gecko/js/src/jsnum.cpp
Jim Blandy de75b9fa19 Bug 537873: Add a 'strict' argument to C++ property setter functions. r=brendan
This changes the type of setters to JSStrictPropertyOp, which is just like
JSPropertyOp except that it takes a 'JSBool strict' argument. Most of the
patch is introducing distinct types and using the appropriate stubs.

The following are left for subsequent patches:

x Similar fixes to the browser outside SpiderMonkey.

x Actually *using* the newly available strictness information. This patch
  should have no user-visible effect. I didn't want the interesting stuff
  to get lost in this noise.
2011-02-09 11:31:40 -08:00

1456 lines
39 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Mozilla Communicator client code, released
* March 31, 1998.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1998
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* IBM Corp.
*
* Alternatively, the contents of this file may be used under the terms of
* either of the GNU General Public License Version 2 or later (the "GPL"),
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
/*
* JS number type and wrapper class.
*/
#ifdef XP_OS2
#define _PC_53 PC_53
#define _MCW_EM MCW_EM
#define _MCW_PC MCW_PC
#endif
#include <locale.h>
#include <limits.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "jstypes.h"
#include "jsstdint.h"
#include "jsutil.h"
#include "jsapi.h"
#include "jsatom.h"
#include "jsbuiltins.h"
#include "jscntxt.h"
#include "jsversion.h"
#include "jsdtoa.h"
#include "jsgc.h"
#include "jsinterp.h"
#include "jsnum.h"
#include "jsobj.h"
#include "jsopcode.h"
#include "jsprf.h"
#include "jsscope.h"
#include "jsstr.h"
#include "jstracer.h"
#include "jsvector.h"
#include "jsinterpinlines.h"
#include "jsobjinlines.h"
#include "jsstrinlines.h"
using namespace js;
#ifndef JS_HAVE_STDINT_H /* Native support is innocent until proven guilty. */
JS_STATIC_ASSERT(uint8_t(-1) == UINT8_MAX);
JS_STATIC_ASSERT(uint16_t(-1) == UINT16_MAX);
JS_STATIC_ASSERT(uint32_t(-1) == UINT32_MAX);
JS_STATIC_ASSERT(uint64_t(-1) == UINT64_MAX);
JS_STATIC_ASSERT(INT8_MAX > INT8_MIN);
JS_STATIC_ASSERT(uint8_t(INT8_MAX) + uint8_t(1) == uint8_t(INT8_MIN));
JS_STATIC_ASSERT(INT16_MAX > INT16_MIN);
JS_STATIC_ASSERT(uint16_t(INT16_MAX) + uint16_t(1) == uint16_t(INT16_MIN));
JS_STATIC_ASSERT(INT32_MAX > INT32_MIN);
JS_STATIC_ASSERT(uint32_t(INT32_MAX) + uint32_t(1) == uint32_t(INT32_MIN));
JS_STATIC_ASSERT(INT64_MAX > INT64_MIN);
JS_STATIC_ASSERT(uint64_t(INT64_MAX) + uint64_t(1) == uint64_t(INT64_MIN));
JS_STATIC_ASSERT(INTPTR_MAX > INTPTR_MIN);
JS_STATIC_ASSERT(uintptr_t(INTPTR_MAX) + uintptr_t(1) == uintptr_t(INTPTR_MIN));
JS_STATIC_ASSERT(uintptr_t(-1) == UINTPTR_MAX);
JS_STATIC_ASSERT(size_t(-1) == SIZE_MAX);
JS_STATIC_ASSERT(PTRDIFF_MAX > PTRDIFF_MIN);
JS_STATIC_ASSERT(ptrdiff_t(PTRDIFF_MAX) == PTRDIFF_MAX);
JS_STATIC_ASSERT(ptrdiff_t(PTRDIFF_MIN) == PTRDIFF_MIN);
JS_STATIC_ASSERT(uintptr_t(PTRDIFF_MAX) + uintptr_t(1) == uintptr_t(PTRDIFF_MIN));
#endif /* JS_HAVE_STDINT_H */
/*
* If we're accumulating a decimal number and the number is >= 2^53, then the
* fast result from the loop in GetPrefixInteger may be inaccurate. Call
* js_strtod_harder to get the correct answer.
*/
static bool
ComputeAccurateDecimalInteger(JSContext *cx, const jschar *start, const jschar *end, jsdouble *dp)
{
size_t length = end - start;
char *cstr = static_cast<char *>(cx->malloc(length + 1));
if (!cstr)
return false;
for (size_t i = 0; i < length; i++) {
char c = char(start[i]);
JS_ASSERT(('0' <= c && c <= '9') || ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z'));
cstr[i] = c;
}
cstr[length] = 0;
char *estr;
int err = 0;
*dp = js_strtod_harder(JS_THREAD_DATA(cx)->dtoaState, cstr, &estr, &err);
if (err == JS_DTOA_ENOMEM) {
JS_ReportOutOfMemory(cx);
cx->free(cstr);
return false;
}
if (err == JS_DTOA_ERANGE && *dp == HUGE_VAL)
*dp = js_PositiveInfinity;
cx->free(cstr);
return true;
}
class BinaryDigitReader
{
const int base; /* Base of number; must be a power of 2 */
int digit; /* Current digit value in radix given by base */
int digitMask; /* Mask to extract the next bit from digit */
const jschar *start; /* Pointer to the remaining digits */
const jschar *end; /* Pointer to first non-digit */
public:
BinaryDigitReader(int base, const jschar *start, const jschar *end)
: base(base), digit(0), digitMask(0), start(start), end(end)
{
}
/* Return the next binary digit from the number, or -1 if done. */
int nextDigit() {
if (digitMask == 0) {
if (start == end)
return -1;
int c = *start++;
JS_ASSERT(('0' <= c && c <= '9') || ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z'));
if ('0' <= c && c <= '9')
digit = c - '0';
else if ('a' <= c && c <= 'z')
digit = c - 'a' + 10;
else
digit = c - 'A' + 10;
digitMask = base >> 1;
}
int bit = (digit & digitMask) != 0;
digitMask >>= 1;
return bit;
}
};
/*
* The fast result might also have been inaccurate for power-of-two bases. This
* happens if the addition in value * 2 + digit causes a round-down to an even
* least significant mantissa bit when the first dropped bit is a one. If any
* of the following digits in the number (which haven't been added in yet) are
* nonzero, then the correct action would have been to round up instead of
* down. An example occurs when reading the number 0x1000000000000081, which
* rounds to 0x1000000000000000 instead of 0x1000000000000100.
*/
static jsdouble
ComputeAccurateBinaryBaseInteger(JSContext *cx, const jschar *start, const jschar *end, int base)
{
BinaryDigitReader bdr(base, start, end);
/* Skip leading zeroes. */
int bit;
do {
bit = bdr.nextDigit();
} while (bit == 0);
JS_ASSERT(bit == 1); // guaranteed by GetPrefixInteger
/* Gather the 53 significant bits (including the leading 1). */
jsdouble value = 1.0;
for (int j = 52; j > 0; j--) {
bit = bdr.nextDigit();
if (bit < 0)
return value;
value = value * 2 + bit;
}
/* bit2 is the 54th bit (the first dropped from the mantissa). */
int bit2 = bdr.nextDigit();
if (bit2 >= 0) {
jsdouble factor = 2.0;
int sticky = 0; /* sticky is 1 if any bit beyond the 54th is 1 */
int bit3;
while ((bit3 = bdr.nextDigit()) >= 0) {
sticky |= bit3;
factor *= 2;
}
value += bit2 & (bit | sticky);
value *= factor;
}
return value;
}
namespace js {
bool
GetPrefixInteger(JSContext *cx, const jschar *start, const jschar *end, int base,
const jschar **endp, jsdouble *dp)
{
JS_ASSERT(start <= end);
JS_ASSERT(2 <= base && base <= 36);
const jschar *s = start;
jsdouble d = 0.0;
for (; s < end; s++) {
int digit;
jschar c = *s;
if ('0' <= c && c <= '9')
digit = c - '0';
else if ('a' <= c && c <= 'z')
digit = c - 'a' + 10;
else if ('A' <= c && c <= 'Z')
digit = c - 'A' + 10;
else
break;
if (digit >= base)
break;
d = d * base + digit;
}
*endp = s;
*dp = d;
/* If we haven't reached the limit of integer precision, we're done. */
if (d < DOUBLE_INTEGRAL_PRECISION_LIMIT)
return true;
/*
* Otherwise compute the correct integer from the prefix of valid digits
* if we're computing for base ten or a power of two. Don't worry about
* other bases; see 15.1.2.2 step 13.
*/
if (base == 10)
return ComputeAccurateDecimalInteger(cx, start, s, dp);
if ((base & (base - 1)) == 0)
*dp = ComputeAccurateBinaryBaseInteger(cx, start, s, base);
return true;
}
} // namespace js
static JSBool
num_isNaN(JSContext *cx, uintN argc, Value *vp)
{
if (argc == 0) {
vp->setBoolean(true);
return JS_TRUE;
}
jsdouble x;
if (!ValueToNumber(cx, vp[2], &x))
return false;
vp->setBoolean(JSDOUBLE_IS_NaN(x));
return JS_TRUE;
}
static JSBool
num_isFinite(JSContext *cx, uintN argc, Value *vp)
{
if (argc == 0) {
vp->setBoolean(false);
return JS_TRUE;
}
jsdouble x;
if (!ValueToNumber(cx, vp[2], &x))
return JS_FALSE;
vp->setBoolean(JSDOUBLE_IS_FINITE(x));
return JS_TRUE;
}
static JSBool
num_parseFloat(JSContext *cx, uintN argc, Value *vp)
{
JSString *str;
jsdouble d;
const jschar *bp, *end, *ep;
if (argc == 0) {
vp->setDouble(js_NaN);
return JS_TRUE;
}
str = js_ValueToString(cx, vp[2]);
if (!str)
return JS_FALSE;
bp = str->getChars(cx);
if (!bp)
return JS_FALSE;
end = bp + str->length();
if (!js_strtod(cx, bp, end, &ep, &d))
return JS_FALSE;
if (ep == bp) {
vp->setDouble(js_NaN);
return JS_TRUE;
}
vp->setNumber(d);
return JS_TRUE;
}
#ifdef JS_TRACER
static jsdouble FASTCALL
ParseFloat(JSContext* cx, JSString* str)
{
TraceMonitor *tm = JS_TRACE_MONITOR_ON_TRACE(cx);
const jschar *bp = str->getChars(cx);
if (!bp) {
SetBuiltinError(tm);
return js_NaN;
}
const jschar *end = bp + str->length();
const jschar *ep;
double d;
if (!js_strtod(cx, bp, end, &ep, &d) || ep == bp)
return js_NaN;
return d;
}
#endif
static bool
ParseIntStringHelper(JSContext *cx, const jschar *ws, const jschar *end, int maybeRadix,
bool stripPrefix, jsdouble *dp)
{
JS_ASSERT(maybeRadix == 0 || (2 <= maybeRadix && maybeRadix <= 36));
JS_ASSERT(ws <= end);
const jschar *s = js_SkipWhiteSpace(ws, end);
JS_ASSERT(ws <= s);
JS_ASSERT(s <= end);
/* 15.1.2.2 steps 3-4. */
bool negative = (s != end && s[0] == '-');
/* 15.1.2.2 step 5. */
if (s != end && (s[0] == '-' || s[0] == '+'))
s++;
/* 15.1.2.2 step 9. */
int radix = maybeRadix;
if (radix == 0) {
if (end - s >= 2 && s[0] == '0' && (s[1] != 'x' && s[1] != 'X')) {
/*
* Non-standard: ES5 requires that parseInt interpret leading-zero
* strings not starting with "0x" or "0X" as decimal (absent an
* explicitly specified non-zero radix), but we continue to
* interpret such strings as octal, as per ES3 and web practice.
*/
radix = 8;
} else {
radix = 10;
}
}
/* 15.1.2.2 step 10. */
if (stripPrefix) {
if (end - s >= 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')) {
s += 2;
radix = 16;
}
}
/* 15.1.2.2 steps 11-14. */
const jschar *actualEnd;
if (!GetPrefixInteger(cx, s, end, radix, &actualEnd, dp))
return false;
if (s == actualEnd)
*dp = js_NaN;
else if (negative)
*dp = -*dp;
return true;
}
static jsdouble
ParseIntDoubleHelper(jsdouble d)
{
if (!JSDOUBLE_IS_FINITE(d))
return js_NaN;
if (d > 0)
return floor(d);
if (d < 0)
return -floor(-d);
return 0;
}
/* See ECMA 15.1.2.2. */
static JSBool
num_parseInt(JSContext *cx, uintN argc, Value *vp)
{
/* Fast paths and exceptional cases. */
if (argc == 0) {
vp->setDouble(js_NaN);
return true;
}
if (argc == 1 || (vp[3].isInt32() && (vp[3].toInt32() == 0 || vp[3].toInt32() == 10))) {
if (vp[2].isInt32()) {
*vp = vp[2];
return true;
}
if (vp[2].isDouble()) {
vp->setDouble(ParseIntDoubleHelper(vp[2].toDouble()));
return true;
}
}
/* Step 1. */
JSString *inputString = js_ValueToString(cx, vp[2]);
if (!inputString)
return false;
vp[2].setString(inputString);
/* 15.1.2.2 steps 6-8. */
bool stripPrefix = true;
int32_t radix = 0;
if (argc > 1) {
if (!ValueToECMAInt32(cx, vp[3], &radix))
return false;
if (radix != 0) {
if (radix < 2 || radix > 36) {
vp->setDouble(js_NaN);
return true;
}
if (radix != 16)
stripPrefix = false;
}
}
/* Steps 2-5, 9-14. */
const jschar *ws = inputString->getChars(cx);
if (!ws)
return false;
const jschar *end = ws + inputString->length();
jsdouble number;
if (!ParseIntStringHelper(cx, ws, end, radix, stripPrefix, &number))
return false;
/* Step 15. */
vp->setNumber(number);
return true;
}
#ifdef JS_TRACER
static jsdouble FASTCALL
ParseInt(JSContext* cx, JSString* str)
{
TraceMonitor *tm = JS_TRACE_MONITOR_ON_TRACE(cx);
const jschar *start = str->getChars(cx);
if (!start) {
SetBuiltinError(tm);
return js_NaN;
}
const jschar *end = start + str->length();
jsdouble d;
if (!ParseIntStringHelper(cx, start, end, 0, true, &d)) {
SetBuiltinError(tm);
return js_NaN;
}
return d;
}
static jsdouble FASTCALL
ParseIntDouble(jsdouble d)
{
return ParseIntDoubleHelper(d);
}
#endif
const char js_Infinity_str[] = "Infinity";
const char js_NaN_str[] = "NaN";
const char js_isNaN_str[] = "isNaN";
const char js_isFinite_str[] = "isFinite";
const char js_parseFloat_str[] = "parseFloat";
const char js_parseInt_str[] = "parseInt";
#ifdef JS_TRACER
JS_DEFINE_TRCINFO_2(num_parseInt,
(2, (static, DOUBLE_FAIL, ParseInt, CONTEXT, STRING,1, nanojit::ACCSET_NONE)),
(1, (static, DOUBLE, ParseIntDouble, DOUBLE, 1, nanojit::ACCSET_NONE)))
JS_DEFINE_TRCINFO_1(num_parseFloat,
(2, (static, DOUBLE_FAIL, ParseFloat, CONTEXT, STRING, 1, nanojit::ACCSET_NONE)))
#endif /* JS_TRACER */
static JSFunctionSpec number_functions[] = {
JS_FN(js_isNaN_str, num_isNaN, 1,0),
JS_FN(js_isFinite_str, num_isFinite, 1,0),
JS_TN(js_parseFloat_str, num_parseFloat, 1,0, &num_parseFloat_trcinfo),
JS_TN(js_parseInt_str, num_parseInt, 2,0, &num_parseInt_trcinfo),
JS_FS_END
};
Class js_NumberClass = {
js_Number_str,
JSCLASS_HAS_RESERVED_SLOTS(1) | JSCLASS_HAS_CACHED_PROTO(JSProto_Number),
PropertyStub, /* addProperty */
PropertyStub, /* delProperty */
PropertyStub, /* getProperty */
StrictPropertyStub, /* setProperty */
EnumerateStub,
ResolveStub,
ConvertStub
};
static JSBool
Number(JSContext *cx, uintN argc, Value *vp)
{
/* Sample JS_CALLEE before clobbering. */
bool isConstructing = IsConstructing(vp);
if (argc > 0) {
if (!ValueToNumber(cx, &vp[2]))
return false;
vp[0] = vp[2];
} else {
vp[0].setInt32(0);
}
if (!isConstructing)
return true;
JSObject *obj = NewBuiltinClassInstance(cx, &js_NumberClass);
if (!obj)
return false;
obj->setPrimitiveThis(vp[0]);
vp->setObject(*obj);
return true;
}
#if JS_HAS_TOSOURCE
static JSBool
num_toSource(JSContext *cx, uintN argc, Value *vp)
{
double d;
if (!GetPrimitiveThis(cx, vp, &d))
return false;
ToCStringBuf cbuf;
char *numStr = NumberToCString(cx, &cbuf, d);
if (!numStr) {
JS_ReportOutOfMemory(cx);
return false;
}
char buf[64];
JS_snprintf(buf, sizeof buf, "(new %s(%s))", js_NumberClass.name, numStr);
JSString *str = js_NewStringCopyZ(cx, buf);
if (!str)
return false;
vp->setString(str);
return true;
}
#endif
ToCStringBuf::ToCStringBuf() :dbuf(NULL)
{
JS_STATIC_ASSERT(sbufSize >= DTOSTR_STANDARD_BUFFER_SIZE);
}
ToCStringBuf::~ToCStringBuf()
{
if (dbuf)
js_free(dbuf);
}
JSString * JS_FASTCALL
js_IntToString(JSContext *cx, int32 si)
{
uint32 ui;
if (si >= 0) {
if (si < INT_STRING_LIMIT)
return JSString::intString(si);
ui = si;
} else {
ui = uint32(-si);
JS_ASSERT_IF(si == INT32_MIN, ui == uint32(INT32_MAX) + 1);
}
JSCompartment *c = cx->compartment;
if (JSString *str = c->dtoaCache.lookup(10, si))
return str;
JSShortString *str = js_NewGCShortString(cx);
if (!str)
return NULL;
/* +1, since MAX_SHORT_STRING_LENGTH does not count the null char. */
JS_STATIC_ASSERT(JSShortString::MAX_SHORT_STRING_LENGTH + 1 >= sizeof("-2147483648"));
jschar *end = str->getInlineStorageBeforeInit() + JSShortString::MAX_SHORT_STRING_LENGTH;
jschar *cp = end;
*cp = 0;
do {
jsuint newui = ui / 10, digit = ui % 10; /* optimizers are our friends */
*--cp = '0' + digit;
ui = newui;
} while (ui != 0);
if (si < 0)
*--cp = '-';
str->initAtOffsetInBuffer(cp, end - cp);
JSString *ret = str->header();
c->dtoaCache.cache(10, si, ret);
return ret;
}
/* Returns a non-NULL pointer to inside cbuf. */
static char *
IntToCString(ToCStringBuf *cbuf, jsint i, jsint base = 10)
{
char *cp;
jsuint u;
u = (i < 0) ? -i : i;
cp = cbuf->sbuf + cbuf->sbufSize; /* one past last buffer cell */
*--cp = '\0'; /* null terminate the string to be */
/*
* Build the string from behind. We use multiply and subtraction
* instead of modulus because that's much faster.
*/
switch (base) {
case 10:
do {
jsuint newu = u / 10;
*--cp = (char)(u - newu * 10) + '0';
u = newu;
} while (u != 0);
break;
case 16:
do {
jsuint newu = u / 16;
*--cp = "0123456789abcdef"[u - newu * 16];
u = newu;
} while (u != 0);
break;
default:
JS_ASSERT(base >= 2 && base <= 36);
do {
jsuint newu = u / base;
*--cp = "0123456789abcdefghijklmnopqrstuvwxyz"[u - newu * base];
u = newu;
} while (u != 0);
break;
}
if (i < 0)
*--cp = '-';
JS_ASSERT(cp >= cbuf->sbuf);
return cp;
}
static JSString * JS_FASTCALL
js_NumberToStringWithBase(JSContext *cx, jsdouble d, jsint base);
static JSBool
num_toString(JSContext *cx, uintN argc, Value *vp)
{
double d;
if (!GetPrimitiveThis(cx, vp, &d))
return false;
int32_t base = 10;
if (argc != 0 && !vp[2].isUndefined()) {
if (!ValueToECMAInt32(cx, vp[2], &base))
return JS_FALSE;
if (base < 2 || base > 36) {
ToCStringBuf cbuf;
char *numStr = IntToCString(&cbuf, base); /* convert the base itself to a string */
JS_ASSERT(numStr);
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_BAD_RADIX,
numStr);
return JS_FALSE;
}
}
JSString *str = js_NumberToStringWithBase(cx, d, base);
if (!str) {
JS_ReportOutOfMemory(cx);
return JS_FALSE;
}
vp->setString(str);
return JS_TRUE;
}
static JSBool
num_toLocaleString(JSContext *cx, uintN argc, Value *vp)
{
size_t thousandsLength, decimalLength;
const char *numGrouping, *tmpGroup;
JSRuntime *rt;
JSString *str;
const char *num, *end, *tmpSrc;
char *buf, *tmpDest;
const char *nint;
int digits, buflen, remainder, nrepeat;
/*
* Create the string, move back to bytes to make string twiddling
* a bit easier and so we can insert platform charset seperators.
*/
if (!num_toString(cx, 0, vp))
return JS_FALSE;
JS_ASSERT(vp->isString());
JSAutoByteString numBytes(cx, vp->toString());
if (!numBytes)
return JS_FALSE;
num = numBytes.ptr();
if (!num)
return JS_FALSE;
/*
* Find the first non-integer value, whether it be a letter as in
* 'Infinity', a decimal point, or an 'e' from exponential notation.
*/
nint = num;
if (*nint == '-')
nint++;
while (*nint >= '0' && *nint <= '9')
nint++;
digits = nint - num;
end = num + digits;
if (!digits)
return JS_TRUE;
rt = cx->runtime;
thousandsLength = strlen(rt->thousandsSeparator);
decimalLength = strlen(rt->decimalSeparator);
/* Figure out how long resulting string will be. */
buflen = strlen(num);
if (*nint == '.')
buflen += decimalLength - 1; /* -1 to account for existing '.' */
numGrouping = tmpGroup = rt->numGrouping;
remainder = digits;
if (*num == '-')
remainder--;
while (*tmpGroup != CHAR_MAX && *tmpGroup != '\0') {
if (*tmpGroup >= remainder)
break;
buflen += thousandsLength;
remainder -= *tmpGroup;
tmpGroup++;
}
if (*tmpGroup == '\0' && *numGrouping != '\0') {
nrepeat = (remainder - 1) / tmpGroup[-1];
buflen += thousandsLength * nrepeat;
remainder -= nrepeat * tmpGroup[-1];
} else {
nrepeat = 0;
}
tmpGroup--;
buf = (char *)cx->malloc(buflen + 1);
if (!buf)
return JS_FALSE;
tmpDest = buf;
tmpSrc = num;
while (*tmpSrc == '-' || remainder--) {
JS_ASSERT(tmpDest - buf < buflen);
*tmpDest++ = *tmpSrc++;
}
while (tmpSrc < end) {
JS_ASSERT(tmpDest - buf + ptrdiff_t(thousandsLength) <= buflen);
strcpy(tmpDest, rt->thousandsSeparator);
tmpDest += thousandsLength;
JS_ASSERT(tmpDest - buf + *tmpGroup <= buflen);
memcpy(tmpDest, tmpSrc, *tmpGroup);
tmpDest += *tmpGroup;
tmpSrc += *tmpGroup;
if (--nrepeat < 0)
tmpGroup--;
}
if (*nint == '.') {
JS_ASSERT(tmpDest - buf + ptrdiff_t(decimalLength) <= buflen);
strcpy(tmpDest, rt->decimalSeparator);
tmpDest += decimalLength;
JS_ASSERT(tmpDest - buf + ptrdiff_t(strlen(nint + 1)) <= buflen);
strcpy(tmpDest, nint + 1);
} else {
JS_ASSERT(tmpDest - buf + ptrdiff_t(strlen(nint)) <= buflen);
strcpy(tmpDest, nint);
}
if (cx->localeCallbacks && cx->localeCallbacks->localeToUnicode) {
JSBool ok = cx->localeCallbacks->localeToUnicode(cx, buf, Jsvalify(vp));
cx->free(buf);
return ok;
}
str = js_NewStringCopyN(cx, buf, buflen);
cx->free(buf);
if (!str)
return JS_FALSE;
vp->setString(str);
return JS_TRUE;
}
JSBool
js_num_valueOf(JSContext *cx, uintN argc, Value *vp)
{
double d;
if (!GetPrimitiveThis(cx, vp, &d))
return false;
vp->setNumber(d);
return true;
}
#define MAX_PRECISION 100
static JSBool
num_to(JSContext *cx, JSDToStrMode zeroArgMode, JSDToStrMode oneArgMode,
jsint precisionMin, jsint precisionMax, jsint precisionOffset,
uintN argc, Value *vp)
{
/* Use MAX_PRECISION+1 because precisionOffset can be 1. */
char buf[DTOSTR_VARIABLE_BUFFER_SIZE(MAX_PRECISION+1)];
char *numStr;
double d;
if (!GetPrimitiveThis(cx, vp, &d))
return false;
double precision;
if (argc == 0) {
precision = 0.0;
oneArgMode = zeroArgMode;
} else {
if (!ValueToNumber(cx, vp[2], &precision))
return JS_FALSE;
precision = js_DoubleToInteger(precision);
if (precision < precisionMin || precision > precisionMax) {
ToCStringBuf cbuf;
numStr = IntToCString(&cbuf, jsint(precision));
JS_ASSERT(numStr);
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_PRECISION_RANGE, numStr);
return JS_FALSE;
}
}
numStr = js_dtostr(JS_THREAD_DATA(cx)->dtoaState, buf, sizeof buf,
oneArgMode, (jsint)precision + precisionOffset, d);
if (!numStr) {
JS_ReportOutOfMemory(cx);
return JS_FALSE;
}
JSString *str = js_NewStringCopyZ(cx, numStr);
if (!str)
return JS_FALSE;
vp->setString(str);
return JS_TRUE;
}
/*
* In the following three implementations, we allow a larger range of precision
* than ECMA requires; this is permitted by ECMA-262.
*/
static JSBool
num_toFixed(JSContext *cx, uintN argc, Value *vp)
{
return num_to(cx, DTOSTR_FIXED, DTOSTR_FIXED, -20, MAX_PRECISION, 0,
argc, vp);
}
static JSBool
num_toExponential(JSContext *cx, uintN argc, Value *vp)
{
return num_to(cx, DTOSTR_STANDARD_EXPONENTIAL, DTOSTR_EXPONENTIAL, 0, MAX_PRECISION, 1,
argc, vp);
}
static JSBool
num_toPrecision(JSContext *cx, uintN argc, Value *vp)
{
if (argc == 0 || vp[2].isUndefined())
return num_toString(cx, 0, vp);
return num_to(cx, DTOSTR_STANDARD, DTOSTR_PRECISION, 1, MAX_PRECISION, 0,
argc, vp);
}
#ifdef JS_TRACER
JS_DEFINE_TRCINFO_2(num_toString,
(2, (extern, STRING_RETRY, js_NumberToString, CONTEXT, THIS_DOUBLE,
1, nanojit::ACCSET_NONE)),
(3, (static, STRING_RETRY, js_NumberToStringWithBase, CONTEXT, THIS_DOUBLE, INT32,
1, nanojit::ACCSET_NONE)))
#endif /* JS_TRACER */
static JSFunctionSpec number_methods[] = {
#if JS_HAS_TOSOURCE
JS_FN(js_toSource_str, num_toSource, 0, 0),
#endif
JS_TN(js_toString_str, num_toString, 1, 0, &num_toString_trcinfo),
JS_FN(js_toLocaleString_str, num_toLocaleString, 0, 0),
JS_FN(js_valueOf_str, js_num_valueOf, 0, 0),
JS_FN(js_toJSON_str, js_num_valueOf, 0, 0),
JS_FN("toFixed", num_toFixed, 1, 0),
JS_FN("toExponential", num_toExponential, 1, 0),
JS_FN("toPrecision", num_toPrecision, 1, 0),
JS_FS_END
};
/* NB: Keep this in synch with number_constants[]. */
enum nc_slot {
NC_NaN,
NC_POSITIVE_INFINITY,
NC_NEGATIVE_INFINITY,
NC_MAX_VALUE,
NC_MIN_VALUE,
NC_LIMIT
};
/*
* Some to most C compilers forbid spelling these at compile time, or barf
* if you try, so all but MAX_VALUE are set up by js_InitRuntimeNumberState
* using union jsdpun.
*/
static JSConstDoubleSpec number_constants[] = {
{0, js_NaN_str, 0,{0,0,0}},
{0, "POSITIVE_INFINITY", 0,{0,0,0}},
{0, "NEGATIVE_INFINITY", 0,{0,0,0}},
{1.7976931348623157E+308, "MAX_VALUE", 0,{0,0,0}},
{0, "MIN_VALUE", 0,{0,0,0}},
{0,0,0,{0,0,0}}
};
jsdouble js_NaN;
jsdouble js_PositiveInfinity;
jsdouble js_NegativeInfinity;
#if (defined __GNUC__ && defined __i386__) || \
(defined __SUNPRO_CC && defined __i386)
/*
* Set the exception mask to mask all exceptions and set the FPU precision
* to 53 bit mantissa (64 bit doubles).
*/
inline void FIX_FPU() {
short control;
asm("fstcw %0" : "=m" (control) : );
control &= ~0x300; // Lower bits 8 and 9 (precision control).
control |= 0x2f3; // Raise bits 0-5 (exception masks) and 9 (64-bit precision).
asm("fldcw %0" : : "m" (control) );
}
#else
#define FIX_FPU() ((void)0)
#endif
JSBool
js_InitRuntimeNumberState(JSContext *cx)
{
JSRuntime *rt = cx->runtime;
FIX_FPU();
jsdpun u;
u.s.hi = JSDOUBLE_HI32_NAN;
u.s.lo = JSDOUBLE_LO32_NAN;
number_constants[NC_NaN].dval = js_NaN = u.d;
rt->NaNValue.setDouble(u.d);
u.s.hi = JSDOUBLE_HI32_EXPMASK;
u.s.lo = 0x00000000;
number_constants[NC_POSITIVE_INFINITY].dval = js_PositiveInfinity = u.d;
rt->positiveInfinityValue.setDouble(u.d);
u.s.hi = JSDOUBLE_HI32_SIGNBIT | JSDOUBLE_HI32_EXPMASK;
u.s.lo = 0x00000000;
number_constants[NC_NEGATIVE_INFINITY].dval = js_NegativeInfinity = u.d;
rt->negativeInfinityValue.setDouble(u.d);
u.s.hi = 0;
u.s.lo = 1;
number_constants[NC_MIN_VALUE].dval = u.d;
#ifndef HAVE_LOCALECONV
const char* thousands_sep = getenv("LOCALE_THOUSANDS_SEP");
const char* decimal_point = getenv("LOCALE_DECIMAL_POINT");
const char* grouping = getenv("LOCALE_GROUPING");
rt->thousandsSeparator =
JS_strdup(cx, thousands_sep ? thousands_sep : "'");
rt->decimalSeparator =
JS_strdup(cx, decimal_point ? decimal_point : ".");
rt->numGrouping =
JS_strdup(cx, grouping ? grouping : "\3\0");
#else
struct lconv *locale = localeconv();
rt->thousandsSeparator =
JS_strdup(cx, locale->thousands_sep ? locale->thousands_sep : "'");
rt->decimalSeparator =
JS_strdup(cx, locale->decimal_point ? locale->decimal_point : ".");
rt->numGrouping =
JS_strdup(cx, locale->grouping ? locale->grouping : "\3\0");
#endif
return rt->thousandsSeparator && rt->decimalSeparator && rt->numGrouping;
}
void
js_FinishRuntimeNumberState(JSContext *cx)
{
JSRuntime *rt = cx->runtime;
cx->free((void *) rt->thousandsSeparator);
cx->free((void *) rt->decimalSeparator);
cx->free((void *) rt->numGrouping);
rt->thousandsSeparator = rt->decimalSeparator = rt->numGrouping = NULL;
}
JSObject *
js_InitNumberClass(JSContext *cx, JSObject *obj)
{
JSObject *proto, *ctor;
JSRuntime *rt;
/* XXX must do at least once per new thread, so do it per JSContext... */
FIX_FPU();
if (!JS_DefineFunctions(cx, obj, number_functions))
return NULL;
proto = js_InitClass(cx, obj, NULL, &js_NumberClass, Number, 1,
NULL, number_methods, NULL, NULL);
if (!proto || !(ctor = JS_GetConstructor(cx, proto)))
return NULL;
proto->setPrimitiveThis(Int32Value(0));
if (!JS_DefineConstDoubles(cx, ctor, number_constants))
return NULL;
/* ECMA 15.1.1.1 */
rt = cx->runtime;
if (!JS_DefineProperty(cx, obj, js_NaN_str, Jsvalify(rt->NaNValue),
JS_PropertyStub, JS_StrictPropertyStub,
JSPROP_PERMANENT | JSPROP_READONLY)) {
return NULL;
}
/* ECMA 15.1.1.2 */
if (!JS_DefineProperty(cx, obj, js_Infinity_str, Jsvalify(rt->positiveInfinityValue),
JS_PropertyStub, JS_StrictPropertyStub,
JSPROP_PERMANENT | JSPROP_READONLY)) {
return NULL;
}
return proto;
}
namespace v8 {
namespace internal {
extern char* DoubleToCString(double v, char* buffer, int buflen);
}
}
namespace js {
static char *
FracNumberToCString(JSContext *cx, ToCStringBuf *cbuf, jsdouble d, jsint base = 10)
{
#ifdef DEBUG
{
int32_t _;
JS_ASSERT(!JSDOUBLE_IS_INT32(d, &_));
}
#endif
char* numStr;
if (base == 10) {
/*
* This is V8's implementation of the algorithm described in the
* following paper:
*
* Printing floating-point numbers quickly and accurately with integers.
* Florian Loitsch, PLDI 2010.
*
* It fails on a small number of cases, whereupon we fall back to
* js_dtostr() (which uses David Gay's dtoa).
*/
numStr = v8::internal::DoubleToCString(d, cbuf->sbuf, cbuf->sbufSize);
if (!numStr)
numStr = js_dtostr(JS_THREAD_DATA(cx)->dtoaState, cbuf->sbuf, cbuf->sbufSize,
DTOSTR_STANDARD, 0, d);
} else {
numStr = cbuf->dbuf = js_dtobasestr(JS_THREAD_DATA(cx)->dtoaState, base, d);
}
return numStr;
}
char *
NumberToCString(JSContext *cx, ToCStringBuf *cbuf, jsdouble d, jsint base/* = 10*/)
{
int32_t i;
return (JSDOUBLE_IS_INT32(d, &i))
? IntToCString(cbuf, i, base)
: FracNumberToCString(cx, cbuf, d, base);
}
}
static JSString * JS_FASTCALL
js_NumberToStringWithBase(JSContext *cx, jsdouble d, jsint base)
{
ToCStringBuf cbuf;
char *numStr;
JSString *s;
/*
* Caller is responsible for error reporting. When called from trace,
* returning NULL here will cause us to fall of trace and then retry
* from the interpreter (which will report the error).
*/
if (base < 2 || base > 36)
return NULL;
JSCompartment *c = cx->compartment;
int32_t i;
if (JSDOUBLE_IS_INT32(d, &i)) {
if (base == 10 && jsuint(i) < INT_STRING_LIMIT)
return JSString::intString(i);
if (jsuint(i) < jsuint(base)) {
if (i < 10)
return JSString::intString(i);
return JSString::unitString(jschar('a' + i - 10));
}
if (JSString *str = c->dtoaCache.lookup(base, d))
return str;
numStr = IntToCString(&cbuf, i, base);
JS_ASSERT(!cbuf.dbuf && numStr >= cbuf.sbuf && numStr < cbuf.sbuf + cbuf.sbufSize);
} else {
if (JSString *str = c->dtoaCache.lookup(base, d))
return str;
numStr = FracNumberToCString(cx, &cbuf, d, base);
if (!numStr) {
JS_ReportOutOfMemory(cx);
return NULL;
}
JS_ASSERT_IF(base == 10,
!cbuf.dbuf && numStr >= cbuf.sbuf && numStr < cbuf.sbuf + cbuf.sbufSize);
JS_ASSERT_IF(base != 10,
cbuf.dbuf && cbuf.dbuf == numStr);
}
s = js_NewStringCopyZ(cx, numStr);
c->dtoaCache.cache(base, d, s);
return s;
}
JSString * JS_FASTCALL
js_NumberToString(JSContext *cx, jsdouble d)
{
return js_NumberToStringWithBase(cx, d, 10);
}
namespace js {
JSFlatString *
NumberToString(JSContext *cx, jsdouble d)
{
if (JSString *str = js_NumberToStringWithBase(cx, d, 10))
return str->assertIsFlat();
return NULL;
}
bool JS_FASTCALL
NumberValueToStringBuffer(JSContext *cx, const Value &v, StringBuffer &sb)
{
/* Convert to C-string. */
ToCStringBuf cbuf;
const char *cstr;
if (v.isInt32()) {
cstr = IntToCString(&cbuf, v.toInt32());
} else {
cstr = NumberToCString(cx, &cbuf, v.toDouble());
if (!cstr) {
JS_ReportOutOfMemory(cx);
return JS_FALSE;
}
}
/*
* Inflate to jschar string. The input C-string characters are < 127, so
* even if jschars are UTF-8, all chars should map to one jschar.
*/
size_t cstrlen = strlen(cstr);
JS_ASSERT(!cbuf.dbuf && cstrlen < cbuf.sbufSize);
return sb.appendInflated(cstr, cstrlen);
}
bool
ValueToNumberSlow(JSContext *cx, Value v, double *out)
{
JS_ASSERT(!v.isNumber());
goto skip_int_double;
for (;;) {
if (v.isNumber()) {
*out = v.toNumber();
return true;
}
skip_int_double:
if (v.isString())
return StringToNumberType<jsdouble>(cx, v.toString(), out);
if (v.isBoolean()) {
if (v.toBoolean()) {
*out = 1.0;
return true;
}
*out = 0.0;
return true;
}
if (v.isNull()) {
*out = 0.0;
return true;
}
if (v.isUndefined())
break;
JS_ASSERT(v.isObject());
if (!DefaultValue(cx, &v.toObject(), JSTYPE_NUMBER, &v))
return false;
if (v.isObject())
break;
}
*out = js_NaN;
return true;
}
bool
ValueToECMAInt32Slow(JSContext *cx, const Value &v, int32_t *out)
{
JS_ASSERT(!v.isInt32());
jsdouble d;
if (v.isDouble()) {
d = v.toDouble();
} else {
if (!ValueToNumberSlow(cx, v, &d))
return false;
}
*out = js_DoubleToECMAInt32(d);
return true;
}
bool
ValueToECMAUint32Slow(JSContext *cx, const Value &v, uint32_t *out)
{
JS_ASSERT(!v.isInt32());
jsdouble d;
if (v.isDouble()) {
d = v.toDouble();
} else {
if (!ValueToNumberSlow(cx, v, &d))
return false;
}
*out = js_DoubleToECMAUint32(d);
return true;
}
} /* namespace js */
uint32
js_DoubleToECMAUint32(jsdouble d)
{
int32 i;
JSBool neg;
jsdouble two32;
if (!JSDOUBLE_IS_FINITE(d))
return 0;
/*
* We check whether d fits int32, not uint32, as all but the ">>>" bit
* manipulation bytecode stores the result as int, not uint. When the
* result does not fit int Value, it will be stored as a negative double.
*/
i = (int32) d;
if ((jsdouble) i == d)
return (int32)i;
neg = (d < 0);
d = floor(neg ? -d : d);
d = neg ? -d : d;
two32 = 4294967296.0;
d = fmod(d, two32);
return (uint32) (d >= 0 ? d : d + two32);
}
namespace js {
bool
ValueToInt32Slow(JSContext *cx, const Value &v, int32_t *out)
{
JS_ASSERT(!v.isInt32());
jsdouble d;
if (v.isDouble()) {
d = v.toDouble();
} else if (!ValueToNumberSlow(cx, v, &d)) {
return false;
}
if (JSDOUBLE_IS_NaN(d) || d <= -2147483649.0 || 2147483648.0 <= d) {
js_ReportValueError(cx, JSMSG_CANT_CONVERT,
JSDVG_SEARCH_STACK, v, NULL);
return false;
}
*out = (int32) floor(d + 0.5); /* Round to nearest */
return true;
}
bool
ValueToUint16Slow(JSContext *cx, const Value &v, uint16_t *out)
{
JS_ASSERT(!v.isInt32());
jsdouble d;
if (v.isDouble()) {
d = v.toDouble();
} else if (!ValueToNumberSlow(cx, v, &d)) {
return false;
}
if (d == 0 || !JSDOUBLE_IS_FINITE(d)) {
*out = 0;
return true;
}
uint16 u = (uint16) d;
if ((jsdouble)u == d) {
*out = u;
return true;
}
bool neg = (d < 0);
d = floor(neg ? -d : d);
d = neg ? -d : d;
jsuint m = JS_BIT(16);
d = fmod(d, (double) m);
if (d < 0)
d += m;
*out = (uint16_t) d;
return true;
}
} /* namespace js */
JSBool
js_strtod(JSContext *cx, const jschar *s, const jschar *send,
const jschar **ep, jsdouble *dp)
{
const jschar *s1;
size_t length, i;
char cbuf[32];
char *cstr, *istr, *estr;
JSBool negative;
jsdouble d;
s1 = js_SkipWhiteSpace(s, send);
length = send - s1;
/* Use cbuf to avoid malloc */
if (length >= sizeof cbuf) {
cstr = (char *) cx->malloc(length + 1);
if (!cstr)
return JS_FALSE;
} else {
cstr = cbuf;
}
for (i = 0; i != length; i++) {
if (s1[i] >> 8)
break;
cstr[i] = (char)s1[i];
}
cstr[i] = 0;
istr = cstr;
if ((negative = (*istr == '-')) != 0 || *istr == '+')
istr++;
if (*istr == 'I' && !strncmp(istr, js_Infinity_str, sizeof js_Infinity_str - 1)) {
d = negative ? js_NegativeInfinity : js_PositiveInfinity;
estr = istr + 8;
} else {
int err;
d = js_strtod_harder(JS_THREAD_DATA(cx)->dtoaState, cstr, &estr, &err);
if (d == HUGE_VAL)
d = js_PositiveInfinity;
else if (d == -HUGE_VAL)
d = js_NegativeInfinity;
}
i = estr - cstr;
if (cstr != cbuf)
cx->free(cstr);
*ep = i ? s1 + i : s;
*dp = d;
return JS_TRUE;
}