gecko/dom/media/webaudio/AnalyserNode.cpp
Nicholas Nethercote b003fba482 Bug 1188745 - Rename nsTArray::SizeOfExcludingThis() as ShallowSizeOfExcludingThis(). r=froydnj.
This makes it clearer that, unlike how SizeOf*() functions usually work, this
doesn't measure any children hanging off the array.

And do likewise for nsTObserverArray.
2015-07-28 23:24:24 -07:00

360 lines
9.8 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/dom/AnalyserNode.h"
#include "mozilla/dom/AnalyserNodeBinding.h"
#include "AudioNodeEngine.h"
#include "AudioNodeStream.h"
#include "mozilla/Mutex.h"
#include "mozilla/PodOperations.h"
namespace mozilla {
static const uint32_t MAX_FFT_SIZE = 32768;
static const size_t CHUNK_COUNT = MAX_FFT_SIZE >> WEBAUDIO_BLOCK_SIZE_BITS;
static_assert(MAX_FFT_SIZE == CHUNK_COUNT * WEBAUDIO_BLOCK_SIZE,
"MAX_FFT_SIZE must be a multiple of WEBAUDIO_BLOCK_SIZE");
static_assert((CHUNK_COUNT & (CHUNK_COUNT - 1)) == 0,
"CHUNK_COUNT must be power of 2 for remainder behavior");
namespace dom {
NS_IMPL_ISUPPORTS_INHERITED0(AnalyserNode, AudioNode)
class AnalyserNodeEngine final : public AudioNodeEngine
{
class TransferBuffer final : public nsRunnable
{
public:
TransferBuffer(AudioNodeStream* aStream,
const AudioChunk& aChunk)
: mStream(aStream)
, mChunk(aChunk)
{
}
NS_IMETHOD Run()
{
nsRefPtr<AnalyserNode> node =
static_cast<AnalyserNode*>(mStream->Engine()->NodeMainThread());
if (node) {
node->AppendChunk(mChunk);
}
return NS_OK;
}
private:
nsRefPtr<AudioNodeStream> mStream;
AudioChunk mChunk;
};
public:
explicit AnalyserNodeEngine(AnalyserNode* aNode)
: AudioNodeEngine(aNode)
{
MOZ_ASSERT(NS_IsMainThread());
}
virtual void ProcessBlock(AudioNodeStream* aStream,
const AudioChunk& aInput,
AudioChunk* aOutput,
bool* aFinished) override
{
*aOutput = aInput;
nsRefPtr<TransferBuffer> transfer = new TransferBuffer(aStream, aInput);
NS_DispatchToMainThread(transfer);
}
virtual size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const override
{
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
};
AnalyserNode::AnalyserNode(AudioContext* aContext)
: AudioNode(aContext,
1,
ChannelCountMode::Max,
ChannelInterpretation::Speakers)
, mAnalysisBlock(2048)
, mMinDecibels(-100.)
, mMaxDecibels(-30.)
, mSmoothingTimeConstant(.8)
{
mStream = aContext->Graph()->CreateAudioNodeStream(new AnalyserNodeEngine(this),
MediaStreamGraph::INTERNAL_STREAM);
// Enough chunks must be recorded to handle the case of fftSize being
// increased to maximum immediately before getFloatTimeDomainData() is
// called, for example.
(void)mChunks.SetLength(CHUNK_COUNT, fallible);
AllocateBuffer();
}
size_t
AnalyserNode::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
{
size_t amount = AudioNode::SizeOfExcludingThis(aMallocSizeOf);
amount += mAnalysisBlock.SizeOfExcludingThis(aMallocSizeOf);
amount += mChunks.ShallowSizeOfExcludingThis(aMallocSizeOf);
amount += mOutputBuffer.ShallowSizeOfExcludingThis(aMallocSizeOf);
return amount;
}
size_t
AnalyserNode::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const
{
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
JSObject*
AnalyserNode::WrapObject(JSContext* aCx, JS::Handle<JSObject*> aGivenProto)
{
return AnalyserNodeBinding::Wrap(aCx, this, aGivenProto);
}
void
AnalyserNode::SetFftSize(uint32_t aValue, ErrorResult& aRv)
{
// Disallow values that are not a power of 2 and outside the [32,32768] range
if (aValue < 32 ||
aValue > MAX_FFT_SIZE ||
(aValue & (aValue - 1)) != 0) {
aRv.Throw(NS_ERROR_DOM_INDEX_SIZE_ERR);
return;
}
if (FftSize() != aValue) {
mAnalysisBlock.SetFFTSize(aValue);
AllocateBuffer();
}
}
void
AnalyserNode::SetMinDecibels(double aValue, ErrorResult& aRv)
{
if (aValue >= mMaxDecibels) {
aRv.Throw(NS_ERROR_DOM_INDEX_SIZE_ERR);
return;
}
mMinDecibels = aValue;
}
void
AnalyserNode::SetMaxDecibels(double aValue, ErrorResult& aRv)
{
if (aValue <= mMinDecibels) {
aRv.Throw(NS_ERROR_DOM_INDEX_SIZE_ERR);
return;
}
mMaxDecibels = aValue;
}
void
AnalyserNode::SetSmoothingTimeConstant(double aValue, ErrorResult& aRv)
{
if (aValue < 0 || aValue > 1) {
aRv.Throw(NS_ERROR_DOM_INDEX_SIZE_ERR);
return;
}
mSmoothingTimeConstant = aValue;
}
void
AnalyserNode::GetFloatFrequencyData(const Float32Array& aArray)
{
if (!FFTAnalysis()) {
// Might fail to allocate memory
return;
}
aArray.ComputeLengthAndData();
float* buffer = aArray.Data();
size_t length = std::min(size_t(aArray.Length()), mOutputBuffer.Length());
for (size_t i = 0; i < length; ++i) {
buffer[i] = WebAudioUtils::ConvertLinearToDecibels(mOutputBuffer[i], mMinDecibels);
}
}
void
AnalyserNode::GetByteFrequencyData(const Uint8Array& aArray)
{
if (!FFTAnalysis()) {
// Might fail to allocate memory
return;
}
const double rangeScaleFactor = 1.0 / (mMaxDecibels - mMinDecibels);
aArray.ComputeLengthAndData();
unsigned char* buffer = aArray.Data();
size_t length = std::min(size_t(aArray.Length()), mOutputBuffer.Length());
for (size_t i = 0; i < length; ++i) {
const double decibels = WebAudioUtils::ConvertLinearToDecibels(mOutputBuffer[i], mMinDecibels);
// scale down the value to the range of [0, UCHAR_MAX]
const double scaled = std::max(0.0, std::min(double(UCHAR_MAX),
UCHAR_MAX * (decibels - mMinDecibels) * rangeScaleFactor));
buffer[i] = static_cast<unsigned char>(scaled);
}
}
void
AnalyserNode::GetFloatTimeDomainData(const Float32Array& aArray)
{
aArray.ComputeLengthAndData();
float* buffer = aArray.Data();
size_t length = std::min(aArray.Length(), FftSize());
GetTimeDomainData(buffer, length);
}
void
AnalyserNode::GetByteTimeDomainData(const Uint8Array& aArray)
{
aArray.ComputeLengthAndData();
size_t length = std::min(aArray.Length(), FftSize());
AlignedTArray<float> tmpBuffer;
if (!tmpBuffer.SetLength(length, fallible)) {
return;
}
GetTimeDomainData(tmpBuffer.Elements(), length);
unsigned char* buffer = aArray.Data();
for (size_t i = 0; i < length; ++i) {
const float value = tmpBuffer[i];
// scale the value to the range of [0, UCHAR_MAX]
const float scaled = std::max(0.0f, std::min(float(UCHAR_MAX),
128.0f * (value + 1.0f)));
buffer[i] = static_cast<unsigned char>(scaled);
}
}
bool
AnalyserNode::FFTAnalysis()
{
AlignedTArray<float> tmpBuffer;
size_t fftSize = FftSize();
if (!tmpBuffer.SetLength(fftSize, fallible)) {
return false;
}
float* inputBuffer = tmpBuffer.Elements();
GetTimeDomainData(inputBuffer, fftSize);
ApplyBlackmanWindow(inputBuffer, fftSize);
mAnalysisBlock.PerformFFT(inputBuffer);
// Normalize so than an input sine wave at 0dBfs registers as 0dBfs (undo FFT scaling factor).
const double magnitudeScale = 1.0 / fftSize;
for (uint32_t i = 0; i < mOutputBuffer.Length(); ++i) {
double scalarMagnitude = NS_hypot(mAnalysisBlock.RealData(i),
mAnalysisBlock.ImagData(i)) *
magnitudeScale;
mOutputBuffer[i] = mSmoothingTimeConstant * mOutputBuffer[i] +
(1.0 - mSmoothingTimeConstant) * scalarMagnitude;
}
return true;
}
void
AnalyserNode::ApplyBlackmanWindow(float* aBuffer, uint32_t aSize)
{
double alpha = 0.16;
double a0 = 0.5 * (1.0 - alpha);
double a1 = 0.5;
double a2 = 0.5 * alpha;
for (uint32_t i = 0; i < aSize; ++i) {
double x = double(i) / aSize;
double window = a0 - a1 * cos(2 * M_PI * x) + a2 * cos(4 * M_PI * x);
aBuffer[i] *= window;
}
}
bool
AnalyserNode::AllocateBuffer()
{
bool result = true;
if (mOutputBuffer.Length() != FrequencyBinCount()) {
if (!mOutputBuffer.SetLength(FrequencyBinCount(), fallible)) {
return false;
}
memset(mOutputBuffer.Elements(), 0, sizeof(float) * FrequencyBinCount());
}
return result;
}
void
AnalyserNode::AppendChunk(const AudioChunk& aChunk)
{
if (mChunks.Length() == 0) {
return;
}
++mCurrentChunk;
mChunks[mCurrentChunk & (CHUNK_COUNT - 1)] = aChunk;
}
// Reads into aData the oldest aLength samples of the fftSize most recent
// samples.
void
AnalyserNode::GetTimeDomainData(float* aData, size_t aLength)
{
size_t fftSize = FftSize();
MOZ_ASSERT(aLength <= fftSize);
if (mChunks.Length() == 0) {
PodZero(aData, aLength);
return;
}
size_t readChunk =
mCurrentChunk - ((fftSize - 1) >> WEBAUDIO_BLOCK_SIZE_BITS);
size_t readIndex = (0 - fftSize) & (WEBAUDIO_BLOCK_SIZE - 1);
MOZ_ASSERT(readIndex == 0 || readIndex + fftSize == WEBAUDIO_BLOCK_SIZE);
for (size_t writeIndex = 0; writeIndex < aLength; ) {
const AudioChunk& chunk = mChunks[readChunk & (CHUNK_COUNT - 1)];
const size_t channelCount = chunk.mChannelData.Length();
size_t copyLength =
std::min<size_t>(aLength - writeIndex, WEBAUDIO_BLOCK_SIZE);
float* dataOut = &aData[writeIndex];
if (channelCount == 0) {
PodZero(dataOut, copyLength);
} else {
float scale = chunk.mVolume / channelCount;
{ // channel 0
auto channelData =
static_cast<const float*>(chunk.mChannelData[0]) + readIndex;
AudioBufferCopyWithScale(channelData, scale, dataOut, copyLength);
}
for (uint32_t i = 1; i < channelCount; ++i) {
auto channelData =
static_cast<const float*>(chunk.mChannelData[i]) + readIndex;
AudioBufferAddWithScale(channelData, scale, dataOut, copyLength);
}
}
readChunk++;
writeIndex += copyLength;
}
}
} // namespace dom
} // namespace mozilla