false;
}
bool
TypeSet::knownSubset(JSContext *cx, TypeSet *other)
{
if ((baseFlags() & other->baseFlags()) != baseFlags())
return false;
if (unknownObject()) {
JS_ASSERT(other->unknownObject());
} else {
for (unsigned i = 0; i < getObjectCount(); i++) {
TypeObjectKey *obj = getObject(i);
if (!obj)
continue;
if (!other->hasType(Type::ObjectType(obj)))
return false;
}
}
addFreeze(cx);
return true;
}
int
TypeSet::getTypedArrayType(JSContext *cx)
{
int arrayType = TypedArray::TYPE_MAX;
unsigned count = getObjectCount();
for (unsigned i = 0; i < count; i++) {
JSObject *proto = NULL;
if (JSObject *object = getSingleObject(i)) {
proto = object->getProto();
} else if (TypeObject *object = getTypeObject(i)) {
JS_ASSERT(!object->hasAnyFlags(OBJECT_FLAG_NON_TYPED_ARRAY));
proto = object->proto;
}
if (!proto)
continue;
int objArrayType = proto->getClass() - TypedArray::slowClasses;
JS_ASSERT(objArrayType >= 0 && objArrayType < TypedArray::TYPE_MAX);
/*
* Set arrayType to the type of the first array. Return if there is an array
* of another type.
*/
if (arrayType == TypedArray::TYPE_MAX)
arrayType = objArrayType;
else if (arrayType != objArrayType)
return TypedArray::TYPE_MAX;
}
/*
* Assume the caller checked that OBJECT_FLAG_NON_TYPED_ARRAY is not set.
* This means the set contains at least one object because sets with no
* objects have all object flags.
*/
JS_ASSERT(arrayType != TypedArray::TYPE_MAX);
/* Recompile when another typed array is added to this set. */
addFreeze(cx);
return arrayType;
}
JSObject *
TypeSet::getSingleton(JSContext *cx, bool freeze)
{
if (baseFlags() != 0 || baseObjectCount() != 1)
return NULL;
JSObject *obj = getSingleObject(0);
if (!obj)
return NULL;
if (freeze) {
add(cx, cx->typeLifoAlloc().new_<TypeConstraintFreeze>(
cx->compartment->types.compiledScript), false);
}
return obj;
}
static inline bool
TypeHasGlobal(Type type, JSObject *global)
{
if (type.isUnknown() || type.isAnyObject())
return false;
if (type.isSingleObject())
return type.singleObject()->getGlobal() == global;
if (type.isTypeObject())
return type.typeObject()->getGlobal() == global;
JS_ASSERT(type.isPrimitive());
return true;
}
class TypeConstraintFreezeGlobal : public TypeConstraint
{
public:
JSScript *script;
JSObject *global;
TypeConstraintFreezeGlobal(JSScript *script, JSObject *global)
: TypeConstraint("freezeGlobal"), script(script), global(global)
{
JS_ASSERT(global);
}
void newType(JSContext *cx, TypeSet *source, Type type)
{
if (!global || TypeHasGlobal(type, global))
return;
global = NULL;
cx->compartment->types.addPendingRecompile(cx, script);
}
};
bool
TypeSet::hasGlobalObject(JSContext *cx, JSObject *global)
{
if (unknownObject())
return false;
unsigned count = getObjectCount();
for (unsigned i = 0; i < count; i++) {
TypeObjectKey *object = getObject(i);
if (object && !TypeHasGlobal(Type::ObjectType(object), global))
return false;
}
add(cx, cx->typeLifoAlloc().new_<TypeConstraintFreezeGlobal>(
cx->compartment->types.compiledScript, global), false);
return true;
}
/////////////////////////////////////////////////////////////////////
// TypeCompartment
/////////////////////////////////////////////////////////////////////
TypeObject types::emptyTypeObject(NULL, false, true);
void
TypeCompartment::init(JSContext *cx)
{
PodZero(this);
if (cx && cx->getRunOptions() & JSOPTION_TYPE_INFERENCE)
inferenceEnabled = true;
}
TypeObject *
TypeCompartment::newTypeObject(JSContext *cx, JSScript *script,
JSProtoKey key, JSObject *proto, bool unknown)
{
TypeObject *object = NewGCThing<TypeObject>(cx, gc::FINALIZE_TYPE_OBJECT, sizeof(TypeObject));
if (!object)
return NULL;
new(object) TypeObject(proto, key == JSProto_Function, unknown);
if (!cx->typeInferenceEnabled())
object->flags |= OBJECT_FLAG_UNKNOWN_MASK;
else
object->setFlagsFromKey(cx, key);
return object;
}
TypeObject *
TypeCompartment::newAllocationSiteTypeObject(JSContext *cx, const AllocationSiteKey &key)
{
AutoEnterTypeInference enter(cx);
if (!allocationSiteTable) {
allocationSiteTable = cx->new_<AllocationSiteTable>();
if (!allocationSiteTable || !allocationSiteTable->init()) {
cx->compartment->types.setPendingNukeTypes(cx);
return NULL;
}
}
AllocationSiteTable::AddPtr p = allocationSiteTable->lookupForAdd(key);
JS_ASSERT(!p);
JSObject *proto;
if (!js_GetClassPrototype(cx, key.script->global(), key.kind, &proto, NULL))
return NULL;
TypeObject *res = newTypeObject(cx, key.script, key.kind, proto);
if (!res) {
cx->compartment->types.setPendingNukeTypes(cx);
return NULL;
}
jsbytecode *pc = key.script->code + key.offset;
UntrapOpcode untrap(cx, key.script, pc);
if (JSOp(*pc) == JSOP_NEWOBJECT) {
/*
* This object is always constructed the same way and will not be
* observed by other code before all properties have been added. Mark
* all the properties as definite properties of the object.
*/
JSObject *baseobj = key.script->getObject(GET_SLOTNO(pc));
if (!res->addDefiniteProperties(cx, baseobj))
return NULL;
}
if (!allocationSiteTable->add(p, key, res)) {
cx->compartment->types.setPendingNukeTypes(cx);
return NULL;
}
return res;
}
static inline jsid
GetAtomId(JSContext *cx, JSScript *script, const jsbytecode *pc, unsigned offset)
{
unsigned index = js_GetIndexFromBytecode(cx, script, (jsbytecode*) pc, offset);
return MakeTypeId(cx, ATOM_TO_JSID(script->getAtom(index)));
}
static inline JSObject *
GetScriptObject(JSContext *cx, JSScript *script, const jsbytecode *pc, unsigned offset)
{
unsigned index = js_GetIndexFromBytecode(cx, script, (jsbytecode*) pc, offset);
return script->getObject(index);
}
static inline const Value &
GetScriptConst(JSContext *cx, JSScript *script, const jsbytecode *pc)
{
unsigned index = js_GetIndexFromBytecode(cx, script, (jsbytecode*) pc, 0);
return script->getConst(index);
}
bool
types::UseNewType(JSContext *cx, JSScript *script, jsbytecode *pc)
{
JS_ASSERT(cx->typeInferenceEnabled());
UntrapOpcode untrap(cx, script, pc);
/*
* Make a heuristic guess at a use of JSOP_NEW that the constructed object
* should have a fresh type object. We do this when the NEW is immediately
* followed by a simple assignment to an object's .prototype field.
* This is designed to catch common patterns for subclassing in JS:
*
* function Super() { ... }
* function Sub1() { ... }
* function Sub2() { ... }
*
* Sub1.prototype = new Super();
* Sub2.prototype = new Super();
*
* Using distinct type objects for the particular prototypes of Sub1 and
* Sub2 lets us continue to distinguish the two subclasses and any extra
* properties added to those prototype objects.
*/
if (JSOp(*pc) != JSOP_NEW)
return false;
pc += JSOP_NEW_LENGTH;
if (JSOp(*pc) == JSOP_SETPROP) {
jsid id = GetAtomId(cx, script, pc, 0);
if (id == id_prototype(cx))
return true;
}
return false;
}
bool
TypeCompartment::growPendingArray(JSContext *cx)
{
unsigned newCapacity = js::Max(unsigned(100), pendingCapacity * 2);
PendingWork *newArray = (PendingWork *) OffTheBooks::calloc_(newCapacity * sizeof(PendingWork));
if (!newArray) {
cx->compartment->types.setPendingNukeTypes(cx);
return false;
}
memcpy(newArray, pendingArray, pendingCount * sizeof(PendingWork));
cx->free_(pendingArray);
pendingArray = newArray;
pendingCapacity = newCapacity;
return true;
}
void
TypeCompartment::processPendingRecompiles(JSContext *cx)
{
/* Steal the list of scripts to recompile, else we will try to recursively recompile them. */
Vector<JSScript*> *pending = pendingRecompiles;
pendingRecompiles = NULL;
JS_ASSERT(!pending->empty());
#ifdef JS_METHODJIT
mjit::ExpandInlineFrames(cx->compartment);
for (unsigned i = 0; i < pending->length(); i++) {
JSScript *script = (*pending)[i];
mjit::Recompiler recompiler(cx, script);
if (script->hasJITCode())
recompiler.recompile();
}
#endif /* JS_METHODJIT */
cx->delete_(pending);
}
void
TypeCompartment::setPendingNukeTypes(JSContext *cx)
{
JS_ASSERT(compartment()->activeInference);
if (!pendingNukeTypes) {
if (cx->compartment)
js_ReportOutOfMemory(cx);
pendingNukeTypes = true;
}
}
void
TypeCompartment::nukeTypes(JSContext *cx)
{
JS_ASSERT(this == &cx->compartment->types);
/*
* This is the usual response if we encounter an OOM while adding a type
* or resolving type constraints. Reset the compartment to not use type
* inference, and recompile all scripts.
*
* Because of the nature of constraint-based analysis (add constraints, and
* iterate them until reaching a fixpoint), we can't undo an add of a type set,
* and merely aborting the operation which triggered the add will not be
* sufficient for correct behavior as we will be leaving the types in an
* inconsistent state.
*/
JS_ASSERT(pendingNukeTypes);
if (pendingRecompiles) {
cx->free_(pendingRecompiles);
pendingRecompiles = NULL;
}
/*
* We may or may not be under the GC. In either case don't allocate, and
* acquire the GC lock so we can update inferenceEnabled for all contexts.
*/
#ifdef JS_THREADSAFE
AutoLockGC maybeLock;
if (!cx->runtime->gcMarkAndSweep)
maybeLock.lock(cx->runtime);
#endif
inferenceEnabled = false;
/* Update the cached inferenceEnabled bit in all contexts. */
for (JSCList *cl = cx->runtime->contextList.next;
cl != &cx->runtime->contextList;
cl = cl->next) {
JSContext *cx = JSContext::fromLinkField(cl);
cx->setCompartment(cx->compartment);
}
#ifdef JS_METHODJIT
JSCompartment *compartment = cx->compartment;
mjit::ExpandInlineFrames(compartment);
/* Throw away all JIT code in the compartment, but leave everything else alone. */
for (gc::CellIter i(cx, cx->compartment, gc::FINALIZE_SCRIPT); !i.done(); i.next()) {
JSScript *script = i.get<JSScript>();
if (script->hasJITCode()) {
mjit::Recompiler recompiler(cx, script);
recompiler.recompile();
}
}
#endif /* JS_METHODJIT */
}
void
TypeCompartment::addPendingRecompile(JSContext *cx, JSScript *script)
{
#ifdef JS_METHODJIT
if (!script->jitNormal && !script->jitCtor) {
/* Scripts which haven't been compiled yet don't need to be recompiled. */
return;
}
if (!pendingRecompiles) {
pendingRecompiles = cx->new_< Vector<JSScript*> >(cx);
if (!pendingRecompiles) {
cx->compartment->types.setPendingNukeTypes(cx);
return;
}
}
for (unsigned i = 0; i < pendingRecompiles->length(); i++) {
if (script == (*pendingRecompiles)[i])
return;
}
if (!pendingRecompiles->append(script)) {
cx->compartment->types.setPendingNukeTypes(cx);
return;
}
#endif
}
void
TypeCompartment::monitorBytecode(JSContext *cx, JSScript *script, uint32 offset,
bool returnOnly)
{
ScriptAnalysis *analysis = script->analysis();
JS_ASSERT(analysis->ranInference());
jsbytecode *pc = script->code + offset;
UntrapOpcode untrap(cx, script, pc);
JS_ASSERT_IF(returnOnly, js_CodeSpec[*pc].format & JOF_INVOKE);
Bytecode &code = analysis->getCode(pc);
if (returnOnly ? code.monitoredTypesReturn : code.monitoredTypes)
return;
InferSpew(ISpewOps, "addMonitorNeeded:%s #%u:%05u",
returnOnly ? " returnOnly" : "", script->id(), offset);
/* Dynamically monitor this call to keep track of its result types. */
if (js_CodeSpec[*pc].format & JOF_INVOKE)
code.monitoredTypesReturn = true;
if (!returnOnly)
code.monitoredTypes = true;
cx->compartment->types.addPendingRecompile(cx, script);
/* Trigger recompilation of any inline callers. */
if (script->hasFunction && !script->function()->hasLazyType())
ObjectStateChange(cx, script->function()->type(), false, true);
}
void
TypeCompartment::markSetsUnknown(JSContext *cx, TypeObject *target)
{
JS_ASSERT(this == &cx->compartment->types);
JS_ASSERT(!(target->flags & OBJECT_FLAG_SETS_MARKED_UNKNOWN));
JS_ASSERT(!target->singleton);
JS_ASSERT(target->unknownProperties());
target->flags |= OBJECT_FLAG_SETS_MARKED_UNKNOWN;
AutoEnterTypeInference enter(cx);
/*
* Mark both persistent and transient type sets which contain obj as having
* a generic object type. It is not sufficient to mark just the persistent
* sets, as analysis of individual opcodes can pull type objects from
* static information (like initializer objects at various offsets).
*
* We make a list of properties to update and fix them afterwards, as adding
* types can't be done while iterating over cells as it can potentially make
* new type objects as well or trigger GC.
*/
Vector<TypeSet *> pending(cx);
for (gc::CellIter i(cx, cx->compartment, gc::FINALIZE_TYPE_OBJECT); !i.done(); i.next()) {
TypeObject *object = i.get<TypeObject>();
unsigned count = object->getPropertyCount();
for (unsigned i = 0; i < count; i++) {
Property *prop = object->getProperty(i);
if (prop && prop->types.hasType(Type::ObjectType(target))) {
if (!pending.append(&prop->types))
cx->compartment->types.setPendingNukeTypes(cx);
}
}
}
for (unsigned i = 0; i < pending.length(); i++)
pending[i]->addType(cx, Type::AnyObjectType());
for (gc::CellIter i(cx, cx->compartment, gc::FINALIZE_SCRIPT); !i.done(); i.next()) {
JSScript *script = i.get<JSScript>();
if (script->types) {
unsigned count = TypeScript::NumTypeSets(script);
TypeSet *typeArray = script->types->typeArray();
for (unsigned i = 0; i < count; i++) {
if (typeArray[i].hasType(Type::ObjectType(target)))
typeArray[i].addType(cx, Type::AnyObjectType());
}
}
if (script->hasAnalysis() && script->analysis()->ranInference()) {
for (unsigned i = 0; i < script->length; i++) {
if (!script->analysis()->maybeCode(i))
continue;
jsbytecode *pc = script->code + i;
UntrapOpcode untrap(cx, script, pc);
if (js_CodeSpec[*pc].format & JOF_DECOMPOSE)
continue;
unsigned defCount = GetDefCount(script, i);
if (ExtendedDef(pc))
defCount++;
for (unsigned j = 0; j < defCount; j++) {
TypeSet *types = script->analysis()->pushedTypes(pc, j);
if (types->hasType(Type::ObjectType(target)))
types->addType(cx, Type::AnyObjectType());
}
}
}
}
}
void
ScriptAnalysis::addTypeBarrier(JSContext *cx, const jsbytecode *pc, TypeSet *target, Type type)
{
Bytecode &code = getCode(pc);
if (!type.isUnknown() && !type.isAnyObject() &&
type.isObject() && target->getObjectCount() >= BARRIER_OBJECT_LIMIT) {
/* Ignore this barrier, just add the type to the target. */
target->addType(cx, type);
return;
}
if (!code.typeBarriers) {
/*
* Adding type barriers at a bytecode which did not have them before
* will trigger recompilation. If there were already type barriers,
* however, do not trigger recompilation (the script will be recompiled
* if any of the barriers is ever violated).
*/
cx->compartment->types.addPendingRecompile(cx, script);
/* Trigger recompilation of any inline callers. */
if (script->hasFunction && !script->function()->hasLazyType())
ObjectStateChange(cx, script->function()->type(), false, true);
}
/* Ignore duplicate barriers. */
TypeBarrier *barrier = code.typeBarriers;
while (barrier) {
if (barrier->target == target && barrier->type == type && !barrier->singleton)
return;
barrier = barrier->next;
}
InferSpew(ISpewOps, "typeBarrier: #%u:%05u: %sT%p%s %s",
script->id(), pc - script->code,
InferSpewColor(target), target, InferSpewColorReset(),
TypeString(type));
barrier = cx->typeLifoAlloc().new_<TypeBarrier>(target, type, (JSObject *) NULL, JSID_VOID);
barrier->next = code.typeBarriers;
code.typeBarriers = barrier;
}
void
ScriptAnalysis::addSingletonTypeBarrier(JSContext *cx, const jsbytecode *pc, TypeSet *target, JSObject *singleton, jsid singletonId)
{
JS_ASSERT(singletonId == MakeTypeId(cx, singletonId) && !JSID_IS_VOID(singletonId));
Bytecode &code = getCode(pc);
if (!code.typeBarriers) {
/* Trigger recompilation as for normal type barriers. */
cx->compartment->types.addPendingRecompile(cx, script);
if (script->hasFunction && !script->function()->hasLazyType())
ObjectStateChange(cx, script->function()->type(), false, true);
}
InferSpew(ISpewOps, "singletonTypeBarrier: #%u:%05u: %sT%p%s %p %s",
script->id(), pc - script->code,
InferSpewColor(target), target, InferSpewColorReset(),
(void *) singleton, TypeIdString(singletonId));
TypeBarrier *barrier = cx->typeLifoAlloc().new_<TypeBarrier>(target, Type::UndefinedType(),
singleton, singletonId);
barrier->next = code.typeBarriers;
code.typeBarriers = barrier;
}
void
TypeCompartment::print(JSContext *cx, bool force)
{
JSCompartment *compartment = this->compartment();
AutoEnterAnalysis enter(compartment);
if (!force && !InferSpewActive(ISpewResult))
return;
for (gc::CellIter i(cx, compartment, gc::FINALIZE_SCRIPT); !i.done(); i.next()) {
JSScript *script = i.get<JSScript>();
if (script->hasAnalysis() && script->analysis()->ranInference())
script->analysis()->printTypes(cx);
}
#ifdef DEBUG
for (gc::CellIter i(cx, compartment, gc::FINALIZE_TYPE_OBJECT); !i.done(); i.next()) {
TypeObject *object = i.get<TypeObject>();
object->print(cx);
}
#endif
printf("Counts: ");
for (unsigned count = 0; count < TYPE_COUNT_LIMIT; count++) {
if (count)
printf("/");
printf("%u", typeCounts[count]);
}
printf(" (%u over)\n", typeCountOver);
printf("Recompilations: %u\n", recompilations);
}
/////////////////////////////////////////////////////////////////////
// TypeCompartment tables
/////////////////////////////////////////////////////////////////////
/*
* The arrayTypeTable and objectTypeTable are per-compartment tables for making
* common type objects to model the contents of large script singletons and
* JSON objects. These are vanilla Arrays and native Objects, so we distinguish
* the types of different ones by looking at the types of their properties.
*
* All singleton/JSON arrays which have the same prototype, are homogenous and
* of the same element type will share a type object. All singleton/JSON
* objects which have the same shape and property types will also share a type
* object. We don't try to collate arrays or objects that have type mismatches.
*/
static inline bool
NumberTypes(Type a, Type b)
{
return (a.isPrimitive(JSVAL_TYPE_INT32) || a.isPrimitive(JSVAL_TYPE_DOUBLE))
&& (b.isPrimitive(JSVAL_TYPE_INT32) || b.isPrimitive(JSVAL_TYPE_DOUBLE));
}
/*
* As for GetValueType, but requires object types to be non-singletons with
* their default prototype. These are the only values that should appear in
* arrays and objects whose type can be fixed.
*/
static inline Type
GetValueTypeForTable(JSContext *cx, const Value &v)
{
Type type = GetValueType(cx, v);
JS_ASSERT(!type.isSingleObject());
JS_ASSERT_IF(type.isTypeObject(), type.typeObject() != &emptyTypeObject);
return type;
}
struct types::ArrayTableKey
{
Type type;
JSObject *proto;
ArrayTableKey()
: type(Type::UndefinedType()), proto(NULL)
{}
typedef ArrayTableKey Lookup;
static inline uint32 hash(const ArrayTableKey &v) {
return (uint32) (v.type.raw() ^ ((uint32)(size_t)v.proto >> 2));
}
static inline bool match(const ArrayTableKey &v1, const ArrayTableKey &v2) {
return v1.type == v2.type && v1.proto == v2.proto;
}
};
void
TypeCompartment::fixArrayType(JSContext *cx, JSObject *obj)
{
AutoEnterTypeInference enter(cx);
if (!arrayTypeTable) {
arrayTypeTable = cx->new_<ArrayTypeTable>();
if (!arrayTypeTable || !arrayTypeTable->init()) {
arrayTypeTable = NULL;
cx->compartment->types.setPendingNukeTypes(cx);
return;
}
}
/*
* If the array is of homogenous type, pick a type object which will be
* shared with all other singleton/JSON arrays of the same type.
* If the array is heterogenous, keep the existing type object, which has
* unknown properties.
*/
JS_ASSERT(obj->isPackedDenseArray());
unsigned len = obj->getDenseArrayInitializedLength();
if (len == 0)
return;
Type type = GetValueTypeForTable(cx, obj->getDenseArrayElement(0));
for (unsigned i = 1; i < len; i++) {
Type ntype = GetValueTypeForTable(cx, obj->getDenseArrayElement(i));
if (ntype != type) {
if (NumberTypes(type, ntype))
type = Type::DoubleType();
else
return;
}
}
ArrayTableKey key;
key.type = type;
key.proto = obj->getProto();
ArrayTypeTable::AddPtr p = arrayTypeTable->lookupForAdd(key);
if (p) {
obj->setType(p->value);
} else {
/* Make a new type to use for future arrays with the same elements. */
TypeObject *objType = newTypeObject(cx, NULL, JSProto_Array, obj->getProto());
if (!objType) {
cx->compartment->types.setPendingNukeTypes(cx);
return;
}
obj->setType(objType);
if (!objType->unknownProperties())
objType->addPropertyType(cx, JSID_VOID, type);
if (!arrayTypeTable->relookupOrAdd(p, key, objType)) {
cx->compartment->types.setPendingNukeTypes(cx);
return;
}
}
}
/*
* N.B. We could also use the initial shape of the object (before its type is
* fixed) as the key in the object table, but since all references in the table
* are weak the hash entries would usually be collected on GC even if objects
* with the new type/shape are still live.
*/
struct types::ObjectTableKey
{
jsid *ids;
uint32 nslots;
uint32 nfixed;
JSObject *proto;
typedef JSObject * Lookup;
static inline uint32 hash(JSObject *obj) {
return (uint32) (JSID_BITS(obj->lastProperty()->propid) ^
obj->slotSpan() ^ obj->numFixedSlots() ^
((uint32)(size_t)obj->getProto() >> 2));
}
static inline bool match(const ObjectTableKey &v, JSObject *obj) {
if (obj->slotSpan() != v.nslots ||
obj->numFixedSlots() != v.nfixed ||
obj->getProto() != v.proto) {
return false;
}
const Shape *shape = obj->lastProperty();
while (!JSID_IS_EMPTY(shape->propid)) {
if (shape->propid != v.ids[shape->slot])
return false;
shape = shape->previous();
}
return true;
}
};
struct types::ObjectTableEntry
{
TypeObject *object;
Type *types;
};
void
TypeCompartment::fixObjectType(JSContext *cx, JSObject *obj)
{
AutoEnterTypeInference enter(cx);
if (!objectTypeTable) {
objectTypeTable = cx->new_<ObjectTypeTable>();
if (!objectTypeTable || !objectTypeTable->init()) {
objectTypeTable = NULL;
cx->compartment->types.setPendingNukeTypes(cx);
return;
}
}
/*
* Use the same type object for all singleton/JSON arrays with the same
* base shape, i.e. the same fields written in the same order. If there
* is a type mismatch with previous objects of the same shape, use the
* generic unknown type.
*/
JS_ASSERT(obj->isObject());
if (obj->slotSpan() == 0 || obj->inDictionaryMode())
return;
ObjectTypeTable::AddPtr p = objectTypeTable->lookupForAdd(obj);
const Shape *baseShape = obj->lastProperty();
if (p) {
/* The lookup ensures the shape matches, now check that the types match. */
Type *types = p->value.types;
for (unsigned i = 0; i < obj->slotSpan(); i++) {
Type ntype = GetValueTypeForTable(cx, obj->getSlot(i));
if (ntype != types[i]) {
if (NumberTypes(ntype, types[i])) {
if (types[i].isPrimitive(JSVAL_TYPE_INT32)) {
types[i] = Type::DoubleType();
const Shape *shape = baseShape;
while (!JSID_IS_EMPTY(shape->propid)) {
if (shape->slot == i) {
Type type = Type::DoubleType();
if (!p->value.object->unknownProperties()) {
jsid id = MakeTypeId(cx, shape->propid);
p->value.object->addPropertyType(cx, id, type);
}
break;
}
shape = shape->previous();
}
}
} else {
return;
}
}
}
obj->setType(p->value.object);
} else {
/* Make a new type to use for the object and similar future ones. */
TypeObject *objType = newTypeObject(cx, NULL, JSProto_Object, obj->getProto());
if (!objType || !objType->addDefiniteProperties(cx, obj)) {
cx->compartment->types.setPendingNukeTypes(cx);
return;
}
jsid *ids = (jsid *) cx->calloc_(obj->slotSpan() * sizeof(jsid));
if (!ids) {
cx->compartment->types.setPendingNukeTypes(cx);
return;
}
Type *types = (Type *) cx->calloc_(obj->slotSpan() * sizeof(Type));
if (!types) {
cx->compartment->types.setPendingNukeTypes(cx);
return;
}
const Shape *shape = baseShape;
while (!JSID_IS_EMPTY(shape->propid)) {
ids[shape->slot] = shape->propid;
types[shape->slot] = GetValueTypeForTable(cx, obj->getSlot(shape->slot));
if (!objType->unknownProperties()) {
jsid id = MakeTypeId(cx, shape->propid);
objType->addPropertyType(cx, id, types[shape->slot]);
}
shape = shape->previous();
}
ObjectTableKey key;
key.ids = ids;
key.nslots = obj->slotSpan();
key.nfixed = obj->numFixedSlots();
key.proto = obj->getProto();
JS_ASSERT(ObjectTableKey::match(key, obj));
ObjectTableEntry entry;
entry.object = objType;
entry.types = types;
p = objectTypeTable->lookupForAdd(obj);
if (!objectTypeTable->add(p, key, entry)) {
cx->compartment->types.setPendingNukeTypes(cx);
return;
}
obj->setType(objType);
}
}
/////////////////////////////////////////////////////////////////////
// TypeObject
/////////////////////////////////////////////////////////////////////
void
TypeObject::getFromPrototypes(JSContext *cx, jsid id, TypeSet *types, bool force)
{
if (!force && types->hasPropagatedProperty())
return;
types->setPropagatedProperty();
if (!proto)
return;
if (proto->getType(cx)->unknownProperties()) {
types->addType(cx, Type::UnknownType());
return;
}
TypeSet *protoTypes = proto->type()->getProperty(cx, id, false);
if (!protoTypes)
return;
protoTypes->addSubset(cx, types);
proto->type()->getFromPrototypes(cx, id, protoTypes);
}
static inline void
UpdatePropertyType(JSContext *cx, TypeSet *types, JSObject *obj, const Shape *shape, bool force)
{
if (shape->hasGetterValue() || shape->hasSetterValue()) {
types->addType(cx, Type::UnknownType());
} else if (shape->hasDefaultGetterOrIsMethod() && shape->slot != SHAPE_INVALID_SLOT) {
const Value &value = obj->nativeGetSlot(shape->slot);
/*
* Don't add initial undefined types for singleton properties that are
* not collated into the JSID_VOID property (see propertySet comment).
*/
if (!force && value.isUndefined())
return;
Type type = GetValueType(cx, value);
types->addType(cx, type);
}
}
bool
TypeObject::addProperty(JSContext *cx, jsid id, Property **pprop)
{
JS_ASSERT(!*pprop);
Property *base = cx->typeLifoAlloc().new_<Property>(id);
if (!base) {
cx->compartment->types.setPendingNukeTypes(cx);
return false;
}
if (singleton) {
/*
* Fill the property in with any type the object already has in an
* own property. We are only interested in plain native properties
* which don't go through a barrier when read by the VM or jitcode.
* We don't need to handle arrays or other JIT'ed non-natives as
* these are not (yet) singletons.
*/
if (JSID_IS_VOID(id)) {
/* Go through all shapes on the object to get integer-valued properties. */
const Shape *shape = singleton->lastProperty();
while (!JSID_IS_EMPTY(shape->propid)) {
if (JSID_IS_VOID(MakeTypeId(cx, shape->propid)))
UpdatePropertyType(cx, &base->types, singleton, shape, true);
shape = shape->previous();
}
} else {
const Shape *shape = singleton->nativeLookup(cx, id);
if (shape)
UpdatePropertyType(cx, &base->types, singleton, shape, false);
}
if (singleton->watched()) {
/*
* Mark the property as configured, to inhibit optimizations on it
* and avoid bypassing the watchpoint handler.
*/
base->types.setOwnProperty(cx, true);
}
}
*pprop = base;
InferSpew(ISpewOps, "typeSet: %sT%p%s property %s %s",
InferSpewColor(&base->types), &base->types, InferSpewColorReset(),
TypeObjectString(this), TypeIdString(id));
return true;
}
bool
TypeObject::addDefiniteProperties(JSContext *cx, JSObject *obj)
{
if (unknownProperties())
return true;
/* Mark all properties of obj as definite properties of this type. */
AutoEnterTypeInference enter(cx);
const Shape *shape = obj->lastProperty();
while (!JSID_IS_EMPTY(shape->propid)) {
jsid id = MakeTypeId(cx, shape->propid);
if (!JSID_IS_VOID(id) && obj->isFixedSlot(shape->slot) &&
shape->slot <= (TYPE_FLAG_DEFINITE_MASK >> TYPE_FLAG_DEFINITE_SHIFT)) {
TypeSet *types = getProperty(cx, id, true);
if (!types)
return false;
types->setDefinite(shape->slot);
}
shape = shape->previous();
}
return true;
}
bool
TypeObject::matchDefiniteProperties(JSObject *obj)
{
unsigned count = getPropertyCount();
for (unsigned i = 0; i < count; i++) {
Property *prop = getProperty(i);
if (!prop)
continue;
if (prop->types.isDefiniteProperty()) {
unsigned slot = prop->types.definiteSlot();
bool found = false;
const Shape *shape = obj->lastProperty();
while (!JSID_IS_EMPTY(shape->propid)) {
if (shape->slot == slot && shape->propid == prop->id) {
found = true;
break;
}
shape = shape->previous();
}
if (!found)
return false;
}
}
return true;
}
inline void
InlineAddTypeProperty(JSContext *cx, TypeObject *obj, jsid id, Type type)
{
JS_ASSERT(id == MakeTypeId(cx, id));
AutoEnterTypeInference enter(cx);
TypeSet *types = obj->getProperty(cx, id, true);
if (!types || types->hasType(type))
return;
InferSpew(ISpewOps, "externalType: property %s %s: %s",
TypeObjectString(obj), TypeIdString(id), TypeString(type));
types->addType(cx, type);
}
void
TypeObject::addPropertyType(JSContext *cx, jsid id, Type type)
{
InlineAddTypeProperty(cx, this, id, type);
}
void
TypeObject::addPropertyType(JSContext *cx, jsid id, const Value &value)
{
InlineAddTypeProperty(cx, this, id, GetValueType(cx, value));
}
void
TypeObject::addPropertyType(JSContext *cx, const char *name, Type type)
{
jsid id = JSID_VOID;
if (name) {
JSAtom *atom = js_Atomize(cx, name, strlen(name));
if (!atom) {
AutoEnterTypeInference enter(cx);
cx->compartment->types.setPendingNukeTypes(cx);
return;
}
id = ATOM_TO_JSID(atom);
}
InlineAddTypeProperty(cx, this, id, type);
}
void
TypeObject::addPropertyType(JSContext *cx, const char *name, const Value &value)
{
addPropertyType(cx, name, GetValueType(cx, value));
}
void
TypeObject::markPropertyConfigured(JSContext *cx, jsid id)
{
AutoEnterTypeInference enter(cx);
id = MakeTypeId(cx, id);
TypeSet *types = getProperty(cx, id, true);
if (types)
types->setOwnProperty(cx, true);
}
void
TypeObject::markStateChange(JSContext *cx)
{
if (unknownProperties())
return;
AutoEnterTypeInference enter(cx);
TypeSet *types = maybeGetProperty(cx, JSID_EMPTY);
if (types) {
TypeConstraint *constraint = types->constraintList;
while (constraint) {
constraint->newObjectState(cx, this, true);
constraint = constraint->next;
}
}
}
void
TypeObject::setFlags(JSContext *cx, TypeObjectFlags flags)
{
if ((this->flags & flags) == flags)
return;
AutoEnterTypeInference enter(cx);
if (singleton) {
/* Make sure flags are consistent with persistent object state. */
JS_ASSERT_IF(flags & OBJECT_FLAG_CREATED_ARGUMENTS,
(flags & OBJECT_FLAG_UNINLINEABLE) &&
interpretedFunction->script()->createdArgs);
JS_ASSERT_IF(flags & OBJECT_FLAG_UNINLINEABLE,
interpretedFunction->script()->uninlineable);
JS_ASSERT_IF(flags & OBJECT_FLAG_REENTRANT_FUNCTION,
interpretedFunction->script()->reentrantOuterFunction);
JS_ASSERT_IF(flags & OBJECT_FLAG_ITERATED,
singleton->flags & JSObject::ITERATED);
}
this->flags |= flags;
InferSpew(ISpewOps, "%s: setFlags 0x%x", TypeObjectString(this), flags);
ObjectStateChange(cx, this, false, false);
}
void
TypeObject::markUnknown(JSContext *cx)
{
AutoEnterTypeInference enter(cx);
JS_ASSERT(cx->compartment->activeInference);
JS_ASSERT(!unknownProperties());
if (!(flags & OBJECT_FLAG_NEW_SCRIPT_CLEARED))
clearNewScript(cx);
InferSpew(ISpewOps, "UnknownProperties: %s", TypeObjectString(this));
ObjectStateChange(cx, this, true, true);
/*
* Existing constraints may have already been added to this object, which we need
* to do the right thing for. We can't ensure that we will mark all unknown
* objects before they have been accessed, as the __proto__ of a known object
* could be dynamically set to an unknown object, and we can decide to ignore
* properties of an object during analysis (i.e. hashmaps). Adding unknown for
* any properties accessed already accounts for possible values read from them.
*/
unsigned count = getPropertyCount();
for (unsigned i = 0; i < count; i++) {
Property *prop = getProperty(i);
if (prop) {
prop->types.addType(cx, Type::UnknownType());
prop->types.setOwnProperty(cx, true);
}
}
}
void
TypeObject::clearNewScript(JSContext *cx)
{
JS_ASSERT(!(flags & OBJECT_FLAG_NEW_SCRIPT_CLEARED));
flags |= OBJECT_FLAG_NEW_SCRIPT_CLEARED;
/*
* It is possible for the object to not have a new script yet but to have
* one added in the future. When analyzing properties of new scripts we mix
* in adding constraints to trigger clearNewScript with changes to the
* type sets themselves (from breakTypeBarriers). It is possible that we
* could trigger one of these constraints before AnalyzeNewScriptProperties
* has finished, in which case we want to make sure that call fails.
*/
if (!newScript)
return;
AutoEnterTypeInference enter(cx);
/*
* Any definite properties we added due to analysis of the new script when
* the type object was created are now invalid: objects with the same type
* can be created by using 'new' on a different script or through some
* other mechanism (e.g. Object.create). Rather than clear out the definite
* bits on the object's properties, just mark such properties as having
* been deleted/reconfigured, which will have the same effect on JITs
* wanting to use the definite bits to optimize property accesses.
*/
for (unsigned i = 0; i < getPropertyCount(); i++) {
Property *prop = getProperty(i);
if (!prop)
continue;
if (prop->types.isDefiniteProperty())
prop->types.setOwnProperty(cx, true);
}
/*
* If we cleared the new script while in the middle of initializing an
* object, it will still have the new script's shape and reflect the no
* longer correct state of the object once its initialization is completed.
* We can't really detect the possibility of this statically, but the new
* script keeps track of where each property is initialized so we can walk
* the stack and fix up any such objects.
*/
for (FrameRegsIter iter(cx); !iter.done(); ++iter) {
StackFrame *fp = iter.fp();
if (fp->isScriptFrame() && fp->isConstructing() &&
fp->fun() == newScript->fun && fp->thisValue().isObject() &&
!fp->thisValue().toObject().hasLazyType() &&
fp->thisValue().toObject().type() == this) {
JSObject *obj = &fp->thisValue().toObject();
jsbytecode *pc = iter.pc();
/* Whether all identified 'new' properties have been initialized. */
bool finished = false;
/* If not finished, number of properties that have been added. */
uint32 numProperties = 0;
/*
* If non-zero, we are scanning initializers in a call which has
* already finished.
*/
size_t depth = 0;
for (TypeNewScript::Initializer *init = newScript->initializerList;; init++) {
uint32 offset = uint32(pc - fp->script()->code);
if (init->kind == TypeNewScript::Initializer::SETPROP) {
if (!depth && init->offset > offset) {
/* Advanced past all properties which have been initialized. */
break;
}
numProperties++;
} else if (init->kind == TypeNewScript::Initializer::FRAME_PUSH) {
if (depth) {
depth++;
} else if (init->offset > offset) {
/* Advanced past all properties which have been initialized. */
break;
} else if (init->offset == offset) {
StackSegment &seg = cx->stack.space().containingSegment(fp);
if (seg.maybefp() == fp)
break;
fp = seg.computeNextFrame(fp);
pc = fp->pcQuadratic(cx->stack);
} else {
/* This call has already finished. */
depth = 1;
}
} else if (init->kind == TypeNewScript::Initializer::FRAME_POP) {
if (depth) {
depth--;
} else {
/* This call has not finished yet. */
break;
}
} else {
JS_ASSERT(init->kind == TypeNewScript::Initializer::DONE);
finished = true;
break;
}
}
if (!finished)
obj->rollbackProperties(cx, numProperties);
}
}
cx->free_(newScript);
newScript = NULL;
markStateChange(cx);
}
void
TypeObject::print(JSContext *cx)
{
printf("%s : %s",
TypeObjectString(this),
proto ? TypeString(Type::ObjectType(proto)) : "(null)");
if (unknownProperties()) {
printf(" unknown");
} else {
if (!hasAnyFlags(OBJECT_FLAG_NON_PACKED_ARRAY))
printf(" packed");
if (!hasAnyFlags(OBJECT_FLAG_NON_DENSE_ARRAY))
printf(" dense");
if (!hasAnyFlags(OBJECT_FLAG_NON_TYPED_ARRAY))
printf(" typed");
if (hasAnyFlags(OBJECT_FLAG_UNINLINEABLE))
printf(" uninlineable");
if (hasAnyFlags(OBJECT_FLAG_SPECIAL_EQUALITY))
printf(" specialEquality");
if (hasAnyFlags(OBJECT_FLAG_ITERATED))
printf(" iterated");
}
unsigned count = getPropertyCount();
if (count == 0) {
printf(" {}\n");
return;
}
printf(" {");
for (unsigned i = 0; i < count; i++) {
Property *prop = getProperty(i);
if (prop) {
printf("\n %s:", TypeIdString(prop->id));
prop->types.print(cx);
}
}
printf("\n}\n");
}
/////////////////////////////////////////////////////////////////////
// Type Analysis
/////////////////////////////////////////////////////////////////////
/*
* If the bytecode immediately following code/pc is a test of the value
* pushed by code, that value should be marked as possibly void.
*/
static inline bool
CheckNextTest(jsbytecode *pc)
{
jsbytecode *next = pc + GetBytecodeLength(pc);
switch ((JSOp)*next) {
case JSOP_IFEQ:
case JSOP_IFNE:
case JSOP_NOT:
case JSOP_OR:
case JSOP_ORX:
case JSOP_AND:
case JSOP_ANDX:
case JSOP_TYPEOF:
case JSOP_TYPEOFEXPR:
return true;
default:
/* TRAP ok here */
return false;
}
}
static inline TypeObject *
GetInitializerType(JSContext *cx, JSScript *script, jsbytecode *pc)
{
if (!script->hasGlobal())
return NULL;
UntrapOpcode untrap(cx, script, pc);
JSOp op = JSOp(*pc);
JS_ASSERT(op == JSOP_NEWARRAY || op == JSOP_NEWOBJECT || op == JSOP_NEWINIT);
bool isArray = (op == JSOP_NEWARRAY || (op == JSOP_NEWINIT && pc[1] == JSProto_Array));
return TypeScript::InitObject(cx, script, pc, isArray ? JSProto_Array : JSProto_Object);
}
/*
* Detach nesting state for script from its parent, removing it entirely if it
* has no children of its own. This happens when walking type information while
* initially resolving NAME accesses, thus will not invalidate any compiler
* dependencies.
*/
static void
DetachNestingParent(JSScript *script)
{
TypeScriptNesting *nesting = script->nesting();
if (!nesting || !nesting->parent)
return;
/* Remove from parent's list of children. */
JSScript **pscript = &nesting->parent->nesting()->children;
while ((*pscript)->nesting() != nesting)
pscript = &(*pscript)->nesting()->next;
*pscript = nesting->next;
nesting->parent = NULL;
/* If this nesting can have no children of its own, destroy it. */
if (!script->isOuterFunction)
script->clearNesting();
}
ScriptAnalysis::NameAccess
ScriptAnalysis::resolveNameAccess(JSContext *cx, jsid id, bool addDependency)
{
JS_ASSERT(cx->typeInferenceEnabled());
NameAccess access;
PodZero(&access);
if (!JSID_IS_ATOM(id))
return access;
JSAtom *atom = JSID_TO_ATOM(id);
JSScript *script = this->script;
while (script->hasFunction && script->nesting()) {
if (!script->ensureRanInference(cx))
return access;
/*
* Don't resolve names in scripts which use 'let' or 'with'. New names
* bound here can mask variables of the script itself.
*
* Also, don't resolve names in scripts which are generators. Frame
* balancing works differently for generators and we do not maintain
* active frame counts for such scripts.
*/
if (script->analysis()->addsScopeObjects() ||
js_GetOpcode(cx, script, script->code) == JSOP_GENERATOR) {
return access;
}
/* Check if the script definitely binds the identifier. */
uintN index;
BindingKind kind = script->bindings.lookup(cx, atom, &index);
if (kind == ARGUMENT || kind == VARIABLE) {
TypeObject *obj = script->function()->getType(cx);
if (addDependency) {
/*
* Record the dependency which compiled code has on the outer
* function being non-reentrant.
*/
if (TypeSet::HasObjectFlags(cx, obj, OBJECT_FLAG_REENTRANT_FUNCTION))
return access;
}
access.script = script;
access.nesting = script->nesting();
access.slot = (kind == ARGUMENT) ? ArgSlot(index) : LocalSlot(script, index);
access.arg = (kind == ARGUMENT);
access.index = index;
return access;
} else if (kind != NONE) {
return access;
}
/*
* The script's bindings do not contain a name for the function itself,
* don't resolve name accesses on lambdas in DeclEnv objects on the
* scope chain.
*/
if (atom == CallObjectLambdaName(script->function()))
return access;
if (!script->nesting()->parent)
return access;
script = script->nesting()->parent;
}
return access;
}
/* Analyze type information for a single bytecode. */
bool
ScriptAnalysis::analyzeTypesBytecode(JSContext *cx, unsigned offset,
TypeInferenceState &state)
{
jsbytecode *pc = script->code + offset;
JSOp op = (JSOp)*pc;
Bytecode &code = getCode(offset);
JS_ASSERT(!code.pushedTypes);
InferSpew(ISpewOps, "analyze: #%u:%05u", script->id(), offset);
unsigned defCount = GetDefCount(script, offset);
if (ExtendedDef(pc))
defCount++;
TypeSet *pushed = cx->typeLifoAlloc().newArrayUninitialized<TypeSet>(defCount);
if (!pushed)
return false;
PodZero(pushed, defCount);
code.pushedTypes = pushed;
/*
* Add phi nodes introduced at this point to the list of all phi nodes in
* the script. Types for these are not generated until after the script has
* been processed, as types can flow backwards into phi nodes and the
* source sets may not exist if we try to process these eagerly.
*/
if (code.newValues) {
SlotValue *newv = code.newValues;
while (newv->slot) {
if (newv->value.kind() != SSAValue::PHI || newv->value.phiOffset() != offset) {
newv++;
continue;
}
/*
* The phi nodes at join points should all be unique, and every phi
* node created should be in the phiValues list on some bytecode.
*/
if (!state.phiNodes.append(newv->value.phiNode()))
return false;
TypeSet &types = newv->value.phiNode()->types;
InferSpew(ISpewOps, "typeSet: %sT%p%s phi #%u:%05u:%u",
InferSpewColor(&types), &types, InferSpewColorReset(),
script->id(), offset, newv->slot);
newv++;
}
}
/*
* Treat decomposed ops as no-ops, we will analyze the decomposed version
* instead. (We do, however, need to look at introduced phi nodes).
*/
if (js_CodeSpec[*pc].format & JOF_DECOMPOSE)
return true;
for (unsigned i = 0; i < defCount; i++) {
InferSpew(ISpewOps, "typeSet: %sT%p%s pushed%u #%u:%05u",
InferSpewColor(&pushed[i]), &pushed[i], InferSpewColorReset(),
i, script->id(), offset);
}
/* Add type constraints for the various opcodes. */
switch (op) {
/* Nop bytecodes. */
case JSOP_POP:
case JSOP_NOP:
case JSOP_TRACE:
case JSOP_NOTRACE:
case JSOP_GOTO:
case JSOP_GOTOX:
case JSOP_IFEQ:
case JSOP_IFEQX:
case JSOP_IFNE:
case JSOP_IFNEX:
case JSOP_LINENO:
case JSOP_DEFCONST:
case JSOP_LEAVEWITH:
case JSOP_LEAVEBLOCK:
case JSOP_RETRVAL:
case JSOP_ENDITER:
case JSOP_THROWING:
case JSOP_GOSUB:
case JSOP_GOSUBX:
case JSOP_RETSUB:
case JSOP_CONDSWITCH:
case JSOP_DEFAULT:
case JSOP_DEFAULTX:
case JSOP_POPN:
case JSOP_UNBRANDTHIS:
case JSOP_STARTXML:
case JSOP_STARTXMLEXPR:
case JSOP_DEFXMLNS:
case JSOP_SHARPINIT:
case JSOP_INDEXBASE:
case JSOP_INDEXBASE1:
case JSOP_INDEXBASE2:
case JSOP_INDEXBASE3:
case JSOP_RESETBASE:
case JSOP_RESETBASE0:
case JSOP_BLOCKCHAIN:
case JSOP_NULLBLOCKCHAIN:
case JSOP_POPV:
case JSOP_DEBUGGER:
case JSOP_SETCALL:
case JSOP_TABLESWITCH:
case JSOP_TABLESWITCHX:
case JSOP_LOOKUPSWITCH:
case JSOP_LOOKUPSWITCHX:
case JSOP_TRY:
break;
/* Bytecodes pushing values of known type. */
case JSOP_VOID:
case JSOP_PUSH:
pushed[0].addType(cx, Type::UndefinedType());
break;
case JSOP_ZERO:
case JSOP_ONE:
case JSOP_INT8:
case JSOP_INT32:
case JSOP_UINT16:
case JSOP_UINT24:
case JSOP_BITAND:
case JSOP_BITOR:
case JSOP_BITXOR:
case JSOP_BITNOT:
case JSOP_RSH:
case JSOP_LSH:
case JSOP_URSH:
pushed[0].addType(cx, Type::Int32Type());
break;
case JSOP_FALSE:
case JSOP_TRUE:
case JSOP_EQ:
case JSOP_NE:
case JSOP_LT:
case JSOP_LE:
case JSOP_GT:
case JSOP_GE:
case JSOP_NOT:
case JSOP_STRICTEQ:
case JSOP_STRICTNE:
case JSOP_IN:
case JSOP_INSTANCEOF:
case JSOP_DELDESC:
pushed[0].addType(cx, Type::BooleanType());
break;
case JSOP_DOUBLE:
pushed[0].addType(cx, Type::DoubleType());
break;
case JSOP_STRING:
case JSOP_TYPEOF:
case JSOP_TYPEOFEXPR:
case JSOP_QNAMEPART:
case JSOP_XMLTAGEXPR:
case JSOP_TOATTRVAL:
case JSOP_ADDATTRNAME:
case JSOP_ADDATTRVAL:
case JSOP_XMLELTEXPR:
pushed[0].addType(cx, Type::StringType());
break;
case JSOP_NULL:
pushed[0].addType(cx, Type::NullType());
break;
case JSOP_REGEXP:
if (script->hasGlobal()) {
TypeObject *object = TypeScript::StandardType(cx, script, JSProto_RegExp);
if (!object)
return false;
pushed[0].addType(cx, Type::ObjectType(object));
} else {
pushed[0].addType(cx, Type::UnknownType());
}
break;
case JSOP_OBJECT: {
JSObject *obj = GetScriptObject(cx, script, pc, 0);
pushed[0].addType(cx, Type::ObjectType(obj));
break;
}
case JSOP_STOP:
/* If a stop is reachable then the return type may be void. */
if (script->hasFunction)
TypeScript::ReturnTypes(script)->addType(cx, Type::UndefinedType());
break;
case JSOP_OR:
case JSOP_ORX:
case JSOP_AND:
case JSOP_ANDX:
/* OR/AND push whichever operand determined the result. */
poppedTypes(pc, 0)->addSubset(cx, &pushed[0]);
break;
case JSOP_DUP:
poppedTypes(pc, 0)->addSubset(cx, &pushed[0]);
poppedTypes(pc, 0)->addSubset(cx, &pushed[1]);
break;
case JSOP_DUP2:
poppedTypes(pc, 1)->addSubset(cx, &pushed[0]);
poppedTypes(pc, 0)->addSubset(cx, &pushed[1]);
poppedTypes(pc, 1)->addSubset(cx, &pushed[2]);
poppedTypes(pc, 0)->addSubset(cx, &pushed[3]);
break;
case JSOP_SWAP:
case JSOP_PICK: {
unsigned pickedDepth = (op == JSOP_SWAP ? 1 : pc[1]);
/* The last popped value is the last pushed. */
poppedTypes(pc, pickedDepth)->addSubset(cx, &pushed[pickedDepth]);
for (unsigned i = 0; i < pickedDepth; i++)
poppedTypes(pc, i)->addSubset(cx, &pushed[pickedDepth - 1 - i]);
break;
}
case JSOP_GETGNAME:
case JSOP_CALLGNAME: {
jsid id = GetAtomId(cx, script, pc, 0);
TypeSet *seen = bytecodeTypes(pc);
seen->addSubset(cx, &pushed[0]);
/*
* Normally we rely on lazy standard class initialization to fill in
* the types of global properties the script can access. In a few cases
* the method JIT will bypass this, and we need to add the types direclty.
*/
if (id == ATOM_TO_JSID(cx->runtime->atomState.typeAtoms[JSTYPE_VOID]))
seen->addType(cx, Type::UndefinedType());
if (id == ATOM_TO_JSID(cx->runtime->atomState.NaNAtom))
seen->addType(cx, Type::DoubleType());
if (id == ATOM_TO_JSID(cx->runtime->atomState.InfinityAtom))
seen->addType(cx, Type::DoubleType());
/* Handle as a property access. */
PropertyAccess(cx, script, pc, script->global()->getType(cx), false, seen, id);
if (op == JSOP_CALLGNAME) {
pushed[1].addType(cx, Type::UnknownType());
pushed[0].addPropagateThis(cx, script, pc, Type::UnknownType());
}
if (CheckNextTest(pc))
pushed[0].addType(cx, Type::UndefinedType());
break;
}
case JSOP_NAME:
case JSOP_CALLNAME: {
TypeSet *seen = bytecodeTypes(pc);
seen->addSubset(cx, &pushed[0]);
/*
* Try to resolve this name by walking the function's scope nesting.
* If we succeed but the accessed script has had its TypeScript purged
* in the past, we still must use a type barrier: the name access can
* be on a call object which predated the purge, and whose types might
* not be reflected in the reconstructed information.
*/
jsid id = GetAtomId(cx, script, pc, 0);
NameAccess access = resolveNameAccess(cx, id);
if (access.script && !access.script->typesPurged) {
TypeSet *types = TypeScript::SlotTypes(access.script, access.slot);
types->addSubsetBarrier(cx, script, pc, seen);
} else {
addTypeBarrier(cx, pc, seen, Type::UnknownType());
}
if (op == JSOP_CALLNAME) {
pushed[1].addType(cx, Type::UnknownType());
pushed[0].addPropagateThis(cx, script, pc, Type::UnknownType());
}
break;
}
case JSOP_BINDGNAME:
case JSOP_BINDNAME:
break;
case JSOP_SETGNAME: {
jsid id = GetAtomId(cx, script, pc, 0);
PropertyAccess(cx, script, pc, script->global()->getType(cx),
true, poppedTypes(pc, 0), id);
poppedTypes(pc, 0)->addSubset(cx, &pushed[0]);
break;
}
case JSOP_SETNAME: {
jsid id = GetAtomId(cx, script, pc, 0);
NameAccess access = resolveNameAccess(cx, id);
if (access.script) {
TypeSet *types = TypeScript::SlotTypes(access.script, access.slot);
poppedTypes(pc, 0)->addSubset(cx, types);
} else {
cx->compartment->types.monitorBytecode(cx, script, offset);
}
poppedTypes(pc, 0)->addSubset(cx, &pushed[0]);
break;
}
case JSOP_SETCONST:
cx->compartment->types.monitorBytecode(cx, script, offset);
poppedTypes(pc, 0)->addSubset(cx, &pushed[0]);
break;
case JSOP_GETXPROP:
case JSOP_GETFCSLOT:
case JSOP_CALLFCSLOT: {
TypeSet *seen = bytecodeTypes(pc);
addTypeBarrier(cx, pc, seen, Type::UnknownType());
seen->addSubset(cx, &pushed[0]);
if (op == JSOP_CALLFCSLOT) {
pushed[1].addType(cx, Type::UndefinedType());
pushed[0].addPropagateThis(cx, script, pc, Type::UndefinedType());
}
break;
}
case JSOP_GETARG:
case JSOP_CALLARG:
case JSOP_GETLOCAL:
case JSOP_CALLLOCAL: {
uint32 slot = GetBytecodeSlot(script, pc);
if (trackSlot(slot)) {
/*
* Normally these opcodes don't pop anything, but they are given
* an extended use holding the variable's SSA value before the
* access. Use the types from here.
*/
poppedTypes(pc, 0)->addSubset(cx, &pushed[0]);
} else if (slot < TotalSlots(script)) {
TypeSet *types = TypeScript::SlotTypes(script, slot);
types->addSubset(cx, &pushed[0]);
} else {
/* Local 'let' variable. Punt on types for these, for now. */
pushed[0].addType(cx, Type::UnknownType());
}
if (op == JSOP_CALLARG || op == JSOP_CALLLOCAL) {
pushed[1].addType(cx, Type::UndefinedType());
pushed[0].addPropagateThis(cx, script, pc, Type::UndefinedType());
}
break;
}
case JSOP_SETARG:
case JSOP_SETLOCAL:
case JSOP_SETLOCALPOP: {
uint32 slot = GetBytecodeSlot(script, pc);
if (!trackSlot(slot) && slot < TotalSlots(script)) {
TypeSet *types = TypeScript::SlotTypes(script, slot);
poppedTypes(pc, 0)->addSubset(cx, types);
}
/*
* For assignments to non-escaping locals/args, we don't need to update
* the possible types of the var, as for each read of the var SSA gives
* us the writes that could have produced that read.
*/
poppedTypes(pc, 0)->addSubset(cx, &pushed[0]);
break;
}
case JSOP_INCARG:
case JSOP_DECARG:
case JSOP_ARGINC:
case JSOP_ARGDEC:
case JSOP_INCLOCAL:
case JSOP_DECLOCAL:
case JSOP_LOCALINC:
case JSOP_LOCALDEC: {
uint32 slot = GetBytecodeSlot(script, pc);
if (trackSlot(slot)) {
poppedTypes(pc, 0)->addArith(cx, &pushed[0]);
} else if (slot < TotalSlots(script)) {
TypeSet *types = TypeScript::SlotTypes(script, slot);
types->addArith(cx, types);
types->addSubset(cx, &pushed[0]);
} else {
pushed[0].addType(cx, Type::UnknownType());
}
break;
}
case JSOP_ARGUMENTS: {
/* Compute a precise type only when we know the arguments won't escape. */
TypeObject *funType = script->function()->getType(cx);
if (funType->unknownProperties() || funType->hasAnyFlags(OBJECT_FLAG_CREATED_ARGUMENTS)) {
pushed[0].addType(cx, Type::UnknownType());
break;
}
TypeSet *types = funType->getProperty(cx, JSID_EMPTY, false);
if (!types)
break;
types->addLazyArguments(cx, &pushed[0]);
pushed[0].addType(cx, Type::LazyArgsType());
break;
}
case JSOP_SETPROP:
case JSOP_SETMETHOD: {
jsid id = GetAtomId(cx, script, pc, 0);
poppedTypes(pc, 1)->addSetProperty(cx, script, pc, poppedTypes(pc, 0), id);
poppedTypes(pc, 0)->addSubset(cx, &pushed[0]);
break;
}
case JSOP_LENGTH:
case JSOP_GETPROP:
case JSOP_CALLPROP: {
jsid id = GetAtomId(cx, script, pc, 0);
TypeSet *seen = script->analysis()->bytecodeTypes(pc);
poppedTypes(pc, 0)->addGetProperty(cx, script, pc, seen, id);
if (op == JSOP_CALLPROP)
poppedTypes(pc, 0)->addCallProperty(cx, script, pc, id);
seen->addSubset(cx, &pushed[0]);
if (op == JSOP_CALLPROP)
poppedTypes(pc, 0)->addFilterPrimitives(cx, &pushed[1], TypeSet::FILTER_NULL_VOID);
if (CheckNextTest(pc))
pushed[0].addType(cx, Type::UndefinedType());
break;
}
/*
* We only consider ELEM accesses on integers below. Any element access
* which is accessing a non-integer property must be monitored.
*/
case JSOP_GETELEM:
case JSOP_CALLELEM: {
TypeSet *seen = script->analysis()->bytecodeTypes(pc);
poppedTypes(pc, 1)->addGetProperty(cx, script, pc, seen, JSID_VOID);
seen->addSubset(cx, &pushed[0]);
if (op == JSOP_CALLELEM) {
poppedTypes(pc, 1)->addFilterPrimitives(cx, &pushed[1], TypeSet::FILTER_NULL_VOID);
pushed[0].addPropagateThis(cx, script, pc, Type::UndefinedType(), &pushed[1]);
}
if (CheckNextTest(pc))
pushed[0].addType(cx, Type::UndefinedType());
break;
}
case JSOP_SETELEM:
poppedTypes(pc, 1)->addSetElement(cx, script, pc, poppedTypes(pc, 2), poppedTypes(pc, 0));
poppedTypes(pc, 0)->addSubset(cx, &pushed[0]);
break;
case JSOP_TOID:
/*
* This is only used for element inc/dec ops; any id produced which
* is not an integer must be monitored.
*/
pushed[0].addType(cx, Type::Int32Type());
break;
case JSOP_THIS:
TypeScript::ThisTypes(script)->addTransformThis(cx, script, &pushed[0]);
break;
case JSOP_RETURN:
case JSOP_SETRVAL:
if (script->hasFunction)
poppedTypes(pc, 0)->addSubset(cx, TypeScript::ReturnTypes(script));
break;
case JSOP_ADD:
poppedTypes(pc, 0)->addArith(cx, &pushed[0], poppedTypes(pc, 1));
poppedTypes(pc, 1)->addArith(cx, &pushed[0], poppedTypes(pc, 0));
break;
case JSOP_SUB:
case JSOP_MUL:
case JSOP_MOD:
case JSOP_DIV:
poppedTypes(pc, 0)->addArith(cx, &pushed[0]);
poppedTypes(pc, 1)->addArith(cx, &pushed[0]);
break;
case JSOP_NEG:
case JSOP_POS:
poppedTypes(pc, 0)->addArith(cx, &pushed[0]);
break;
case JSOP_LAMBDA:
case JSOP_LAMBDA_FC:
case JSOP_DEFFUN:
case JSOP_DEFFUN_FC:
case JSOP_DEFLOCALFUN:
case JSOP_DEFLOCALFUN_FC: {
unsigned off = (op == JSOP_DEFLOCALFUN || op == JSOP_DEFLOCALFUN_FC) ? SLOTNO_LEN : 0;
JSObject *obj = GetScriptObject(cx, script, pc, off);
TypeSet *res = NULL;
if (op == JSOP_LAMBDA || op == JSOP_LAMBDA_FC) {
res = &pushed[0];
} else if (op == JSOP_DEFLOCALFUN || op == JSOP_DEFLOCALFUN_FC) {
uint32 slot = GetBytecodeSlot(script, pc);
if (trackSlot(slot)) {
res = &pushed[0];
} else {
/* Should not see 'let' vars here. */
JS_ASSERT(slot < TotalSlots(script));
res = TypeScript::SlotTypes(script, slot);
}
}
if (res) {
if (script->hasGlobal())
res->addType(cx, Type::ObjectType(obj));
else
res->addType(cx, Type::UnknownType());
} else {
cx->compartment->types.monitorBytecode(cx, script, offset);
}
break;
}
case JSOP_DEFVAR:
break;
case JSOP_CALL:
case JSOP_EVAL:
case JSOP_FUNCALL:
case JSOP_FUNAPPLY:
case JSOP_NEW: {
TypeSet *seen = script->analysis()->bytecodeTypes(pc);
seen->addSubset(cx, &pushed[0]);
/* Construct the base call information about this site. */
unsigned argCount = GetUseCount(script, offset) - 2;
TypeCallsite *callsite = cx->typeLifoAlloc().new_<TypeCallsite>(
cx, script, pc, op == JSOP_NEW, argCount);
if (!callsite || (argCount && !callsite->argumentTypes)) {
cx->compartment->types.setPendingNukeTypes(cx);
break;
}
callsite->thisTypes = poppedTypes(pc, argCount);
callsite->returnTypes = seen;
for (unsigned i = 0; i < argCount; i++)
callsite->argumentTypes[i] = poppedTypes(pc, argCount - 1 - i);
/*
* Mark FUNCALL and FUNAPPLY sites as monitored. The method JIT may
* lower these into normal calls, and we need to make sure the
* callee's argument types are checked on entry.
*/
if (op == JSOP_FUNCALL || op == JSOP_FUNAPPLY)
cx->compartment->types.monitorBytecode(cx, script, pc - script->code);
poppedTypes(pc, argCount + 1)->addCall(cx, callsite);
break;
}
case JSOP_NEWINIT:
case JSOP_NEWARRAY:
case JSOP_NEWOBJECT: {
TypeObject *initializer = GetInitializerType(cx, script, pc);
if (script->hasGlobal()) {
if (!initializer)
return false;
pushed[0].addType(cx, Type::ObjectType(initializer));
} else {
JS_ASSERT(!initializer);
pushed[0].addType(cx, Type::UnknownType());
}
break;
}
case JSOP_ENDINIT:
break;
case JSOP_INITELEM: {
const SSAValue &objv = poppedValue(pc, 2);
jsbytecode *initpc = script->code + objv.pushedOffset();
TypeObject *initializer = GetInitializerType(cx, script, initpc);
if (initializer) {
pushed[0].addType(cx, Type::ObjectType(initializer));
if (!initializer->unknownProperties()) {
/*
* Assume the initialized element is an integer. INITELEM can be used
* for doubles which don't map to the JSID_VOID property, which must
* be caught with dynamic monitoring.
*/
TypeSet *types = initializer->getProperty(cx, JSID_VOID, true);
if (!types)
return false;
if (state.hasGetSet) {
types->addType(cx, Type::UnknownType());
} else if (state.hasHole) {
if (!initializer->unknownProperties())
initializer->setFlags(cx, OBJECT_FLAG_NON_PACKED_ARRAY);
} else {
poppedTypes(pc, 0)->addSubset(cx, types);
}
}
} else {
pushed[0].addType(cx, Type::UnknownType());
}
state.hasGetSet = false;
state.hasHole = false;
break;
}
case JSOP_GETTER:
case JSOP_SETTER:
state.hasGetSet = true;
break;
case JSOP_HOLE:
state.hasHole = true;
break;
case JSOP_INITPROP:
case JSOP_INITMETHOD: {
const SSAValue &objv = poppedValue(pc, 1);
jsbytecode *initpc = script->code + objv.pushedOffset();
TypeObject *initializer = GetInitializerType(cx, script, initpc);
if (initializer) {
pushed[0].addType(cx, Type::ObjectType(initializer));
if (!initializer->unknownProperties()) {
jsid id = GetAtomId(cx, script, pc, 0);
TypeSet *types = initializer->getProperty(cx, id, true);
if (!types)
return false;
if (id == id___proto__(cx) || id == id_prototype(cx))
cx->compartment->types.monitorBytecode(cx, script, offset);
else if (state.hasGetSet)
types->addType(cx, Type::UnknownType());
else
poppedTypes(pc, 0)->addSubset(cx, types);
}
} else {
pushed[0].addType(cx, Type::UnknownType());
}
state.hasGetSet = false;
JS_ASSERT(!state.hasHole);
break;
}
case JSOP_ENTERWITH:
case JSOP_ENTERBLOCK:
/*
* Scope lookups can occur on the values being pushed here. We don't track
* the value or its properties, and just monitor all name opcodes in the
* script.
*/
break;
case JSOP_ITER: {
/*
* Use a per-script type set to unify the possible target types of all
* 'for in' or 'for each' loops in the script. We need to mark the
* value pushed by the ITERNEXT appropriately, but don't track the SSA
* information to connect that ITERNEXT with the appropriate ITER.
* This loses some precision when a script mixes 'for in' and
* 'for each' loops together, oh well.
*/
if (!state.forTypes) {
state.forTypes = TypeSet::make(cx, "forTypes");
if (!state.forTypes)
return false;
}
if (pc[1] & JSITER_FOREACH)
state.forTypes->addType(cx, Type::UnknownType());
else
state.forTypes->addType(cx, Type::StringType());
break;
}
case JSOP_ITERNEXT:
state.forTypes->addSubset(cx, &pushed[0]);
break;
case JSOP_MOREITER:
pushed[1].addType(cx, Type::BooleanType());
break;
case JSOP_ENUMELEM:
case JSOP_ENUMCONSTELEM:
case JSOP_ARRAYPUSH:
cx->compartment->types.monitorBytecode(cx, script, offset);
break;
case JSOP_THROW:
/* There will be a monitor on the bytecode catching the exception. */
break;
case JSOP_FINALLY:
/* Pushes information about whether an exception was thrown. */
break;
case JSOP_EXCEPTION:
pushed[0].addType(cx, Type::UnknownType());
break;
case JSOP_DELPROP:
case JSOP_DELELEM:
case JSOP_DELNAME:
pushed[0].addType(cx, Type::BooleanType());
break;
case JSOP_LEAVEBLOCKEXPR:
poppedTypes(pc, 0)->addSubset(cx, &pushed[0]);
break;
case JSOP_CASE:
case JSOP_CASEX:
poppedTypes(pc, 1)->addSubset(cx, &pushed[0]);
break;
case JSOP_UNBRAND:
poppedTypes(pc, 0)->addSubset(cx, &pushed[0]);
break;
case JSOP_GENERATOR:
if (script->hasFunction) {
if (script->hasGlobal()) {
JSObject *proto = script->global()->getOrCreateGeneratorPrototype(cx);
if (!proto)
return false;
TypeObject *object = proto->getNewType(cx);
if (!object)
return false;
TypeScript::ReturnTypes(script)->addType(cx, Type::ObjectType(object));
} else {
TypeScript::ReturnTypes(script)->addType(cx, Type::UnknownType());
}
}
break;
case JSOP_YIELD:
pushed[0].addType(cx, Type::UnknownType());
break;
case JSOP_CALLXMLNAME:
pushed[1].addType(cx, Type::UnknownType());
/* FALLTHROUGH */
case JSOP_XMLNAME:
pushed[0].addType(cx, Type::UnknownType());
break;
case JSOP_SETXMLNAME:
cx->compartment->types.monitorBytecode(cx, script, offset);
poppedTypes(pc, 0)->addSubset(cx, &pushed[0]);
break;
case JSOP_BINDXMLNAME:
break;
case JSOP_TOXML:
case JSOP_TOXMLLIST:
case JSOP_XMLPI:
case JSOP_XMLCDATA:
case JSOP_XMLCOMMENT:
case JSOP_DESCENDANTS:
case JSOP_TOATTRNAME:
case JSOP_QNAMECONST:
case JSOP_QNAME:
case JSOP_ANYNAME:
case JSOP_GETFUNNS:
pushed[0].addType(cx, Type::UnknownType());
break;
case JSOP_FILTER:
/* Note: the second value pushed by filter is a hole, and not modelled. */
poppedTypes(pc, 0)->addSubset(cx, &pushed[0]);
break;
case JSOP_ENDFILTER:
poppedTypes(pc, 1)->addSubset(cx, &pushed[0]);
break;
case JSOP_DEFSHARP:
break;
case JSOP_USESHARP:
pushed[0].addType(cx, Type::UnknownType());
break;
case JSOP_CALLEE:
if (script->hasGlobal())
pushed[0].addType(cx, Type::ObjectType(script->function()));
else
pushed[0].addType(cx, Type::UnknownType());
break;
default:
/* Display fine-grained debug information first */
fprintf(stderr, "Unknown bytecode %02x at #%u:%05u\n", op, script->id(), offset);
TypeFailure(cx, "Unknown bytecode %02x", op);
}
return true;
}
void
ScriptAnalysis::analyzeTypes(JSContext *cx)
{
JS_ASSERT(!ranInference());
if (OOM()) {
cx->compartment->types.setPendingNukeTypes(cx);
return;
}
/*
* Refuse to analyze the types in a script which is compileAndGo but is
* running against a global with a cleared scope. Per GlobalObject::clear,
* we won't be running anymore compileAndGo code against the global
* (moreover, after clearing our analysis results will be wrong for the
* script and trying to reanalyze here can cause reentrance problems if we
* try to reinitialize standard classes that were cleared).
*/
if (script->hasClearedGlobal())
return;
if (!ranSSA()) {
analyzeSSA(cx);
if (failed())
return;
}
/*
* Set this early to avoid reentrance. Any failures are OOMs, and will nuke
* all types in the compartment.
*/
ranInference_ = true;
/* Make sure the initial type set of all local vars includes void. */
for (unsigned i = 0; i < script->nfixed; i++)
TypeScript::LocalTypes(script, i)->addType(cx, Type::UndefinedType());
TypeScriptNesting *nesting = script->hasFunction ? script->nesting() : NULL;
if (nesting && nesting->parent) {
/*
* Check whether NAME accesses can be resolved in parent scopes, and
* detach from the parent if so. Even if outdated activations of this
* function are live when the parent is called again, we do not need to
* consider this reentrance as no state in the parent will be used.
*/
if (!nesting->parent->ensureRanInference(cx))
return;
bool detached = false;
/* Don't track for leaf scripts which have no free variables. */
if (!usesScopeChain() && !script->isOuterFunction) {
DetachNestingParent(script);
detached = true;
}
/*
* If the names bound by the script are extensible (DEFFUN, EVAL, ...),
* don't resolve NAME accesses into the parent.
*/
if (!detached && extendsScope()) {
DetachNestingParent(script);
detached = true;
}
/*
* Don't track for parents which add call objects or are generators,
* don't resolve NAME accesses into the parent.
*/
if (!detached &&
(nesting->parent->analysis()->addsScopeObjects() ||
js_GetOpcode(cx, nesting->parent, nesting->parent->code) == JSOP_GENERATOR)) {
DetachNestingParent(script);
detached = true;
}
}
TypeInferenceState state(cx);
unsigned offset = 0;
while (offset < script->length) {
Bytecode *code = maybeCode(offset);
jsbytecode *pc = script->code + offset;
UntrapOpcode untrap(cx, script, pc);
if (code && !analyzeTypesBytecode(cx, offset, state)) {
cx->compartment->types.setPendingNukeTypes(cx);
return;
}
offset += GetBytecodeLength(pc);
}
for (unsigned i = 0; i < state.phiNodes.length(); i++) {
SSAPhiNode *node = state.phiNodes[i];
for (unsigned j = 0; j < node->length; j++) {
const SSAValue &v = node->options[j];
getValueTypes(v)->addSubset(cx, &node->types);
}
}
/*
* Replay any dynamic type results which have been generated for the script
* either because we ran the interpreter some before analyzing or because
* we are reanalyzing after a GC.
*/
TypeResult *result = script->types->dynamicList;
while (result) {
if (result->offset != uint32(-1)) {
pushedTypes(result->offset)->addType(cx, result->type);
} else {
/* Custom for-in loop iteration has happened in this script. */
state.forTypes->addType(cx, Type::UnknownType());
}
result = result->next;
}
if (!script->usesArguments || script->createdArgs)
return;
/*
* Do additional analysis to determine whether the arguments object in the
* script can escape.
*/
/*
* Note: don't check for strict mode code here, even though arguments
* accesses in such scripts will always be deoptimized. These scripts can
* have a JSOP_ARGUMENTS in their prologue which the usesArguments check
* above does not account for. We filter in the interpreter and JITs
* themselves.
*/
if (script->function()->isHeavyweight() || cx->compartment->debugMode() || localsAliasStack()) {
MarkArgumentsCreated(cx, script);
return;
}
offset = 0;
while (offset < script->length) {
Bytecode *code = maybeCode(offset);
jsbytecode *pc = script->code + offset;
if (code && JSOp(*pc) == JSOP_ARGUMENTS) {
Vector<SSAValue> seen(cx);
if (!followEscapingArguments(cx, SSAValue::PushedValue(offset, 0), &seen)) {
MarkArgumentsCreated(cx, script);
return;
}
}
offset += GetBytecodeLength(pc);
}
/*
* The VM is now free to use the arguments in this script lazily. If we end
* up creating an arguments object for the script in the future or regard
* the arguments as escaping, we need to walk the stack and replace lazy
* arguments objects with actual arguments objects.
*/
script->usedLazyArgs = true;
}
bool
ScriptAnalysis::followEscapingArguments(JSContext *cx, const SSAValue &v, Vector<SSAValue> *seen)
{
/*
* trackUseChain is false for initial values of variables, which
* cannot hold the script's arguments object.
*/
if (!trackUseChain(v))
return true;
for (unsigned i = 0; i < seen->length(); i++) {
if (v.equals((*seen)[i]))
return true;
}
if (!seen->append(v)) {
cx->compartment->types.setPendingNukeTypes(cx);
return false;
}
SSAUseChain *use = useChain(v);
while (use) {
if (!followEscapingArguments(cx, use, seen))
return false;
use = use->next;
}
return true;
}
bool
ScriptAnalysis::followEscapingArguments(JSContext *cx, SSAUseChain *use, Vector<SSAValue> *seen)
{
if (!use->popped)
return followEscapingArguments(cx, SSAValue::PhiValue(use->offset, use->u.phi), seen);
jsbytecode *pc = script->code + use->offset;
uint32 which = use->u.which;
JSOp op = JSOp(*pc);
JS_ASSERT(op != JSOP_TRAP);
if (op == JSOP_POP || op == JSOP_POPN)
return true;
/* Allow GETELEM and LENGTH on arguments objects that don't escape. */
/*
* Note: if the element index is not an integer we will mark the arguments
* as escaping at the access site.
*/
if (op == JSOP_GETELEM && which == 1)
return true;
if (op == JSOP_LENGTH)
return true;
/* Allow assignments to non-closed locals (but not arguments). */
if (op == JSOP_SETLOCAL) {
uint32 slot = GetBytecodeSlot(script, pc);
if (!trackSlot(slot))
return false;
if (!followEscapingArguments(cx, SSAValue::PushedValue(use->offset, 0), seen))
return false;
return followEscapingArguments(cx, SSAValue::WrittenVar(slot, use->offset), seen);
}
if (op == JSOP_GETLOCAL)
return followEscapingArguments(cx, SSAValue::PushedValue(use->offset, 0), seen);
return false;
}
bool
ScriptAnalysis::integerOperation(JSContext *cx, jsbytecode *pc)
{
JS_ASSERT(uint32(pc - script->code) < script->length);
switch (JSOp(*pc)) {
case JSOP_INCARG:
case JSOP_DECARG:
case JSOP_ARGINC:
case JSOP_ARGDEC:
case JSOP_INCLOCAL:
case JSOP_DECLOCAL:
case JSOP_LOCALINC:
case JSOP_LOCALDEC: {
if (pushedTypes(pc, 0)->getKnownTypeTag(cx) != JSVAL_TYPE_INT32)
return false;
uint32 slot = GetBytecodeSlot(script, pc);
if (trackSlot(slot)) {
if (poppedTypes(pc, 0)->getKnownTypeTag(cx) != JSVAL_TYPE_INT32)
return false;
}
return true;
}
case JSOP_ADD:
case JSOP_SUB:
case JSOP_MUL:
case JSOP_DIV:
if (pushedTypes(pc, 0)->getKnownTypeTag(cx) != JSVAL_TYPE_INT32)
return false;
if (poppedTypes(pc, 0)->getKnownTypeTag(cx) != JSVAL_TYPE_INT32)
return false;
if (poppedTypes(pc, 1)->getKnownTypeTag(cx) != JSVAL_TYPE_INT32)
return false;
return true;
default:
return true;
}
}
/*
* Persistent constraint clearing out newScript and definite properties from
* an object should a property on another object get a setter.
*/
class TypeConstraintClearDefiniteSetter : public TypeConstraint
{
public:
TypeObject *object;
TypeConstraintClearDefiniteSetter(TypeObject *object)
: TypeConstraint("clearDefiniteSetter"), object(object)
{}
void newType(JSContext *cx, TypeSet *source, Type type) {
if (!object->newScript)
return;
/*
* Clear out the newScript shape and definite property information from
* an object if the source type set could be a setter (its type set
* becomes unknown).
*/
if (!(object->flags & OBJECT_FLAG_NEW_SCRIPT_CLEARED) && type.isUnknown())
object->clearNewScript(cx);
}
};
/*
* Constraint which clears definite properties on an object should a type set
* contain any types other than a single object.
*/
class TypeConstraintClearDefiniteSingle : public TypeConstraint
{
public:
TypeObject *object;
TypeConstraintClearDefiniteSingle(TypeObject *object)
: TypeConstraint("clearDefiniteSingle"), object(object)
{}
void newType(JSContext *cx, TypeSet *source, Type type) {
if (object->flags & OBJECT_FLAG_NEW_SCRIPT_CLEARED)
return;
if (source->baseFlags() || source->getObjectCount() > 1)
object->clearNewScript(cx);
}
};
static bool
AnalyzeNewScriptProperties(JSContext *cx, TypeObject *type, JSFunction *fun, JSObject **pbaseobj,
Vector<TypeNewScript::Initializer> *initializerList)
{
/*
* When invoking 'new' on the specified script, try to find some properties
* which will definitely be added to the created object before it has a
* chance to escape and be accessed elsewhere.
*
* Returns true if the entire script was analyzed (pbaseobj has been
* preserved), false if we had to bail out part way through (pbaseobj may
* have been cleared).
*/
if (initializerList->length() > 50) {
/*
* Bail out on really long initializer lists (far longer than maximum
* number of properties we can track), we may be recursing.
*/
return false;
}
JSScript *script = fun->script();
JS_ASSERT(!script->isInnerFunction);
if (!script->ensureRanAnalysis(cx, fun) || !script->ensureRanInference(cx)) {
*pbaseobj = NULL;
cx->compartment->types.setPendingNukeTypes(cx);
return false;
}
if (script->hasClearedGlobal())
return false;
ScriptAnalysis *analysis = script->analysis();
/*
* Offset of the last bytecode which popped 'this' and which we have
* processed. For simplicity, we scan for places where 'this' is pushed
* and immediately analyze the place where that pushed value is popped.
* This runs the risk of doing things out of order, if the script looks
* something like 'this.f = (this.g = ...)', so we watch and bail out if
* a 'this' is pushed before the previous 'this' value was popped.
*/
uint32 lastThisPopped = 0;
unsigned nextOffset = 0;
while (nextOffset < script->length) {
unsigned offset = nextOffset;
jsbytecode *pc = script->code + offset;
UntrapOpcode untrap(cx, script, pc);
JSOp op = JSOp(*pc);
nextOffset += GetBytecodeLength(pc);
Bytecode *code = analysis->maybeCode(pc);
if (!code)
continue;
/*
* End analysis after the first return statement from the script,
* returning success if the return is unconditional.
*/
if (op == JSOP_RETURN || op == JSOP_STOP || op == JSOP_RETRVAL) {
if (offset < lastThisPopped) {
*pbaseobj = NULL;
return false;
}
return code->unconditional;
}
/* 'this' can escape through a call to eval. */
if (op == JSOP_EVAL) {
if (offset < lastThisPopped)
*pbaseobj = NULL;
return false;
}
/*
* We are only interested in places where 'this' is popped. The new
* 'this' value cannot escape and be accessed except through such uses.
*/
if (op != JSOP_THIS)
continue;
SSAValue thisv = SSAValue::PushedValue(offset, 0);
SSAUseChain *uses = analysis->useChain(thisv);
JS_ASSERT(uses);
if (uses->next || !uses->popped) {
/* 'this' value popped in more than one place. */
return false;
}
/* Maintain ordering property on how 'this' is used, as described above. */
if (offset < lastThisPopped) {
*pbaseobj = NULL;
return false;
}
lastThisPopped = uses->offset;
/* Only handle 'this' values popped in unconditional code. */
Bytecode *poppedCode = analysis->maybeCode(uses->offset);
if (!poppedCode || !poppedCode->unconditional)
return false;
pc = script->code + uses->offset;
UntrapOpcode untrapUse(cx, script, pc);
op = JSOp(*pc);
JSObject *obj = *pbaseobj;
if (op == JSOP_SETPROP && uses->u.which == 1) {
/*
* Don't use GetAtomId here, we need to watch for SETPROP on
* integer properties and bail out. We can't mark the aggregate
* JSID_VOID type property as being in a definite slot.
*/
unsigned index = js_GetIndexFromBytecode(cx, script, pc, 0);
jsid id = ATOM_TO_JSID(script->getAtom(index));
if (MakeTypeId(cx, id) != id)
return false;
if (id == id_prototype(cx) || id == id___proto__(cx) || id == id_constructor(cx))
return false;
unsigned slotSpan = obj->slotSpan();
if (!DefineNativeProperty(cx, obj, id, UndefinedValue(), NULL, NULL,
JSPROP_ENUMERATE, 0, 0, DNP_SKIP_TYPE)) {
cx->compartment->types.setPendingNukeTypes(cx);
*pbaseobj = NULL;
return false;
}
if (obj->inDictionaryMode()) {
*pbaseobj = NULL;
return false;
}
if (obj->slotSpan() == slotSpan) {
/* Set a duplicate property. */
return false;
}
TypeNewScript::Initializer setprop(TypeNewScript::Initializer::SETPROP, uses->offset);
if (!initializerList->append(setprop)) {
cx->compartment->types.setPendingNukeTypes(cx);
*pbaseobj = NULL;
return false;
}
if (obj->slotSpan() >= (TYPE_FLAG_DEFINITE_MASK >> TYPE_FLAG_DEFINITE_SHIFT)) {
/* Maximum number of definite properties added. */
return false;
}
/*
* Ensure that if the properties named here could have a setter in
* the direct prototype (and thus its transitive prototypes), the
* definite properties get cleared from the shape.
*/
TypeObject *parentObject = type->proto->getType(cx);
if (parentObject->unknownProperties())
return false;
TypeSet *parentTypes = parentObject->getProperty(cx, id, false);
if (!parentTypes || parentTypes->unknown())
return false;
parentObject->getFromPrototypes(cx, id, parentTypes);
parentTypes->add(cx, cx->typeLifoAlloc().new_<TypeConstraintClearDefiniteSetter>(type));
} else if (op == JSOP_FUNCALL && uses->u.which == GET_ARGC(pc) - 1) {
/*
* Passed as the first parameter to Function.call. Follow control
* into the callee, and add any definite properties it assigns to
* the object as well. :TODO: This is narrow pattern matching on
* the inheritance patterns seen in the v8-deltablue benchmark, and
* needs robustness against other ways initialization can cross
* script boundaries.
*
* Add constraints ensuring we are calling Function.call on a
* particular script, removing definite properties from the result
*/
/* Callee/this must have been pushed by a CALLPROP. */
SSAValue calleev = analysis->poppedValue(pc, GET_ARGC(pc) + 1);
if (calleev.kind() != SSAValue::PUSHED)
return false;
jsbytecode *calleepc = script->code + calleev.pushedOffset();
UntrapOpcode untrapCallee(cx, script, calleepc);
if (JSOp(*calleepc) != JSOP_CALLPROP || calleev.pushedIndex() != 0)
return false;
/*
* This code may not have run yet, break any type barriers involved
* in performing the call (for the greater good!).
*/
analysis->breakTypeBarriersSSA(cx, analysis->poppedValue(calleepc, 0));
analysis->breakTypeBarriers(cx, calleepc - script->code, true);
TypeSet *funcallTypes = analysis->pushedTypes(calleepc, 0);
TypeSet *scriptTypes = analysis->pushedTypes(calleepc, 1);
/* Need to definitely be calling Function.call on a specific script. */
JSObject *funcallObj = funcallTypes->getSingleton(cx, false);
JSObject *scriptObj = scriptTypes->getSingleton(cx, false);
if (!funcallObj || !scriptObj || !scriptObj->isFunction() ||
!scriptObj->getFunctionPrivate()->isInterpreted()) {
return false;
}
JSFunction *function = scriptObj->getFunctionPrivate();
JS_ASSERT(!function->script()->isInnerFunction);
/*
* Generate constraints to clear definite properties from the type
* should the Function.call or callee itself change in the future.
*/
analysis->pushedTypes(calleev.pushedOffset(), 0)->add(cx,
cx->typeLifoAlloc().new_<TypeConstraintClearDefiniteSingle>(type));
analysis->pushedTypes(calleev.pushedOffset(), 1)->add(cx,
cx->typeLifoAlloc().new_<TypeConstraintClearDefiniteSingle>(type));
TypeNewScript::Initializer pushframe(TypeNewScript::Initializer::FRAME_PUSH, uses->offset);
if (!initializerList->append(pushframe)) {
cx->compartment->types.setPendingNukeTypes(cx);
*pbaseobj = NULL;
return false;
}
if (!AnalyzeNewScriptProperties(cx, type, function,
pbaseobj, initializerList)) {
return false;
}
TypeNewScript::Initializer popframe(TypeNewScript::Initializer::FRAME_POP, 0);
if (!initializerList->append(popframe)) {
cx->compartment->types.setPendingNukeTypes(cx);
*pbaseobj = NULL;
return false;
}
/*
* The callee never lets the 'this' value escape, continue looking
* for definite properties in the remainder of this script.
*/
} else {
/* Unhandled use of 'this'. */
return false;
}
}
/* Will have hit a STOP or similar, unless the script always throws. */
return true;
}
/*
* Either make the newScript information for type when it is constructed
* by the specified script, or regenerate the constraints for an existing
* newScript on the type after they were cleared by a GC.
*/
static void
CheckNewScriptProperties(JSContext *cx, TypeObject *type, JSFunction *fun)
{
if (type->unknownProperties() || fun->script()->isInnerFunction)
return;
/* Strawman object to add properties to and watch for duplicates. */
JSObject *baseobj = NewBuiltinClassInstance(cx, &ObjectClass, gc::FINALIZE_OBJECT16);
if (!baseobj) {
if (type->newScript)
type->clearNewScript(cx);
return;
}
Vector<TypeNewScript::Initializer> initializerList(cx);
AnalyzeNewScriptProperties(cx, type, fun, &baseobj, &initializerList);
if (!baseobj || baseobj->slotSpan() == 0 || !!(type->flags & OBJECT_FLAG_NEW_SCRIPT_CLEARED)) {
if (type->newScript)
type->clearNewScript(cx);
return;
}
/*
* If the type already has a new script, we are just regenerating the type
* constraints and don't need to make another TypeNewScript. Make sure that
* the properties added to baseobj match the type's definite properties.
*/
if (type->newScript) {
if (!type->matchDefiniteProperties(baseobj))
type->clearNewScript(cx);
return;
}
gc::AllocKind kind = gc::GetGCObjectKind(baseobj->slotSpan());
/* We should not have overflowed the maximum number of fixed slots for an object. */
JS_ASSERT(gc::GetGCKindSlots(kind) >= baseobj->slotSpan());
TypeNewScript::Initializer done(TypeNewScript::Initializer::DONE, 0);
/*
* The base object may have been created with a different finalize kind
* than we will use for subsequent new objects. Generate an object with the
* appropriate final shape.
*/
baseobj = NewReshapedObject(cx, type, baseobj->getParent(), kind,
baseobj->lastProperty());
if (!baseobj ||
!type->addDefiniteProperties(cx, baseobj) ||
!initializerList.append(done)) {
cx->compartment->types.setPendingNukeTypes(cx);
return;
}
size_t numBytes = sizeof(TypeNewScript)
+ (initializerList.length() * sizeof(TypeNewScript::Initializer));
type->newScript = (TypeNewScript *) cx->calloc_(numBytes);
if (!type->newScript) {
cx->compartment->types.setPendingNukeTypes(cx);
return;
}
type->newScript->fun = fun;
type->newScript->allocKind = kind;
type->newScript->shape = baseobj->lastProperty();
type->newScript->initializerList = (TypeNewScript::Initializer *)
((char *) type->newScript + sizeof(TypeNewScript));
PodCopy(type->newScript->initializerList, initializerList.begin(), initializerList.length());
}
/////////////////////////////////////////////////////////////////////
// Printing
/////////////////////////////////////////////////////////////////////
void
ScriptAnalysis::printTypes(JSContext *cx)
{
AutoEnterAnalysis enter(script->compartment());
TypeCompartment *compartment = &script->compartment()->types;
/*
* Check if there are warnings for used values with unknown types, and build
* statistics about the size of type sets found for stack values.
*/
for (unsigned offset = 0; offset < script->length; offset++) {
if (!maybeCode(offset))
continue;
jsbytecode *pc = script->code + offset;
UntrapOpcode untrap(cx, script, pc);
if (js_CodeSpec[*pc].format & JOF_DECOMPOSE)
continue;
unsigned defCount = GetDefCount(script, offset);
if (!defCount)
continue;
for (unsigned i = 0; i < defCount; i++) {
TypeSet *types = pushedTypes(offset, i);
if (types->unknown()) {
compartment->typeCountOver++;
continue;
}
unsigned typeCount = 0;
if (types->hasAnyFlag(TYPE_FLAG_ANYOBJECT) || types->getObjectCount() != 0)
typeCount++;
for (TypeFlags flag = 1; flag < TYPE_FLAG_ANYOBJECT; flag <<= 1) {
if (types->hasAnyFlag(flag))
typeCount++;
}
/*
* Adjust the type counts for floats: values marked as floats
* are also marked as ints by the inference, but for counting
* we don't consider these to be separate types.
*/
if (types->hasAnyFlag(TYPE_FLAG_DOUBLE)) {
JS_ASSERT(types->hasAnyFlag(TYPE_FLAG_INT32));
typeCount--;
}
if (typeCount > TypeCompartment::TYPE_COUNT_LIMIT) {
compartment->typeCountOver++;
} else if (typeCount == 0) {
/* Ignore values without types, this may be unreached code. */
} else {
compartment->typeCounts[typeCount-1]++;
}
}
}
#ifdef DEBUG
if (script->hasFunction)
printf("Function");
else if (script->isCachedEval)
printf("Eval");
else
printf("Main");
printf(" #%u %s (line %d):\n", script->id(), script->filename, script->lineno);
printf("locals:");
printf("\n return:");
TypeScript::ReturnTypes(script)->print(cx);
printf("\n this:");
TypeScript::ThisTypes(script)->print(cx);
for (unsigned i = 0; script->hasFunction && i < script->function()->nargs; i++) {
printf("\n arg%u:", i);
TypeScript::ArgTypes(script, i)->print(cx);
}
for (unsigned i = 0; i < script->nfixed; i++) {
if (!trackSlot(LocalSlot(script, i))) {
printf("\n local%u:", i);
TypeScript::LocalTypes(script, i)->print(cx);
}
}
printf("\n");
for (unsigned offset = 0; offset < script->length; offset++) {
if (!maybeCode(offset))
continue;
jsbytecode *pc = script->code + offset;
UntrapOpcode untrap(cx, script, pc);
PrintBytecode(cx, script, pc);
if (js_CodeSpec[*pc].format & JOF_DECOMPOSE)
continue;
if (js_CodeSpec[*pc].format & JOF_TYPESET) {
TypeSet *types = script->analysis()->bytecodeTypes(pc);
printf(" typeset %d:", (int) (types - script->types->typeArray()));
types->print(cx);
printf("\n");
}
unsigned defCount = GetDefCount(script, offset);
for (unsigned i = 0; i < defCount; i++) {
printf(" type %d:", i);
pushedTypes(offset, i)->print(cx);
printf("\n");
}
if (getCode(offset).monitoredTypes)
printf(" monitored\n");
TypeBarrier *barrier = getCode(offset).typeBarriers;
if (barrier != NULL) {
printf(" barrier:");
while (barrier) {
printf(" %s", TypeString(barrier->type));
barrier = barrier->next;
}
printf("\n");
}
}
printf("\n");
#endif /* DEBUG */
}
/////////////////////////////////////////////////////////////////////
// Interface functions
/////////////////////////////////////////////////////////////////////
namespace js {
namespace types {
void
MarkIteratorUnknownSlow(JSContext *cx)
{
/* Check whether we are actually at an ITER opcode. */
jsbytecode *pc;
JSScript *script = cx->stack.currentScript(&pc);
if (!script || !pc)
return;
UntrapOpcode untrap(cx, script, pc);
if (JSOp(*pc) != JSOP_ITER)
return;
AutoEnterTypeInference enter(cx);
/*
* This script is iterating over an actual Iterator or Generator object, or
* an object with a custom __iterator__ hook. In such cases 'for in' loops
* can produce values other than strings, and the types of the ITER opcodes
* in the script need to be updated. During analysis this is done with the
* forTypes in the analysis state, but we don't keep a pointer to this type
* set and need to scan the script to fix affected opcodes.
*/
TypeResult *result = script->types->dynamicList;
while (result) {
if (result->offset == uint32(-1)) {
/* Already know about custom iterators used in this script. */
JS_ASSERT(result->type.isUnknown());
return;
}
result = result->next;
}
InferSpew(ISpewOps, "externalType: customIterator #%u", script->id());
result = cx->new_<TypeResult>(uint32(-1), Type::UnknownType());
if (!result) {
cx->compartment->types.setPendingNukeTypes(cx);
return;
}
result->next = script->types->dynamicList;
script->types->dynamicList = result;
if (!script->hasAnalysis() || !script->analysis()->ranInference())
return;
ScriptAnalysis *analysis = script->analysis();
for (unsigned i = 0; i < script->length; i++) {
jsbytecode *pc = script->code + i;
if (!analysis->maybeCode(pc))
continue;
if (js_GetOpcode(cx, script, pc) == JSOP_ITERNEXT)
analysis->pushedTypes(pc, 0)->addType(cx, Type::UnknownType());
}
/* Trigger recompilation of any inline callers. */
if (script->hasFunction && !script->function()->hasLazyType())
ObjectStateChange(cx, script->function()->type(), false, true);
}
void
TypeMonitorCallSlow(JSContext *cx, JSObject *callee,
const CallArgs &args, bool constructing)
{
unsigned nargs = callee->getFunctionPrivate()->nargs;
JSScript *script = callee->getFunctionPrivate()->script();
if (!constructing)
TypeScript::SetThis(cx, script, args.thisv());
/*
* Add constraints going up to the minimum of the actual and formal count.
* If there are more actuals than formals the later values can only be
* accessed through the arguments object, which is monitored.
*/
unsigned arg = 0;
for (; arg < args.length() && arg < nargs; arg++)
TypeScript::SetArgument(cx, script, arg, args[arg]);
/* Watch for fewer actuals than formals to the call. */
for (; arg < nargs; arg++)
TypeScript::SetArgument(cx, script, arg, UndefinedValue());
}
static inline bool
IsAboutToBeFinalized(JSContext *cx, TypeObjectKey *key)
{
/* Mask out the low bit indicating whether this is a type or JS object. */
return !reinterpret_cast<const gc::Cell *>((jsuword) key & ~1)->isMarked();
}
void
TypeDynamicResult(JSContext *cx, JSScript *script, jsbytecode *pc, Type type)
{
JS_ASSERT(cx->typeInferenceEnabled());
AutoEnterTypeInference enter(cx);
UntrapOpcode untrap(cx, script, pc);
/* Directly update associated type sets for applicable bytecodes. */
if (js_CodeSpec[*pc].format & JOF_TYPESET) {
if (!script->ensureRanAnalysis(cx)) {
cx->compartment->types.setPendingNukeTypes(cx);
return;
}
TypeSet *types = script->analysis()->bytecodeTypes(pc);
if (!types->hasType(type)) {
InferSpew(ISpewOps, "externalType: monitorResult #%u:%05u: %s",
script->id(), pc - script->code, TypeString(type));
types->addType(cx, type);
}
return;
}
/*
* For inc/dec ops, we need to go back and reanalyze the affected opcode
* taking the overflow into account. We won't see an explicit adjustment
* of the type of the thing being inc/dec'ed, nor will adding TYPE_DOUBLE to
* the pushed value affect that type.
*/
JSOp op = JSOp(*pc);
const JSCodeSpec *cs = &js_CodeSpec[op];
if (cs->format & (JOF_INC | JOF_DEC)) {
switch (op) {
case JSOP_INCLOCAL:
case JSOP_DECLOCAL:
case JSOP_LOCALINC:
case JSOP_LOCALDEC:
case JSOP_INCARG:
case JSOP_DECARG:
case JSOP_ARGINC:
case JSOP_ARGDEC: {
/*
* Just mark the slot's type as holding the new type. This captures
* the effect if the slot is not being tracked, and if the slot
* doesn't escape we will update the pushed types below to capture
* the slot's value after this write.
*/
uint32 slot = GetBytecodeSlot(script, pc);
if (slot < TotalSlots(script)) {
TypeSet *types = TypeScript::SlotTypes(script, slot);
types->addType(cx, type);
}
break;
}
default:;
}
}
if (script->hasAnalysis() && script->analysis()->ranInference()) {
/*
* If the pushed set already has this type, we don't need to ensure
* there is a TypeIntermediate. Either there already is one, or the
* type could be determined from the script's other input type sets.
*/
TypeSet *pushed = script->analysis()->pushedTypes(pc, 0);
if (pushed->hasType(type))
return;
} else {
/* Scan all intermediate types on the script to check for a dupe. */
TypeResult *result, **pstart = &script->types->dynamicList, **presult = pstart;
while (*presult) {
result = *presult;
if (result->offset == unsigned(pc - script->code) && result->type == type) {
if (presult != pstart) {
/* Move to the head of the list, maintain LRU order. */
*presult = result->next;
result->next = *pstart;
*pstart = result;
}
return;
}
presult = &result->next;
}
}
InferSpew(ISpewOps, "externalType: monitorResult #%u:%05u: %s",
script->id(), pc - script->code, TypeString(type));
TypeResult *result = cx->new_<TypeResult>(pc - script->code, type);
if (!result) {
cx->compartment->types.setPendingNukeTypes(cx);
return;
}
result->next = script->types->dynamicList;
script->types->dynamicList = result;
if (script->hasAnalysis() && script->analysis()->ranInference()) {
TypeSet *pushed = script->analysis()->pushedTypes(pc, 0);
pushed->addType(cx, type);
}
/* Trigger recompilation of any inline callers. */
if (script->hasFunction && !script->function()->hasLazyType())
ObjectStateChange(cx, script->function()->type(), false, true);
}
void
TypeMonitorResult(JSContext *cx, JSScript *script, jsbytecode *pc, const js::Value &rval)
{
UntrapOpcode untrap(cx, script, pc);
/* Allow the non-TYPESET scenario to simplify stubs used in compound opcodes. */
if (!(js_CodeSpec[*pc].format & JOF_TYPESET))
return;
AutoEnterTypeInference enter(cx);
if (!script->ensureRanAnalysis(cx)) {
cx->compartment->types.setPendingNukeTypes(cx);
return;
}
Type type = GetValueType(cx, rval);
TypeSet *types = script->analysis()->bytecodeTypes(pc);
if (types->hasType(type))
return;
InferSpew(ISpewOps, "bytecodeType: #%u:%05u: %s",
script->id(), pc - script->code, TypeString(type));
types->addType(cx, type);
}
bool
TypeScript::SetScope(JSContext *cx, JSScript *script, JSObject *scope)
{
JS_ASSERT(script->types && !script->types->hasScope());
JSFunction *fun = script->types->function;
JS_ASSERT(script->hasFunction == (fun != NULL));
JS_ASSERT_IF(!fun, !script->isOuterFunction && !script->isInnerFunction);
JS_ASSERT_IF(!scope, fun && !script->isInnerFunction);
/*
* The scope object must be the initial one for the script, before any call
* object has been created in the heavyweight case.
*/
JS_ASSERT_IF(scope && scope->isCall() && !scope->asCall().isForEval(),
scope->asCall().getCalleeFunction() != fun);
if (!script->compileAndGo) {
script->types->global = NULL;
return true;
}
JS_ASSERT_IF(fun && scope, fun->getGlobal() == scope->getGlobal());
script->types->global = fun ? fun->getGlobal() : scope->getGlobal();
if (!cx->typeInferenceEnabled())
return true;
if (!script->isInnerFunction || fun->isNullClosure()) {
/*
* Outermost functions need nesting information if there are inner
* functions directly nested in them.
*/
if (script->isOuterFunction) {
script->types->nesting = cx->new_<TypeScriptNesting>();
if (!script->types->nesting)
return false;
}
return true;
}
/*
* Walk the scope chain to the next call object, which will be the function
* the script is nested inside.
*/
while (!scope->isCall())
scope = scope->getParent();
CallObject &call = scope->asCall();
/* The isInnerFunction test ensures there is no intervening strict eval call object. */
JS_ASSERT(!call.isForEval());
/* Don't track non-heavyweight parents, NAME ops won't reach into them. */
JSFunction *parentFun = call.getCalleeFunction();
if (!parentFun || !parentFun->isHeavyweight())
return true;
JSScript *parent = parentFun->script();
JS_ASSERT(parent->isOuterFunction);
/*
* We only need the nesting in the child if it has NAME accesses going
* into the parent. We won't know for sure whether this is the case until
* analyzing the script's types, which we don't want to do yet. The nesting
* info we make here may get pruned if/when we eventually do such analysis.
*/
/*
* Scopes are set when scripts first execute, and the parent script must
* have executed first. It is still possible for the parent script to not
* have a scope, however, as we occasionally purge all TypeScripts from the
* compartment and there may be inner function objects parented to an
* activation of the outer function sticking around. In such cases, treat
* the parent's call object as the most recent one, so that it is not
* marked as reentrant.
*/
if (!parent->ensureHasTypes(cx, parentFun))
return false;
if (!parent->types->hasScope()) {
if (!SetScope(cx, parent, scope->getParent()))
return false;
parent->nesting()->activeCall = scope;
parent->nesting()->argArray = call.argArray();
parent->nesting()->varArray = call.varArray();
}
JS_ASSERT(!script->types->nesting);
/* Construct and link nesting information for the two functions. */
script->types->nesting = cx->new_<TypeScriptNesting>();
if (!script->types->nesting)
return false;
script->nesting()->parent = parent;
script->nesting()->next = parent->nesting()->children;
parent->nesting()->children = script;
return true;
}
TypeScriptNesting::~TypeScriptNesting()
{
/*
* Unlink from any parent/child. Nesting info on a script does not keep
* either the parent or children live during GC.
*/
if (parent) {
JSScript **pscript = &parent->nesting()->children;
while ((*pscript)->nesting() != this)
pscript = &(*pscript)->nesting()->next;
*pscript = next;
}
while (children) {
TypeScriptNesting *child = children->nesting();
children = child->next;
child->parent = NULL;
child->next = NULL;
}
}
bool
ClearActiveNesting(JSScript *start)
{
/*
* Clear active call information for script and any outer functions
* inner to it. Return false if an inner function has frames on the stack.
*/
/* Traverse children, then parent, avoiding recursion. */
JSScript *script = start;
bool traverseChildren = true;
while (true) {
TypeScriptNesting *nesting = script->nesting();
if (nesting->children && traverseChildren) {
script = nesting->children;
continue;
}
if (nesting->activeFrames)
return false;
if (script->isOuterFunction) {
nesting->activeCall = NULL;
nesting->argArray = NULL;
nesting->varArray = NULL;
}
if (script == start)
break;
if (nesting->next) {
script = nesting->next;
traverseChildren = true;
} else {
script = nesting->parent;
traverseChildren = false;
}
}
return true;
}
/*
* For the specified scope and script with an outer function, check if the
* scope represents a reentrant activation on an inner function of the parent
* or any of its transitive parents.
*/
static void
CheckNestingParent(JSContext *cx, JSObject *scope, JSScript *script)
{
restart:
JSScript *parent = script->nesting()->parent;
JS_ASSERT(parent);
while (!scope->isCall() || scope->asCall().getCalleeFunction()->script() != parent)
scope = scope->getParent();
if (scope != parent->nesting()->activeCall) {
parent->reentrantOuterFunction = true;
MarkTypeObjectFlags(cx, parent->function(), OBJECT_FLAG_REENTRANT_FUNCTION);
/*
* Continue checking parents to see if this is reentrant for them too.
* We don't need to check this in for non-reentrant calls on the outer
* function: when we entered any outer function to the immediate parent
* we cleared the active call for its transitive children, so a
* non-reentrant call on a child is also a non-reentrant call on the
* parent.
*/
if (parent->nesting()->parent) {
scope = scope->getParent();
script = parent;
goto restart;
}
}
}
void
NestingPrologue(JSContext *cx, StackFrame *fp)
{
JSScript *script = fp->fun()->script();
TypeScriptNesting *nesting = script->nesting();
if (nesting->parent)
CheckNestingParent(cx, &fp->scopeChain(), script);
if (script->isOuterFunction) {
/*
* Check the stack has no frames for this activation, any of its inner
* functions or any of their transitive inner functions.
*/
if (!ClearActiveNesting(script)) {
script->reentrantOuterFunction = true;
MarkTypeObjectFlags(cx, fp->fun(), OBJECT_FLAG_REENTRANT_FUNCTION);
}
nesting->activeCall = &fp->callObj();
nesting->argArray = fp->formalArgs();
nesting->varArray = fp->slots();
}
/* Maintain stack frame count for the function. */
nesting->activeFrames++;
}
void
NestingEpilogue(StackFrame *fp)
{
JSScript *script = fp->fun()->script();
TypeScriptNesting *nesting = script->nesting();
JS_ASSERT(nesting->activeFrames != 0);
nesting->activeFrames--;
}
} } /* namespace js::types */
/////////////////////////////////////////////////////////////////////
// TypeScript
/////////////////////////////////////////////////////////////////////
/*
* Returns true if we don't expect to compute the correct types for some value
* pushed by the specified bytecode.
*/
static inline bool
IgnorePushed(const jsbytecode *pc, unsigned index)
{
JS_ASSERT(JSOp(*pc) != JSOP_TRAP);
switch (JSOp(*pc)) {
/* We keep track of the scopes pushed by BINDNAME separately. */
case JSOP_BINDNAME:
case JSOP_BINDGNAME:
case JSOP_BINDXMLNAME:
return true;
/* Stack not consistent in TRY_BRANCH_AFTER_COND. */
case JSOP_IN:
case JSOP_EQ:
case JSOP_NE:
case JSOP_LT:
case JSOP_LE:
case JSOP_GT:
case JSOP_GE:
return (index == 0);
/* Value not determining result is not pushed by OR/AND. */
case JSOP_OR:
case JSOP_ORX:
case JSOP_AND:
case JSOP_ANDX:
return (index == 0);
/* Holes tracked separately. */
case JSOP_HOLE:
return (index == 0);
case JSOP_FILTER:
return (index == 1);
/* Storage for 'with' and 'let' blocks not monitored. */
case JSOP_ENTERWITH:
case JSOP_ENTERBLOCK:
return true;
/* We don't keep track of the iteration state for 'for in' or 'for each in' loops. */
case JSOP_ITER:
case JSOP_ITERNEXT:
case JSOP_MOREITER:
case JSOP_ENDITER:
return true;
/* Ops which can manipulate values pushed by opcodes we don't model. */
case JSOP_DUP:
case JSOP_DUP2:
case JSOP_SWAP:
case JSOP_PICK:
return true;
/* We don't keep track of state indicating whether there is a pending exception. */
case JSOP_FINALLY:
return true;
/*
* We don't treat GETLOCAL immediately followed by a pop as a use-before-def,
* and while the type will have been inferred correctly the method JIT
* may not have written the local's initial undefined value to the stack,
* leaving a stale value.
*/
case JSOP_GETLOCAL:
return JSOp(pc[JSOP_GETLOCAL_LENGTH]) == JSOP_POP;
default:
return false;
}
}
bool
JSScript::makeTypes(JSContext *cx, JSFunction *fun)
{
JS_ASSERT(!types);
JS_ASSERT(hasFunction == (fun != NULL));
if (!cx->typeInferenceEnabled()) {
types = (TypeScript *) cx->calloc_(sizeof(TypeScript));
if (!types)
return false;
new(types) TypeScript(fun);
return true;
}
AutoEnterTypeInference enter(cx);
/* Open code for NumTypeSets since the types are not filled in yet. */
unsigned count = 2 + (fun ? fun->nargs : 0) + nfixed + nTypeSets;
types = (TypeScript *) cx->calloc_(sizeof(TypeScript) + (sizeof(TypeSet) * count));
if (!types) {
cx->compartment->types.setPendingNukeTypes(cx);
return false;
}
new(types) TypeScript(fun);
#ifdef DEBUG
TypeSet *typeArray = types->typeArray();
for (unsigned i = 0; i < nTypeSets; i++)
InferSpew(ISpewOps, "typeSet: %sT%p%s bytecode%u #%u",
InferSpewColor(&typeArray[i]), &typeArray[i], InferSpewColorReset(),
i, id());
TypeSet *returnTypes = TypeScript::ReturnTypes(this);
InferSpew(ISpewOps, "typeSet: %sT%p%s return #%u",
InferSpewColor(returnTypes), returnTypes, InferSpewColorReset(),
id());
TypeSet *thisTypes = TypeScript::ThisTypes(this);
InferSpew(ISpewOps, "typeSet: %sT%p%s this #%u",
InferSpewColor(thisTypes), thisTypes, InferSpewColorReset(),
id());
unsigned nargs = hasFunction ? function()->nargs : 0;
for (unsigned i = 0; i < nargs; i++) {
TypeSet *types = TypeScript::ArgTypes(this, i);
InferSpew(ISpewOps, "typeSet: %sT%p%s arg%u #%u",
InferSpewColor(types), types, InferSpewColorReset(),
i, id());
}
for (unsigned i = 0; i < nfixed; i++) {
TypeSet *types = TypeScript::LocalTypes(this, i);
InferSpew(ISpewOps, "typeSet: %sT%p%s local%u #%u",
InferSpewColor(types), types, InferSpewColorReset(),
i, id());
}
#endif
return true;
}
bool
JSScript::makeAnalysis(JSContext *cx)
{
JS_ASSERT(types && !types->analysis);
AutoEnterAnalysis enter(cx);
types->analysis = cx->typeLifoAlloc().new_<ScriptAnalysis>(this);
if (!types->analysis)
return false;
types->analysis->analyzeBytecode(cx);
if (types->analysis->OOM()) {
types->analysis = NULL;
return false;
}
return true;
}
bool
JSScript::typeSetFunction(JSContext *cx, JSFunction *fun, bool singleton)
{
hasFunction = true;
if (fun->isHeavyweight())
isHeavyweightFunction = true;
if (!cx->typeInferenceEnabled())
return true;
if (singleton) {
if (!fun->setSingletonType(cx))
return false;
} else {
TypeObject *type = cx->compartment->types.newTypeObject(cx, this,
JSProto_Function, fun->getProto());
if (!type)
return false;
fun->setType(type);
type->interpretedFunction = fun;
}
return true;
}
#ifdef DEBUG
/* static */ void
TypeScript::CheckBytecode(JSContext *cx, JSScript *script, jsbytecode *pc, const js::Value *sp)
{
AutoEnterTypeInference enter(cx);
UntrapOpcode untrap(cx, script, pc);
if (js_CodeSpec[*pc].format & JOF_DECOMPOSE)
return;
if (!script->hasAnalysis() || !script->analysis()->ranInference())
return;
ScriptAnalysis *analysis = script->analysis();
int defCount = GetDefCount(script, pc - script->code);
for (int i = 0; i < defCount; i++) {
const js::Value &val = sp[-defCount + i];
TypeSet *types = analysis->pushedTypes(pc, i);
if (IgnorePushed(pc, i))
continue;
Type type = GetValueType(cx, val);
if (!types->hasType(type)) {
/* Display fine-grained debug information first */
fprintf(stderr, "Missing type at #%u:%05u pushed %u: %s\n",
script->id(), unsigned(pc - script->code), i, TypeString(type));
TypeFailure(cx, "Missing type pushed %u: %s", i, TypeString(type));
}
}
}
#endif
/////////////////////////////////////////////////////////////////////
// JSObject
/////////////////////////////////////////////////////////////////////
bool
JSObject::shouldSplicePrototype(JSContext *cx)
{
/*
* During bootstrapping, if inference is enabled we need to make sure not
* to splice a new prototype in for Function.prototype or the global
* object if their __proto__ had previously been set to null, as this
* will change the prototype for all other objects with the same type.
* If inference is disabled we cannot determine from the object whether it
* has had its __proto__ set after creation.
*/
if (getProto() != NULL)
return false;
return !cx->typeInferenceEnabled() || hasSingletonType();
}
bool
JSObject::splicePrototype(JSContext *cx, JSObject *proto)
{
/*
* For singleton types representing only a single JSObject, the proto
* can be rearranged as needed without destroying type information for
* the old or new types. Note that type constraints propagating properties
* from the old prototype are not removed.
*/
JS_ASSERT_IF(cx->typeInferenceEnabled(), hasSingletonType());
/*
* Force type instantiation when splicing lazy types. This may fail,
* in which case inference will be disabled for the compartment.
*/
TypeObject *type = getType(cx);
TypeObject *protoType = NULL;
if (proto) {
protoType = proto->getType(cx);
if (!proto->getNewType(cx))
return false;
}
if (!cx->typeInferenceEnabled()) {
TypeObject *type = proto ? proto->getNewType(cx) : &emptyTypeObject;
if (!type)
return false;
type_ = type;
return true;
}
type->proto = proto;
AutoEnterTypeInference enter(cx);
if (protoType && protoType->unknownProperties() && !type->unknownProperties()) {
type->markUnknown(cx);
return true;
}
if (!type->unknownProperties()) {
/* Update properties on this type with any shared with the prototype. */
unsigned count = type->getPropertyCount();
for (unsigned i = 0; i < count; i++) {
Property *prop = type->getProperty(i);
if (prop && prop->types.hasPropagatedProperty())
type->getFromPrototypes(cx, prop->id, &prop->types, true);
}
}
return true;
}
void
JSObject::makeLazyType(JSContext *cx)
{
JS_ASSERT(cx->typeInferenceEnabled() && hasLazyType());
AutoEnterTypeInference enter(cx);
TypeObject *type = cx->compartment->types.newTypeObject(cx, NULL,
JSProto_Object, getProto());
if (!type) {
cx->compartment->types.setPendingNukeTypes(cx);
return;
}
/* Fill in the type according to the state of this object. */
type->singleton = this;
if (isFunction() && getFunctionPrivate() && getFunctionPrivate()->isInterpreted()) {
type->interpretedFunction = getFunctionPrivate();
JSScript *script = type->interpretedFunction->script();
if (script->createdArgs)
type->flags |= OBJECT_FLAG_CREATED_ARGUMENTS;
if (script->uninlineable)
type->flags |= OBJECT_FLAG_UNINLINEABLE;
if (script->reentrantOuterFunction)
type->flags |= OBJECT_FLAG_REENTRANT_FUNCTION;
}
if (flags & ITERATED)
type->flags |= OBJECT_FLAG_ITERATED;
#if JS_HAS_XML_SUPPORT
/*
* XML objects do not have equality hooks but are treated special by EQ/NE
* ops. Just mark the type as totally unknown.
*/
if (isXML() && !type->unknownProperties())
type->markUnknown(cx);
#endif
if (clasp->ext.equality)
type->flags |= OBJECT_FLAG_SPECIAL_EQUALITY;
if (type->unknownProperties()) {
type_ = type;
flags &= ~LAZY_TYPE;
return;
}
/* Not yet generating singleton arrays. */
type->flags |= OBJECT_FLAG_NON_DENSE_ARRAY
| OBJECT_FLAG_NON_PACKED_ARRAY
| OBJECT_FLAG_NON_TYPED_ARRAY;
type_ = type;
flags &= ~LAZY_TYPE;
}
void
JSObject::makeNewType(JSContext *cx, JSFunction *fun, bool unknown)
{
JS_ASSERT(!newType);
TypeObject *type = cx->compartment->types.newTypeObject(cx, NULL,
JSProto_Object, this, unknown);
if (!type)
return;
newType = type;
setDelegate();
if (!cx->typeInferenceEnabled())
return;
AutoEnterTypeInference enter(cx);
/*
* Set the special equality flag for types whose prototype also has the
* flag set. This is a hack, :XXX: need a real correspondence between
* types and the possible js::Class of objects with that type.
*/
if (hasSpecialEquality())
type->flags |= OBJECT_FLAG_SPECIAL_EQUALITY;
if (fun)
CheckNewScriptProperties(cx, type, fun);
#if JS_HAS_XML_SUPPORT
/* Special case for XML object equality, see makeLazyType(). */
if (isXML() && !type->unknownProperties())
type->flags |= OBJECT_FLAG_UNKNOWN_MASK;
#endif
if (clasp->ext.equality)
type->flags |= OBJECT_FLAG_SPECIAL_EQUALITY;
/*
* The new type is not present in any type sets, so mark the object as
* unknown in all type sets it appears in. This allows the prototype of
* such objects to mutate freely without triggering an expensive walk of
* the compartment's type sets. (While scripts normally don't mutate
* __proto__, the browser will for proxies and such, and we need to
* accommodate this behavior).
*/
if (type->unknownProperties())
type->flags |= OBJECT_FLAG_SETS_MARKED_UNKNOWN;
}
/////////////////////////////////////////////////////////////////////
// Tracing
/////////////////////////////////////////////////////////////////////
void
TypeSet::sweep(JSContext *cx, JSCompartment *compartment)
{
/*
* Purge references to type objects that are no longer live. Type sets hold
* only weak references. For type sets containing more than one object,
* live entries in the object hash need to be copied to the compartment's
* new arena.
*/
unsigned objectCount = baseObjectCount();
if (objectCount >= 2) {
unsigned oldCapacity = HashSetCapacity(objectCount);
TypeObjectKey **oldArray = objectSet;
clearObjects();
objectCount = 0;
for (unsigned i = 0; i < oldCapacity; i++) {
TypeObjectKey *object = oldArray[i];
if (object && !IsAboutToBeFinalized(cx, object)) {
TypeObjectKey **pentry =
HashSetInsert<TypeObjectKey *,TypeObjectKey,TypeObjectKey>
(compartment, objectSet, objectCount, object);
if (pentry)
*pentry = object;
else
compartment->types.setPendingNukeTypes(cx);
}
}
setBaseObjectCount(objectCount);
} else if (objectCount == 1) {
TypeObjectKey *object = (TypeObjectKey *) objectSet;
if (IsAboutToBeFinalized(cx, object)) {
objectSet = NULL;
setBaseObjectCount(0);
}
}
/*
* All constraints are wiped out on each GC, including those propagating
* into this type set from prototype properties.
*/
constraintList = NULL;
flags &= ~TYPE_FLAG_PROPAGATED_PROPERTY;
}
inline void
JSObject::revertLazyType()
{
JS_ASSERT(hasSingletonType() && !hasLazyType());
JS_ASSERT_IF(type_->proto, type_->proto->newType);
flags |= LAZY_TYPE;
type_ = (type_->proto) ? type_->proto->newType : &emptyTypeObject;
}
inline void
TypeObject::clearProperties()
{
setBasePropertyCount(0);
propertySet = NULL;
}
/*
* Before sweeping the arenas themselves, scan all type objects in a
* compartment to fixup weak references: property type sets referencing dead
* JS and type objects, and singleton JS objects whose type is not referenced
* elsewhere. This also releases memory associated with dead type objects,
* so that type objects do not need later finalization.
*/
inline void
TypeObject::sweep(JSContext *cx)
{
/*
* We may be regenerating existing type sets containing this object,
* so reset contributions on each GC to avoid tripping the limit.
*/
contribution = 0;
if (singleton) {
JS_ASSERT(!emptyShapes);
JS_ASSERT(!newScript);
/*
* All properties can be discarded. We will regenerate them as needed
* as code gets reanalyzed.
*/
clearProperties();
if (!isMarked()) {
/*
* Singleton objects do not hold strong references on their types.
* When removing the type, however, we need to fixup the singleton
* so that it has a lazy type again. The generic 'new' type for the
* proto must be live, since the type's prototype and its 'new'
* type are both strong references.
*/
JS_ASSERT_IF(singleton->isMarked() && proto,
proto->isMarked() && proto->newType->isMarked());
singleton->revertLazyType();
}
return;
}
if (!isMarked()) {
if (emptyShapes)
Foreground::free_(emptyShapes);
if (newScript)
Foreground::free_(newScript);
return;
}
JSCompartment *compartment = this->compartment();
/*
* Properties were allocated from the old arena, and need to be copied over
* to the new one. Don't hang onto properties without the OWN_PROPERTY
* flag; these were never directly assigned, and get any possible values
* from the object's prototype.
*/
unsigned propertyCount = basePropertyCount();
if (propertyCount >= 2) {
unsigned oldCapacity = HashSetCapacity(propertyCount);
Property **oldArray = propertySet;
clearProperties();
propertyCount = 0;
for (unsigned i = 0; i < oldCapacity; i++) {
Property *prop = oldArray[i];
if (prop && prop->types.isOwnProperty(false)) {
Property *newProp = compartment->typeLifoAlloc.new_<Property>(*prop);
if (newProp) {
Property **pentry =
HashSetInsert<jsid,Property,Property>
(compartment, propertySet, propertyCount, prop->id);
if (pentry) {
*pentry = newProp;
newProp->types.sweep(cx, compartment);
} else {
compartment->types.setPendingNukeTypes(cx);
}
} else {
compartment->types.setPendingNukeTypes(cx);
}
}
}
setBasePropertyCount(propertyCount);
} else if (propertyCount == 1) {
Property *prop = (Property *) propertySet;
if (prop->types.isOwnProperty(false)) {
Property *newProp = compartment->typeLifoAlloc.new_<Property>(*prop);
if (newProp) {
propertySet = (Property **) newProp;
newProp->types.sweep(cx, compartment);
} else {
compartment->types.setPendingNukeTypes(cx);
}
} else {
propertySet = NULL;
setBasePropertyCount(0);
}
}
if (basePropertyCount() <= SET_ARRAY_SIZE) {
for (unsigned i = 0; i < basePropertyCount(); i++)
JS_ASSERT(propertySet[i]);
}
/*
* The GC will clear out the constraints ensuring the correctness of the
* newScript information, these constraints will need to be regenerated
* the next time we compile code which depends on this info.
*/
if (newScript)
flags |= OBJECT_FLAG_NEW_SCRIPT_REGENERATE;
}
struct SweepTypeObjectOp
{
JSContext *cx;
SweepTypeObjectOp(JSContext *cx) : cx(cx) {}
void operator()(gc::Cell *cell) {
TypeObject *object = static_cast<TypeObject *>(cell);
object->sweep(cx);
}
};
void
SweepTypeObjects(JSContext *cx, JSCompartment *compartment)
{
JS_ASSERT(!emptyTypeObject.emptyShapes);
JS_ASSERT(!emptyTypeObject.newScript);
SweepTypeObjectOp op(cx);
gc::ForEachArenaAndCell(compartment, gc::FINALIZE_TYPE_OBJECT, gc::EmptyArenaOp, op);
}
void
TypeCompartment::sweep(JSContext *cx)
{
JSCompartment *compartment = this->compartment();
SweepTypeObjects(cx, compartment);
/*
* Iterate through the array/object type tables and remove all entries
* referencing collected data. These tables only hold weak references.
*/
if (arrayTypeTable) {
for (ArrayTypeTable::Enum e(*arrayTypeTable); !e.empty(); e.popFront()) {
const ArrayTableKey &key = e.front().key;
TypeObject *obj = e.front().value;
JS_ASSERT(obj->proto == key.proto);
JS_ASSERT(!key.type.isSingleObject());
bool remove = false;
if (key.type.isTypeObject() && !key.type.typeObject()->isMarked())
remove = true;
if (!obj->isMarked())
remove = true;
if (remove)
e.removeFront();
}
}
if (objectTypeTable) {
for (ObjectTypeTable::Enum e(*objectTypeTable); !e.empty(); e.popFront()) {
const ObjectTableKey &key = e.front().key;
const ObjectTableEntry &entry = e.front().value;
JS_ASSERT(entry.object->proto == key.proto);
bool remove = false;
if (!entry.object->isMarked())
remove = true;
for (unsigned i = 0; !remove && i < key.nslots; i++) {
if (JSID_IS_STRING(key.ids[i])) {
JSString *str = JSID_TO_STRING(key.ids[i]);
if (!str->isMarked())
remove = true;
}
JS_ASSERT(!entry.types[i].isSingleObject());
if (entry.types[i].isTypeObject() && !entry.types[i].typeObject()->isMarked())
remove = true;
}
if (remove) {
Foreground::free_(key.ids);
Foreground::free_(entry.types);
e.removeFront();
}
}
}
if (allocationSiteTable) {
for (AllocationSiteTable::Enum e(*allocationSiteTable); !e.empty(); e.popFront()) {
const AllocationSiteKey &key = e.front().key;
TypeObject *object = e.front().value;
if (IsAboutToBeFinalized(cx, key.script) || !object->isMarked())
e.removeFront();
}
}
/*
* The pending array is reset on GC, it can grow large (75+ KB) and is easy
* to reallocate if the compartment becomes active again.
*/
if (pendingArray)
cx->free_(pendingArray);
pendingArray = NULL;
pendingCapacity = 0;
}
TypeCompartment::~TypeCompartment()
{
if (pendingArray)
Foreground::free_(pendingArray);
if (arrayTypeTable)
Foreground::delete_(arrayTypeTable);
if (objectTypeTable)
Foreground::delete_(objectTypeTable);
if (allocationSiteTable)
Foreground::delete_(allocationSiteTable);
}
/* static */ void
TypeScript::Sweep(JSContext *cx, JSScript *script)
{
JSCompartment *compartment = script->compartment();
JS_ASSERT(compartment->types.inferenceEnabled);
unsigned num = NumTypeSets(script);
TypeSet *typeArray = script->types->typeArray();
/* Remove constraints and references to dead objects from the persistent type sets. */
for (unsigned i = 0; i < num; i++)
typeArray[i].sweep(cx, compartment);
TypeResult **presult = &script->types->dynamicList;
while (*presult) {
TypeResult *result = *presult;
Type type = result->type;
if (!type.isUnknown() && !type.isAnyObject() && type.isObject() &&
IsAboutToBeFinalized(cx, type.objectKey())) {
*presult = result->next;
cx->delete_(result);
} else {
presult = &result->next;
}
}
/*
* If the script has nesting state with a most recent activation, we do not
* need either to mark the call object or clear it if not live. Even with
* a dead pointer in the nesting, we can't get a spurious match while
* testing for reentrancy: if previous activations are still live, they
* cannot alias the most recent one, and future activations will overwrite
* activeCall on creation.
*/
}
void
TypeScript::destroy()
{
while (dynamicList) {
TypeResult *next = dynamicList->next;
Foreground::delete_(dynamicList);
dynamicList = next;
}
if (nesting)
Foreground::delete_(nesting);
Foreground::free_(this);
}
inline size_t
TypeSet::dynamicSize()
{
/* Get the amount of memory allocated from the analysis pool for this set. */
uint32 count = baseObjectCount();
if (count >= 2)
return HashSetCapacity(count) * sizeof(TypeObject *);
return 0;
}
inline size_t
TypeObject::dynamicSize()
{
size_t bytes = 0;
uint32 count = basePropertyCount();
if (count >= 2)
bytes += HashSetCapacity(count) * sizeof(TypeObject *);
count = getPropertyCount();
for (unsigned i = 0; i < count; i++) {
Property *prop = getProperty(i);
if (prop)
bytes += sizeof(Property) + prop->types.dynamicSize();
}
return bytes;
}
static void
GetScriptMemoryStats(JSScript *script, TypeInferenceMemoryStats *stats)
{
if (!script->types)
return;
if (!script->compartment()->types.inferenceEnabled) {
stats->scripts += sizeof(TypeScript);
return;
}
unsigned count = TypeScript::NumTypeSets(script);
stats->scripts += sizeof(TypeScript) + count * sizeof(TypeSet);
TypeResult *result = script->types->dynamicList;
while (result) {
stats->scripts += sizeof(TypeResult);
result = result->next;
}
TypeSet *typeArray = script->types->typeArray();
for (unsigned i = 0; i < count; i++) {
size_t bytes = typeArray[i].dynamicSize();
stats->scripts += bytes;
stats->temporary -= bytes;
}
}
JS_FRIEND_API(void)
JS_GetTypeInferenceMemoryStats(JSContext *cx, JSCompartment *compartment,
TypeInferenceMemoryStats *stats)
{
/*
* Note: not all data in the pool is temporary, and some will survive GCs
* by being copied to the replacement pool. This memory will be counted too
* and deducted from the amount of temporary data.
*/
stats->temporary += compartment->typeLifoAlloc.used();
/* Pending arrays are cleared on GC along with the analysis pool. */
stats->temporary += sizeof(TypeCompartment::PendingWork) * compartment->types.pendingCapacity;
for (gc::CellIter i(cx, compartment, gc::FINALIZE_SCRIPT); !i.done(); i.next())
GetScriptMemoryStats(i.get<JSScript>(), stats);
if (compartment->types.allocationSiteTable)
stats->tables += compartment->types.allocationSiteTable->allocatedSize();
if (compartment->types.arrayTypeTable)
stats->tables += compartment->types.arrayTypeTable->allocatedSize();
if (compartment->types.objectTypeTable) {
stats->tables += compartment->types.objectTypeTable->allocatedSize();
for (ObjectTypeTable::Enum e(*compartment->types.objectTypeTable);
!e.empty();
e.popFront()) {
const ObjectTableKey &key = e.front().key;
stats->tables += key.nslots * (sizeof(jsid) + sizeof(Type));
}
}
}
JS_FRIEND_API(void)
JS_GetTypeInferenceObjectStats(void *object_, TypeInferenceMemoryStats *stats)
{
TypeObject *object = (TypeObject *) object_;
stats->objects += sizeof(TypeObject);
if (object->singleton) {
/*
* Properties and associated type sets for singletons are cleared on
* every GC. The type object is normally destroyed too, but we don't
* charge this to 'temporary' as this is not for GC heap values.
*/
JS_ASSERT(!object->newScript && !object->emptyShapes);
return;
}
if (object->newScript) {
size_t length = 0;
for (TypeNewScript::Initializer *init = object->newScript->initializerList;; init++) {
length++;
if (init->kind == TypeNewScript::Initializer::DONE)
break;
}
stats->objects += sizeof(TypeNewScript) + (length * sizeof(TypeNewScript::Initializer));
}
if (object->emptyShapes)
stats->emptyShapes += sizeof(EmptyShape*) * gc::FINALIZE_FUNCTION_AND_OBJECT_LAST;
size_t bytes = object->dynamicSize();
stats->objects += bytes;
stats->temporary -= bytes;
}