gecko/content/media/MediaStreamGraph.cpp
Ehsan Akhgari d2c63bc836 Bug 836599 - Part 12: Fix the lifetime management of the Web Audio graph in presence of OfflineAudioContexts; r=roc
Here we make the non-realtime graphs to go to sleep until they're shut down
from the main thread.  This allows us to use the common forced shutdown code
path in MediaStreamGraphImpl::RunThread.  We also need to delete the graph
object when the last message is dispatched to it.

In addition, we need to make sure that the AudioNodes also get released when
they're no longer needed.  To do this, we need for force the SelfReference of
AudioBufferSourceNodes to be released when the context is shut down, and also
trigger the destruction of the graph there.
2013-05-16 19:31:08 -04:00

2126 lines
67 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "MediaStreamGraphImpl.h"
#include "AudioSegment.h"
#include "VideoSegment.h"
#include "nsContentUtils.h"
#include "nsIAppShell.h"
#include "nsIObserver.h"
#include "nsServiceManagerUtils.h"
#include "nsWidgetsCID.h"
#include "nsXPCOMCIDInternal.h"
#include "prlog.h"
#include "VideoUtils.h"
#include "mozilla/Attributes.h"
#include "TrackUnionStream.h"
#include "ImageContainer.h"
#include "AudioChannelCommon.h"
#include "AudioNodeEngine.h"
#include "AudioNodeStream.h"
#include <algorithm>
#include "DOMMediaStream.h"
using namespace mozilla::layers;
using namespace mozilla::dom;
namespace mozilla {
#ifdef PR_LOGGING
PRLogModuleInfo* gMediaStreamGraphLog;
#endif
/**
* The singleton graph instance.
*/
static MediaStreamGraphImpl* gGraph;
StreamTime
MediaStreamGraphImpl::GetDesiredBufferEnd(MediaStream* aStream)
{
StreamTime current = mCurrentTime - aStream->mBufferStartTime;
return current +
MillisecondsToMediaTime(std::max(AUDIO_TARGET_MS, VIDEO_TARGET_MS));
}
void
MediaStreamGraphImpl::FinishStream(MediaStream* aStream)
{
if (aStream->mFinished)
return;
LOG(PR_LOG_DEBUG, ("MediaStream %p will finish", aStream));
aStream->mFinished = true;
// Force at least one more iteration of the control loop, since we rely
// on UpdateCurrentTime to notify our listeners once the stream end
// has been reached.
EnsureNextIteration();
}
void
MediaStreamGraphImpl::AddStream(MediaStream* aStream)
{
aStream->mBufferStartTime = mCurrentTime;
*mStreams.AppendElement() = already_AddRefed<MediaStream>(aStream);
LOG(PR_LOG_DEBUG, ("Adding media stream %p to the graph", aStream));
}
void
MediaStreamGraphImpl::RemoveStream(MediaStream* aStream)
{
// Remove references in mStreamUpdates before we allow aStream to die.
// Pending updates are not needed (since the main thread has already given
// up the stream) so we will just drop them.
{
MonitorAutoLock lock(mMonitor);
for (uint32_t i = 0; i < mStreamUpdates.Length(); ++i) {
if (mStreamUpdates[i].mStream == aStream) {
mStreamUpdates[i].mStream = nullptr;
}
}
}
// This unrefs the stream, probably destroying it
mStreams.RemoveElement(aStream);
LOG(PR_LOG_DEBUG, ("Removing media stream %p from the graph", aStream));
}
void
MediaStreamGraphImpl::UpdateConsumptionState(SourceMediaStream* aStream)
{
MediaStreamListener::Consumption state =
aStream->mIsConsumed ? MediaStreamListener::CONSUMED
: MediaStreamListener::NOT_CONSUMED;
if (state != aStream->mLastConsumptionState) {
aStream->mLastConsumptionState = state;
for (uint32_t j = 0; j < aStream->mListeners.Length(); ++j) {
MediaStreamListener* l = aStream->mListeners[j];
l->NotifyConsumptionChanged(this, state);
}
}
}
void
MediaStreamGraphImpl::ExtractPendingInput(SourceMediaStream* aStream,
GraphTime aDesiredUpToTime,
bool* aEnsureNextIteration)
{
bool finished;
{
MutexAutoLock lock(aStream->mMutex);
if (aStream->mPullEnabled && !aStream->mFinished &&
!aStream->mListeners.IsEmpty()) {
// Compute how much stream time we'll need assuming we don't block
// the stream at all between mBlockingDecisionsMadeUntilTime and
// aDesiredUpToTime.
StreamTime t =
GraphTimeToStreamTime(aStream, mStateComputedTime) +
(aDesiredUpToTime - mStateComputedTime);
LOG(PR_LOG_DEBUG+1, ("Calling NotifyPull aStream=%p t=%f current end=%f", aStream,
MediaTimeToSeconds(t),
MediaTimeToSeconds(aStream->mBuffer.GetEnd())));
if (t > aStream->mBuffer.GetEnd()) {
*aEnsureNextIteration = true;
#ifdef DEBUG
if (aStream->mListeners.Length() == 0) {
LOG(PR_LOG_ERROR, ("No listeners in NotifyPull aStream=%p desired=%f current end=%f",
aStream, MediaTimeToSeconds(t),
MediaTimeToSeconds(aStream->mBuffer.GetEnd())));
aStream->DumpTrackInfo();
}
#endif
for (uint32_t j = 0; j < aStream->mListeners.Length(); ++j) {
MediaStreamListener* l = aStream->mListeners[j];
{
MutexAutoUnlock unlock(aStream->mMutex);
l->NotifyPull(this, t);
}
}
}
}
finished = aStream->mUpdateFinished;
for (int32_t i = aStream->mUpdateTracks.Length() - 1; i >= 0; --i) {
SourceMediaStream::TrackData* data = &aStream->mUpdateTracks[i];
for (uint32_t j = 0; j < aStream->mListeners.Length(); ++j) {
MediaStreamListener* l = aStream->mListeners[j];
TrackTicks offset = (data->mCommands & SourceMediaStream::TRACK_CREATE)
? data->mStart : aStream->mBuffer.FindTrack(data->mID)->GetSegment()->GetDuration();
l->NotifyQueuedTrackChanges(this, data->mID, data->mRate,
offset, data->mCommands, *data->mData);
}
if (data->mCommands & SourceMediaStream::TRACK_CREATE) {
MediaSegment* segment = data->mData.forget();
LOG(PR_LOG_DEBUG, ("SourceMediaStream %p creating track %d, rate %d, start %lld, initial end %lld",
aStream, data->mID, data->mRate, int64_t(data->mStart),
int64_t(segment->GetDuration())));
aStream->mBuffer.AddTrack(data->mID, data->mRate, data->mStart, segment);
// The track has taken ownership of data->mData, so let's replace
// data->mData with an empty clone.
data->mData = segment->CreateEmptyClone();
data->mCommands &= ~SourceMediaStream::TRACK_CREATE;
} else if (data->mData->GetDuration() > 0) {
MediaSegment* dest = aStream->mBuffer.FindTrack(data->mID)->GetSegment();
LOG(PR_LOG_DEBUG+1, ("SourceMediaStream %p track %d, advancing end from %lld to %lld",
aStream, data->mID,
int64_t(dest->GetDuration()),
int64_t(dest->GetDuration() + data->mData->GetDuration())));
dest->AppendFrom(data->mData);
}
if (data->mCommands & SourceMediaStream::TRACK_END) {
aStream->mBuffer.FindTrack(data->mID)->SetEnded();
aStream->mUpdateTracks.RemoveElementAt(i);
}
}
aStream->mBuffer.AdvanceKnownTracksTime(aStream->mUpdateKnownTracksTime);
}
if (aStream->mBuffer.GetEnd() > 0) {
aStream->mHasCurrentData = true;
}
if (finished) {
FinishStream(aStream);
}
}
void
MediaStreamGraphImpl::UpdateBufferSufficiencyState(SourceMediaStream* aStream)
{
StreamTime desiredEnd = GetDesiredBufferEnd(aStream);
nsTArray<SourceMediaStream::ThreadAndRunnable> runnables;
{
MutexAutoLock lock(aStream->mMutex);
for (uint32_t i = 0; i < aStream->mUpdateTracks.Length(); ++i) {
SourceMediaStream::TrackData* data = &aStream->mUpdateTracks[i];
if (data->mCommands & SourceMediaStream::TRACK_CREATE) {
// This track hasn't been created yet, so we have no sufficiency
// data. The track will be created in the next iteration of the
// control loop and then we'll fire insufficiency notifications
// if necessary.
continue;
}
if (data->mCommands & SourceMediaStream::TRACK_END) {
// This track will end, so no point in firing not-enough-data
// callbacks.
continue;
}
StreamBuffer::Track* track = aStream->mBuffer.FindTrack(data->mID);
// Note that track->IsEnded() must be false, otherwise we would have
// removed the track from mUpdateTracks already.
NS_ASSERTION(!track->IsEnded(), "What is this track doing here?");
data->mHaveEnough = track->GetEndTimeRoundDown() >= desiredEnd;
if (!data->mHaveEnough) {
runnables.MoveElementsFrom(data->mDispatchWhenNotEnough);
}
}
}
for (uint32_t i = 0; i < runnables.Length(); ++i) {
runnables[i].mThread->Dispatch(runnables[i].mRunnable, 0);
}
}
StreamTime
MediaStreamGraphImpl::GraphTimeToStreamTime(MediaStream* aStream,
GraphTime aTime)
{
NS_ASSERTION(aTime <= mStateComputedTime,
"Don't ask about times where we haven't made blocking decisions yet");
if (aTime <= mCurrentTime) {
return std::max<StreamTime>(0, aTime - aStream->mBufferStartTime);
}
GraphTime t = mCurrentTime;
StreamTime s = t - aStream->mBufferStartTime;
while (t < aTime) {
GraphTime end;
if (!aStream->mBlocked.GetAt(t, &end)) {
s += std::min(aTime, end) - t;
}
t = end;
}
return std::max<StreamTime>(0, s);
}
StreamTime
MediaStreamGraphImpl::GraphTimeToStreamTimeOptimistic(MediaStream* aStream,
GraphTime aTime)
{
GraphTime computedUpToTime = std::min(mStateComputedTime, aTime);
StreamTime s = GraphTimeToStreamTime(aStream, computedUpToTime);
return s + (aTime - computedUpToTime);
}
GraphTime
MediaStreamGraphImpl::StreamTimeToGraphTime(MediaStream* aStream,
StreamTime aTime, uint32_t aFlags)
{
if (aTime >= STREAM_TIME_MAX) {
return GRAPH_TIME_MAX;
}
MediaTime bufferElapsedToCurrentTime = mCurrentTime - aStream->mBufferStartTime;
if (aTime < bufferElapsedToCurrentTime ||
(aTime == bufferElapsedToCurrentTime && !(aFlags & INCLUDE_TRAILING_BLOCKED_INTERVAL))) {
return aTime + aStream->mBufferStartTime;
}
MediaTime streamAmount = aTime - bufferElapsedToCurrentTime;
NS_ASSERTION(streamAmount >= 0, "Can't answer queries before current time");
GraphTime t = mCurrentTime;
while (t < GRAPH_TIME_MAX) {
bool blocked;
GraphTime end;
if (t < mStateComputedTime) {
blocked = aStream->mBlocked.GetAt(t, &end);
end = std::min(end, mStateComputedTime);
} else {
blocked = false;
end = GRAPH_TIME_MAX;
}
if (blocked) {
t = end;
} else {
if (streamAmount == 0) {
// No more stream time to consume at time t, so we're done.
break;
}
MediaTime consume = std::min(end - t, streamAmount);
streamAmount -= consume;
t += consume;
}
}
return t;
}
GraphTime
MediaStreamGraphImpl::GetAudioPosition(MediaStream* aStream)
{
if (aStream->mAudioOutputStreams.IsEmpty()) {
return mCurrentTime;
}
int64_t positionInFrames = aStream->mAudioOutputStreams[0].mStream->GetPositionInFrames();
if (positionInFrames < 0) {
return mCurrentTime;
}
return aStream->mAudioOutputStreams[0].mAudioPlaybackStartTime +
TicksToTimeRoundDown(aStream->mAudioOutputStreams[0].mStream->GetRate(),
positionInFrames);
}
void
MediaStreamGraphImpl::UpdateCurrentTime()
{
GraphTime prevCurrentTime = mCurrentTime;
TimeStamp now = TimeStamp::Now();
GraphTime nextCurrentTime =
SecondsToMediaTime((now - mCurrentTimeStamp).ToSeconds()) + mCurrentTime;
if (mStateComputedTime < nextCurrentTime) {
LOG(PR_LOG_WARNING, ("Media graph global underrun detected"));
nextCurrentTime = mStateComputedTime;
}
mCurrentTimeStamp = now;
LOG(PR_LOG_DEBUG+1, ("Updating current time to %f (real %f, mStateComputedTime %f)",
MediaTimeToSeconds(nextCurrentTime),
(now - mInitialTimeStamp).ToSeconds(),
MediaTimeToSeconds(mStateComputedTime)));
if (prevCurrentTime >= nextCurrentTime) {
NS_ASSERTION(prevCurrentTime == nextCurrentTime, "Time can't go backwards!");
// This could happen due to low clock resolution, maybe?
LOG(PR_LOG_DEBUG, ("Time did not advance"));
// There's not much left to do here, but the code below that notifies
// listeners that streams have ended still needs to run.
}
for (uint32_t i = 0; i < mStreams.Length(); ++i) {
MediaStream* stream = mStreams[i];
// Calculate blocked time and fire Blocked/Unblocked events
GraphTime blockedTime = 0;
GraphTime t = prevCurrentTime;
while (t < nextCurrentTime) {
GraphTime end;
bool blocked = stream->mBlocked.GetAt(t, &end);
if (blocked) {
blockedTime += std::min(end, nextCurrentTime) - t;
}
if (blocked != stream->mNotifiedBlocked) {
for (uint32_t j = 0; j < stream->mListeners.Length(); ++j) {
MediaStreamListener* l = stream->mListeners[j];
l->NotifyBlockingChanged(this,
blocked ? MediaStreamListener::BLOCKED : MediaStreamListener::UNBLOCKED);
}
stream->mNotifiedBlocked = blocked;
}
t = end;
}
stream->AdvanceTimeVaryingValuesToCurrentTime(nextCurrentTime, blockedTime);
// Advance mBlocked last so that implementations of
// AdvanceTimeVaryingValuesToCurrentTime can rely on the value of mBlocked.
stream->mBlocked.AdvanceCurrentTime(nextCurrentTime);
if (blockedTime < nextCurrentTime - prevCurrentTime) {
for (uint32_t i = 0; i < stream->mListeners.Length(); ++i) {
MediaStreamListener* l = stream->mListeners[i];
l->NotifyOutput(this);
}
}
if (stream->mFinished && !stream->mNotifiedFinished &&
stream->mBufferStartTime + stream->GetBufferEnd() <= nextCurrentTime) {
stream->mNotifiedFinished = true;
stream->mLastPlayedVideoFrame.SetNull();
for (uint32_t j = 0; j < stream->mListeners.Length(); ++j) {
MediaStreamListener* l = stream->mListeners[j];
l->NotifyFinished(this);
}
}
LOG(PR_LOG_DEBUG+1, ("MediaStream %p bufferStartTime=%f blockedTime=%f",
stream, MediaTimeToSeconds(stream->mBufferStartTime),
MediaTimeToSeconds(blockedTime)));
}
mCurrentTime = nextCurrentTime;
}
bool
MediaStreamGraphImpl::WillUnderrun(MediaStream* aStream, GraphTime aTime,
GraphTime aEndBlockingDecisions, GraphTime* aEnd)
{
// Finished streams can't underrun. ProcessedMediaStreams also can't cause
// underrun currently, since we'll always be able to produce data for them
// unless they block on some other stream.
if (aStream->mFinished || aStream->AsProcessedStream()) {
return false;
}
GraphTime bufferEnd =
StreamTimeToGraphTime(aStream, aStream->GetBufferEnd(),
INCLUDE_TRAILING_BLOCKED_INTERVAL);
#ifdef DEBUG
if (bufferEnd < mCurrentTime) {
LOG(PR_LOG_ERROR, ("MediaStream %p underrun, "
"bufferEnd %f < mCurrentTime %f (%lld < %lld), Streamtime %lld",
aStream, MediaTimeToSeconds(bufferEnd), MediaTimeToSeconds(mCurrentTime),
bufferEnd, mCurrentTime, aStream->GetBufferEnd()));
aStream->DumpTrackInfo();
NS_ASSERTION(bufferEnd >= mCurrentTime, "Buffer underran");
}
#endif
// We should block after bufferEnd.
if (bufferEnd <= aTime) {
LOG(PR_LOG_DEBUG+1, ("MediaStream %p will block due to data underrun, "
"bufferEnd %f",
aStream, MediaTimeToSeconds(bufferEnd)));
return true;
}
// We should keep blocking if we're currently blocked and we don't have
// data all the way through to aEndBlockingDecisions. If we don't have
// data all the way through to aEndBlockingDecisions, we'll block soon,
// but we might as well remain unblocked and play the data we've got while
// we can.
if (bufferEnd <= aEndBlockingDecisions && aStream->mBlocked.GetBefore(aTime)) {
LOG(PR_LOG_DEBUG+1, ("MediaStream %p will block due to speculative data underrun, "
"bufferEnd %f",
aStream, MediaTimeToSeconds(bufferEnd)));
return true;
}
// Reconsider decisions at bufferEnd
*aEnd = std::min(*aEnd, bufferEnd);
return false;
}
void
MediaStreamGraphImpl::MarkConsumed(MediaStream* aStream)
{
if (aStream->mIsConsumed) {
return;
}
aStream->mIsConsumed = true;
ProcessedMediaStream* ps = aStream->AsProcessedStream();
if (!ps) {
return;
}
// Mark all the inputs to this stream as consumed
for (uint32_t i = 0; i < ps->mInputs.Length(); ++i) {
MarkConsumed(ps->mInputs[i]->mSource);
}
}
void
MediaStreamGraphImpl::UpdateStreamOrderForStream(nsTArray<MediaStream*>* aStack,
already_AddRefed<MediaStream> aStream)
{
nsRefPtr<MediaStream> stream = aStream;
NS_ASSERTION(!stream->mHasBeenOrdered, "stream should not have already been ordered");
if (stream->mIsOnOrderingStack) {
for (int32_t i = aStack->Length() - 1; ; --i) {
aStack->ElementAt(i)->AsProcessedStream()->mInCycle = true;
if (aStack->ElementAt(i) == stream)
break;
}
return;
}
ProcessedMediaStream* ps = stream->AsProcessedStream();
if (ps) {
aStack->AppendElement(stream);
stream->mIsOnOrderingStack = true;
for (uint32_t i = 0; i < ps->mInputs.Length(); ++i) {
MediaStream* source = ps->mInputs[i]->mSource;
if (!source->mHasBeenOrdered) {
nsRefPtr<MediaStream> s = source;
UpdateStreamOrderForStream(aStack, s.forget());
}
}
aStack->RemoveElementAt(aStack->Length() - 1);
stream->mIsOnOrderingStack = false;
}
stream->mHasBeenOrdered = true;
*mStreams.AppendElement() = stream.forget();
}
void
MediaStreamGraphImpl::UpdateStreamOrder()
{
nsTArray<nsRefPtr<MediaStream> > oldStreams;
oldStreams.SwapElements(mStreams);
for (uint32_t i = 0; i < oldStreams.Length(); ++i) {
MediaStream* stream = oldStreams[i];
stream->mHasBeenOrdered = false;
stream->mIsConsumed = false;
stream->mIsOnOrderingStack = false;
stream->mInBlockingSet = false;
ProcessedMediaStream* ps = stream->AsProcessedStream();
if (ps) {
ps->mInCycle = false;
}
}
nsAutoTArray<MediaStream*,10> stack;
for (uint32_t i = 0; i < oldStreams.Length(); ++i) {
nsRefPtr<MediaStream>& s = oldStreams[i];
if (!s->mAudioOutputs.IsEmpty() || !s->mVideoOutputs.IsEmpty()) {
MarkConsumed(s);
}
if (!s->mHasBeenOrdered) {
UpdateStreamOrderForStream(&stack, s.forget());
}
}
}
void
MediaStreamGraphImpl::RecomputeBlocking(GraphTime aEndBlockingDecisions)
{
bool blockingDecisionsWillChange = false;
LOG(PR_LOG_DEBUG+1, ("Media graph %p computing blocking for time %f",
this, MediaTimeToSeconds(mStateComputedTime)));
for (uint32_t i = 0; i < mStreams.Length(); ++i) {
MediaStream* stream = mStreams[i];
if (!stream->mInBlockingSet) {
// Compute a partition of the streams containing 'stream' such that we can
// compute the blocking status of each subset independently.
nsAutoTArray<MediaStream*,10> streamSet;
AddBlockingRelatedStreamsToSet(&streamSet, stream);
GraphTime end;
for (GraphTime t = mStateComputedTime;
t < aEndBlockingDecisions; t = end) {
end = GRAPH_TIME_MAX;
RecomputeBlockingAt(streamSet, t, aEndBlockingDecisions, &end);
if (end < GRAPH_TIME_MAX) {
blockingDecisionsWillChange = true;
}
}
}
GraphTime end;
stream->mBlocked.GetAt(mCurrentTime, &end);
if (end < GRAPH_TIME_MAX) {
blockingDecisionsWillChange = true;
}
}
LOG(PR_LOG_DEBUG+1, ("Media graph %p computed blocking for interval %f to %f",
this, MediaTimeToSeconds(mStateComputedTime),
MediaTimeToSeconds(aEndBlockingDecisions)));
mStateComputedTime = aEndBlockingDecisions;
if (blockingDecisionsWillChange) {
// Make sure we wake up to notify listeners about these changes.
EnsureNextIteration();
}
}
void
MediaStreamGraphImpl::AddBlockingRelatedStreamsToSet(nsTArray<MediaStream*>* aStreams,
MediaStream* aStream)
{
if (aStream->mInBlockingSet)
return;
aStream->mInBlockingSet = true;
aStreams->AppendElement(aStream);
for (uint32_t i = 0; i < aStream->mConsumers.Length(); ++i) {
MediaInputPort* port = aStream->mConsumers[i];
if (port->mFlags & (MediaInputPort::FLAG_BLOCK_INPUT | MediaInputPort::FLAG_BLOCK_OUTPUT)) {
AddBlockingRelatedStreamsToSet(aStreams, port->mDest);
}
}
ProcessedMediaStream* ps = aStream->AsProcessedStream();
if (ps) {
for (uint32_t i = 0; i < ps->mInputs.Length(); ++i) {
MediaInputPort* port = ps->mInputs[i];
if (port->mFlags & (MediaInputPort::FLAG_BLOCK_INPUT | MediaInputPort::FLAG_BLOCK_OUTPUT)) {
AddBlockingRelatedStreamsToSet(aStreams, port->mSource);
}
}
}
}
void
MediaStreamGraphImpl::MarkStreamBlocking(MediaStream* aStream)
{
if (aStream->mBlockInThisPhase)
return;
aStream->mBlockInThisPhase = true;
for (uint32_t i = 0; i < aStream->mConsumers.Length(); ++i) {
MediaInputPort* port = aStream->mConsumers[i];
if (port->mFlags & MediaInputPort::FLAG_BLOCK_OUTPUT) {
MarkStreamBlocking(port->mDest);
}
}
ProcessedMediaStream* ps = aStream->AsProcessedStream();
if (ps) {
for (uint32_t i = 0; i < ps->mInputs.Length(); ++i) {
MediaInputPort* port = ps->mInputs[i];
if (port->mFlags & MediaInputPort::FLAG_BLOCK_INPUT) {
MarkStreamBlocking(port->mSource);
}
}
}
}
void
MediaStreamGraphImpl::RecomputeBlockingAt(const nsTArray<MediaStream*>& aStreams,
GraphTime aTime,
GraphTime aEndBlockingDecisions,
GraphTime* aEnd)
{
for (uint32_t i = 0; i < aStreams.Length(); ++i) {
MediaStream* stream = aStreams[i];
stream->mBlockInThisPhase = false;
}
for (uint32_t i = 0; i < aStreams.Length(); ++i) {
MediaStream* stream = aStreams[i];
if (stream->mFinished) {
GraphTime endTime = StreamTimeToGraphTime(stream, stream->GetBufferEnd());
if (endTime <= aTime) {
LOG(PR_LOG_DEBUG+1, ("MediaStream %p is blocked due to being finished", stream));
// We'll block indefinitely
MarkStreamBlocking(stream);
*aEnd = aEndBlockingDecisions;
continue;
} else {
LOG(PR_LOG_DEBUG+1, ("MediaStream %p is finished, but not blocked yet (end at %f, with blocking at %f)",
stream, MediaTimeToSeconds(stream->GetBufferEnd()),
MediaTimeToSeconds(endTime)));
*aEnd = std::min(*aEnd, endTime);
}
}
GraphTime end;
bool explicitBlock = stream->mExplicitBlockerCount.GetAt(aTime, &end) > 0;
*aEnd = std::min(*aEnd, end);
if (explicitBlock) {
LOG(PR_LOG_DEBUG+1, ("MediaStream %p is blocked due to explicit blocker", stream));
MarkStreamBlocking(stream);
continue;
}
bool underrun = WillUnderrun(stream, aTime, aEndBlockingDecisions, aEnd);
if (underrun) {
// We'll block indefinitely
MarkStreamBlocking(stream);
*aEnd = aEndBlockingDecisions;
continue;
}
}
NS_ASSERTION(*aEnd > aTime, "Failed to advance!");
for (uint32_t i = 0; i < aStreams.Length(); ++i) {
MediaStream* stream = aStreams[i];
stream->mBlocked.SetAtAndAfter(aTime, stream->mBlockInThisPhase);
}
}
void
MediaStreamGraphImpl::NotifyHasCurrentData(MediaStream* aStream)
{
if (!aStream->mNotifiedHasCurrentData && aStream->mHasCurrentData) {
for (uint32_t j = 0; j < aStream->mListeners.Length(); ++j) {
MediaStreamListener* l = aStream->mListeners[j];
l->NotifyHasCurrentData(this);
}
aStream->mNotifiedHasCurrentData = true;
}
}
void
MediaStreamGraphImpl::CreateOrDestroyAudioStreams(GraphTime aAudioOutputStartTime,
MediaStream* aStream)
{
MOZ_ASSERT(mRealtime, "Should only attempt to create audio streams in real-time mode");
nsAutoTArray<bool,2> audioOutputStreamsFound;
for (uint32_t i = 0; i < aStream->mAudioOutputStreams.Length(); ++i) {
audioOutputStreamsFound.AppendElement(false);
}
if (!aStream->mAudioOutputs.IsEmpty()) {
for (StreamBuffer::TrackIter tracks(aStream->GetStreamBuffer(), MediaSegment::AUDIO);
!tracks.IsEnded(); tracks.Next()) {
uint32_t i;
for (i = 0; i < audioOutputStreamsFound.Length(); ++i) {
if (aStream->mAudioOutputStreams[i].mTrackID == tracks->GetID()) {
break;
}
}
if (i < audioOutputStreamsFound.Length()) {
audioOutputStreamsFound[i] = true;
} else {
// No output stream created for this track yet. Check if it's time to
// create one.
GraphTime startTime =
StreamTimeToGraphTime(aStream, tracks->GetStartTimeRoundDown(),
INCLUDE_TRAILING_BLOCKED_INTERVAL);
if (startTime >= mStateComputedTime) {
// The stream wants to play audio, but nothing will play for the forseeable
// future, so don't create the stream.
continue;
}
// XXX allocating a AudioStream could be slow so we're going to have to do
// something here ... preallocation, async allocation, multiplexing onto a single
// stream ...
MediaStream::AudioOutputStream* audioOutputStream =
aStream->mAudioOutputStreams.AppendElement();
audioOutputStream->mAudioPlaybackStartTime = aAudioOutputStartTime;
audioOutputStream->mBlockedAudioTime = 0;
audioOutputStream->mStream = AudioStream::AllocateStream();
// XXX for now, allocate stereo output. But we need to fix this to
// match the system's ideal channel configuration.
audioOutputStream->mStream->Init(2, tracks->GetRate(), AUDIO_CHANNEL_NORMAL);
audioOutputStream->mTrackID = tracks->GetID();
}
}
}
for (int32_t i = audioOutputStreamsFound.Length() - 1; i >= 0; --i) {
if (!audioOutputStreamsFound[i]) {
aStream->mAudioOutputStreams[i].mStream->Shutdown();
aStream->mAudioOutputStreams.RemoveElementAt(i);
}
}
}
void
MediaStreamGraphImpl::PlayAudio(MediaStream* aStream,
GraphTime aFrom, GraphTime aTo)
{
MOZ_ASSERT(mRealtime, "Should only attempt to play audio in realtime mode");
if (aStream->mAudioOutputStreams.IsEmpty()) {
return;
}
// When we're playing multiple copies of this stream at the same time, they're
// perfectly correlated so adding volumes is the right thing to do.
float volume = 0.0f;
for (uint32_t i = 0; i < aStream->mAudioOutputs.Length(); ++i) {
volume += aStream->mAudioOutputs[i].mVolume;
}
for (uint32_t i = 0; i < aStream->mAudioOutputStreams.Length(); ++i) {
MediaStream::AudioOutputStream& audioOutput = aStream->mAudioOutputStreams[i];
StreamBuffer::Track* track = aStream->mBuffer.FindTrack(audioOutput.mTrackID);
AudioSegment* audio = track->Get<AudioSegment>();
// We don't update aStream->mBufferStartTime here to account for
// time spent blocked. Instead, we'll update it in UpdateCurrentTime after the
// blocked period has completed. But we do need to make sure we play from the
// right offsets in the stream buffer, even if we've already written silence for
// some amount of blocked time after the current time.
GraphTime t = aFrom;
while (t < aTo) {
GraphTime end;
bool blocked = aStream->mBlocked.GetAt(t, &end);
end = std::min(end, aTo);
AudioSegment output;
if (blocked) {
// Track total blocked time in aStream->mBlockedAudioTime so that
// the amount of silent samples we've inserted for blocking never gets
// more than one sample away from the ideal amount.
TrackTicks startTicks =
TimeToTicksRoundDown(track->GetRate(), audioOutput.mBlockedAudioTime);
audioOutput.mBlockedAudioTime += end - t;
TrackTicks endTicks =
TimeToTicksRoundDown(track->GetRate(), audioOutput.mBlockedAudioTime);
output.InsertNullDataAtStart(endTicks - startTicks);
LOG(PR_LOG_DEBUG+1, ("MediaStream %p writing blocking-silence samples for %f to %f",
aStream, MediaTimeToSeconds(t), MediaTimeToSeconds(end)));
} else {
TrackTicks startTicks =
track->TimeToTicksRoundDown(GraphTimeToStreamTime(aStream, t));
TrackTicks endTicks =
track->TimeToTicksRoundDown(GraphTimeToStreamTime(aStream, end));
// If startTicks is before the track start, then that part of 'audio'
// will just be silence, which is fine here. But if endTicks is after
// the track end, then 'audio' won't be long enough, so we'll need
// to explicitly play silence.
TrackTicks sliceEnd = std::min(endTicks, audio->GetDuration());
if (sliceEnd > startTicks) {
output.AppendSlice(*audio, startTicks, sliceEnd);
}
// Play silence where the track has ended
output.AppendNullData(endTicks - sliceEnd);
NS_ASSERTION(endTicks == sliceEnd || track->IsEnded(),
"Ran out of data but track not ended?");
output.ApplyVolume(volume);
LOG(PR_LOG_DEBUG+1, ("MediaStream %p writing samples for %f to %f (samples %lld to %lld)",
aStream, MediaTimeToSeconds(t), MediaTimeToSeconds(end),
startTicks, endTicks));
}
output.WriteTo(audioOutput.mStream);
t = end;
}
}
}
void
MediaStreamGraphImpl::PlayVideo(MediaStream* aStream)
{
MOZ_ASSERT(mRealtime, "Should only attempt to play video in realtime mode");
if (aStream->mVideoOutputs.IsEmpty())
return;
// Display the next frame a bit early. This is better than letting the current
// frame be displayed for too long.
GraphTime framePosition = mCurrentTime + MEDIA_GRAPH_TARGET_PERIOD_MS;
NS_ASSERTION(framePosition >= aStream->mBufferStartTime, "frame position before buffer?");
StreamTime frameBufferTime = GraphTimeToStreamTime(aStream, framePosition);
TrackTicks start;
const VideoFrame* frame = nullptr;
StreamBuffer::Track* track;
for (StreamBuffer::TrackIter tracks(aStream->GetStreamBuffer(), MediaSegment::VIDEO);
!tracks.IsEnded(); tracks.Next()) {
VideoSegment* segment = tracks->Get<VideoSegment>();
TrackTicks thisStart;
const VideoFrame* thisFrame =
segment->GetFrameAt(tracks->TimeToTicksRoundDown(frameBufferTime), &thisStart);
if (thisFrame && thisFrame->GetImage()) {
start = thisStart;
frame = thisFrame;
track = tracks.get();
}
}
if (!frame || *frame == aStream->mLastPlayedVideoFrame)
return;
LOG(PR_LOG_DEBUG+1, ("MediaStream %p writing video frame %p (%dx%d)",
aStream, frame->GetImage(), frame->GetIntrinsicSize().width,
frame->GetIntrinsicSize().height));
GraphTime startTime = StreamTimeToGraphTime(aStream,
track->TicksToTimeRoundDown(start), INCLUDE_TRAILING_BLOCKED_INTERVAL);
TimeStamp targetTime = mCurrentTimeStamp +
TimeDuration::FromMilliseconds(double(startTime - mCurrentTime));
for (uint32_t i = 0; i < aStream->mVideoOutputs.Length(); ++i) {
VideoFrameContainer* output = aStream->mVideoOutputs[i];
output->SetCurrentFrame(frame->GetIntrinsicSize(), frame->GetImage(),
targetTime);
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethod(output, &VideoFrameContainer::Invalidate);
NS_DispatchToMainThread(event, NS_DISPATCH_NORMAL);
}
if (!aStream->mNotifiedFinished) {
aStream->mLastPlayedVideoFrame = *frame;
}
}
void
MediaStreamGraphImpl::PrepareUpdatesToMainThreadState()
{
mMonitor.AssertCurrentThreadOwns();
for (uint32_t i = 0; i < mStreams.Length(); ++i) {
MediaStream* stream = mStreams[i];
StreamUpdate* update = mStreamUpdates.AppendElement();
update->mGraphUpdateIndex = stream->mGraphUpdateIndices.GetAt(mCurrentTime);
update->mStream = stream;
update->mNextMainThreadCurrentTime =
GraphTimeToStreamTime(stream, mCurrentTime);
update->mNextMainThreadFinished =
stream->mFinished &&
StreamTimeToGraphTime(stream, stream->GetBufferEnd()) <= mCurrentTime;
}
mUpdateRunnables.MoveElementsFrom(mPendingUpdateRunnables);
EnsureStableStateEventPosted();
}
void
MediaStreamGraphImpl::EnsureImmediateWakeUpLocked(MonitorAutoLock& aLock)
{
if (mWaitState == WAITSTATE_WAITING_FOR_NEXT_ITERATION ||
mWaitState == WAITSTATE_WAITING_INDEFINITELY) {
mWaitState = WAITSTATE_WAKING_UP;
aLock.Notify();
}
}
void
MediaStreamGraphImpl::EnsureNextIteration()
{
MonitorAutoLock lock(mMonitor);
EnsureNextIterationLocked(lock);
}
void
MediaStreamGraphImpl::EnsureNextIterationLocked(MonitorAutoLock& aLock)
{
if (mNeedAnotherIteration)
return;
mNeedAnotherIteration = true;
if (mWaitState == WAITSTATE_WAITING_INDEFINITELY) {
mWaitState = WAITSTATE_WAKING_UP;
aLock.Notify();
}
}
static GraphTime
RoundUpToAudioBlock(GraphTime aTime)
{
TrackRate rate = IdealAudioRate();
int64_t ticksAtIdealRate = (aTime*rate) >> MEDIA_TIME_FRAC_BITS;
// Round up to nearest block boundary
int64_t blocksAtIdealRate =
(ticksAtIdealRate + (WEBAUDIO_BLOCK_SIZE - 1)) >>
WEBAUDIO_BLOCK_SIZE_BITS;
// Round up to nearest MediaTime unit
return
((((blocksAtIdealRate + 1)*WEBAUDIO_BLOCK_SIZE) << MEDIA_TIME_FRAC_BITS)
+ rate - 1)/rate;
}
void
MediaStreamGraphImpl::ProduceDataForStreamsBlockByBlock(uint32_t aStreamIndex,
GraphTime aFrom,
GraphTime aTo)
{
GraphTime t = aFrom;
while (t < aTo) {
GraphTime next = RoundUpToAudioBlock(t + 1);
for (uint32_t i = aStreamIndex; i < mStreams.Length(); ++i) {
nsRefPtr<ProcessedMediaStream> ps = mStreams[i]->AsProcessedStream();
if (ps) {
ps->ProduceOutput(t, next);
}
}
t = next;
}
NS_ASSERTION(t == aTo, "Something went wrong with rounding to block boundaries");
}
void
MediaStreamGraphImpl::RunThread()
{
nsTArray<MessageBlock> messageQueue;
{
MonitorAutoLock lock(mMonitor);
messageQueue.SwapElements(mMessageQueue);
}
NS_ASSERTION(!messageQueue.IsEmpty(),
"Shouldn't have started a graph with empty message queue!");
uint32_t ticksProcessed = 0;
if (!mRealtime) {
NS_ASSERTION(!mNonRealtimeIsRunning,
"We should not be running in non-realtime mode already");
NS_ASSERTION(mNonRealtimeTicksToProcess,
"We should have a non-zero number of ticks to process");
mNonRealtimeIsRunning = true;
}
for (;;) {
// Update mCurrentTime to the min of the playing audio times, or using the
// wall-clock time change if no audio is playing.
UpdateCurrentTime();
// Calculate independent action times for each batch of messages (each
// batch corresponding to an event loop task). This isolates the performance
// of different scripts to some extent.
for (uint32_t i = 0; i < messageQueue.Length(); ++i) {
mProcessingGraphUpdateIndex = messageQueue[i].mGraphUpdateIndex;
nsTArray<nsAutoPtr<ControlMessage> >& messages = messageQueue[i].mMessages;
for (uint32_t j = 0; j < messages.Length(); ++j) {
messages[j]->Run();
}
}
messageQueue.Clear();
UpdateStreamOrder();
GraphTime endBlockingDecisions =
RoundUpToAudioBlock(mCurrentTime + MillisecondsToMediaTime(AUDIO_TARGET_MS));
bool ensureNextIteration = false;
// Grab pending stream input.
for (uint32_t i = 0; i < mStreams.Length(); ++i) {
SourceMediaStream* is = mStreams[i]->AsSourceStream();
if (is) {
UpdateConsumptionState(is);
ExtractPendingInput(is, endBlockingDecisions, &ensureNextIteration);
}
}
// Figure out which streams are blocked and when.
GraphTime prevComputedTime = mStateComputedTime;
RecomputeBlocking(endBlockingDecisions);
// Play stream contents.
uint32_t audioStreamsActive = 0;
bool allBlockedForever = true;
// True when we've done ProduceOutput for all processed streams.
bool doneAllProducing = false;
// Figure out what each stream wants to do
for (uint32_t i = 0; i < mStreams.Length(); ++i) {
MediaStream* stream = mStreams[i];
if (!doneAllProducing && !stream->IsFinishedOnGraphThread()) {
ProcessedMediaStream* ps = stream->AsProcessedStream();
if (ps) {
AudioNodeStream* n = stream->AsAudioNodeStream();
if (n) {
// Since an AudioNodeStream is present, go ahead and
// produce audio block by block for all the rest of the streams.
ProduceDataForStreamsBlockByBlock(i, prevComputedTime, mStateComputedTime);
doneAllProducing = true;
} else {
ps->ProduceOutput(prevComputedTime, mStateComputedTime);
NS_ASSERTION(stream->mBuffer.GetEnd() >=
GraphTimeToStreamTime(stream, mStateComputedTime),
"Stream did not produce enough data");
}
}
}
NotifyHasCurrentData(stream);
if (mRealtime) {
// Only playback audio and video in real-time mode
CreateOrDestroyAudioStreams(prevComputedTime, stream);
PlayAudio(stream, prevComputedTime, mStateComputedTime);
audioStreamsActive += stream->mAudioOutputStreams.Length();
PlayVideo(stream);
}
SourceMediaStream* is = stream->AsSourceStream();
if (is) {
UpdateBufferSufficiencyState(is);
}
GraphTime end;
if (!stream->mBlocked.GetAt(mCurrentTime, &end) || end < GRAPH_TIME_MAX) {
allBlockedForever = false;
}
}
if (!mRealtime) {
ticksProcessed += TimeToTicksRoundDown(IdealAudioRate(), mStateComputedTime - prevComputedTime);
// Terminate processing if we've produce enough non-realtime ticks.
if (ticksProcessed >= mNonRealtimeTicksToProcess) {
// Wait indefinitely when we've processed enough non-realtime ticks.
// We'll be woken up when the graph shuts down.
MonitorAutoLock lock(mMonitor);
PrepareUpdatesToMainThreadState();
mWaitState = WAITSTATE_WAITING_INDEFINITELY;
mMonitor.Wait(PR_INTERVAL_NO_TIMEOUT);
}
}
if (ensureNextIteration || !allBlockedForever || audioStreamsActive > 0) {
EnsureNextIteration();
}
// Send updates to the main thread and wait for the next control loop
// iteration.
{
MonitorAutoLock lock(mMonitor);
PrepareUpdatesToMainThreadState();
if (mForceShutDown || (IsEmpty() && mMessageQueue.IsEmpty())) {
// Enter shutdown mode. The stable-state handler will detect this
// and complete shutdown. Destroy any streams immediately.
LOG(PR_LOG_DEBUG, ("MediaStreamGraph %p waiting for main thread cleanup", this));
// Commit to shutting down this graph object.
mLifecycleState = LIFECYCLE_WAITING_FOR_MAIN_THREAD_CLEANUP;
// No need to Destroy streams here. The main-thread owner of each
// stream is responsible for calling Destroy them.
return;
}
// No need to wait in non-realtime mode, just churn through the input as soon
// as possible.
if (mRealtime) {
PRIntervalTime timeout = PR_INTERVAL_NO_TIMEOUT;
TimeStamp now = TimeStamp::Now();
if (mNeedAnotherIteration) {
int64_t timeoutMS = MEDIA_GRAPH_TARGET_PERIOD_MS -
int64_t((now - mCurrentTimeStamp).ToMilliseconds());
// Make sure timeoutMS doesn't overflow 32 bits by waking up at
// least once a minute, if we need to wake up at all
timeoutMS = std::max<int64_t>(0, std::min<int64_t>(timeoutMS, 60*1000));
timeout = PR_MillisecondsToInterval(uint32_t(timeoutMS));
LOG(PR_LOG_DEBUG+1, ("Waiting for next iteration; at %f, timeout=%f",
(now - mInitialTimeStamp).ToSeconds(), timeoutMS/1000.0));
mWaitState = WAITSTATE_WAITING_FOR_NEXT_ITERATION;
} else {
mWaitState = WAITSTATE_WAITING_INDEFINITELY;
}
if (timeout > 0) {
mMonitor.Wait(timeout);
LOG(PR_LOG_DEBUG+1, ("Resuming after timeout; at %f, elapsed=%f",
(TimeStamp::Now() - mInitialTimeStamp).ToSeconds(),
(TimeStamp::Now() - now).ToSeconds()));
}
}
mWaitState = WAITSTATE_RUNNING;
mNeedAnotherIteration = false;
messageQueue.SwapElements(mMessageQueue);
}
}
if (!mRealtime) {
mNonRealtimeIsRunning = false;
}
}
void
MediaStreamGraphImpl::ApplyStreamUpdate(StreamUpdate* aUpdate)
{
mMonitor.AssertCurrentThreadOwns();
MediaStream* stream = aUpdate->mStream;
if (!stream)
return;
stream->mMainThreadCurrentTime = aUpdate->mNextMainThreadCurrentTime;
stream->mMainThreadFinished = aUpdate->mNextMainThreadFinished;
for (int32_t i = stream->mMainThreadListeners.Length() - 1; i >= 0; --i) {
stream->mMainThreadListeners[i]->NotifyMainThreadStateChanged();
}
}
void
MediaStreamGraphImpl::ShutdownThreads()
{
NS_ASSERTION(NS_IsMainThread(), "Must be called on main thread");
// mGraph's thread is not running so it's OK to do whatever here
LOG(PR_LOG_DEBUG, ("Stopping threads for MediaStreamGraph %p", this));
if (mThread) {
mThread->Shutdown();
mThread = nullptr;
}
}
void
MediaStreamGraphImpl::ForceShutDown()
{
NS_ASSERTION(NS_IsMainThread(), "Must be called on main thread");
LOG(PR_LOG_DEBUG, ("MediaStreamGraph %p ForceShutdown", this));
{
MonitorAutoLock lock(mMonitor);
mForceShutDown = true;
EnsureImmediateWakeUpLocked(lock);
}
}
namespace {
class MediaStreamGraphThreadRunnable : public nsRunnable {
public:
explicit MediaStreamGraphThreadRunnable(MediaStreamGraphImpl* aGraph)
: mGraph(aGraph)
{
}
NS_IMETHOD Run()
{
mGraph->RunThread();
return NS_OK;
}
private:
MediaStreamGraphImpl* mGraph;
};
class MediaStreamGraphShutDownRunnable : public nsRunnable {
public:
MediaStreamGraphShutDownRunnable(MediaStreamGraphImpl* aGraph) : mGraph(aGraph) {}
NS_IMETHOD Run()
{
NS_ASSERTION(mGraph->mDetectedNotRunning,
"We should know the graph thread control loop isn't running!");
mGraph->ShutdownThreads();
// mGraph's thread is not running so it's OK to do whatever here
if (mGraph->IsEmpty()) {
// mGraph is no longer needed, so delete it. If the graph is not empty
// then we must be in a forced shutdown and some later AppendMessage will
// detect that the manager has been emptied, and delete it.
delete mGraph;
} else {
for (uint32_t i = 0; i < mGraph->mStreams.Length(); ++i) {
DOMMediaStream* s = mGraph->mStreams[i]->GetWrapper();
if (s) {
s->NotifyMediaStreamGraphShutdown();
}
}
NS_ASSERTION(mGraph->mForceShutDown, "Not in forced shutdown?");
mGraph->mLifecycleState =
MediaStreamGraphImpl::LIFECYCLE_WAITING_FOR_STREAM_DESTRUCTION;
}
return NS_OK;
}
private:
MediaStreamGraphImpl* mGraph;
};
class MediaStreamGraphStableStateRunnable : public nsRunnable {
public:
explicit MediaStreamGraphStableStateRunnable(MediaStreamGraphImpl* aGraph)
: mGraph(aGraph)
{
}
NS_IMETHOD Run()
{
if (mGraph) {
mGraph->RunInStableState();
}
return NS_OK;
}
private:
MediaStreamGraphImpl* mGraph;
};
/*
* Control messages forwarded from main thread to graph manager thread
*/
class CreateMessage : public ControlMessage {
public:
CreateMessage(MediaStream* aStream) : ControlMessage(aStream) {}
virtual void Run()
{
mStream->GraphImpl()->AddStream(mStream);
mStream->Init();
}
};
class MediaStreamGraphShutdownObserver MOZ_FINAL : public nsIObserver
{
public:
NS_DECL_ISUPPORTS
NS_DECL_NSIOBSERVER
};
}
void
MediaStreamGraphImpl::RunInStableState()
{
NS_ASSERTION(NS_IsMainThread(), "Must be called on main thread");
nsTArray<nsCOMPtr<nsIRunnable> > runnables;
// When we're doing a forced shutdown, pending control messages may be
// run on the main thread via RunDuringShutdown. Those messages must
// run without the graph monitor being held. So, we collect them here.
nsTArray<nsAutoPtr<ControlMessage> > controlMessagesToRunDuringShutdown;
{
MonitorAutoLock lock(mMonitor);
mPostedRunInStableStateEvent = false;
runnables.SwapElements(mUpdateRunnables);
for (uint32_t i = 0; i < mStreamUpdates.Length(); ++i) {
StreamUpdate* update = &mStreamUpdates[i];
if (update->mStream) {
ApplyStreamUpdate(update);
}
}
mStreamUpdates.Clear();
if (mLifecycleState == LIFECYCLE_WAITING_FOR_MAIN_THREAD_CLEANUP && mForceShutDown) {
// Defer calls to RunDuringShutdown() to happen while mMonitor is not held.
for (uint32_t i = 0; i < mMessageQueue.Length(); ++i) {
MessageBlock& mb = mMessageQueue[i];
controlMessagesToRunDuringShutdown.MoveElementsFrom(mb.mMessages);
}
mMessageQueue.Clear();
controlMessagesToRunDuringShutdown.MoveElementsFrom(mCurrentTaskMessageQueue);
// Stop MediaStreamGraph threads. Do not clear gGraph since
// we have outstanding DOM objects that may need it.
mLifecycleState = LIFECYCLE_WAITING_FOR_THREAD_SHUTDOWN;
nsCOMPtr<nsIRunnable> event = new MediaStreamGraphShutDownRunnable(this);
NS_DispatchToMainThread(event);
}
if (mLifecycleState == LIFECYCLE_THREAD_NOT_STARTED) {
mLifecycleState = LIFECYCLE_RUNNING;
// Start the thread now. We couldn't start it earlier because
// the graph might exit immediately on finding it has no streams. The
// first message for a new graph must create a stream.
nsCOMPtr<nsIRunnable> event = new MediaStreamGraphThreadRunnable(this);
NS_NewNamedThread("MediaStreamGrph", getter_AddRefs(mThread), event);
}
if (mCurrentTaskMessageQueue.IsEmpty()) {
if (mLifecycleState == LIFECYCLE_WAITING_FOR_MAIN_THREAD_CLEANUP && IsEmpty()) {
// Complete shutdown. First, ensure that this graph is no longer used.
// A new graph graph will be created if one is needed.
LOG(PR_LOG_DEBUG, ("Disconnecting MediaStreamGraph %p", this));
if (this == gGraph) {
// null out gGraph if that's the graph being shut down
gGraph = nullptr;
}
// Asynchronously clean up old graph. We don't want to do this
// synchronously because it spins the event loop waiting for threads
// to shut down, and we don't want to do that in a stable state handler.
mLifecycleState = LIFECYCLE_WAITING_FOR_THREAD_SHUTDOWN;
nsCOMPtr<nsIRunnable> event = new MediaStreamGraphShutDownRunnable(this);
NS_DispatchToMainThread(event);
}
} else {
if (mLifecycleState <= LIFECYCLE_WAITING_FOR_MAIN_THREAD_CLEANUP) {
MessageBlock* block = mMessageQueue.AppendElement();
block->mMessages.SwapElements(mCurrentTaskMessageQueue);
block->mGraphUpdateIndex = mGraphUpdatesSent;
++mGraphUpdatesSent;
EnsureNextIterationLocked(lock);
}
if (mLifecycleState == LIFECYCLE_WAITING_FOR_MAIN_THREAD_CLEANUP) {
mLifecycleState = LIFECYCLE_RUNNING;
// Revive the MediaStreamGraph since we have more messages going to it.
// Note that we need to put messages into its queue before reviving it,
// or it might exit immediately.
nsCOMPtr<nsIRunnable> event = new MediaStreamGraphThreadRunnable(this);
mThread->Dispatch(event, 0);
}
}
mDetectedNotRunning = mLifecycleState > LIFECYCLE_RUNNING;
}
// Make sure we get a new current time in the next event loop task
mPostedRunInStableState = false;
for (uint32_t i = 0; i < runnables.Length(); ++i) {
runnables[i]->Run();
}
for (uint32_t i = 0; i < controlMessagesToRunDuringShutdown.Length(); ++i) {
controlMessagesToRunDuringShutdown[i]->RunDuringShutdown();
}
}
static NS_DEFINE_CID(kAppShellCID, NS_APPSHELL_CID);
void
MediaStreamGraphImpl::EnsureRunInStableState()
{
NS_ASSERTION(NS_IsMainThread(), "main thread only");
if (mPostedRunInStableState)
return;
mPostedRunInStableState = true;
nsCOMPtr<nsIRunnable> event = new MediaStreamGraphStableStateRunnable(this);
nsCOMPtr<nsIAppShell> appShell = do_GetService(kAppShellCID);
if (appShell) {
appShell->RunInStableState(event);
} else {
NS_ERROR("Appshell already destroyed?");
}
}
void
MediaStreamGraphImpl::EnsureStableStateEventPosted()
{
mMonitor.AssertCurrentThreadOwns();
if (mPostedRunInStableStateEvent)
return;
mPostedRunInStableStateEvent = true;
nsCOMPtr<nsIRunnable> event = new MediaStreamGraphStableStateRunnable(this);
NS_DispatchToMainThread(event);
}
void
MediaStreamGraphImpl::AppendMessage(ControlMessage* aMessage)
{
NS_ASSERTION(NS_IsMainThread(), "main thread only");
NS_ASSERTION(!aMessage->GetStream() ||
!aMessage->GetStream()->IsDestroyed(),
"Stream already destroyed");
if (mDetectedNotRunning &&
mLifecycleState > LIFECYCLE_WAITING_FOR_MAIN_THREAD_CLEANUP) {
// The graph control loop is not running and main thread cleanup has
// happened. From now on we can't append messages to mCurrentTaskMessageQueue,
// because that will never be processed again, so just RunDuringShutdown
// this message.
// This should only happen during forced shutdown.
aMessage->RunDuringShutdown();
delete aMessage;
if (IsEmpty()) {
if (gGraph == this) {
gGraph = nullptr;
}
delete this;
} else if (!mRealtime) {
// Make sure to mark the graph as not doing non-realtime processing,
// because otherwise AppendMessage will try to ensure that the graph
// is running, and we will never manage to release our resources.
mNonRealtimeProcessing = false;
}
return;
}
mCurrentTaskMessageQueue.AppendElement(aMessage);
// Do not start running the non-realtime graph unless processing has
// explicitly started.
if (mRealtime || mNonRealtimeProcessing) {
EnsureRunInStableState();
}
}
void
MediaStream::Init()
{
MediaStreamGraphImpl* graph = GraphImpl();
mBlocked.SetAtAndAfter(graph->mCurrentTime, true);
mExplicitBlockerCount.SetAtAndAfter(graph->mCurrentTime, true);
mExplicitBlockerCount.SetAtAndAfter(graph->mStateComputedTime, false);
}
MediaStreamGraphImpl*
MediaStream::GraphImpl()
{
return mGraph;
}
MediaStreamGraph*
MediaStream::Graph()
{
return mGraph;
}
void
MediaStream::SetGraphImpl(MediaStreamGraphImpl* aGraph)
{
MOZ_ASSERT(!mGraph, "Should only be called once");
mGraph = aGraph;
}
StreamTime
MediaStream::GraphTimeToStreamTime(GraphTime aTime)
{
return GraphImpl()->GraphTimeToStreamTime(this, aTime);
}
StreamTime
MediaStream::GraphTimeToStreamTimeOptimistic(GraphTime aTime)
{
return GraphImpl()->GraphTimeToStreamTimeOptimistic(this, aTime);
}
GraphTime
MediaStream::StreamTimeToGraphTime(StreamTime aTime)
{
return GraphImpl()->StreamTimeToGraphTime(this, aTime, 0);
}
void
MediaStream::FinishOnGraphThread()
{
GraphImpl()->FinishStream(this);
}
void
MediaStream::RemoveAllListenersImpl()
{
for (int32_t i = mListeners.Length() - 1; i >= 0; --i) {
nsRefPtr<MediaStreamListener> listener = mListeners[i].forget();
listener->NotifyRemoved(GraphImpl());
}
mListeners.Clear();
}
void
MediaStream::DestroyImpl()
{
RemoveAllListenersImpl();
for (int32_t i = mConsumers.Length() - 1; i >= 0; --i) {
mConsumers[i]->Disconnect();
}
for (uint32_t i = 0; i < mAudioOutputStreams.Length(); ++i) {
mAudioOutputStreams[i].mStream->Shutdown();
}
mAudioOutputStreams.Clear();
}
void
MediaStream::Destroy()
{
// Keep this stream alive until we leave this method
nsRefPtr<MediaStream> kungFuDeathGrip = this;
class Message : public ControlMessage {
public:
Message(MediaStream* aStream) : ControlMessage(aStream) {}
virtual void Run()
{
mStream->DestroyImpl();
mStream->GraphImpl()->RemoveStream(mStream);
}
virtual void RunDuringShutdown()
{ Run(); }
};
mWrapper = nullptr;
GraphImpl()->AppendMessage(new Message(this));
// Message::RunDuringShutdown may have removed this stream from the graph,
// but our kungFuDeathGrip above will have kept this stream alive if
// necessary.
mMainThreadDestroyed = true;
}
void
MediaStream::AddAudioOutput(void* aKey)
{
class Message : public ControlMessage {
public:
Message(MediaStream* aStream, void* aKey) : ControlMessage(aStream), mKey(aKey) {}
virtual void Run()
{
mStream->AddAudioOutputImpl(mKey);
}
void* mKey;
};
GraphImpl()->AppendMessage(new Message(this, aKey));
}
void
MediaStream::SetAudioOutputVolumeImpl(void* aKey, float aVolume)
{
for (uint32_t i = 0; i < mAudioOutputs.Length(); ++i) {
if (mAudioOutputs[i].mKey == aKey) {
mAudioOutputs[i].mVolume = aVolume;
return;
}
}
NS_ERROR("Audio output key not found");
}
void
MediaStream::SetAudioOutputVolume(void* aKey, float aVolume)
{
class Message : public ControlMessage {
public:
Message(MediaStream* aStream, void* aKey, float aVolume) :
ControlMessage(aStream), mKey(aKey), mVolume(aVolume) {}
virtual void Run()
{
mStream->SetAudioOutputVolumeImpl(mKey, mVolume);
}
void* mKey;
float mVolume;
};
GraphImpl()->AppendMessage(new Message(this, aKey, aVolume));
}
void
MediaStream::RemoveAudioOutputImpl(void* aKey)
{
for (uint32_t i = 0; i < mAudioOutputs.Length(); ++i) {
if (mAudioOutputs[i].mKey == aKey) {
mAudioOutputs.RemoveElementAt(i);
return;
}
}
NS_ERROR("Audio output key not found");
}
void
MediaStream::RemoveAudioOutput(void* aKey)
{
class Message : public ControlMessage {
public:
Message(MediaStream* aStream, void* aKey) :
ControlMessage(aStream), mKey(aKey) {}
virtual void Run()
{
mStream->RemoveAudioOutputImpl(mKey);
}
void* mKey;
};
GraphImpl()->AppendMessage(new Message(this, aKey));
}
void
MediaStream::AddVideoOutput(VideoFrameContainer* aContainer)
{
class Message : public ControlMessage {
public:
Message(MediaStream* aStream, VideoFrameContainer* aContainer) :
ControlMessage(aStream), mContainer(aContainer) {}
virtual void Run()
{
mStream->AddVideoOutputImpl(mContainer.forget());
}
nsRefPtr<VideoFrameContainer> mContainer;
};
GraphImpl()->AppendMessage(new Message(this, aContainer));
}
void
MediaStream::RemoveVideoOutput(VideoFrameContainer* aContainer)
{
class Message : public ControlMessage {
public:
Message(MediaStream* aStream, VideoFrameContainer* aContainer) :
ControlMessage(aStream), mContainer(aContainer) {}
virtual void Run()
{
mStream->RemoveVideoOutputImpl(mContainer);
}
nsRefPtr<VideoFrameContainer> mContainer;
};
GraphImpl()->AppendMessage(new Message(this, aContainer));
}
void
MediaStream::ChangeExplicitBlockerCount(int32_t aDelta)
{
class Message : public ControlMessage {
public:
Message(MediaStream* aStream, int32_t aDelta) :
ControlMessage(aStream), mDelta(aDelta) {}
virtual void Run()
{
mStream->ChangeExplicitBlockerCountImpl(
mStream->GraphImpl()->mStateComputedTime, mDelta);
}
int32_t mDelta;
};
GraphImpl()->AppendMessage(new Message(this, aDelta));
}
void
MediaStream::AddListenerImpl(already_AddRefed<MediaStreamListener> aListener)
{
MediaStreamListener* listener = *mListeners.AppendElement() = aListener;
listener->NotifyBlockingChanged(GraphImpl(),
mNotifiedBlocked ? MediaStreamListener::BLOCKED : MediaStreamListener::UNBLOCKED);
if (mNotifiedFinished) {
listener->NotifyFinished(GraphImpl());
}
if (mNotifiedHasCurrentData) {
listener->NotifyHasCurrentData(GraphImpl());
}
}
void
MediaStream::AddListener(MediaStreamListener* aListener)
{
class Message : public ControlMessage {
public:
Message(MediaStream* aStream, MediaStreamListener* aListener) :
ControlMessage(aStream), mListener(aListener) {}
virtual void Run()
{
mStream->AddListenerImpl(mListener.forget());
}
nsRefPtr<MediaStreamListener> mListener;
};
GraphImpl()->AppendMessage(new Message(this, aListener));
}
void
MediaStream::RemoveListenerImpl(MediaStreamListener* aListener)
{
// wouldn't need this if we could do it in the opposite order
nsRefPtr<MediaStreamListener> listener(aListener);
mListeners.RemoveElement(aListener);
listener->NotifyRemoved(GraphImpl());
}
void
MediaStream::RemoveListener(MediaStreamListener* aListener)
{
class Message : public ControlMessage {
public:
Message(MediaStream* aStream, MediaStreamListener* aListener) :
ControlMessage(aStream), mListener(aListener) {}
virtual void Run()
{
mStream->RemoveListenerImpl(mListener);
}
nsRefPtr<MediaStreamListener> mListener;
};
// If the stream is destroyed the Listeners have or will be
// removed.
if (!IsDestroyed()) {
GraphImpl()->AppendMessage(new Message(this, aListener));
}
}
void
SourceMediaStream::DestroyImpl()
{
{
MutexAutoLock lock(mMutex);
mDestroyed = true;
}
MediaStream::DestroyImpl();
}
void
SourceMediaStream::SetPullEnabled(bool aEnabled)
{
MutexAutoLock lock(mMutex);
mPullEnabled = aEnabled;
if (mPullEnabled && !mDestroyed) {
GraphImpl()->EnsureNextIteration();
}
}
void
SourceMediaStream::AddTrack(TrackID aID, TrackRate aRate, TrackTicks aStart,
MediaSegment* aSegment)
{
MutexAutoLock lock(mMutex);
TrackData* data = mUpdateTracks.AppendElement();
data->mID = aID;
data->mRate = aRate;
data->mStart = aStart;
data->mCommands = TRACK_CREATE;
data->mData = aSegment;
data->mHaveEnough = false;
if (!mDestroyed) {
GraphImpl()->EnsureNextIteration();
}
}
bool
SourceMediaStream::AppendToTrack(TrackID aID, MediaSegment* aSegment)
{
MutexAutoLock lock(mMutex);
// ::EndAllTrackAndFinished() can end these before the sources notice
bool appended = false;
if (!mFinished) {
TrackData *track = FindDataForTrack(aID);
if (track) {
track->mData->AppendFrom(aSegment);
appended = true;
} else {
aSegment->Clear();
}
}
if (!mDestroyed) {
GraphImpl()->EnsureNextIteration();
}
return appended;
}
bool
SourceMediaStream::HaveEnoughBuffered(TrackID aID)
{
MutexAutoLock lock(mMutex);
TrackData *track = FindDataForTrack(aID);
if (track) {
return track->mHaveEnough;
}
return false;
}
void
SourceMediaStream::DispatchWhenNotEnoughBuffered(TrackID aID,
nsIThread* aSignalThread, nsIRunnable* aSignalRunnable)
{
MutexAutoLock lock(mMutex);
TrackData* data = FindDataForTrack(aID);
if (!data) {
aSignalThread->Dispatch(aSignalRunnable, 0);
return;
}
if (data->mHaveEnough) {
data->mDispatchWhenNotEnough.AppendElement()->Init(aSignalThread, aSignalRunnable);
} else {
aSignalThread->Dispatch(aSignalRunnable, 0);
}
}
void
SourceMediaStream::EndTrack(TrackID aID)
{
MutexAutoLock lock(mMutex);
// ::EndAllTrackAndFinished() can end these before the sources call this
if (!mFinished) {
TrackData *track = FindDataForTrack(aID);
if (track) {
track->mCommands |= TRACK_END;
}
}
if (!mDestroyed) {
GraphImpl()->EnsureNextIteration();
}
}
void
SourceMediaStream::AdvanceKnownTracksTime(StreamTime aKnownTime)
{
MutexAutoLock lock(mMutex);
mUpdateKnownTracksTime = aKnownTime;
if (!mDestroyed) {
GraphImpl()->EnsureNextIteration();
}
}
void
SourceMediaStream::FinishWithLockHeld()
{
mMutex.AssertCurrentThreadOwns();
mUpdateFinished = true;
if (!mDestroyed) {
GraphImpl()->EnsureNextIteration();
}
}
void
SourceMediaStream::EndAllTrackAndFinish()
{
MutexAutoLock lock(mMutex);
for (uint32_t i = 0; i < mUpdateTracks.Length(); ++i) {
SourceMediaStream::TrackData* data = &mUpdateTracks[i];
data->mCommands |= TRACK_END;
}
FinishWithLockHeld();
// we will call NotifyFinished() to let GetUserMedia know
}
void
MediaInputPort::Init()
{
LOG(PR_LOG_DEBUG, ("Adding MediaInputPort %p (from %p to %p) to the graph",
this, mSource, mDest));
mSource->AddConsumer(this);
mDest->AddInput(this);
// mPortCount decremented via MediaInputPort::Destroy's message
++mDest->GraphImpl()->mPortCount;
}
void
MediaInputPort::Disconnect()
{
NS_ASSERTION(!mSource == !mDest,
"mSource must either both be null or both non-null");
if (!mSource)
return;
mSource->RemoveConsumer(this);
mSource = nullptr;
mDest->RemoveInput(this);
mDest = nullptr;
}
MediaInputPort::InputInterval
MediaInputPort::GetNextInputInterval(GraphTime aTime)
{
InputInterval result = { GRAPH_TIME_MAX, GRAPH_TIME_MAX, false };
GraphTime t = aTime;
GraphTime end;
for (;;) {
if (!mDest->mBlocked.GetAt(t, &end))
break;
if (end == GRAPH_TIME_MAX)
return result;
t = end;
}
result.mStart = t;
GraphTime sourceEnd;
result.mInputIsBlocked = mSource->mBlocked.GetAt(t, &sourceEnd);
result.mEnd = std::min(end, sourceEnd);
return result;
}
void
MediaInputPort::Destroy()
{
class Message : public ControlMessage {
public:
Message(MediaInputPort* aPort)
: ControlMessage(nullptr), mPort(aPort) {}
virtual void Run()
{
mPort->Disconnect();
--mPort->GraphImpl()->mPortCount;
NS_RELEASE(mPort);
}
virtual void RunDuringShutdown()
{
Run();
}
// This does not need to be strongly referenced; the graph is holding
// a strong reference to the port, which we will remove. This will be the
// last message for the port.
MediaInputPort* mPort;
};
GraphImpl()->AppendMessage(new Message(this));
}
MediaStreamGraphImpl*
MediaInputPort::GraphImpl()
{
return mGraph;
}
MediaStreamGraph*
MediaInputPort::Graph()
{
return mGraph;
}
void
MediaInputPort::SetGraphImpl(MediaStreamGraphImpl* aGraph)
{
MOZ_ASSERT(!mGraph, "Should only be called once");
mGraph = aGraph;
}
already_AddRefed<MediaInputPort>
ProcessedMediaStream::AllocateInputPort(MediaStream* aStream, uint32_t aFlags,
uint16_t aInputNumber, uint16_t aOutputNumber)
{
// This method creates two references to the MediaInputPort: one for
// the main thread, and one for the MediaStreamGraph.
class Message : public ControlMessage {
public:
Message(MediaInputPort* aPort)
: ControlMessage(aPort->GetDestination()),
mPort(aPort) {}
virtual void Run()
{
mPort->Init();
// The graph holds its reference implicitly
mPort.forget();
}
nsRefPtr<MediaInputPort> mPort;
};
nsRefPtr<MediaInputPort> port = new MediaInputPort(aStream, this, aFlags,
aInputNumber, aOutputNumber);
port->SetGraphImpl(GraphImpl());
GraphImpl()->AppendMessage(new Message(port));
return port.forget();
}
void
ProcessedMediaStream::Finish()
{
class Message : public ControlMessage {
public:
Message(ProcessedMediaStream* aStream)
: ControlMessage(aStream) {}
virtual void Run()
{
mStream->GraphImpl()->FinishStream(mStream);
}
};
GraphImpl()->AppendMessage(new Message(this));
}
void
ProcessedMediaStream::SetAutofinish(bool aAutofinish)
{
class Message : public ControlMessage {
public:
Message(ProcessedMediaStream* aStream, bool aAutofinish)
: ControlMessage(aStream), mAutofinish(aAutofinish) {}
virtual void Run()
{
static_cast<ProcessedMediaStream*>(mStream)->SetAutofinishImpl(mAutofinish);
}
bool mAutofinish;
};
GraphImpl()->AppendMessage(new Message(this, aAutofinish));
}
void
ProcessedMediaStream::DestroyImpl()
{
for (int32_t i = mInputs.Length() - 1; i >= 0; --i) {
mInputs[i]->Disconnect();
}
MediaStream::DestroyImpl();
}
/**
* We make the initial mCurrentTime nonzero so that zero times can have
* special meaning if necessary.
*/
static const int32_t INITIAL_CURRENT_TIME = 1;
MediaStreamGraphImpl::MediaStreamGraphImpl(bool aRealtime)
: mCurrentTime(INITIAL_CURRENT_TIME)
, mStateComputedTime(INITIAL_CURRENT_TIME)
, mProcessingGraphUpdateIndex(0)
, mPortCount(0)
, mMonitor("MediaStreamGraphImpl")
, mLifecycleState(LIFECYCLE_THREAD_NOT_STARTED)
, mWaitState(WAITSTATE_RUNNING)
, mNonRealtimeTicksToProcess(0)
, mNeedAnotherIteration(false)
, mForceShutDown(false)
, mPostedRunInStableStateEvent(false)
, mNonRealtimeIsRunning(false)
, mDetectedNotRunning(false)
, mPostedRunInStableState(false)
, mRealtime(aRealtime)
, mNonRealtimeProcessing(false)
{
#ifdef PR_LOGGING
if (!gMediaStreamGraphLog) {
gMediaStreamGraphLog = PR_NewLogModule("MediaStreamGraph");
}
#endif
mCurrentTimeStamp = mInitialTimeStamp = TimeStamp::Now();
}
NS_IMPL_ISUPPORTS1(MediaStreamGraphShutdownObserver, nsIObserver)
static bool gShutdownObserverRegistered = false;
NS_IMETHODIMP
MediaStreamGraphShutdownObserver::Observe(nsISupports *aSubject,
const char *aTopic,
const PRUnichar *aData)
{
if (strcmp(aTopic, NS_XPCOM_SHUTDOWN_OBSERVER_ID) == 0) {
if (gGraph) {
gGraph->ForceShutDown();
}
nsContentUtils::UnregisterShutdownObserver(this);
gShutdownObserverRegistered = false;
}
return NS_OK;
}
MediaStreamGraph*
MediaStreamGraph::GetInstance()
{
NS_ASSERTION(NS_IsMainThread(), "Main thread only");
if (!gGraph) {
if (!gShutdownObserverRegistered) {
gShutdownObserverRegistered = true;
nsContentUtils::RegisterShutdownObserver(new MediaStreamGraphShutdownObserver());
}
gGraph = new MediaStreamGraphImpl(true);
LOG(PR_LOG_DEBUG, ("Starting up MediaStreamGraph %p", gGraph));
}
return gGraph;
}
MediaStreamGraph*
MediaStreamGraph::CreateNonRealtimeInstance()
{
NS_ASSERTION(NS_IsMainThread(), "Main thread only");
MediaStreamGraphImpl* graph = new MediaStreamGraphImpl(false);
return graph;
}
void
MediaStreamGraph::DestroyNonRealtimeInstance(MediaStreamGraph* aGraph)
{
NS_ASSERTION(NS_IsMainThread(), "Main thread only");
MOZ_ASSERT(aGraph != gGraph, "Should not destroy the global graph here");
MediaStreamGraphImpl* graph = static_cast<MediaStreamGraphImpl*>(aGraph);
graph->ForceShutDown();
}
SourceMediaStream*
MediaStreamGraph::CreateSourceStream(DOMMediaStream* aWrapper)
{
SourceMediaStream* stream = new SourceMediaStream(aWrapper);
NS_ADDREF(stream);
MediaStreamGraphImpl* graph = static_cast<MediaStreamGraphImpl*>(this);
stream->SetGraphImpl(graph);
graph->AppendMessage(new CreateMessage(stream));
return stream;
}
ProcessedMediaStream*
MediaStreamGraph::CreateTrackUnionStream(DOMMediaStream* aWrapper)
{
TrackUnionStream* stream = new TrackUnionStream(aWrapper);
NS_ADDREF(stream);
MediaStreamGraphImpl* graph = static_cast<MediaStreamGraphImpl*>(this);
stream->SetGraphImpl(graph);
graph->AppendMessage(new CreateMessage(stream));
return stream;
}
AudioNodeStream*
MediaStreamGraph::CreateAudioNodeStream(AudioNodeEngine* aEngine,
AudioNodeStreamKind aKind)
{
MOZ_ASSERT(NS_IsMainThread());
AudioNodeStream* stream = new AudioNodeStream(aEngine, aKind);
NS_ADDREF(stream);
MediaStreamGraphImpl* graph = static_cast<MediaStreamGraphImpl*>(this);
stream->SetGraphImpl(graph);
if (aEngine->HasNode()) {
stream->SetChannelMixingParametersImpl(aEngine->NodeMainThread()->ChannelCount(),
aEngine->NodeMainThread()->ChannelCountModeValue(),
aEngine->NodeMainThread()->ChannelInterpretationValue());
}
graph->AppendMessage(new CreateMessage(stream));
return stream;
}
void
MediaStreamGraph::StartNonRealtimeProcessing(uint32_t aTicksToProcess)
{
NS_ASSERTION(NS_IsMainThread(), "main thread only");
MediaStreamGraphImpl* graph = static_cast<MediaStreamGraphImpl*>(this);
NS_ASSERTION(!graph->mRealtime, "non-realtime only");
if (graph->mNonRealtimeProcessing)
return;
graph->mNonRealtimeTicksToProcess = aTicksToProcess;
graph->mNonRealtimeProcessing = true;
graph->EnsureRunInStableState();
}
}