gecko/toolkit/modules/AsyncShutdown.jsm

782 lines
26 KiB
JavaScript

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* Managing safe shutdown of asynchronous services.
*
* Firefox shutdown is composed of phases that take place
* sequentially. Typically, each shutdown phase removes some
* capabilities from the application. For instance, at the end of
* phase profileBeforeChange, no service is permitted to write to the
* profile directory (with the exception of Telemetry). Consequently,
* if any service has requested I/O to the profile directory before or
* during phase profileBeforeChange, the system must be informed that
* these requests need to be completed before the end of phase
* profileBeforeChange. Failing to inform the system of this
* requirement can (and has been known to) cause data loss.
*
* Example: At some point during shutdown, the Add-On Manager needs to
* ensure that all add-ons have safely written their data to disk,
* before writing its own data. Since the data is saved to the
* profile, this must be completed during phase profileBeforeChange.
*
* AsyncShutdown.profileBeforeChange.addBlocker(
* "Add-on manager: shutting down",
* function condition() {
* // Do things.
* // Perform I/O that must take place during phase profile-before-change
* return promise;
* }
* });
*
* In this example, function |condition| will be called at some point
* during phase profileBeforeChange and phase profileBeforeChange
* itself is guaranteed to not terminate until |promise| is either
* resolved or rejected.
*/
"use strict";
const Cu = Components.utils;
const Cc = Components.classes;
const Ci = Components.interfaces;
Cu.import("resource://gre/modules/XPCOMUtils.jsm", this);
Cu.import("resource://gre/modules/Services.jsm", this);
XPCOMUtils.defineLazyModuleGetter(this, "Promise",
"resource://gre/modules/Promise.jsm");
XPCOMUtils.defineLazyModuleGetter(this, "Task",
"resource://gre/modules/Task.jsm");
XPCOMUtils.defineLazyServiceGetter(this, "gDebug",
"@mozilla.org/xpcom/debug;1", "nsIDebug");
Object.defineProperty(this, "gCrashReporter", {
get: function() {
delete this.gCrashReporter;
try {
let reporter = Cc["@mozilla.org/xre/app-info;1"].
getService(Ci.nsICrashReporter);
return this.gCrashReporter = reporter;
} catch (ex) {
return this.gCrashReporter = null;
}
},
configurable: true
});
// Display timeout warnings after 10 seconds
const DELAY_WARNING_MS = 10 * 1000;
// Crash the process if shutdown is really too long
// (allowing for sleep).
const PREF_DELAY_CRASH_MS = "toolkit.asyncshutdown.crash_timeout";
let DELAY_CRASH_MS = 60 * 1000; // One minute
try {
DELAY_CRASH_MS = Services.prefs.getIntPref(PREF_DELAY_CRASH_MS);
} catch (ex) {
// Ignore errors
}
Services.prefs.addObserver(PREF_DELAY_CRASH_MS, function() {
DELAY_CRASH_MS = Services.prefs.getIntPref(PREF_DELAY_CRASH_MS);
}, false);
/**
* Display a warning.
*
* As this code is generally used during shutdown, there are chances
* that the UX will not be available to display warnings on the
* console. We therefore use dump() rather than Cu.reportError().
*/
function log(msg, prefix = "", error = null) {
dump(prefix + msg + "\n");
if (error) {
dump(prefix + error + "\n");
if (typeof error == "object" && "stack" in error) {
dump(prefix + error.stack + "\n");
}
}
}
function warn(msg, error = null) {
return log(msg, "WARNING: ", error);
}
function fatalerr(msg, error = null) {
return log(msg, "FATAL ERROR: ", error);
}
// Utility function designed to get the current state of execution
// of a blocker.
// We are a little paranoid here to ensure that in case of evaluation
// error we do not block the AsyncShutdown.
function safeGetState(fetchState) {
if (!fetchState) {
return "(none)";
}
let data, string;
try {
// Evaluate fetchState(), normalize the result into something that we can
// safely stringify or upload.
string = JSON.stringify(fetchState());
data = JSON.parse(string);
// Simplify the rest of the code by ensuring that we can simply
// concatenate the result to a message.
if (data && typeof data == "object") {
data.toString = function() {
return string;
};
}
return data;
} catch (ex) {
if (string) {
return string;
}
try {
return "Error getting state: " + ex + " at " + ex.stack;
} catch (ex2) {
return "Error getting state but could not display error";
}
}
}
/**
* Countdown for a given duration, skipping beats if the computer is too busy,
* sleeping or otherwise unavailable.
*
* @param {number} delay An approximate delay to wait in milliseconds (rounded
* up to the closest second).
*
* @return Deferred
*/
function looseTimer(delay) {
let DELAY_BEAT = 1000;
let timer = Cc["@mozilla.org/timer;1"].createInstance(Ci.nsITimer);
let beats = Math.ceil(delay / DELAY_BEAT);
let deferred = Promise.defer();
timer.initWithCallback(function() {
if (beats <= 0) {
deferred.resolve();
}
--beats;
}, DELAY_BEAT, Ci.nsITimer.TYPE_REPEATING_PRECISE_CAN_SKIP);
// Ensure that the timer is both canceled once we are done with it
// and not garbage-collected until then.
deferred.promise.then(() => timer.cancel(), () => timer.cancel());
return deferred;
}
this.EXPORTED_SYMBOLS = ["AsyncShutdown"];
/**
* {string} topic -> phase
*/
let gPhases = new Map();
this.AsyncShutdown = {
/**
* Access function getPhase. For testing purposes only.
*/
get _getPhase() {
let accepted = false;
try {
accepted = Services.prefs.getBoolPref("toolkit.asyncshutdown.testing");
} catch (ex) {
// Ignore errors
}
if (accepted) {
return getPhase;
}
return undefined;
}
};
/**
* Register a new phase.
*
* @param {string} topic The notification topic for this Phase.
* @see {https://developer.mozilla.org/en-US/docs/Observer_Notifications}
*/
function getPhase(topic) {
let phase = gPhases.get(topic);
if (phase) {
return phase;
}
let spinner = new Spinner(topic);
phase = Object.freeze({
/**
* Register a blocker for the completion of a phase.
*
* @param {string} name The human-readable name of the blocker. Used
* for debugging/error reporting. Please make sure that the name
* respects the following model: "Some Service: some action in progress" -
* for instance "OS.File: flushing all pending I/O";
* @param {function|promise|*} condition A condition blocking the
* completion of the phase. Generally, this is a function
* returning a promise. This function is evaluated during the
* phase and the phase is guaranteed to not terminate until the
* resulting promise is either resolved or rejected. If
* |condition| is not a function but another value |v|, it behaves
* as if it were a function returning |v|.
* @param {function*} fetchState Optionally, a function returning
* information about the current state of the blocker as an
* object. Used for providing more details when logging errors or
* crashing.
*
* Examples:
* AsyncShutdown.profileBeforeChange.addBlocker("Module: just a promise",
* promise); // profileBeforeChange will not complete until
* // promise is resolved or rejected
*
* AsyncShutdown.profileBeforeChange.addBlocker("Module: a callback",
* function callback() {
* // ...
* // Execute this code during profileBeforeChange
* return promise;
* // profileBeforeChange will not complete until promise
* // is resolved or rejected
* });
*
* AsyncShutdown.profileBeforeChange.addBlocker("Module: trivial callback",
* function callback() {
* // ...
* // Execute this code during profileBeforeChange
* // No specific guarantee about completion of profileBeforeChange
* });
*/
addBlocker: function(name, condition, fetchState = null) {
spinner.addBlocker(name, condition, fetchState);
},
/**
* Remove the blocker for a condition.
*
* If several blockers have been registered for the same
* condition, remove all these blockers. If no blocker has been
* registered for this condition, this is a noop.
*
* @return {boolean} true if a blocker has been removed, false
* otherwise. Note that a result of false may mean either that
* the blocker has never been installed or that the phase has
* completed and the blocker has already been resolved.
*/
removeBlocker: function(condition) {
return spinner.removeBlocker(condition);
},
/**
* Trigger the phase without having to broadcast a
* notification. For testing purposes only.
*/
get _trigger() {
let accepted = false;
try {
accepted = Services.prefs.getBoolPref("toolkit.asyncshutdown.testing");
} catch (ex) {
// Ignore errors
}
if (accepted) {
return () => spinner.observe();
}
return undefined;
}
});
gPhases.set(topic, phase);
return phase;
};
/**
* Utility class used to spin the event loop until all blockers for a
* Phase are satisfied.
*
* @param {string} topic The xpcom notification for that phase.
*/
function Spinner(topic) {
this._barrier = new Barrier(topic);
this._topic = topic;
Services.obs.addObserver(this, topic, false);
}
Spinner.prototype = {
/**
* Register a new condition for this phase.
*
* @param {object} condition A Condition that must be fulfilled before
* we complete this Phase.
* Must contain fields:
* - {string} name The human-readable name of the condition. Used
* for debugging/error reporting.
* - {function} action An action that needs to be completed
* before we proceed to the next runstate. If |action| returns a promise,
* we wait until the promise is resolved/rejected before proceeding
* to the next runstate.
*/
addBlocker: function(name, condition, fetchState) {
this._barrier.client.addBlocker(name, condition, fetchState);
},
/**
* Remove the blocker for a condition.
*
* If several blockers have been registered for the same
* condition, remove all these blockers. If no blocker has been
* registered for this condition, this is a noop.
*
* @return {boolean} true if a blocker has been removed, false
* otherwise. Note that a result of false may mean either that
* the blocker has never been installed or that the phase has
* completed and the blocker has already been resolved.
*/
removeBlocker: function(condition) {
return this._barrier.client.removeBlocker(condition);
},
// nsIObserver.observe
observe: function() {
let topic = this._topic;
let barrier = this._barrier;
Services.obs.removeObserver(this, topic);
let satisfied = false; // |true| once we have satisfied all conditions
let promise = this._barrier.wait({
warnAfterMS: DELAY_WARNING_MS,
crashAfterMS: DELAY_CRASH_MS
});
// Now, spin the event loop
promise.then(() => satisfied = true); // This promise cannot reject
let thread = Services.tm.mainThread;
while (!satisfied) {
try {
thread.processNextEvent(true);
} catch (ex) {
// An uncaught error should not stop us, but it should still
// be reported and cause tests to fail.
Promise.reject(ex);
}
}
}
};
/**
* A mechanism used to register blockers that prevent some action from
* happening.
*
* An instance of |Barrier| provides a capability |client| that
* clients can use to register blockers. The barrier is resolved once
* all registered blockers have been resolved. The owner of the
* |Barrier| may wait for the resolution of the barrier and obtain
* information on which blockers have not been resolved yet.
*
* @param {string} name The name of the blocker. Used mainly for error-
* reporting.
*/
function Barrier(name) {
/**
* The set of conditions registered by clients, as a map.
*
* Key: condition (function)
* Value: Array of {name: string, fetchState: function}
*/
this._conditions = new Map();
/**
* Indirections, used to let clients cancel a blocker when they
* call removeBlocker().
*
* Key: condition (function)
* Value: Deferred.
*/
this._indirections = null;
/**
* The name of the barrier.
*/
this._name = name;
/**
* A cache for the promise returned by wait().
*/
this._promise = null;
/**
* An array of objects used to monitor the state of each blocker.
*/
this._monitors = null;
/**
* The capability of adding blockers. This object may safely be returned
* or passed to clients.
*/
this.client = {
/**
* Register a blocker for the completion of this barrier.
*
* @param {string} name The human-readable name of the blocker. Used
* for debugging/error reporting. Please make sure that the name
* respects the following model: "Some Service: some action in progress" -
* for instance "OS.File: flushing all pending I/O";
* @param {function|promise|*} condition A condition blocking the
* completion of the phase. Generally, this is a function
* returning a promise. This function is evaluated during the
* phase and the phase is guaranteed to not terminate until the
* resulting promise is either resolved or rejected. If
* |condition| is not a function but another value |v|, it behaves
* as if it were a function returning |v|.
* @param {function*} fetchState Optionally, a function returning
* information about the current state of the blocker as an
* object. Used for providing more details when logging errors or
* crashing.
*/
addBlocker: function(name, condition, fetchState) {
if (typeof name != "string") {
throw new TypeError("Expected a human-readable name as first argument");
}
if (fetchState && typeof fetchState != "function") {
throw new TypeError("Expected nothing or a function as third argument");
}
if (!this._conditions) {
throw new Error("Phase " + this._name +
" has already begun, it is too late to register" +
" completion condition '" + name + "'.");
}
// Determine the filename and line number of the caller.
let leaf = Components.stack;
let frame;
for (frame = leaf; frame != null && frame.filename == leaf.filename; frame = frame.caller) {
// Climb up the stack
}
let filename = frame ? frame.filename : "?";
let lineNumber = frame ? frame.lineNumber : -1;
// Now build the rest of the stack as a string, using Task.jsm's rewriting
// to ensure that we do not lose information at each call to `Task.spawn`.
let frames = [];
while (frame != null) {
frames.push(frame.filename + ":" + frame.name + ":" + frame.lineNumber);
frame = frame.caller;
}
let stack = Task.Debugging.generateReadableStack(frames.join("\n")).split("\n");
let set = this._conditions.get(condition);
if (!set) {
set = [];
this._conditions.set(condition, set);
}
set.push({name: name,
fetchState: fetchState,
filename: filename,
lineNumber: lineNumber,
stack: stack});
}.bind(this),
/**
* Remove the blocker for a condition.
*
* If several blockers have been registered for the same
* condition, remove all these blockers. If no blocker has been
* registered for this condition, this is a noop.
*
* @return {boolean} true if at least one blocker has been
* removed, false otherwise.
*/
removeBlocker: function(condition) {
if (this._conditions) {
// wait() hasn't been called yet.
return this._conditions.delete(condition);
}
if (this._indirections) {
// wait() is in progress
let deferred = this._indirections.get(condition);
if (deferred) {
// Unlock the blocker
deferred.resolve();
}
return this._indirections.delete(condition);
}
// wait() is complete.
return false;
}.bind(this),
};
}
Barrier.prototype = Object.freeze({
/**
* The current state of the barrier, as a JSON-serializable object
* designed for error-reporting.
*/
get state() {
if (this._conditions) {
return "Not started";
}
if (!this._monitors) {
return "Complete";
}
let frozen = [];
for (let {name, isComplete, fetchState, stack, filename, lineNumber} of this._monitors) {
if (!isComplete) {
frozen.push({name: name,
state: safeGetState(fetchState),
filename: filename,
lineNumber: lineNumber,
stack: stack});
}
}
return frozen;
},
/**
* Wait until all currently registered blockers are complete.
*
* Once this method has been called, any attempt to register a new blocker
* for this barrier will cause an error.
*
* Successive calls to this method always return the same value.
*
* @param {object=} options Optionally, an object that may contain
* the following fields:
* {number} warnAfterMS If provided and > 0, print a warning if the barrier
* has not been resolved after the given number of milliseconds.
* {number} crashAfterMS If provided and > 0, crash the process if the barrier
* has not been resolved after the give number of milliseconds (rounded up
* to the next second). To avoid crashing simply because the computer is busy
* or going to sleep, we actually wait for ceil(crashAfterMS/1000) successive
* periods of at least one second. Upon crashing, if a crash reporter is present,
* prepare a crash report with the state of this barrier.
*
*
* @return {Promise} A promise satisfied once all blockers are complete.
*/
wait: function(options = {}) {
// This method only implements caching on top of _wait()
if (this._promise) {
return this._promise;
}
return this._promise = this._wait(options);
},
_wait: function(options) {
let topic = this._name;
let conditions = this._conditions;
this._conditions = null; // Too late to register
if (conditions.size == 0) {
return Promise.resolve();
}
this._indirections = new Map();
// The promises for which we are waiting.
let allPromises = [];
// Information to determine and report to the user which conditions
// are not satisfied yet.
this._monitors = [];
for (let _condition of conditions.keys()) {
for (let current of conditions.get(_condition)) {
let condition = _condition; // Avoid capturing the wrong variable
let {name, fetchState, stack, filename, lineNumber} = current;
// An indirection on top of condition, used to let clients
// cancel a blocker through removeBlocker.
let indirection = Promise.defer();
this._indirections.set(condition, indirection);
// Gather all completion conditions
try {
if (typeof condition == "function") {
// Normalize |condition| to the result of the function.
try {
condition = condition(topic);
} catch (ex) {
condition = Promise.reject(ex);
}
}
// Normalize to a promise. Of course, if |condition| was not a
// promise in the first place (in particular if the above
// function returned |undefined| or failed), that new promise
// isn't going to be terribly interesting, but it will behave
// as a promise.
condition = Promise.resolve(condition);
let monitor = {
isComplete: false,
name: name,
fetchState: fetchState,
stack: stack,
filename: filename,
lineNumber: lineNumber
};
condition = condition.then(null, function onError(error) {
let msg = "A completion condition encountered an error" +
" while we were spinning the event loop." +
" Condition: " + name +
" Phase: " + topic +
" State: " + safeGetState(fetchState);
warn(msg, error);
// The error should remain uncaught, to ensure that it
// still causes tests to fail.
Promise.reject(error);
});
condition.then(() => indirection.resolve());
indirection.promise.then(() => monitor.isComplete = true);
this._monitors.push(monitor);
allPromises.push(indirection.promise);
} catch (error) {
let msg = "A completion condition encountered an error" +
" while we were initializing the phase." +
" Condition: " + name +
" Phase: " + topic +
" State: " + safeGetState(fetchState);
warn(msg, error);
}
}
}
conditions = null;
let promise = Promise.all(allPromises);
allPromises = null;
promise = promise.then(null, function onError(error) {
// I don't think that this can happen.
// However, let's be overcautious with async/shutdown error reporting.
let msg = "An uncaught error appeared while completing the phase." +
" Phase: " + topic;
warn(msg, error);
});
promise = promise.then(() => {
this._monitors = null;
this._indirections = null;
}); // Memory cleanup
// Now handle warnings and crashes
let warnAfterMS = DELAY_WARNING_MS;
if (options && "warnAfterMS" in options) {
if (typeof options.warnAfterMS == "number"
|| options.warnAfterMS == null) {
// Change the delay or deactivate warnAfterMS
warnAfterMS = options.warnAfterMS;
} else {
throw new TypeError("Wrong option value for warnAfterMS");
}
}
if (warnAfterMS && warnAfterMS > 0) {
// If the promise takes too long to be resolved/rejected,
// we need to notify the user.
let timer = Cc["@mozilla.org/timer;1"].createInstance(Ci.nsITimer);
timer.initWithCallback(function() {
let msg = "At least one completion condition is taking too long to complete." +
" Conditions: " + JSON.stringify(this.state) +
" Barrier: " + topic;
warn(msg);
}.bind(this), warnAfterMS, Ci.nsITimer.TYPE_ONE_SHOT);
promise = promise.then(function onSuccess() {
timer.cancel();
// As a side-effect, this prevents |timer| from
// being garbage-collected too early.
});
}
let crashAfterMS = DELAY_CRASH_MS;
if (options && "crashAfterMS" in options) {
if (typeof options.crashAfterMS == "number"
|| options.crashAfterMS == null) {
// Change the delay or deactivate crashAfterMS
crashAfterMS = options.crashAfterMS;
} else {
throw new TypeError("Wrong option value for crashAfterMS");
}
}
if (crashAfterMS > 0) {
let timeToCrash = null;
// If after |crashAfterMS| milliseconds (adjusted to take into
// account sleep and otherwise busy computer) we have not finished
// this shutdown phase, we assume that the shutdown is somehow
// frozen, presumably deadlocked. At this stage, the only thing we
// can do to avoid leaving the user's computer in an unstable (and
// battery-sucking) situation is report the issue and crash.
timeToCrash = looseTimer(crashAfterMS);
timeToCrash.promise.then(
function onTimeout() {
// Report the problem as best as we can, then crash.
let state = this.state;
// If you change the following message, please make sure
// that any information on the topic and state appears
// within the first 200 characters of the message. This
// helps automatically sort oranges.
let msg = "AsyncShutdown timeout in " + topic +
" Conditions: " + JSON.stringify(state) +
" At least one completion condition failed to complete" +
" within a reasonable amount of time. Causing a crash to" +
" ensure that we do not leave the user with an unresponsive" +
" process draining resources.";
fatalerr(msg);
if (gCrashReporter && gCrashReporter.enabled) {
let data = {
phase: topic,
conditions: state
};
gCrashReporter.annotateCrashReport("AsyncShutdownTimeout",
JSON.stringify(data));
} else {
warn("No crash reporter available");
}
// To help sorting out bugs, we want to make sure that the
// call to nsIDebug.abort points to a guilty client, rather
// than to AsyncShutdown itself. We search through all the
// clients until we find one that is guilty and use its
// filename/lineNumber, which have been determined during
// the call to `addBlocker`.
let filename = "?";
let lineNumber = -1;
for (let monitor of this._monitors) {
if (monitor.isComplete) {
continue;
}
filename = monitor.filename;
lineNumber = monitor.lineNumber;
}
gDebug.abort(filename, lineNumber);
}.bind(this),
function onSatisfied() {
// The promise has been rejected, which means that we have satisfied
// all completion conditions.
});
promise = promise.then(function() {
timeToCrash.reject();
}/* No error is possible here*/);
}
return promise;
},
});
// List of well-known phases
// Ideally, phases should be registered from the component that decides
// when they start/stop. For compatibility with existing startup/shutdown
// mechanisms, we register a few phases here.
this.AsyncShutdown.profileChangeTeardown = getPhase("profile-change-teardown");
this.AsyncShutdown.profileBeforeChange = getPhase("profile-before-change");
this.AsyncShutdown.sendTelemetry = getPhase("profile-before-change2");
this.AsyncShutdown.webWorkersShutdown = getPhase("web-workers-shutdown");
this.AsyncShutdown.Barrier = Barrier;
Object.freeze(this.AsyncShutdown);