gecko/content/media/AudioNodeExternalInputStream.cpp
Robert O'Callahan 7215f3154f Bug 856361. Part 4: Create AudioNodeExternalInputStream. r=ehsan
--HG--
extra : rebase_source : 6e172f800942b0f9f1aff047a142764da2dd57a3
2013-07-24 22:15:11 +12:00

475 lines
17 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "MediaStreamGraphImpl.h"
#include "AudioNodeEngine.h"
#include "AudioNodeExternalInputStream.h"
#include "speex/speex_resampler.h"
using namespace mozilla::dom;
namespace mozilla {
AudioNodeExternalInputStream::AudioNodeExternalInputStream(AudioNodeEngine* aEngine, TrackRate aSampleRate)
: AudioNodeStream(aEngine, MediaStreamGraph::INTERNAL_STREAM, aSampleRate)
, mCurrentOutputPosition(0)
{
MOZ_COUNT_CTOR(AudioNodeExternalInputStream);
}
AudioNodeExternalInputStream::~AudioNodeExternalInputStream()
{
MOZ_COUNT_DTOR(AudioNodeExternalInputStream);
}
AudioNodeExternalInputStream::TrackMapEntry::~TrackMapEntry()
{
if (mResampler) {
speex_resampler_destroy(mResampler);
}
}
uint32_t
AudioNodeExternalInputStream::GetTrackMapEntry(const StreamBuffer::Track& aTrack,
GraphTime aFrom)
{
AudioSegment* segment = aTrack.Get<AudioSegment>();
// Check the map for an existing entry corresponding to the input track.
for (uint32_t i = 0; i < mTrackMap.Length(); ++i) {
TrackMapEntry* map = &mTrackMap[i];
if (map->mTrackID == aTrack.GetID()) {
return i;
}
}
// Determine channel count by finding the first entry with non-silent data.
AudioSegment::ChunkIterator ci(*segment);
while (!ci.IsEnded() && ci->IsNull()) {
ci.Next();
}
if (ci.IsEnded()) {
// The track is entirely silence so far, we can ignore it for now.
return nsTArray<TrackMapEntry>::NoIndex;
}
// Create a speex resampler with the same sample rate and number of channels
// as the track.
SpeexResamplerState* resampler = nullptr;
uint32_t channelCount = (*ci).mChannelData.Length();
if (aTrack.GetRate() != mSampleRate) {
resampler = speex_resampler_init(channelCount,
aTrack.GetRate(), mSampleRate, SPEEX_RESAMPLER_QUALITY_DEFAULT, nullptr);
speex_resampler_skip_zeros(resampler);
}
TrackMapEntry* map = mTrackMap.AppendElement();
map->mSamplesPassedToResampler =
TimeToTicksRoundUp(aTrack.GetRate(), GraphTimeToStreamTime(aFrom));
map->mResampler = resampler;
map->mResamplerChannelCount = channelCount;
map->mTrackID = aTrack.GetID();
return mTrackMap.Length() - 1;
}
static const uint32_t SPEEX_RESAMPLER_PROCESS_MAX_OUTPUT = 1000;
template <typename T> static int
SpeexResamplerProcess(SpeexResamplerState* aResampler,
uint32_t aChannel,
const T* aInput, uint32_t* aIn,
float* aOutput, uint32_t* aOut);
template <> int
SpeexResamplerProcess<float>(SpeexResamplerState* aResampler,
uint32_t aChannel,
const float* aInput, uint32_t* aIn,
float* aOutput, uint32_t* aOut)
{
NS_ASSERTION(*aOut <= SPEEX_RESAMPLER_PROCESS_MAX_OUTPUT, "Bad aOut");
return speex_resampler_process_float(aResampler, aChannel, aInput, aIn, aOutput, aOut);
}
template <> int
SpeexResamplerProcess<int16_t>(SpeexResamplerState* aResampler,
uint32_t aChannel,
const int16_t* aInput, uint32_t* aIn,
float* aOutput, uint32_t* aOut)
{
NS_ASSERTION(*aOut <= SPEEX_RESAMPLER_PROCESS_MAX_OUTPUT, "Bad aOut");
int16_t tmp[SPEEX_RESAMPLER_PROCESS_MAX_OUTPUT];
int result = speex_resampler_process_int(aResampler, aChannel, aInput, aIn, tmp, aOut);
if (result == RESAMPLER_ERR_SUCCESS) {
for (uint32_t i = 0; i < *aOut; ++i) {
aOutput[i] = AudioSampleToFloat(tmp[i]);
}
}
return result;
}
template <typename T> static void
ResampleChannelBuffer(SpeexResamplerState* aResampler, uint32_t aChannel,
const T* aInput, uint32_t aInputDuration,
nsTArray<float>* aOutput)
{
if (!aResampler) {
float* out = aOutput->AppendElements(aInputDuration);
for (uint32_t i = 0; i < aInputDuration; ++i) {
out[i] = AudioSampleToFloat(aInput[i]);
}
return;
}
uint32_t processed = 0;
while (processed < aInputDuration) {
uint32_t prevLength = aOutput->Length();
float* output = aOutput->AppendElements(SPEEX_RESAMPLER_PROCESS_MAX_OUTPUT);
uint32_t in = aInputDuration - processed;
uint32_t out = aOutput->Length() - prevLength;
SpeexResamplerProcess(aResampler, aChannel,
aInput + processed, &in,
output, &out);
processed += in;
aOutput->SetLength(prevLength + out);
}
}
class SharedChannelArrayBuffer : public ThreadSharedObject {
public:
SharedChannelArrayBuffer(nsTArray<nsTArray<float> >* aBuffers)
{
mBuffers.SwapElements(*aBuffers);
}
nsTArray<nsTArray<float> > mBuffers;
};
void
AudioNodeExternalInputStream::TrackMapEntry::ResampleChannels(const nsTArray<const void*>& aBuffers,
uint32_t aInputDuration,
AudioSampleFormat aFormat,
float aVolume)
{
NS_ASSERTION(aBuffers.Length() == mResamplerChannelCount,
"Channel count must be correct here");
nsAutoTArray<nsTArray<float>,2> resampledBuffers;
resampledBuffers.SetLength(aBuffers.Length());
nsTArray<float> samplesAdjustedForVolume;
nsAutoTArray<const float*,2> bufferPtrs;
bufferPtrs.SetLength(aBuffers.Length());
for (uint32_t i = 0; i < aBuffers.Length(); ++i) {
AudioSampleFormat format = aFormat;
const void* buffer = aBuffers[i];
if (aVolume != 1.0f) {
format = AUDIO_FORMAT_FLOAT32;
samplesAdjustedForVolume.SetLength(aInputDuration);
switch (aFormat) {
case AUDIO_FORMAT_FLOAT32:
ConvertAudioSamplesWithScale(static_cast<const float*>(buffer),
samplesAdjustedForVolume.Elements(),
aInputDuration, aVolume);
break;
case AUDIO_FORMAT_S16:
ConvertAudioSamplesWithScale(static_cast<const int16_t*>(buffer),
samplesAdjustedForVolume.Elements(),
aInputDuration, aVolume);
break;
default:
MOZ_ASSERT(false);
return;
}
buffer = samplesAdjustedForVolume.Elements();
}
switch (format) {
case AUDIO_FORMAT_FLOAT32:
ResampleChannelBuffer(mResampler, i,
static_cast<const float*>(buffer),
aInputDuration, &resampledBuffers[i]);
break;
case AUDIO_FORMAT_S16:
ResampleChannelBuffer(mResampler, i,
static_cast<const int16_t*>(buffer),
aInputDuration, &resampledBuffers[i]);
break;
default:
MOZ_ASSERT(false);
return;
}
bufferPtrs[i] = resampledBuffers[i].Elements();
NS_ASSERTION(i == 0 ||
resampledBuffers[i].Length() == resampledBuffers[0].Length(),
"Resampler made different decisions for different channels!");
}
uint32_t length = resampledBuffers[0].Length();
nsRefPtr<ThreadSharedObject> buf = new SharedChannelArrayBuffer(&resampledBuffers);
mResampledData.AppendFrames(buf.forget(), bufferPtrs, length);
}
void
AudioNodeExternalInputStream::TrackMapEntry::ResampleInputData(AudioSegment* aSegment)
{
AudioSegment::ChunkIterator ci(*aSegment);
while (!ci.IsEnded()) {
const AudioChunk& chunk = *ci;
nsAutoTArray<const void*,2> channels;
if (chunk.GetDuration() > UINT32_MAX) {
// This will cause us to OOM or overflow below. So let's just bail.
NS_ERROR("Chunk duration out of bounds");
return;
}
uint32_t duration = uint32_t(chunk.GetDuration());
if (chunk.IsNull()) {
nsAutoTArray<AudioDataValue,1024> silence;
silence.SetLength(duration);
PodZero(silence.Elements(), silence.Length());
channels.SetLength(mResamplerChannelCount);
for (uint32_t i = 0; i < channels.Length(); ++i) {
channels[i] = silence.Elements();
}
ResampleChannels(channels, duration, AUDIO_OUTPUT_FORMAT, 0.0f);
} else if (chunk.mChannelData.Length() == mResamplerChannelCount) {
// Common case, since mResamplerChannelCount is set to the first chunk's
// number of channels.
channels.AppendElements(chunk.mChannelData);
ResampleChannels(channels, duration, chunk.mBufferFormat, chunk.mVolume);
} else {
// Uncommon case. Since downmixing requires channels to be floats,
// convert everything to floats now.
uint32_t upChannels = GetAudioChannelsSuperset(chunk.mChannelData.Length(), mResamplerChannelCount);
nsTArray<float> buffer;
if (chunk.mBufferFormat == AUDIO_FORMAT_FLOAT32) {
channels.AppendElements(chunk.mChannelData);
} else {
NS_ASSERTION(chunk.mBufferFormat == AUDIO_FORMAT_S16, "Unknown format");
if (duration > UINT32_MAX/chunk.mChannelData.Length()) {
NS_ERROR("Chunk duration out of bounds");
return;
}
buffer.SetLength(chunk.mChannelData.Length()*duration);
for (uint32_t i = 0; i < chunk.mChannelData.Length(); ++i) {
const int16_t* samples = static_cast<const int16_t*>(chunk.mChannelData[i]);
float* converted = &buffer[i*duration];
for (uint32_t j = 0; j < duration; ++j) {
converted[j] = AudioSampleToFloat(samples[j]);
}
channels.AppendElement(converted);
}
}
nsTArray<float> zeroes;
if (channels.Length() < upChannels) {
zeroes.SetLength(duration);
PodZero(zeroes.Elements(), zeroes.Length());
AudioChannelsUpMix(&channels, upChannels, zeroes.Elements());
}
if (channels.Length() == mResamplerChannelCount) {
ResampleChannels(channels, duration, AUDIO_FORMAT_FLOAT32, chunk.mVolume);
} else {
nsTArray<float> output;
if (duration > UINT32_MAX/mResamplerChannelCount) {
NS_ERROR("Chunk duration out of bounds");
return;
}
output.SetLength(duration*mResamplerChannelCount);
nsAutoTArray<float*,2> outputPtrs;
nsAutoTArray<const void*,2> outputPtrsConst;
for (uint32_t i = 0; i < mResamplerChannelCount; ++i) {
outputPtrs.AppendElement(output.Elements() + i*duration);
outputPtrsConst.AppendElement(outputPtrs[i]);
}
AudioChannelsDownMix(channels, outputPtrs.Elements(), outputPtrs.Length(), duration);
ResampleChannels(outputPtrsConst, duration, AUDIO_FORMAT_FLOAT32, chunk.mVolume);
}
}
ci.Next();
}
}
/**
* Copies the data in aInput to aOffsetInBlock within aBlock. All samples must
* be float. Both chunks must have the same number of channels (or else
* aInput is null). aBlock must have been allocated with AllocateInputBlock.
*/
static void
CopyChunkToBlock(const AudioChunk& aInput, AudioChunk *aBlock, uint32_t aOffsetInBlock)
{
uint32_t d = aInput.GetDuration();
for (uint32_t i = 0; i < aBlock->mChannelData.Length(); ++i) {
float* out = static_cast<float*>(const_cast<void*>(aBlock->mChannelData[i])) +
aOffsetInBlock;
if (aInput.IsNull()) {
PodZero(out, d);
} else {
const float* in = static_cast<const float*>(aInput.mChannelData[i]);
ConvertAudioSamplesWithScale(in, out, d, aInput.mVolume);
}
}
}
/**
* Converts the data in aSegment to a single chunk aChunk. Every chunk in
* aSegment must have the same number of channels (or be null). aSegment must have
* duration WEBAUDIO_BLOCK_SIZE. Every chunk in aSegment must be in float format.
*/
static void
ConvertSegmentToAudioBlock(AudioSegment* aSegment, AudioChunk* aBlock)
{
NS_ASSERTION(aSegment->GetDuration() == WEBAUDIO_BLOCK_SIZE, "Bad segment duration");
{
AudioSegment::ChunkIterator ci(*aSegment);
NS_ASSERTION(!ci.IsEnded(), "Segment must have at least one chunk");
AudioChunk& firstChunk = *ci;
ci.Next();
if (ci.IsEnded()) {
*aBlock = firstChunk;
return;
}
while (ci->IsNull() && !ci.IsEnded()) {
ci.Next();
}
if (ci.IsEnded()) {
// All null.
aBlock->SetNull(WEBAUDIO_BLOCK_SIZE);
return;
}
AllocateAudioBlock(ci->mChannelData.Length(), aBlock);
}
AudioSegment::ChunkIterator ci(*aSegment);
uint32_t duration = 0;
while (!ci.IsEnded()) {
CopyChunkToBlock(*ci, aBlock, duration);
duration += ci->GetDuration();
ci.Next();
}
}
void
AudioNodeExternalInputStream::ProduceOutput(GraphTime aFrom, GraphTime aTo)
{
// According to spec, number of outputs is always 1.
mLastChunks.SetLength(1);
// GC stuff can result in our input stream being destroyed before this stream.
// Handle that.
if (mInputs.IsEmpty()) {
mLastChunks[0].SetNull(WEBAUDIO_BLOCK_SIZE);
AdvanceOutputSegment();
return;
}
MOZ_ASSERT(mInputs.Length() == 1);
MediaStream* source = mInputs[0]->GetSource();
nsAutoTArray<AudioSegment,1> audioSegments;
nsAutoTArray<bool,1> trackMapEntriesUsed;
uint32_t inputChannels = 0;
for (StreamBuffer::TrackIter tracks(source->mBuffer, MediaSegment::AUDIO);
!tracks.IsEnded(); tracks.Next()) {
const StreamBuffer::Track& inputTrack = *tracks;
// Create a TrackMapEntry if necessary.
uint32_t trackMapIndex = GetTrackMapEntry(inputTrack, aFrom);
// Maybe there's nothing in this track yet. If so, ignore it. (While the
// track is only playing silence, we may not be able to determine the
// correct number of channels to start resampling.)
if (trackMapIndex == nsTArray<TrackMapEntry>::NoIndex) {
continue;
}
while (trackMapEntriesUsed.Length() <= trackMapIndex) {
trackMapEntriesUsed.AppendElement(false);
}
trackMapEntriesUsed[trackMapIndex] = true;
TrackMapEntry* trackMap = &mTrackMap[trackMapIndex];
AudioSegment segment;
GraphTime next;
TrackRate inputTrackRate = inputTrack.GetRate();
for (GraphTime t = aFrom; t < aTo; t = next) {
MediaInputPort::InputInterval interval = mInputs[0]->GetNextInputInterval(t);
interval.mEnd = std::min(interval.mEnd, aTo);
if (interval.mStart >= interval.mEnd)
break;
next = interval.mEnd;
// Ticks >= startTicks and < endTicks are in the interval
StreamTime outputEnd = GraphTimeToStreamTime(interval.mEnd);
TrackTicks startTicks = trackMap->mSamplesPassedToResampler + segment.GetDuration();
#ifdef DEBUG
StreamTime outputStart = GraphTimeToStreamTime(interval.mStart);
#endif
NS_ASSERTION(startTicks == TimeToTicksRoundUp(inputTrackRate, outputStart),
"Samples missing");
TrackTicks endTicks = TimeToTicksRoundUp(inputTrackRate, outputEnd);
TrackTicks ticks = endTicks - startTicks;
if (interval.mInputIsBlocked) {
segment.AppendNullData(ticks);
} else {
// See comments in TrackUnionStream::CopyTrackData
// StreamTime inputStart = source->GraphTimeToStreamTime(interval.mStart);
StreamTime inputEnd = source->GraphTimeToStreamTime(interval.mEnd);
TrackTicks inputTrackEndPoint =
inputTrack.IsEnded() ? inputTrack.GetEnd() : TRACK_TICKS_MAX;
TrackTicks inputEndTicks = TimeToTicksRoundUp(inputTrackRate, inputEnd);
TrackTicks inputStartTicks = inputEndTicks - ticks;
segment.AppendSlice(*inputTrack.GetSegment(),
std::min(inputTrackEndPoint, inputStartTicks),
std::min(inputTrackEndPoint, inputEndTicks));
// Pad if we're looking past the end of the track
segment.AppendNullData(std::max<TrackTicks>(0, inputEndTicks - inputTrackEndPoint));
}
}
trackMap->mSamplesPassedToResampler += segment.GetDuration();
trackMap->ResampleInputData(&segment);
if (trackMap->mResampledData.GetDuration() < mCurrentOutputPosition + WEBAUDIO_BLOCK_SIZE) {
// We don't have enough data. Delay it.
trackMap->mResampledData.InsertNullDataAtStart(
mCurrentOutputPosition + WEBAUDIO_BLOCK_SIZE - trackMap->mResampledData.GetDuration());
}
audioSegments.AppendElement()->AppendSlice(trackMap->mResampledData,
mCurrentOutputPosition, mCurrentOutputPosition + WEBAUDIO_BLOCK_SIZE);
trackMap->mResampledData.ForgetUpTo(mCurrentOutputPosition + WEBAUDIO_BLOCK_SIZE);
inputChannels = GetAudioChannelsSuperset(inputChannels, trackMap->mResamplerChannelCount);
}
for (int32_t i = mTrackMap.Length() - 1; i >= 0; --i) {
if (i >= int32_t(trackMapEntriesUsed.Length()) || !trackMapEntriesUsed[i]) {
mTrackMap.RemoveElementAt(i);
}
}
uint32_t outputChannels = ComputeFinalOuputChannelCount(inputChannels);
if (outputChannels) {
AllocateAudioBlock(outputChannels, &mLastChunks[0]);
nsAutoTArray<float,GUESS_AUDIO_CHANNELS*WEBAUDIO_BLOCK_SIZE> downmixBuffer;
for (uint32_t i = 0; i < audioSegments.Length(); ++i) {
AudioChunk tmpChunk;
ConvertSegmentToAudioBlock(&audioSegments[i], &tmpChunk);
if (!tmpChunk.IsNull()) {
AccumulateInputChunk(i, tmpChunk, &mLastChunks[0], &downmixBuffer);
}
}
} else {
mLastChunks[0].SetNull(WEBAUDIO_BLOCK_SIZE);
}
mCurrentOutputPosition += WEBAUDIO_BLOCK_SIZE;
// Using AudioNodeStream's AdvanceOutputSegment to push the media stream graph along with null data.
AdvanceOutputSegment();
}
}