gecko/gfx/layers/Layers.h
L. David Baron e3cb739aae Bug 847287 patch 13 - Apply animations/transitions on the layer in the order that reflects how they override, rather than the opposite. r=birtles
This independently would have fixed some of the problems fixed in this
bug.  It would not have fixed them fully, though, since it would not
have prevented us from sending animations being covered up by !important
rules to the compositor.
2015-03-31 15:05:55 -07:00

2412 lines
84 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef GFX_LAYERS_H
#define GFX_LAYERS_H
#include <stdint.h> // for uint32_t, uint64_t, uint8_t
#include <stdio.h> // for FILE
#include <sys/types.h> // for int32_t, int64_t
#include "FrameMetrics.h" // for FrameMetrics
#include "Units.h" // for LayerMargin, LayerPoint
#include "gfxContext.h" // for GraphicsOperator
#include "gfxTypes.h"
#include "gfxColor.h" // for gfxRGBA
#include "GraphicsFilter.h" // for GraphicsFilter
#include "gfxPoint.h" // for gfxPoint
#include "gfxRect.h" // for gfxRect
#include "gfx2DGlue.h"
#include "mozilla/Assertions.h" // for MOZ_ASSERT_HELPER2, etc
#include "mozilla/DebugOnly.h" // for DebugOnly
#include "mozilla/EventForwards.h" // for nsPaintEvent
#include "mozilla/RefPtr.h" // for TemporaryRef
#include "mozilla/StyleAnimationValue.h" // for StyleAnimationValue, etc
#include "mozilla/TimeStamp.h" // for TimeStamp, TimeDuration
#include "mozilla/gfx/BaseMargin.h" // for BaseMargin
#include "mozilla/gfx/BasePoint.h" // for BasePoint
#include "mozilla/gfx/Point.h" // for IntSize
#include "mozilla/gfx/Types.h" // for SurfaceFormat
#include "mozilla/gfx/UserData.h" // for UserData, etc
#include "mozilla/layers/LayersTypes.h"
#include "mozilla/mozalloc.h" // for operator delete, etc
#include "nsAutoPtr.h" // for nsAutoPtr, nsRefPtr, etc
#include "nsCOMPtr.h" // for already_AddRefed
#include "nsCSSProperty.h" // for nsCSSProperty
#include "nsDebug.h" // for NS_ASSERTION
#include "nsISupportsImpl.h" // for Layer::Release, etc
#include "nsRect.h" // for nsIntRect
#include "nsRegion.h" // for nsIntRegion
#include "nsSize.h" // for nsIntSize
#include "nsString.h" // for nsCString
#include "nsTArray.h" // for nsTArray
#include "nsTArrayForwardDeclare.h" // for InfallibleTArray
#include "nscore.h" // for nsACString, nsAString
#include "prlog.h" // for PRLogModuleInfo
#include "nsIWidget.h" // For plugin window configuration information structs
#include "gfxVR.h"
class gfxContext;
extern uint8_t gLayerManagerLayerBuilder;
namespace mozilla {
class ComputedTimingFunction;
class FrameLayerBuilder;
class StyleAnimationValue;
class WebGLContext;
namespace gl {
class GLContext;
class SharedSurface;
}
namespace gfx {
class DrawTarget;
}
namespace dom {
class OverfillCallback;
}
namespace layers {
class Animation;
class AnimationData;
class AsyncPanZoomController;
class ClientLayerManager;
class CommonLayerAttributes;
class Layer;
class LayerMetricsWrapper;
class PaintedLayer;
class ContainerLayer;
class ImageLayer;
class ColorLayer;
class ImageContainer;
class CanvasLayer;
class ReadbackLayer;
class ReadbackProcessor;
class RefLayer;
class LayerComposite;
class ShadowableLayer;
class ShadowLayerForwarder;
class LayerManagerComposite;
class SpecificLayerAttributes;
class SurfaceDescriptor;
class Compositor;
struct TextureFactoryIdentifier;
struct EffectMask;
namespace layerscope {
class LayersPacket;
}
#define MOZ_LAYER_DECL_NAME(n, e) \
virtual const char* Name() const override { return n; } \
virtual LayerType GetType() const override { return e; }
/**
* Base class for userdata objects attached to layers and layer managers.
*/
class LayerUserData {
public:
virtual ~LayerUserData() {}
};
/*
* Motivation: For truly smooth animation and video playback, we need to
* be able to compose frames and render them on a dedicated thread (i.e.
* off the main thread where DOM manipulation, script execution and layout
* induce difficult-to-bound latency). This requires Gecko to construct
* some kind of persistent scene structure (graph or tree) that can be
* safely transmitted across threads. We have other scenarios (e.g. mobile
* browsing) where retaining some rendered data between paints is desired
* for performance, so again we need a retained scene structure.
*
* Our retained scene structure is a layer tree. Each layer represents
* content which can be composited onto a destination surface; the root
* layer is usually composited into a window, and non-root layers are
* composited into their parent layers. Layers have attributes (e.g.
* opacity and clipping) that influence their compositing.
*
* We want to support a variety of layer implementations, including
* a simple "immediate mode" implementation that doesn't retain any
* rendered data between paints (i.e. uses cairo in just the way that
* Gecko used it before layers were introduced). But we also don't want
* to have bifurcated "layers"/"non-layers" rendering paths in Gecko.
* Therefore the layers API is carefully designed to permit maximally
* efficient implementation in an "immediate mode" style. See the
* BasicLayerManager for such an implementation.
*/
static void LayerManagerUserDataDestroy(void *data)
{
delete static_cast<LayerUserData*>(data);
}
/**
* A LayerManager controls a tree of layers. All layers in the tree
* must use the same LayerManager.
*
* All modifications to a layer tree must happen inside a transaction.
* Only the state of the layer tree at the end of a transaction is
* rendered. Transactions cannot be nested
*
* Each transaction has two phases:
* 1) Construction: layers are created, inserted, removed and have
* properties set on them in this phase.
* BeginTransaction and BeginTransactionWithTarget start a transaction in
* the Construction phase. When the client has finished constructing the layer
* tree, it should call EndConstruction() to enter the drawing phase.
* 2) Drawing: PaintedLayers are rendered into in this phase, in tree
* order. When the client has finished drawing into the PaintedLayers, it should
* call EndTransaction to complete the transaction.
*
* All layer API calls happen on the main thread.
*
* Layers are refcounted. The layer manager holds a reference to the
* root layer, and each container layer holds a reference to its children.
*/
class LayerManager {
NS_INLINE_DECL_REFCOUNTING(LayerManager)
protected:
typedef mozilla::gfx::DrawTarget DrawTarget;
typedef mozilla::gfx::IntSize IntSize;
typedef mozilla::gfx::SurfaceFormat SurfaceFormat;
public:
LayerManager()
: mDestroyed(false)
, mSnapEffectiveTransforms(true)
, mId(0)
, mInTransaction(false)
{
InitLog();
}
/**
* Release layers and resources held by this layer manager, and mark
* it as destroyed. Should do any cleanup necessary in preparation
* for its widget going away. After this call, only user data calls
* are valid on the layer manager.
*/
virtual void Destroy()
{
mDestroyed = true;
mUserData.Destroy();
mRoot = nullptr;
}
bool IsDestroyed() { return mDestroyed; }
virtual ShadowLayerForwarder* AsShadowForwarder()
{ return nullptr; }
virtual LayerManagerComposite* AsLayerManagerComposite()
{ return nullptr; }
virtual ClientLayerManager* AsClientLayerManager()
{ return nullptr; }
/**
* Returns true if this LayerManager is owned by an nsIWidget,
* and is used for drawing into the widget.
*/
virtual bool IsWidgetLayerManager() { return true; }
virtual bool IsInactiveLayerManager() { return false; }
/**
* Start a new transaction. Nested transactions are not allowed so
* there must be no transaction currently in progress.
* This transaction will update the state of the window from which
* this LayerManager was obtained.
*/
virtual void BeginTransaction() = 0;
/**
* Start a new transaction. Nested transactions are not allowed so
* there must be no transaction currently in progress.
* This transaction will render the contents of the layer tree to
* the given target context. The rendering will be complete when
* EndTransaction returns.
*/
virtual void BeginTransactionWithTarget(gfxContext* aTarget) = 0;
enum EndTransactionFlags {
END_DEFAULT = 0,
END_NO_IMMEDIATE_REDRAW = 1 << 0, // Do not perform the drawing phase
END_NO_COMPOSITE = 1 << 1, // Do not composite after drawing painted layer contents.
END_NO_REMOTE_COMPOSITE = 1 << 2 // Do not schedule a composition with a remote Compositor, if one exists.
};
FrameLayerBuilder* GetLayerBuilder() {
return reinterpret_cast<FrameLayerBuilder*>(GetUserData(&gLayerManagerLayerBuilder));
}
/**
* Attempts to end an "empty transaction". There must have been no
* changes to the layer tree since the BeginTransaction().
* It's possible for this to fail; PaintedLayers may need to be updated
* due to VRAM data being lost, for example. In such cases this method
* returns false, and the caller must proceed with a normal layer tree
* update and EndTransaction.
*/
virtual bool EndEmptyTransaction(EndTransactionFlags aFlags = END_DEFAULT) = 0;
/**
* Function called to draw the contents of each PaintedLayer.
* aRegionToDraw contains the region that needs to be drawn.
* This would normally be a subregion of the visible region.
* The callee must draw all of aRegionToDraw. Drawing outside
* aRegionToDraw will be clipped out or ignored.
* The callee must draw all of aRegionToDraw.
* This region is relative to 0,0 in the PaintedLayer.
*
* aRegionToInvalidate contains a region whose contents have been
* changed by the layer manager and which must therefore be invalidated.
* For example, this could be non-empty if a retained layer internally
* switches from RGBA to RGB or back ... we might want to repaint it to
* consistently use subpixel-AA or not.
* This region is relative to 0,0 in the PaintedLayer.
* aRegionToInvalidate may contain areas that are outside
* aRegionToDraw; the callee must ensure that these areas are repainted
* in the current layer manager transaction or in a later layer
* manager transaction.
*
* aContext must not be used after the call has returned.
* We guarantee that buffered contents in the visible
* region are valid once drawing is complete.
*
* The origin of aContext is 0,0 in the PaintedLayer.
*/
typedef void (* DrawPaintedLayerCallback)(PaintedLayer* aLayer,
gfxContext* aContext,
const nsIntRegion& aRegionToDraw,
DrawRegionClip aClip,
const nsIntRegion& aRegionToInvalidate,
void* aCallbackData);
/**
* Finish the construction phase of the transaction, perform the
* drawing phase, and end the transaction.
* During the drawing phase, all PaintedLayers in the tree are
* drawn in tree order, exactly once each, except for those layers
* where it is known that the visible region is empty.
*/
virtual void EndTransaction(DrawPaintedLayerCallback aCallback,
void* aCallbackData,
EndTransactionFlags aFlags = END_DEFAULT) = 0;
/**
* Schedule a composition with the remote Compositor, if one exists
* for this LayerManager. Useful in conjunction with the END_NO_REMOTE_COMPOSITE
* flag to EndTransaction.
*/
virtual void Composite() {}
virtual bool HasShadowManagerInternal() const { return false; }
bool HasShadowManager() const { return HasShadowManagerInternal(); }
virtual void StorePluginWidgetConfigurations(const nsTArray<nsIWidget::Configuration>& aConfigurations) {}
bool IsSnappingEffectiveTransforms() { return mSnapEffectiveTransforms; }
/**
* Returns true if the layer manager can't render component alpha
* layers, and layer building should do it's best to avoid
* creating them.
*/
virtual bool ShouldAvoidComponentAlphaLayers() { return false; }
/**
* Returns true if this LayerManager can properly support layers with
* SurfaceMode::SURFACE_COMPONENT_ALPHA. LayerManagers that can't will use
* transparent surfaces (and lose subpixel-AA for text).
*/
virtual bool AreComponentAlphaLayersEnabled();
/**
* CONSTRUCTION PHASE ONLY
* Set the root layer. The root layer is initially null. If there is
* no root layer, EndTransaction won't draw anything.
*/
virtual void SetRoot(Layer* aLayer) = 0;
/**
* Can be called anytime
*/
Layer* GetRoot() { return mRoot; }
/**
* Does a breadth-first search from the root layer to find the first
* scrollable layer, and returns its ViewID. Note that there may be
* other layers in the tree which share the same ViewID.
* Can be called any time.
*/
FrameMetrics::ViewID GetRootScrollableLayerId();
/**
* Does a breadth-first search from the root layer to find the first
* scrollable layer, and returns all the layers that have that ViewID
* as the first scrollable metrics in their ancestor chain. If no
* scrollable layers are found it just returns the root of the tree if
* there is one.
*/
void GetRootScrollableLayers(nsTArray<Layer*>& aArray);
/**
* Returns a list of all descendant layers for which
* GetFrameMetrics().IsScrollable() is true and that
* do not already have an ancestor in the return list.
*/
void GetScrollableLayers(nsTArray<Layer*>& aArray);
/**
* CONSTRUCTION PHASE ONLY
* Called when a managee has mutated.
* Subclasses overriding this method must first call their
* superclass's impl
*/
#ifdef DEBUG
// In debug builds, we check some properties of |aLayer|.
virtual void Mutated(Layer* aLayer);
#else
virtual void Mutated(Layer* aLayer) { }
#endif
/**
* Hints that can be used during PaintedLayer creation to influence the type
* or properties of the layer created.
*
* NONE: No hint.
* SCROLLABLE: This layer may represent scrollable content.
*/
enum PaintedLayerCreationHint {
NONE, SCROLLABLE
};
/**
* Returns true if aLayer is optimized for the given PaintedLayerCreationHint.
*/
virtual bool IsOptimizedFor(PaintedLayer* aLayer,
PaintedLayerCreationHint aCreationHint)
{ return true; }
/**
* CONSTRUCTION PHASE ONLY
* Create a PaintedLayer for this manager's layer tree.
*/
virtual already_AddRefed<PaintedLayer> CreatePaintedLayer() = 0;
/**
* CONSTRUCTION PHASE ONLY
* Create a PaintedLayer for this manager's layer tree, with a creation hint
* parameter to help optimise the type of layer created.
*/
virtual already_AddRefed<PaintedLayer> CreatePaintedLayerWithHint(PaintedLayerCreationHint) {
return CreatePaintedLayer();
}
/**
* CONSTRUCTION PHASE ONLY
* Create a ContainerLayer for this manager's layer tree.
*/
virtual already_AddRefed<ContainerLayer> CreateContainerLayer() = 0;
/**
* CONSTRUCTION PHASE ONLY
* Create an ImageLayer for this manager's layer tree.
*/
virtual already_AddRefed<ImageLayer> CreateImageLayer() = 0;
/**
* CONSTRUCTION PHASE ONLY
* Create a ColorLayer for this manager's layer tree.
*/
virtual already_AddRefed<ColorLayer> CreateColorLayer() = 0;
/**
* CONSTRUCTION PHASE ONLY
* Create a CanvasLayer for this manager's layer tree.
*/
virtual already_AddRefed<CanvasLayer> CreateCanvasLayer() = 0;
/**
* CONSTRUCTION PHASE ONLY
* Create a ReadbackLayer for this manager's layer tree.
*/
virtual already_AddRefed<ReadbackLayer> CreateReadbackLayer() { return nullptr; }
/**
* CONSTRUCTION PHASE ONLY
* Create a RefLayer for this manager's layer tree.
*/
virtual already_AddRefed<RefLayer> CreateRefLayer() { return nullptr; }
/**
* Can be called anytime, from any thread.
*
* Creates an Image container which forwards its images to the compositor within
* layer transactions on the main thread.
*/
static already_AddRefed<ImageContainer> CreateImageContainer();
/**
* Can be called anytime, from any thread.
*
* Tries to create an Image container which forwards its images to the compositor
* asynchronously using the ImageBridge IPDL protocol. If the protocol is not
* available, the returned ImageContainer will forward images within layer
* transactions, just like if it was created with CreateImageContainer().
*/
static already_AddRefed<ImageContainer> CreateAsynchronousImageContainer();
/**
* Type of layer manager his is. This is to be used sparsely in order to
* avoid a lot of Layers backend specific code. It should be used only when
* Layers backend specific functionality is necessary.
*/
virtual LayersBackend GetBackendType() = 0;
/**
* Type of layers backend that will be used to composite this layer tree.
* When compositing is done remotely, then this returns the layers type
* of the compositor.
*/
virtual LayersBackend GetCompositorBackendType() { return GetBackendType(); }
/**
* Creates a DrawTarget which is optimized for inter-operating with this
* layer manager.
*/
virtual TemporaryRef<DrawTarget>
CreateOptimalDrawTarget(const IntSize &aSize,
SurfaceFormat imageFormat);
/**
* Creates a DrawTarget for alpha masks which is optimized for inter-
* operating with this layer manager. In contrast to CreateOptimalDrawTarget,
* this surface is optimised for drawing alpha only and we assume that
* drawing the mask is fairly simple.
*/
virtual TemporaryRef<DrawTarget>
CreateOptimalMaskDrawTarget(const IntSize &aSize);
/**
* Creates a DrawTarget for use with canvas which is optimized for
* inter-operating with this layermanager.
*/
virtual TemporaryRef<mozilla::gfx::DrawTarget>
CreateDrawTarget(const mozilla::gfx::IntSize &aSize,
mozilla::gfx::SurfaceFormat aFormat);
virtual bool CanUseCanvasLayerForSize(const gfx::IntSize &aSize) { return true; }
/**
* returns the maximum texture size on this layer backend, or INT32_MAX
* if there is no maximum
*/
virtual int32_t GetMaxTextureSize() const = 0;
/**
* Return the name of the layer manager's backend.
*/
virtual void GetBackendName(nsAString& aName) = 0;
/**
* This setter can be used anytime. The user data for all keys is
* initially null. Ownership pases to the layer manager.
*/
void SetUserData(void* aKey, LayerUserData* aData)
{
mUserData.Add(static_cast<gfx::UserDataKey*>(aKey), aData, LayerManagerUserDataDestroy);
}
/**
* This can be used anytime. Ownership passes to the caller!
*/
nsAutoPtr<LayerUserData> RemoveUserData(void* aKey)
{
nsAutoPtr<LayerUserData> d(static_cast<LayerUserData*>(mUserData.Remove(static_cast<gfx::UserDataKey*>(aKey))));
return d;
}
/**
* This getter can be used anytime.
*/
bool HasUserData(void* aKey)
{
return mUserData.Has(static_cast<gfx::UserDataKey*>(aKey));
}
/**
* This getter can be used anytime. Ownership is retained by the layer
* manager.
*/
LayerUserData* GetUserData(void* aKey) const
{
return static_cast<LayerUserData*>(mUserData.Get(static_cast<gfx::UserDataKey*>(aKey)));
}
/**
* Must be called outside of a layers transaction.
*
* For the subtree rooted at |aSubtree|, this attempts to free up
* any free-able resources like retained buffers, but may do nothing
* at all. After this call, the layer tree is left in an undefined
* state; the layers in |aSubtree|'s subtree may no longer have
* buffers with valid content and may no longer be able to draw
* their visible and valid regions.
*
* In general, a painting or forwarding transaction on |this| must
* complete on the tree before it returns to a valid state.
*
* Resource freeing begins from |aSubtree| or |mRoot| if |aSubtree|
* is null. |aSubtree|'s manager must be this.
*/
virtual void ClearCachedResources(Layer* aSubtree = nullptr) {}
/**
* Flag the next paint as the first for a document.
*/
virtual void SetIsFirstPaint() {}
/**
* Make sure that the previous transaction has been entirely
* completed.
*
* Note: This may sychronously wait on a remote compositor
* to complete rendering.
*/
virtual void FlushRendering() { }
/**
* Checks if we need to invalidate the OS widget to trigger
* painting when updating this layer manager.
*/
virtual bool NeedsWidgetInvalidation() { return true; }
virtual const char* Name() const { return "???"; }
/**
* Dump information about this layer manager and its managed tree to
* aStream.
*/
void Dump(std::stringstream& aStream, const char* aPrefix="", bool aDumpHtml=false);
/**
* Dump information about just this layer manager itself to aStream
*/
void DumpSelf(std::stringstream& aStream, const char* aPrefix="");
void Dump();
/**
* Dump information about this layer manager and its managed tree to
* layerscope packet.
*/
void Dump(layerscope::LayersPacket* aPacket);
/**
* Log information about this layer manager and its managed tree to
* the NSPR log (if enabled for "Layers").
*/
void Log(const char* aPrefix="");
/**
* Log information about just this layer manager itself to the NSPR
* log (if enabled for "Layers").
*/
void LogSelf(const char* aPrefix="");
/**
* Record (and return) frame-intervals and paint-times for frames which were presented
* between calling StartFrameTimeRecording and StopFrameTimeRecording.
*
* - Uses a cyclic buffer and serves concurrent consumers, so if Stop is called too late
* (elements were overwritten since Start), result is considered invalid and hence empty.
* - Buffer is capable of holding 10 seconds @ 60fps (or more if frames were less frequent).
* Can be changed (up to 1 hour) via pref: toolkit.framesRecording.bufferSize.
* - Note: the first frame-interval may be longer than expected because last frame
* might have been presented some time before calling StartFrameTimeRecording.
*/
/**
* Returns a handle which represents current recording start position.
*/
virtual uint32_t StartFrameTimeRecording(int32_t aBufferSize);
/**
* Clears, then populates aFrameIntervals with the recorded frame timing
* data. The array will be empty if data was overwritten since
* aStartIndex was obtained.
*/
virtual void StopFrameTimeRecording(uint32_t aStartIndex,
nsTArray<float>& aFrameIntervals);
void RecordFrame();
void PostPresent();
void BeginTabSwitch();
static bool IsLogEnabled();
static PRLogModuleInfo* GetLog() { return sLog; }
bool IsCompositingCheap(LayersBackend aBackend)
{
// LayersBackend::LAYERS_NONE is an error state, but in that case we should try to
// avoid loading the compositor!
return LayersBackend::LAYERS_BASIC != aBackend && LayersBackend::LAYERS_NONE != aBackend;
}
virtual bool IsCompositingCheap() { return true; }
bool IsInTransaction() const { return mInTransaction; }
virtual bool RequestOverfill(mozilla::dom::OverfillCallback* aCallback) { return true; }
virtual void RunOverfillCallback(const uint32_t aOverfill) { }
virtual void SetRegionToClear(const nsIntRegion& aRegion)
{
mRegionToClear = aRegion;
}
virtual bool SupportsMixBlendModes(EnumSet<gfx::CompositionOp>& aMixBlendModes)
{
return false;
}
bool SupportsMixBlendMode(gfx::CompositionOp aMixBlendMode)
{
EnumSet<gfx::CompositionOp> modes(aMixBlendMode);
return SupportsMixBlendModes(modes);
}
virtual float RequestProperty(const nsAString& property) { return -1; }
const TimeStamp& GetAnimationReadyTime() const {
return mAnimationReadyTime;
}
protected:
nsRefPtr<Layer> mRoot;
gfx::UserData mUserData;
bool mDestroyed;
bool mSnapEffectiveTransforms;
nsIntRegion mRegionToClear;
// Protected destructor, to discourage deletion outside of Release():
virtual ~LayerManager() {}
// Print interesting information about this into aStreamo. Internally
// used to implement Dump*() and Log*().
virtual void PrintInfo(std::stringstream& aStream, const char* aPrefix);
// Print interesting information about this into layerscope packet.
// Internally used to implement Dump().
virtual void DumpPacket(layerscope::LayersPacket* aPacket);
static void InitLog();
static PRLogModuleInfo* sLog;
uint64_t mId;
bool mInTransaction;
// The time when painting most recently finished. This is recorded so that
// we can time any play-pending animations from this point.
TimeStamp mAnimationReadyTime;
private:
struct FramesTimingRecording
{
// Stores state and data for frame intervals and paint times recording.
// see LayerManager::StartFrameTimeRecording() at Layers.cpp for more details.
FramesTimingRecording()
: mIsPaused(true)
, mNextIndex(0)
{}
bool mIsPaused;
uint32_t mNextIndex;
TimeStamp mLastFrameTime;
nsTArray<float> mIntervals;
uint32_t mLatestStartIndex;
uint32_t mCurrentRunStartIndex;
};
FramesTimingRecording mRecording;
TimeStamp mTabSwitchStart;
};
typedef InfallibleTArray<Animation> AnimationArray;
struct AnimData {
InfallibleTArray<mozilla::StyleAnimationValue> mStartValues;
InfallibleTArray<mozilla::StyleAnimationValue> mEndValues;
InfallibleTArray<nsAutoPtr<mozilla::ComputedTimingFunction> > mFunctions;
};
/**
* A Layer represents anything that can be rendered onto a destination
* surface.
*/
class Layer {
NS_INLINE_DECL_REFCOUNTING(Layer)
public:
// Keep these in alphabetical order
enum LayerType {
TYPE_CANVAS,
TYPE_COLOR,
TYPE_CONTAINER,
TYPE_IMAGE,
TYPE_READBACK,
TYPE_REF,
TYPE_SHADOW,
TYPE_PAINTED
};
/**
* Returns the LayerManager this Layer belongs to. Note that the layer
* manager might be in a destroyed state, at which point it's only
* valid to set/get user data from it.
*/
LayerManager* Manager() { return mManager; }
enum {
/**
* If this is set, the caller is promising that by the end of this
* transaction the entire visible region (as specified by
* SetVisibleRegion) will be filled with opaque content.
*/
CONTENT_OPAQUE = 0x01,
/**
* If this is set, the caller is notifying that the contents of this layer
* require per-component alpha for optimal fidelity. However, there is no
* guarantee that component alpha will be supported for this layer at
* paint time.
* This should never be set at the same time as CONTENT_OPAQUE.
*/
CONTENT_COMPONENT_ALPHA = 0x02,
/**
* If this is set then one of the descendant layers of this one has
* CONTENT_COMPONENT_ALPHA set.
*/
CONTENT_COMPONENT_ALPHA_DESCENDANT = 0x04,
/**
* If this is set then this layer is part of a preserve-3d group, and should
* be sorted with sibling layers that are also part of the same group.
*/
CONTENT_PRESERVE_3D = 0x08,
/**
* This indicates that the transform may be changed on during an empty
* transaction where there is no possibility of redrawing the content, so the
* implementation should be ready for that.
*/
CONTENT_MAY_CHANGE_TRANSFORM = 0x10,
/**
* Disable subpixel AA for this layer. This is used if the display isn't suited
* for subpixel AA like hidpi or rotated content.
*/
CONTENT_DISABLE_SUBPIXEL_AA = 0x20
};
/**
* CONSTRUCTION PHASE ONLY
* This lets layout make some promises about what will be drawn into the
* visible region of the PaintedLayer. This enables internal quality
* and performance optimizations.
*/
void SetContentFlags(uint32_t aFlags)
{
NS_ASSERTION((aFlags & (CONTENT_OPAQUE | CONTENT_COMPONENT_ALPHA)) !=
(CONTENT_OPAQUE | CONTENT_COMPONENT_ALPHA),
"Can't be opaque and require component alpha");
if (mContentFlags != aFlags) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ContentFlags", this));
mContentFlags = aFlags;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* The union of the bounds of all the display item that got flattened
* into this layer. This is intended to be an approximation to the
* size of the layer if the nearest scrollable ancestor had an infinitely
* large displayport. Computing this more exactly is too expensive,
* but this approximation is sufficient for what we need to use it for.
*/
virtual void SetLayerBounds(const nsIntRect& aLayerBounds)
{
if (!mLayerBounds.IsEqualEdges(aLayerBounds)) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) LayerBounds", this));
mLayerBounds = aLayerBounds;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Tell this layer which region will be visible. The visible region
* is a region which contains all the contents of the layer that can
* actually affect the rendering of the window. It can exclude areas
* that are covered by opaque contents of other layers, and it can
* exclude areas where this layer simply contains no content at all.
* (This can be an overapproximation to the "true" visible region.)
*
* There is no general guarantee that drawing outside the bounds of the
* visible region will be ignored. So if a layer draws outside the bounds
* of its visible region, it needs to ensure that what it draws is valid.
*/
virtual void SetVisibleRegion(const nsIntRegion& aRegion)
{
if (!mVisibleRegion.IsEqual(aRegion)) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) VisibleRegion was %s is %s", this,
mVisibleRegion.ToString().get(), aRegion.ToString().get()));
mVisibleRegion = aRegion;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Set the (sub)document metrics used to render the Layer subtree
* rooted at this. Note that a layer may have multiple FrameMetrics
* objects; calling this function will remove all of them and replace
* them with the provided FrameMetrics. See the documentation for
* SetFrameMetrics(const nsTArray<FrameMetrics>&) for more details.
*/
void SetFrameMetrics(const FrameMetrics& aFrameMetrics)
{
if (mFrameMetrics.Length() != 1 || mFrameMetrics[0] != aFrameMetrics) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) FrameMetrics", this));
mFrameMetrics.ReplaceElementsAt(0, mFrameMetrics.Length(), aFrameMetrics);
FrameMetricsChanged();
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Set the (sub)document metrics used to render the Layer subtree
* rooted at this. There might be multiple metrics on this layer
* because the layer may, for example, be contained inside multiple
* nested scrolling subdocuments. In general a Layer having multiple
* FrameMetrics objects is conceptually equivalent to having a stack
* of ContainerLayers that have been flattened into this Layer.
* See the documentation in LayerMetricsWrapper.h for a more detailed
* explanation of this conceptual equivalence.
*
* Note also that there is actually a many-to-many relationship between
* Layers and FrameMetrics, because multiple Layers may have identical
* FrameMetrics objects. This happens when those layers belong to the
* same scrolling subdocument and therefore end up with the same async
* transform when they are scrolled by the APZ code.
*/
void SetFrameMetrics(const nsTArray<FrameMetrics>& aMetricsArray)
{
if (mFrameMetrics != aMetricsArray) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) FrameMetrics", this));
mFrameMetrics = aMetricsArray;
FrameMetricsChanged();
Mutated();
}
}
/*
* Compositor event handling
* =========================
* When a touch-start event (or similar) is sent to the AsyncPanZoomController,
* it needs to decide whether the event should be sent to the main thread.
* Each layer has a list of event handling regions. When the compositor needs
* to determine how to handle a touch event, it scans the layer tree from top
* to bottom in z-order (traversing children before their parents). Points
* outside the clip region for a layer cause that layer (and its subtree)
* to be ignored. If a layer has a mask layer, and that mask layer's alpha
* value is zero at the event point, then the layer and its subtree should
* be ignored.
* For each layer, if the point is outside its hit region, we ignore the layer
* and move onto the next. If the point is inside its hit region but
* outside the dispatch-to-content region, we can initiate a gesture without
* consulting the content thread. Otherwise we must dispatch the event to
* content.
* Note that if a layer or any ancestor layer has a ForceEmptyHitRegion
* override in GetEventRegionsOverride() then the hit-region must be treated
* as empty. Similarly, if there is a ForceDispatchToContent override then
* the dispatch-to-content region must be treated as encompassing the entire
* hit region, and therefore we must consult the content thread before
* initiating a gesture. (If both flags are set, ForceEmptyHitRegion takes
* priority.)
*/
/**
* CONSTRUCTION PHASE ONLY
* Set the event handling region.
*/
void SetEventRegions(const EventRegions& aRegions)
{
if (mEventRegions != aRegions) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) eventregions were %s, now %s", this,
mEventRegions.ToString().get(), aRegions.ToString().get()));
mEventRegions = aRegions;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Set the opacity which will be applied to this layer as it
* is composited to the destination.
*/
void SetOpacity(float aOpacity)
{
if (mOpacity != aOpacity) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) Opacity", this));
mOpacity = aOpacity;
Mutated();
}
}
void SetMixBlendMode(gfx::CompositionOp aMixBlendMode)
{
if (mMixBlendMode != aMixBlendMode) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) MixBlendMode", this));
mMixBlendMode = aMixBlendMode;
Mutated();
}
}
void DeprecatedSetMixBlendMode(gfxContext::GraphicsOperator aMixBlendMode)
{
SetMixBlendMode(gfx::CompositionOpForOp(aMixBlendMode));
}
void SetForceIsolatedGroup(bool aForceIsolatedGroup)
{
if(mForceIsolatedGroup != aForceIsolatedGroup) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ForceIsolatedGroup", this));
mForceIsolatedGroup = aForceIsolatedGroup;
Mutated();
}
}
bool GetForceIsolatedGroup() const
{
return mForceIsolatedGroup;
}
/**
* CONSTRUCTION PHASE ONLY
* Set a clip rect which will be applied to this layer as it is
* composited to the destination. The coordinates are relative to
* the parent layer (i.e. the contents of this layer
* are transformed before this clip rect is applied).
* For the root layer, the coordinates are relative to the widget,
* in device pixels.
* If aRect is null no clipping will be performed.
*/
void SetClipRect(const nsIntRect* aRect)
{
if (mUseClipRect) {
if (!aRect) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ClipRect was %d,%d,%d,%d is <none>", this,
mClipRect.x, mClipRect.y, mClipRect.width, mClipRect.height));
mUseClipRect = false;
Mutated();
} else {
if (!aRect->IsEqualEdges(mClipRect)) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ClipRect was %d,%d,%d,%d is %d,%d,%d,%d", this,
mClipRect.x, mClipRect.y, mClipRect.width, mClipRect.height,
aRect->x, aRect->y, aRect->width, aRect->height));
mClipRect = *aRect;
Mutated();
}
}
} else {
if (aRect) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ClipRect was <none> is %d,%d,%d,%d", this,
aRect->x, aRect->y, aRect->width, aRect->height));
mUseClipRect = true;
mClipRect = *aRect;
Mutated();
}
}
}
/**
* CONSTRUCTION PHASE ONLY
* Set a layer to mask this layer.
*
* The mask layer should be applied using its effective transform (after it
* is calculated by ComputeEffectiveTransformForMaskLayer), this should use
* this layer's parent's transform and the mask layer's transform, but not
* this layer's. That is, the mask layer is specified relative to this layer's
* position in it's parent layer's coord space.
* Currently, only 2D translations are supported for the mask layer transform.
*
* Ownership of aMaskLayer passes to this.
* Typical use would be an ImageLayer with an alpha image used for masking.
* See also ContainerState::BuildMaskLayer in FrameLayerBuilder.cpp.
*/
void SetMaskLayer(Layer* aMaskLayer)
{
#ifdef DEBUG
if (aMaskLayer) {
bool maskIs2D = aMaskLayer->GetTransform().CanDraw2D();
NS_ASSERTION(maskIs2D, "Mask layer has invalid transform.");
}
#endif
if (mMaskLayer != aMaskLayer) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) MaskLayer", this));
mMaskLayer = aMaskLayer;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Tell this layer what its transform should be. The transformation
* is applied when compositing the layer into its parent container.
*/
void SetBaseTransform(const gfx::Matrix4x4& aMatrix)
{
NS_ASSERTION(!aMatrix.IsSingular(),
"Shouldn't be trying to draw with a singular matrix!");
mPendingTransform = nullptr;
if (mTransform == aMatrix) {
return;
}
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) BaseTransform", this));
mTransform = aMatrix;
Mutated();
}
/**
* Can be called at any time.
*
* Like SetBaseTransform(), but can be called before the next
* transform (i.e. outside an open transaction). Semantically, this
* method enqueues a new transform value to be set immediately after
* the next transaction is opened.
*/
void SetBaseTransformForNextTransaction(const gfx::Matrix4x4& aMatrix)
{
mPendingTransform = new gfx::Matrix4x4(aMatrix);
}
void SetPostScale(float aXScale, float aYScale)
{
if (mPostXScale == aXScale && mPostYScale == aYScale) {
return;
}
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) PostScale", this));
mPostXScale = aXScale;
mPostYScale = aYScale;
Mutated();
}
/**
* CONSTRUCTION PHASE ONLY
* A layer is "fixed position" when it draws content from a content
* (not chrome) document, the topmost content document has a root scrollframe
* with a displayport, but the layer does not move when that displayport scrolls.
*/
void SetIsFixedPosition(bool aFixedPosition)
{
if (mIsFixedPosition != aFixedPosition) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) IsFixedPosition", this));
mIsFixedPosition = aFixedPosition;
Mutated();
}
}
// Call AddAnimation to add a new animation to this layer from layout code.
// Caller must fill in all the properties of the returned animation.
// A later animation overrides an earlier one.
Animation* AddAnimation();
// ClearAnimations clears animations on this layer.
void ClearAnimations();
// This is only called when the layer tree is updated. Do not call this from
// layout code. To add an animation to this layer, use AddAnimation.
void SetAnimations(const AnimationArray& aAnimations);
// Go through all animations in this layer and its children and, for
// any animations with a null start time, update their start time such
// that at |aReadyTime| the animation's current time corresponds to its
// 'initial current time' value.
void StartPendingAnimations(const TimeStamp& aReadyTime);
// These are a parallel to AddAnimation and clearAnimations, except
// they add pending animations that apply only when the next
// transaction is begun. (See also
// SetBaseTransformForNextTransaction.)
Animation* AddAnimationForNextTransaction();
void ClearAnimationsForNextTransaction();
/**
* CONSTRUCTION PHASE ONLY
* If a layer is "fixed position", this determines which point on the layer
* is considered the "anchor" point, that is, the point which remains in the
* same position when compositing the layer tree with a transformation
* (such as when asynchronously scrolling and zooming).
*/
void SetFixedPositionAnchor(const LayerPoint& aAnchor)
{
if (mAnchor != aAnchor) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) FixedPositionAnchor", this));
mAnchor = aAnchor;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* If a layer represents a fixed position element or elements that are on
* a document that has had fixed position element margins set on it, these
* will be mirrored here. This allows for asynchronous animation of the
* margins by reconciling the difference between this value and a value that
* is updated more frequently.
* If the left or top margins are negative, it means that the elements this
* layer represents are auto-positioned, and so fixed position margins should
* not have an effect on the corresponding axis.
*/
void SetFixedPositionMargins(const LayerMargin& aMargins)
{
if (mMargins != aMargins) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) FixedPositionMargins", this));
mMargins = aMargins;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* If a layer is "sticky position", |aScrollId| holds the scroll identifier
* of the scrollable content that contains it. The difference between the two
* rectangles |aOuter| and |aInner| is treated as two intervals in each
* dimension, with the current scroll position at the origin. For each
* dimension, while that component of the scroll position lies within either
* interval, the layer should not move relative to its scrolling container.
*/
void SetStickyPositionData(FrameMetrics::ViewID aScrollId, LayerRect aOuter,
LayerRect aInner)
{
if (!mStickyPositionData ||
!mStickyPositionData->mOuter.IsEqualEdges(aOuter) ||
!mStickyPositionData->mInner.IsEqualEdges(aInner)) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) StickyPositionData", this));
if (!mStickyPositionData) {
mStickyPositionData = new StickyPositionData;
}
mStickyPositionData->mScrollId = aScrollId;
mStickyPositionData->mOuter = aOuter;
mStickyPositionData->mInner = aInner;
Mutated();
}
}
enum ScrollDirection {
NONE,
VERTICAL,
HORIZONTAL
};
/**
* CONSTRUCTION PHASE ONLY
* If a layer is a scrollbar layer, |aScrollId| holds the scroll identifier
* of the scrollable content that the scrollbar is for.
*/
void SetScrollbarData(FrameMetrics::ViewID aScrollId, ScrollDirection aDir)
{
if (mScrollbarTargetId != aScrollId ||
mScrollbarDirection != aDir) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ScrollbarData", this));
mScrollbarTargetId = aScrollId;
mScrollbarDirection = aDir;
Mutated();
}
}
// Set during construction for the container layer of scrollbar components.
void SetIsScrollbarContainer()
{
if (!mIsScrollbarContainer) {
mIsScrollbarContainer = true;
Mutated();
}
}
// These getters can be used anytime.
float GetOpacity() { return mOpacity; }
gfx::CompositionOp GetMixBlendMode() const { return mMixBlendMode; }
const nsIntRect* GetClipRect() { return mUseClipRect ? &mClipRect : nullptr; }
uint32_t GetContentFlags() { return mContentFlags; }
const nsIntRect& GetLayerBounds() const { return mLayerBounds; }
const nsIntRegion& GetVisibleRegion() const { return mVisibleRegion; }
const FrameMetrics& GetFrameMetrics(uint32_t aIndex) const;
uint32_t GetFrameMetricsCount() const { return mFrameMetrics.Length(); }
const nsTArray<FrameMetrics>& GetAllFrameMetrics() { return mFrameMetrics; }
bool HasScrollableFrameMetrics() const;
bool IsScrollInfoLayer() const;
const EventRegions& GetEventRegions() const { return mEventRegions; }
ContainerLayer* GetParent() { return mParent; }
Layer* GetNextSibling() { return mNextSibling; }
const Layer* GetNextSibling() const { return mNextSibling; }
Layer* GetPrevSibling() { return mPrevSibling; }
const Layer* GetPrevSibling() const { return mPrevSibling; }
virtual Layer* GetFirstChild() const { return nullptr; }
virtual Layer* GetLastChild() const { return nullptr; }
const gfx::Matrix4x4 GetTransform() const;
const gfx::Matrix4x4& GetBaseTransform() const { return mTransform; }
// Note: these are virtual because ContainerLayerComposite overrides them.
virtual float GetPostXScale() const { return mPostXScale; }
virtual float GetPostYScale() const { return mPostYScale; }
bool GetIsFixedPosition() { return mIsFixedPosition; }
bool GetIsStickyPosition() { return mStickyPositionData; }
LayerPoint GetFixedPositionAnchor() { return mAnchor; }
const LayerMargin& GetFixedPositionMargins() { return mMargins; }
FrameMetrics::ViewID GetStickyScrollContainerId() { return mStickyPositionData->mScrollId; }
const LayerRect& GetStickyScrollRangeOuter() { return mStickyPositionData->mOuter; }
const LayerRect& GetStickyScrollRangeInner() { return mStickyPositionData->mInner; }
FrameMetrics::ViewID GetScrollbarTargetContainerId() { return mScrollbarTargetId; }
ScrollDirection GetScrollbarDirection() { return mScrollbarDirection; }
bool IsScrollbarContainer() { return mIsScrollbarContainer; }
Layer* GetMaskLayer() const { return mMaskLayer; }
/**
* Retrieve the root level visible region for |this| taking into account
* clipping applied to parent layers of |this| as well as subtracting
* visible regions of higher siblings of this layer and each ancestor.
*
* Note translation values for offsets of visible regions and accumulated
* aLayerOffset are integer rounded using Point's RoundedToInt.
*
* @param aResult - the resulting visible region of this layer.
* @param aLayerOffset - this layer's total offset from the root layer.
* @return - false if during layer tree traversal a parent or sibling
* transform is found to be non-translational. This method returns early
* in this case, results will not be valid. Returns true on successful
* traversal.
*/
bool GetVisibleRegionRelativeToRootLayer(nsIntRegion& aResult,
nsIntPoint* aLayerOffset);
// Note that all lengths in animation data are either in CSS pixels or app
// units and must be converted to device pixels by the compositor.
AnimationArray& GetAnimations() { return mAnimations; }
InfallibleTArray<AnimData>& GetAnimationData() { return mAnimationData; }
uint64_t GetAnimationGeneration() { return mAnimationGeneration; }
void SetAnimationGeneration(uint64_t aCount) { mAnimationGeneration = aCount; }
bool HasTransformAnimation() const;
/**
* Returns the local transform for this layer: either mTransform or,
* for shadow layers, GetShadowTransform()
*/
const gfx::Matrix4x4 GetLocalTransform();
/**
* Returns the local opacity for this layer: either mOpacity or,
* for shadow layers, GetShadowOpacity()
*/
const float GetLocalOpacity();
/**
* DRAWING PHASE ONLY
*
* Apply pending changes to layers before drawing them, if those
* pending changes haven't been overridden by later changes.
*/
void ApplyPendingUpdatesToSubtree();
/**
* DRAWING PHASE ONLY
*
* Write layer-subtype-specific attributes into aAttrs. Used to
* synchronize layer attributes to their shadows'.
*/
virtual void FillSpecificAttributes(SpecificLayerAttributes& aAttrs) { }
// Returns true if it's OK to save the contents of aLayer in an
// opaque surface (a surface without an alpha channel).
// If we can use a surface without an alpha channel, we should, because
// it will often make painting of antialiased text faster and higher
// quality.
bool CanUseOpaqueSurface();
SurfaceMode GetSurfaceMode()
{
if (CanUseOpaqueSurface())
return SurfaceMode::SURFACE_OPAQUE;
if (mContentFlags & CONTENT_COMPONENT_ALPHA)
return SurfaceMode::SURFACE_COMPONENT_ALPHA;
return SurfaceMode::SURFACE_SINGLE_CHANNEL_ALPHA;
}
/**
* This setter can be used anytime. The user data for all keys is
* initially null. Ownership pases to the layer manager.
*/
void SetUserData(void* aKey, LayerUserData* aData)
{
mUserData.Add(static_cast<gfx::UserDataKey*>(aKey), aData, LayerManagerUserDataDestroy);
}
/**
* This can be used anytime. Ownership passes to the caller!
*/
nsAutoPtr<LayerUserData> RemoveUserData(void* aKey)
{
nsAutoPtr<LayerUserData> d(static_cast<LayerUserData*>(mUserData.Remove(static_cast<gfx::UserDataKey*>(aKey))));
return d;
}
/**
* This getter can be used anytime.
*/
bool HasUserData(void* aKey)
{
return mUserData.Has(static_cast<gfx::UserDataKey*>(aKey));
}
/**
* This getter can be used anytime. Ownership is retained by the layer
* manager.
*/
LayerUserData* GetUserData(void* aKey) const
{
return static_cast<LayerUserData*>(mUserData.Get(static_cast<gfx::UserDataKey*>(aKey)));
}
/**
* |Disconnect()| is used by layers hooked up over IPC. It may be
* called at any time, and may not be called at all. Using an
* IPC-enabled layer after Destroy() (drawing etc.) results in a
* safe no-op; no crashy or uaf etc.
*
* XXX: this interface is essentially LayerManager::Destroy, but at
* Layer granularity. It might be beneficial to unify them.
*/
virtual void Disconnect() {}
/**
* Dynamic downcast to a PaintedLayer. Returns null if this is not
* a PaintedLayer.
*/
virtual PaintedLayer* AsPaintedLayer() { return nullptr; }
/**
* Dynamic cast to a ContainerLayer. Returns null if this is not
* a ContainerLayer.
*/
virtual ContainerLayer* AsContainerLayer() { return nullptr; }
virtual const ContainerLayer* AsContainerLayer() const { return nullptr; }
/**
* Dynamic cast to a RefLayer. Returns null if this is not a
* RefLayer.
*/
virtual RefLayer* AsRefLayer() { return nullptr; }
/**
* Dynamic cast to a Color. Returns null if this is not a
* ColorLayer.
*/
virtual ColorLayer* AsColorLayer() { return nullptr; }
/**
* Dynamic cast to a LayerComposite. Return null if this is not a
* LayerComposite. Can be used anytime.
*/
virtual LayerComposite* AsLayerComposite() { return nullptr; }
/**
* Dynamic cast to a ShadowableLayer. Return null if this is not a
* ShadowableLayer. Can be used anytime.
*/
virtual ShadowableLayer* AsShadowableLayer() { return nullptr; }
// These getters can be used anytime. They return the effective
// values that should be used when drawing this layer to screen,
// accounting for this layer possibly being a shadow.
const nsIntRect* GetEffectiveClipRect();
const nsIntRegion& GetEffectiveVisibleRegion();
/**
* Returns the product of the opacities of this layer and all ancestors up
* to and excluding the nearest ancestor that has UseIntermediateSurface() set.
*/
float GetEffectiveOpacity();
/**
* Returns the blendmode of this layer.
*/
gfx::CompositionOp GetEffectiveMixBlendMode();
gfxContext::GraphicsOperator DeprecatedGetEffectiveMixBlendMode();
/**
* This returns the effective transform computed by
* ComputeEffectiveTransforms. Typically this is a transform that transforms
* this layer all the way to some intermediate surface or destination
* surface. For non-BasicLayers this will be a transform to the nearest
* ancestor with UseIntermediateSurface() (or to the root, if there is no
* such ancestor), but for BasicLayers it's different.
*/
const gfx::Matrix4x4& GetEffectiveTransform() const { return mEffectiveTransform; }
/**
* This returns the effective transform for Layer's buffer computed by
* ComputeEffectiveTransforms. Typically this is a transform that transforms
* this layer's buffer all the way to some intermediate surface or destination
* surface. For non-BasicLayers this will be a transform to the nearest
* ancestor with UseIntermediateSurface() (or to the root, if there is no
* such ancestor), but for BasicLayers it's different.
*
* By default, its value is same to GetEffectiveTransform().
* When ImageLayer is rendered with ScaleMode::STRETCH,
* it becomes different from GetEffectiveTransform().
*/
virtual const gfx::Matrix4x4& GetEffectiveTransformForBuffer() const
{
return mEffectiveTransform;
}
/**
* @param aTransformToSurface the composition of the transforms
* from the parent layer (if any) to the destination pixel grid.
*
* Computes mEffectiveTransform for this layer and all its descendants.
* mEffectiveTransform transforms this layer up to the destination
* pixel grid (whatever aTransformToSurface is relative to).
*
* We promise that when this is called on a layer, all ancestor layers
* have already had ComputeEffectiveTransforms called.
*/
virtual void ComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface) = 0;
/**
* computes the effective transform for a mask layer, if this layer has one
*/
void ComputeEffectiveTransformForMaskLayer(const gfx::Matrix4x4& aTransformToSurface);
/**
* Calculate the scissor rect required when rendering this layer.
* Returns a rectangle relative to the intermediate surface belonging to the
* nearest ancestor that has an intermediate surface, or relative to the root
* viewport if no ancestor has an intermediate surface, corresponding to the
* clip rect for this layer intersected with aCurrentScissorRect.
*/
RenderTargetIntRect CalculateScissorRect(const RenderTargetIntRect& aCurrentScissorRect);
virtual const char* Name() const =0;
virtual LayerType GetType() const =0;
/**
* Only the implementation should call this. This is per-implementation
* private data. Normally, all layers with a given layer manager
* use the same type of ImplData.
*/
void* ImplData() { return mImplData; }
/**
* Only the implementation should use these methods.
*/
void SetParent(ContainerLayer* aParent) { mParent = aParent; }
void SetNextSibling(Layer* aSibling) { mNextSibling = aSibling; }
void SetPrevSibling(Layer* aSibling) { mPrevSibling = aSibling; }
/**
* Dump information about this layer manager and its managed tree to
* aStream.
*/
void Dump(std::stringstream& aStream, const char* aPrefix="", bool aDumpHtml=false);
/**
* Dump information about just this layer manager itself to aStream.
*/
void DumpSelf(std::stringstream& aStream, const char* aPrefix="");
/**
* Dump information about this layer and its child & sibling layers to
* layerscope packet.
*/
void Dump(layerscope::LayersPacket* aPacket, const void* aParent);
/**
* Log information about this layer manager and its managed tree to
* the NSPR log (if enabled for "Layers").
*/
void Log(const char* aPrefix="");
/**
* Log information about just this layer manager itself to the NSPR
* log (if enabled for "Layers").
*/
void LogSelf(const char* aPrefix="");
// Print interesting information about this into aStream. Internally
// used to implement Dump*() and Log*(). If subclasses have
// additional interesting properties, they should override this with
// an implementation that first calls the base implementation then
// appends additional info to aTo.
virtual void PrintInfo(std::stringstream& aStream, const char* aPrefix);
// Just like PrintInfo, but this function dump information into layerscope packet,
// instead of a StringStream. It is also internally used to implement Dump();
virtual void DumpPacket(layerscope::LayersPacket* aPacket, const void* aParent);
static bool IsLogEnabled() { return LayerManager::IsLogEnabled(); }
/**
* Returns the current area of the layer (in layer-space coordinates)
* marked as needed to be recomposited.
*/
const nsIntRegion& GetInvalidRegion() { return mInvalidRegion; }
const void SetInvalidRegion(const nsIntRegion& aRect) { mInvalidRegion = aRect; }
/**
* Mark the entirety of the layer's visible region as being invalid.
*/
void SetInvalidRectToVisibleRegion() { mInvalidRegion = GetVisibleRegion(); }
/**
* Adds to the current invalid rect.
*/
void AddInvalidRect(const nsIntRect& aRect) { mInvalidRegion.Or(mInvalidRegion, aRect); }
/**
* Clear the invalid rect, marking the layer as being identical to what is currently
* composited.
*/
void ClearInvalidRect() { mInvalidRegion.SetEmpty(); }
// These functions allow attaching an AsyncPanZoomController to this layer,
// and can be used anytime.
// A layer has an APZC at index aIndex only-if GetFrameMetrics(aIndex).IsScrollable();
// attempting to get an APZC for a non-scrollable metrics will return null.
// The aIndex for these functions must be less than GetFrameMetricsCount().
void SetAsyncPanZoomController(uint32_t aIndex, AsyncPanZoomController *controller);
AsyncPanZoomController* GetAsyncPanZoomController(uint32_t aIndex) const;
// The FrameMetricsChanged function is used internally to ensure the APZC array length
// matches the frame metrics array length.
private:
void FrameMetricsChanged();
public:
void ApplyPendingUpdatesForThisTransaction();
#ifdef DEBUG
void SetDebugColorIndex(uint32_t aIndex) { mDebugColorIndex = aIndex; }
uint32_t GetDebugColorIndex() { return mDebugColorIndex; }
#endif
virtual LayerRenderState GetRenderState() { return LayerRenderState(); }
void Mutated()
{
mManager->Mutated(this);
}
virtual int32_t GetMaxLayerSize() { return Manager()->GetMaxTextureSize(); }
/**
* Returns true if this layer's effective transform is not just
* a translation by integers, or if this layer or some ancestor layer
* is marked as having a transform that may change without a full layer
* transaction.
*/
bool MayResample();
RenderTargetRect TransformRectToRenderTarget(const LayerIntRect& aRect);
/**
* Add debugging information to the layer dump.
*/
void AddExtraDumpInfo(const nsACString& aStr)
{
#ifdef MOZ_DUMP_PAINTING
mExtraDumpInfo.AppendElement(aStr);
#endif
}
/**
* Clear debugging information. Useful for recycling.
*/
void ClearExtraDumpInfo()
{
#ifdef MOZ_DUMP_PAINTING
mExtraDumpInfo.Clear();
#endif
}
protected:
Layer(LayerManager* aManager, void* aImplData);
// Protected destructor, to discourage deletion outside of Release():
virtual ~Layer();
/**
* We can snap layer transforms for two reasons:
* 1) To avoid unnecessary resampling when a transform is a translation
* by a non-integer number of pixels.
* Snapping the translation to an integer number of pixels avoids
* blurring the layer and can be faster to composite.
* 2) When a layer is used to render a rectangular object, we need to
* emulate the rendering of rectangular inactive content and snap the
* edges of the rectangle to pixel boundaries. This is both to ensure
* layer rendering is consistent with inactive content rendering, and to
* avoid seams.
* This function implements type 1 snapping. If aTransform is a 2D
* translation, and this layer's layer manager has enabled snapping
* (which is the default), return aTransform with the translation snapped
* to nearest pixels. Otherwise just return aTransform. Call this when the
* layer does not correspond to a single rectangular content object.
* This function does not try to snap if aTransform has a scale, because in
* that case resampling is inevitable and there's no point in trying to
* avoid it. In fact snapping can cause problems because pixel edges in the
* layer's content can be rendered unpredictably (jiggling) as the scale
* interacts with the snapping of the translation, especially with animated
* transforms.
* @param aResidualTransform a transform to apply before the result transform
* in order to get the results to completely match aTransform.
*/
gfx::Matrix4x4 SnapTransformTranslation(const gfx::Matrix4x4& aTransform,
gfx::Matrix* aResidualTransform);
/**
* See comment for SnapTransformTranslation.
* This function implements type 2 snapping. If aTransform is a translation
* and/or scale, transform aSnapRect by aTransform, snap to pixel boundaries,
* and return the transform that maps aSnapRect to that rect. Otherwise
* just return aTransform.
* @param aSnapRect a rectangle whose edges should be snapped to pixel
* boundaries in the destination surface.
* @param aResidualTransform a transform to apply before the result transform
* in order to get the results to completely match aTransform.
*/
gfx::Matrix4x4 SnapTransform(const gfx::Matrix4x4& aTransform,
const gfxRect& aSnapRect,
gfx::Matrix* aResidualTransform);
LayerManager* mManager;
ContainerLayer* mParent;
Layer* mNextSibling;
Layer* mPrevSibling;
void* mImplData;
nsRefPtr<Layer> mMaskLayer;
gfx::UserData mUserData;
nsIntRect mLayerBounds;
nsIntRegion mVisibleRegion;
nsTArray<FrameMetrics> mFrameMetrics;
EventRegions mEventRegions;
gfx::Matrix4x4 mTransform;
// A mutation of |mTransform| that we've queued to be applied at the
// end of the next transaction (if nothing else overrides it in the
// meantime).
nsAutoPtr<gfx::Matrix4x4> mPendingTransform;
float mPostXScale;
float mPostYScale;
gfx::Matrix4x4 mEffectiveTransform;
AnimationArray mAnimations;
// See mPendingTransform above.
nsAutoPtr<AnimationArray> mPendingAnimations;
InfallibleTArray<AnimData> mAnimationData;
float mOpacity;
gfx::CompositionOp mMixBlendMode;
bool mForceIsolatedGroup;
nsIntRect mClipRect;
nsIntRect mTileSourceRect;
nsIntRegion mInvalidRegion;
nsTArray<nsRefPtr<AsyncPanZoomController> > mApzcs;
uint32_t mContentFlags;
bool mUseClipRect;
bool mUseTileSourceRect;
bool mIsFixedPosition;
LayerPoint mAnchor;
LayerMargin mMargins;
struct StickyPositionData {
FrameMetrics::ViewID mScrollId;
LayerRect mOuter;
LayerRect mInner;
};
nsAutoPtr<StickyPositionData> mStickyPositionData;
FrameMetrics::ViewID mScrollbarTargetId;
ScrollDirection mScrollbarDirection;
bool mIsScrollbarContainer;
DebugOnly<uint32_t> mDebugColorIndex;
// If this layer is used for OMTA, then this counter is used to ensure we
// stay in sync with the animation manager
uint64_t mAnimationGeneration;
#ifdef MOZ_DUMP_PAINTING
nsTArray<nsCString> mExtraDumpInfo;
#endif
};
/**
* A Layer which we can paint into. It is a conceptually
* infinite surface, but each PaintedLayer has an associated "valid region"
* of contents that it is currently storing, which is finite. PaintedLayer
* implementations can store content between paints.
*
* PaintedLayers are rendered into during the drawing phase of a transaction.
*
* Currently the contents of a PaintedLayer are in the device output color
* space.
*/
class PaintedLayer : public Layer {
public:
/**
* CONSTRUCTION PHASE ONLY
* Tell this layer that the content in some region has changed and
* will need to be repainted. This area is removed from the valid
* region.
*/
virtual void InvalidateRegion(const nsIntRegion& aRegion) = 0;
/**
* CONSTRUCTION PHASE ONLY
* Set whether ComputeEffectiveTransforms should compute the
* "residual translation" --- the translation that should be applied *before*
* mEffectiveTransform to get the ideal transform for this PaintedLayer.
* When this is true, ComputeEffectiveTransforms will compute the residual
* and ensure that the layer is invalidated whenever the residual changes.
* When it's false, a change in the residual will not trigger invalidation
* and GetResidualTranslation will return 0,0.
* So when the residual is to be ignored, set this to false for better
* performance.
*/
void SetAllowResidualTranslation(bool aAllow) { mAllowResidualTranslation = aAllow; }
/**
* Can be used anytime
*/
const nsIntRegion& GetValidRegion() const { return mValidRegion; }
virtual PaintedLayer* AsPaintedLayer() override { return this; }
MOZ_LAYER_DECL_NAME("PaintedLayer", TYPE_PAINTED)
virtual void ComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface) override
{
gfx::Matrix4x4 idealTransform = GetLocalTransform() * aTransformToSurface;
gfx::Matrix residual;
mEffectiveTransform = SnapTransformTranslation(idealTransform,
mAllowResidualTranslation ? &residual : nullptr);
// The residual can only be a translation because SnapTransformTranslation
// only changes the transform if it's a translation
NS_ASSERTION(residual.IsTranslation(),
"Residual transform can only be a translation");
if (!gfx::ThebesPoint(residual.GetTranslation()).WithinEpsilonOf(mResidualTranslation, 1e-3f)) {
mResidualTranslation = gfx::ThebesPoint(residual.GetTranslation());
NS_ASSERTION(-0.5 <= mResidualTranslation.x && mResidualTranslation.x < 0.5 &&
-0.5 <= mResidualTranslation.y && mResidualTranslation.y < 0.5,
"Residual translation out of range");
mValidRegion.SetEmpty();
}
ComputeEffectiveTransformForMaskLayer(aTransformToSurface);
}
LayerManager::PaintedLayerCreationHint GetCreationHint() const { return mCreationHint; }
bool UsedForReadback() { return mUsedForReadback; }
void SetUsedForReadback(bool aUsed) { mUsedForReadback = aUsed; }
/**
* Returns the residual translation. Apply this translation when drawing
* into the PaintedLayer so that when mEffectiveTransform is applied afterwards
* by layer compositing, the results exactly match the "ideal transform"
* (the product of the transform of this layer and its ancestors).
* Returns 0,0 unless SetAllowResidualTranslation(true) has been called.
* The residual translation components are always in the range [-0.5, 0.5).
*/
gfxPoint GetResidualTranslation() const { return mResidualTranslation; }
protected:
PaintedLayer(LayerManager* aManager, void* aImplData,
LayerManager::PaintedLayerCreationHint aCreationHint = LayerManager::NONE)
: Layer(aManager, aImplData)
, mValidRegion()
, mCreationHint(aCreationHint)
, mUsedForReadback(false)
, mAllowResidualTranslation(false)
{
mContentFlags = 0; // Clear NO_TEXT, NO_TEXT_OVER_TRANSPARENT
}
virtual void PrintInfo(std::stringstream& aStream, const char* aPrefix) override;
virtual void DumpPacket(layerscope::LayersPacket* aPacket, const void* aParent) override;
/**
* ComputeEffectiveTransforms snaps the ideal transform to get mEffectiveTransform.
* mResidualTranslation is the translation that should be applied *before*
* mEffectiveTransform to get the ideal transform.
*/
gfxPoint mResidualTranslation;
nsIntRegion mValidRegion;
/**
* The creation hint that was used when constructing this layer.
*/
const LayerManager::PaintedLayerCreationHint mCreationHint;
/**
* Set when this PaintedLayer is participating in readback, i.e. some
* ReadbackLayer (may) be getting its background from this layer.
*/
bool mUsedForReadback;
/**
* True when
*/
bool mAllowResidualTranslation;
};
/**
* A Layer which other layers render into. It holds references to its
* children.
*/
class ContainerLayer : public Layer {
public:
~ContainerLayer();
/**
* CONSTRUCTION PHASE ONLY
* Insert aChild into the child list of this container. aChild must
* not be currently in any child list or the root for the layer manager.
* If aAfter is non-null, it must be a child of this container and
* we insert after that layer. If it's null we insert at the start.
*/
virtual bool InsertAfter(Layer* aChild, Layer* aAfter);
/**
* CONSTRUCTION PHASE ONLY
* Remove aChild from the child list of this container. aChild must
* be a child of this container.
*/
virtual bool RemoveChild(Layer* aChild);
/**
* CONSTRUCTION PHASE ONLY
* Reposition aChild from the child list of this container. aChild must
* be a child of this container.
* If aAfter is non-null, it must be a child of this container and we
* reposition after that layer. If it's null, we reposition at the start.
*/
virtual bool RepositionChild(Layer* aChild, Layer* aAfter);
void SetPreScale(float aXScale, float aYScale)
{
if (mPreXScale == aXScale && mPreYScale == aYScale) {
return;
}
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) PreScale", this));
mPreXScale = aXScale;
mPreYScale = aYScale;
Mutated();
}
void SetInheritedScale(float aXScale, float aYScale)
{
if (mInheritedXScale == aXScale && mInheritedYScale == aYScale) {
return;
}
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) InheritedScale", this));
mInheritedXScale = aXScale;
mInheritedYScale = aYScale;
Mutated();
}
void SetScaleToResolution(bool aScaleToResolution, float aResolution)
{
if (mScaleToResolution == aScaleToResolution && mPresShellResolution == aResolution) {
return;
}
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ScaleToResolution", this));
mScaleToResolution = aScaleToResolution;
mPresShellResolution = aResolution;
Mutated();
}
virtual void FillSpecificAttributes(SpecificLayerAttributes& aAttrs) override;
void SortChildrenBy3DZOrder(nsTArray<Layer*>& aArray);
// These getters can be used anytime.
virtual ContainerLayer* AsContainerLayer() override { return this; }
virtual const ContainerLayer* AsContainerLayer() const override { return this; }
virtual Layer* GetFirstChild() const override { return mFirstChild; }
virtual Layer* GetLastChild() const override { return mLastChild; }
float GetPreXScale() const { return mPreXScale; }
float GetPreYScale() const { return mPreYScale; }
float GetInheritedXScale() const { return mInheritedXScale; }
float GetInheritedYScale() const { return mInheritedYScale; }
float GetPresShellResolution() const { return mPresShellResolution; }
bool ScaleToResolution() const { return mScaleToResolution; }
MOZ_LAYER_DECL_NAME("ContainerLayer", TYPE_CONTAINER)
/**
* ContainerLayer backends need to override ComputeEffectiveTransforms
* since the decision about whether to use a temporary surface for the
* container is backend-specific. ComputeEffectiveTransforms must also set
* mUseIntermediateSurface.
*/
virtual void ComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface) override = 0;
/**
* Call this only after ComputeEffectiveTransforms has been invoked
* on this layer.
* Returns true if this will use an intermediate surface. This is largely
* backend-dependent, but it affects the operation of GetEffectiveOpacity().
*/
bool UseIntermediateSurface() { return mUseIntermediateSurface; }
/**
* Returns the rectangle covered by the intermediate surface,
* in this layer's coordinate system.
*
* NOTE: Since this layer has an intermediate surface it follows
* that LayerPixel == RenderTargetPixel
*/
RenderTargetIntRect GetIntermediateSurfaceRect()
{
NS_ASSERTION(mUseIntermediateSurface, "Must have intermediate surface");
return RenderTargetPixel::FromUntyped(mVisibleRegion.GetBounds());
}
/**
* Returns true if this container has more than one non-empty child
*/
bool HasMultipleChildren();
/**
* Returns true if this container supports children with component alpha.
* Should only be called while painting a child of this layer.
*/
bool SupportsComponentAlphaChildren() { return mSupportsComponentAlphaChildren; }
/**
* Returns true if aLayer or any layer in its parent chain has the opaque
* content flag set.
*/
static bool HasOpaqueAncestorLayer(Layer* aLayer);
void SetChildrenChanged(bool aVal) {
mChildrenChanged = aVal;
}
void SetEventRegionsOverride(EventRegionsOverride aVal) {
if (mEventRegionsOverride == aVal) {
return;
}
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) EventRegionsOverride", this));
mEventRegionsOverride = aVal;
Mutated();
}
EventRegionsOverride GetEventRegionsOverride() const {
return mEventRegionsOverride;
}
/**
* VR
*/
void SetVRHMDInfo(gfx::VRHMDInfo* aHMD) { mHMDInfo = aHMD; }
gfx::VRHMDInfo* GetVRHMDInfo() { return mHMDInfo; }
protected:
friend class ReadbackProcessor;
void DidInsertChild(Layer* aLayer);
void DidRemoveChild(Layer* aLayer);
ContainerLayer(LayerManager* aManager, void* aImplData);
/**
* A default implementation of ComputeEffectiveTransforms for use by OpenGL
* and D3D.
*/
void DefaultComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface);
/**
* A default implementation to compute and set the value for SupportsComponentAlphaChildren().
*
* If aNeedsSurfaceCopy is provided, then it is set to true if the caller needs to copy the background
* up into the intermediate surface created, false otherwise.
*/
void DefaultComputeSupportsComponentAlphaChildren(bool* aNeedsSurfaceCopy = nullptr);
/**
* Loops over the children calling ComputeEffectiveTransforms on them.
*/
void ComputeEffectiveTransformsForChildren(const gfx::Matrix4x4& aTransformToSurface);
virtual void PrintInfo(std::stringstream& aStream, const char* aPrefix) override;
virtual void DumpPacket(layerscope::LayersPacket* aPacket, const void* aParent) override;
Layer* mFirstChild;
Layer* mLastChild;
float mPreXScale;
float mPreYScale;
// The resolution scale inherited from the parent layer. This will already
// be part of mTransform.
float mInheritedXScale;
float mInheritedYScale;
// For layers corresponding to an nsDisplayResolution, the resolution of the
// associated pres shell; for other layers, 1.0.
float mPresShellResolution;
// Whether the compositor should scale to mPresShellResolution.
bool mScaleToResolution;
bool mUseIntermediateSurface;
bool mSupportsComponentAlphaChildren;
bool mMayHaveReadbackChild;
// This is updated by ComputeDifferences. This will be true if we need to invalidate
// the intermediate surface.
bool mChildrenChanged;
EventRegionsOverride mEventRegionsOverride;
nsRefPtr<gfx::VRHMDInfo> mHMDInfo;
};
/**
* A Layer which just renders a solid color in its visible region. It actually
* can fill any area that contains the visible region, so if you need to
* restrict the area filled, set a clip region on this layer.
*/
class ColorLayer : public Layer {
public:
virtual ColorLayer* AsColorLayer() override { return this; }
/**
* CONSTRUCTION PHASE ONLY
* Set the color of the layer.
*/
virtual void SetColor(const gfxRGBA& aColor)
{
if (mColor != aColor) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) Color", this));
mColor = aColor;
Mutated();
}
}
void SetBounds(const nsIntRect& aBounds)
{
if (!mBounds.IsEqualEdges(aBounds)) {
mBounds = aBounds;
Mutated();
}
}
const nsIntRect& GetBounds()
{
return mBounds;
}
// This getter can be used anytime.
virtual const gfxRGBA& GetColor() { return mColor; }
MOZ_LAYER_DECL_NAME("ColorLayer", TYPE_COLOR)
virtual void ComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface) override
{
gfx::Matrix4x4 idealTransform = GetLocalTransform() * aTransformToSurface;
mEffectiveTransform = SnapTransformTranslation(idealTransform, nullptr);
ComputeEffectiveTransformForMaskLayer(aTransformToSurface);
}
protected:
ColorLayer(LayerManager* aManager, void* aImplData)
: Layer(aManager, aImplData),
mColor(0.0, 0.0, 0.0, 0.0)
{}
virtual void PrintInfo(std::stringstream& aStream, const char* aPrefix) override;
virtual void DumpPacket(layerscope::LayersPacket* aPacket, const void* aParent) override;
nsIntRect mBounds;
gfxRGBA mColor;
};
/**
* A Layer for HTML Canvas elements. It's backed by either a
* gfxASurface or a GLContext (for WebGL layers), and has some control
* for intelligent updating from the source if necessary (for example,
* if hardware compositing is not available, for reading from the GL
* buffer into an image surface that we can layer composite.)
*
* After Initialize is called, the underlying canvas Surface/GLContext
* must not be modified during a layer transaction.
*/
class CanvasLayer : public Layer {
public:
struct Data {
Data()
: mDrawTarget(nullptr)
, mGLContext(nullptr)
, mFrontbufferGLTex(0)
, mSize(0,0)
, mHasAlpha(false)
, mIsGLAlphaPremult(true)
{ }
// One of these two must be specified for Canvas2D, but never both
mozilla::gfx::DrawTarget* mDrawTarget; // a DrawTarget for the canvas contents
mozilla::gl::GLContext* mGLContext; // or this, for GL.
// Frontbuffer override
uint32_t mFrontbufferGLTex;
// The size of the canvas content
nsIntSize mSize;
// Whether the canvas drawingbuffer has an alpha channel.
bool mHasAlpha;
// Whether mGLContext contains data that is alpha-premultiplied.
bool mIsGLAlphaPremult;
};
/**
* CONSTRUCTION PHASE ONLY
* Initialize this CanvasLayer with the given data. The data must
* have either mSurface or mGLContext initialized (but not both), as
* well as mSize.
*
* This must only be called once.
*/
virtual void Initialize(const Data& aData) = 0;
/**
* Check the data is owned by this layer is still valid for rendering
*/
virtual bool IsDataValid(const Data& aData) { return true; }
/**
* Notify this CanvasLayer that the canvas surface contents have
* changed (or will change) before the next transaction.
*/
void Updated() { mDirty = true; SetInvalidRectToVisibleRegion(); }
/**
* Notify this CanvasLayer that the canvas surface contents have
* been painted since the last change.
*/
void Painted() { mDirty = false; }
/**
* Returns true if the canvas surface contents have changed since the
* last paint.
*/
bool IsDirty()
{
// We can only tell if we are dirty if we're part of the
// widget's retained layer tree.
if (!mManager || !mManager->IsWidgetLayerManager()) {
return true;
}
return mDirty;
}
/**
* Register a callback to be called at the start of each transaction.
*/
typedef void PreTransactionCallback(void* closureData);
void SetPreTransactionCallback(PreTransactionCallback* callback, void* closureData)
{
mPreTransCallback = callback;
mPreTransCallbackData = closureData;
}
protected:
void FirePreTransactionCallback()
{
if (mPreTransCallback) {
mPreTransCallback(mPreTransCallbackData);
}
}
public:
/**
* Register a callback to be called at the end of each transaction.
*/
typedef void (* DidTransactionCallback)(void* aClosureData);
void SetDidTransactionCallback(DidTransactionCallback aCallback, void* aClosureData)
{
mPostTransCallback = aCallback;
mPostTransCallbackData = aClosureData;
}
/**
* CONSTRUCTION PHASE ONLY
* Set the filter used to resample this image (if necessary).
*/
void SetFilter(GraphicsFilter aFilter)
{
if (mFilter != aFilter) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) Filter", this));
mFilter = aFilter;
Mutated();
}
}
GraphicsFilter GetFilter() const { return mFilter; }
MOZ_LAYER_DECL_NAME("CanvasLayer", TYPE_CANVAS)
virtual void ComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface) override
{
// Snap our local transform first, and snap the inherited transform as well.
// This makes our snapping equivalent to what would happen if our content
// was drawn into a PaintedLayer (gfxContext would snap using the local
// transform, then we'd snap again when compositing the PaintedLayer).
mEffectiveTransform =
SnapTransform(GetLocalTransform(), gfxRect(0, 0, mBounds.width, mBounds.height),
nullptr)*
SnapTransformTranslation(aTransformToSurface, nullptr);
ComputeEffectiveTransformForMaskLayer(aTransformToSurface);
}
protected:
CanvasLayer(LayerManager* aManager, void* aImplData)
: Layer(aManager, aImplData)
, mPreTransCallback(nullptr)
, mPreTransCallbackData(nullptr)
, mPostTransCallback(nullptr)
, mPostTransCallbackData(nullptr)
, mFilter(GraphicsFilter::FILTER_GOOD)
, mDirty(false)
{}
virtual void PrintInfo(std::stringstream& aStream, const char* aPrefix) override;
virtual void DumpPacket(layerscope::LayersPacket* aPacket, const void* aParent) override;
void FireDidTransactionCallback()
{
if (mPostTransCallback) {
mPostTransCallback(mPostTransCallbackData);
}
}
/**
* 0, 0, canvaswidth, canvasheight
*/
nsIntRect mBounds;
PreTransactionCallback* mPreTransCallback;
void* mPreTransCallbackData;
DidTransactionCallback mPostTransCallback;
void* mPostTransCallbackData;
GraphicsFilter mFilter;
private:
/**
* Set to true in Updated(), cleared during a transaction.
*/
bool mDirty;
};
/**
* ContainerLayer that refers to a "foreign" layer tree, through an
* ID. Usage of RefLayer looks like
*
* Construction phase:
* allocate ID for layer subtree
* create RefLayer, SetReferentId(ID)
*
* Composition:
* look up subtree for GetReferentId()
* ConnectReferentLayer(subtree)
* compose
* ClearReferentLayer()
*
* Clients will usually want to Connect/Clear() on each transaction to
* avoid difficulties managing memory across multiple layer subtrees.
*/
class RefLayer : public ContainerLayer {
friend class LayerManager;
private:
virtual bool InsertAfter(Layer* aChild, Layer* aAfter) override
{ MOZ_CRASH(); return false; }
virtual bool RemoveChild(Layer* aChild) override
{ MOZ_CRASH(); return false; }
virtual bool RepositionChild(Layer* aChild, Layer* aAfter) override
{ MOZ_CRASH(); return false; }
using Layer::SetFrameMetrics;
public:
/**
* CONSTRUCTION PHASE ONLY
* Set the ID of the layer's referent.
*/
void SetReferentId(uint64_t aId)
{
MOZ_ASSERT(aId != 0);
if (mId != aId) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ReferentId", this));
mId = aId;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Connect this ref layer to its referent, temporarily.
* ClearReferentLayer() must be called after composition.
*/
void ConnectReferentLayer(Layer* aLayer)
{
MOZ_ASSERT(!mFirstChild && !mLastChild);
MOZ_ASSERT(!aLayer->GetParent());
if (aLayer->Manager() != Manager()) {
// This can happen when e.g. rendering while dragging tabs
// between windows - aLayer's manager may be the manager for the
// old window's tab. In that case, it will be changed before the
// next render (see SetLayerManager). It is simply easier to
// ignore the rendering here than it is to pause it.
NS_WARNING("ConnectReferentLayer failed - Incorrect LayerManager");
return;
}
mFirstChild = mLastChild = aLayer;
aLayer->SetParent(this);
}
/**
* DRAWING PHASE ONLY
* |aLayer| is the same as the argument to ConnectReferentLayer().
*/
void DetachReferentLayer(Layer* aLayer)
{
mFirstChild = mLastChild = nullptr;
aLayer->SetParent(nullptr);
}
// These getters can be used anytime.
virtual RefLayer* AsRefLayer() override { return this; }
virtual int64_t GetReferentId() { return mId; }
/**
* DRAWING PHASE ONLY
*/
virtual void FillSpecificAttributes(SpecificLayerAttributes& aAttrs) override;
MOZ_LAYER_DECL_NAME("RefLayer", TYPE_REF)
protected:
RefLayer(LayerManager* aManager, void* aImplData)
: ContainerLayer(aManager, aImplData) , mId(0)
{}
virtual void PrintInfo(std::stringstream& aStream, const char* aPrefix) override;
virtual void DumpPacket(layerscope::LayersPacket* aPacket, const void* aParent) override;
Layer* mTempReferent;
// 0 is a special value that means "no ID".
uint64_t mId;
};
void SetAntialiasingFlags(Layer* aLayer, gfx::DrawTarget* aTarget);
#ifdef MOZ_DUMP_PAINTING
void WriteSnapshotToDumpFile(Layer* aLayer, gfx::DataSourceSurface* aSurf);
void WriteSnapshotToDumpFile(LayerManager* aManager, gfx::DataSourceSurface* aSurf);
void WriteSnapshotToDumpFile(Compositor* aCompositor, gfx::DrawTarget* aTarget);
#endif
// A utility function used by different LayerManager implementations.
nsIntRect ToOutsideIntRect(const gfxRect &aRect);
}
}
#endif /* GFX_LAYERS_H */