gecko/services/crypto/component/nsSyncJPAKE.cpp

457 lines
16 KiB
C++

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsSyncJPAKE.h"
#include "mozilla/ModuleUtils.h"
#include <pk11pub.h>
#include <keyhi.h>
#include <pkcs11.h>
#include <nscore.h>
#include <secmodt.h>
#include <secport.h>
#include <secerr.h>
#include <nsDebug.h>
#include <nsError.h>
#include <base64.h>
#include <nsString.h>
using mozilla::fallible;
static bool
hex_from_2char(const unsigned char *c2, unsigned char *byteval)
{
int i;
unsigned char offset;
*byteval = 0;
for (i=0; i<2; i++) {
if (c2[i] >= '0' && c2[i] <= '9') {
offset = c2[i] - '0';
*byteval |= offset << 4*(1-i);
} else if (c2[i] >= 'a' && c2[i] <= 'f') {
offset = c2[i] - 'a';
*byteval |= (offset + 10) << 4*(1-i);
} else if (c2[i] >= 'A' && c2[i] <= 'F') {
offset = c2[i] - 'A';
*byteval |= (offset + 10) << 4*(1-i);
} else {
return false;
}
}
return true;
}
static bool
fromHex(const char * str, unsigned char * p, size_t sLen)
{
size_t i;
if (sLen & 1)
return false;
for (i = 0; i < sLen / 2; ++i) {
if (!hex_from_2char((const unsigned char *) str + (2*i),
(unsigned char *) p + i)) {
return false;
}
}
return true;
}
static nsresult
fromHexString(const nsACString & str, unsigned char * p, size_t pMaxLen)
{
char * strData = (char *) str.Data();
unsigned len = str.Length();
NS_ENSURE_ARG(len / 2 <= pMaxLen);
if (!fromHex(strData, p, len)) {
return NS_ERROR_INVALID_ARG;
}
return NS_OK;
}
static bool
toHexString(const unsigned char * str, unsigned len, nsACString & out)
{
static const char digits[] = "0123456789ABCDEF";
if (!out.SetCapacity(2 * len, fallible))
return false;
out.SetLength(0);
for (unsigned i = 0; i < len; ++i) {
out.Append(digits[str[i] >> 4]);
out.Append(digits[str[i] & 0x0f]);
}
return true;
}
static nsresult
mapErrno()
{
int err = PORT_GetError();
switch (err) {
case SEC_ERROR_NO_MEMORY: return NS_ERROR_OUT_OF_MEMORY;
default: return NS_ERROR_UNEXPECTED;
}
}
#define NUM_ELEM(x) (sizeof(x) / sizeof (x)[0])
static const char p[] =
"90066455B5CFC38F9CAA4A48B4281F292C260FEEF01FD61037E56258A7795A1C"
"7AD46076982CE6BB956936C6AB4DCFE05E6784586940CA544B9B2140E1EB523F"
"009D20A7E7880E4E5BFA690F1B9004A27811CD9904AF70420EEFD6EA11EF7DA1"
"29F58835FF56B89FAA637BC9AC2EFAAB903402229F491D8D3485261CD068699B"
"6BA58A1DDBBEF6DB51E8FE34E8A78E542D7BA351C21EA8D8F1D29F5D5D159394"
"87E27F4416B0CA632C59EFD1B1EB66511A5A0FBF615B766C5862D0BD8A3FE7A0"
"E0DA0FB2FE1FCB19E8F9996A8EA0FCCDE538175238FC8B0EE6F29AF7F642773E"
"BE8CD5402415A01451A840476B2FCEB0E388D30D4B376C37FE401C2A2C2F941D"
"AD179C540C1C8CE030D460C4D983BE9AB0B20F69144C1AE13F9383EA1C08504F"
"B0BF321503EFE43488310DD8DC77EC5B8349B8BFE97C2C560EA878DE87C11E3D"
"597F1FEA742D73EEC7F37BE43949EF1A0D15C3F3E3FC0A8335617055AC91328E"
"C22B50FC15B941D3D1624CD88BC25F3E941FDDC6200689581BFEC416B4B2CB73";
static const char q[] =
"CFA0478A54717B08CE64805B76E5B14249A77A4838469DF7F7DC987EFCCFB11D";
static const char g[] =
"5E5CBA992E0A680D885EB903AEA78E4A45A469103D448EDE3B7ACCC54D521E37"
"F84A4BDD5B06B0970CC2D2BBB715F7B82846F9A0C393914C792E6A923E2117AB"
"805276A975AADB5261D91673EA9AAFFEECBFA6183DFCB5D3B7332AA19275AFA1"
"F8EC0B60FB6F66CC23AE4870791D5982AAD1AA9485FD8F4A60126FEB2CF05DB8"
"A7F0F09B3397F3937F2E90B9E5B9C9B6EFEF642BC48351C46FB171B9BFA9EF17"
"A961CE96C7E7A7CC3D3D03DFAD1078BA21DA425198F07D2481622BCE45969D9C"
"4D6063D72AB7A0F08B2F49A7CC6AF335E08C4720E31476B67299E231F8BD90B3"
"9AC3AE3BE0C6B6CACEF8289A2E2873D58E51E029CAFBD55E6841489AB66B5B4B"
"9BA6E2F784660896AFF387D92844CCB8B69475496DE19DA2E58259B090489AC8"
"E62363CDF82CFD8EF2A427ABCD65750B506F56DDE3B988567A88126B914D7828"
"E2B63A6D7ED0747EC59E0E0A23CE7D8A74C1D2C2A7AFB6A29799620F00E11C33"
"787F7DED3B30E1A22D09F1FBDA1ABBBFBF25CAE05A13F812E34563F99410E73B";
NS_IMETHODIMP nsSyncJPAKE::Round1(const nsACString & aSignerID,
nsACString & aGX1,
nsACString & aGV1,
nsACString & aR1,
nsACString & aGX2,
nsACString & aGV2,
nsACString & aR2)
{
NS_ENSURE_STATE(round == JPAKENotStarted);
NS_ENSURE_STATE(key == nullptr);
static CK_MECHANISM_TYPE mechanisms[] = {
CKM_NSS_JPAKE_ROUND1_SHA256,
CKM_NSS_JPAKE_ROUND2_SHA256,
CKM_NSS_JPAKE_FINAL_SHA256
};
PK11SlotInfo * slot = PK11_GetBestSlotMultiple(mechanisms,
NUM_ELEM(mechanisms),
nullptr);
NS_ENSURE_STATE(slot != nullptr);
CK_BYTE pBuf[(NUM_ELEM(p) - 1) / 2];
CK_BYTE qBuf[(NUM_ELEM(q) - 1) / 2];
CK_BYTE gBuf[(NUM_ELEM(g) - 1) / 2];
CK_KEY_TYPE keyType = CKK_NSS_JPAKE_ROUND1;
NS_ENSURE_STATE(fromHex(p, pBuf, (NUM_ELEM(p) - 1)));
NS_ENSURE_STATE(fromHex(q, qBuf, (NUM_ELEM(q) - 1)));
NS_ENSURE_STATE(fromHex(g, gBuf, (NUM_ELEM(g) - 1)));
CK_ATTRIBUTE keyTemplate[] = {
{ CKA_NSS_JPAKE_SIGNERID, (CK_BYTE *) aSignerID.Data(),
aSignerID.Length() },
{ CKA_KEY_TYPE, &keyType, sizeof keyType },
{ CKA_PRIME, pBuf, sizeof pBuf },
{ CKA_SUBPRIME, qBuf, sizeof qBuf },
{ CKA_BASE, gBuf, sizeof gBuf }
};
CK_BYTE gx1Buf[NUM_ELEM(p) / 2];
CK_BYTE gv1Buf[NUM_ELEM(p) / 2];
CK_BYTE r1Buf [NUM_ELEM(p) / 2];
CK_BYTE gx2Buf[NUM_ELEM(p) / 2];
CK_BYTE gv2Buf[NUM_ELEM(p) / 2];
CK_BYTE r2Buf [NUM_ELEM(p) / 2];
CK_NSS_JPAKERound1Params rp = {
{ gx1Buf, sizeof gx1Buf, gv1Buf, sizeof gv1Buf, r1Buf, sizeof r1Buf },
{ gx2Buf, sizeof gx2Buf, gv2Buf, sizeof gv2Buf, r2Buf, sizeof r2Buf }
};
SECItem paramsItem;
paramsItem.data = (unsigned char *) &rp;
paramsItem.len = sizeof rp;
key = PK11_KeyGenWithTemplate(slot, CKM_NSS_JPAKE_ROUND1_SHA256,
CKM_NSS_JPAKE_ROUND1_SHA256,
&paramsItem, keyTemplate,
NUM_ELEM(keyTemplate), nullptr);
nsresult rv = key != nullptr
? NS_OK
: mapErrno();
if (rv == NS_OK) {
NS_ENSURE_TRUE(toHexString(rp.gx1.pGX, rp.gx1.ulGXLen, aGX1) &&
toHexString(rp.gx1.pGV, rp.gx1.ulGVLen, aGV1) &&
toHexString(rp.gx1.pR, rp.gx1.ulRLen, aR1) &&
toHexString(rp.gx2.pGX, rp.gx2.ulGXLen, aGX2) &&
toHexString(rp.gx2.pGV, rp.gx2.ulGVLen, aGV2) &&
toHexString(rp.gx2.pR, rp.gx2.ulRLen, aR2),
NS_ERROR_OUT_OF_MEMORY);
round = JPAKEBeforeRound2;
}
return rv;
}
NS_IMETHODIMP nsSyncJPAKE::Round2(const nsACString & aPeerID,
const nsACString & aPIN,
const nsACString & aGX3,
const nsACString & aGV3,
const nsACString & aR3,
const nsACString & aGX4,
const nsACString & aGV4,
const nsACString & aR4,
nsACString & aA,
nsACString & aGVA,
nsACString & aRA)
{
NS_ENSURE_STATE(round == JPAKEBeforeRound2);
NS_ENSURE_STATE(key != nullptr);
NS_ENSURE_ARG(!aPeerID.IsEmpty());
/* PIN cannot be equal to zero when converted to a bignum. NSS 3.12.9 J-PAKE
assumes that the caller has already done this check. Future versions of
NSS J-PAKE will do this check internally. See Bug 609068 Comment 4 */
bool foundNonZero = false;
for (size_t i = 0; i < aPIN.Length(); ++i) {
if (aPIN[i] != 0) {
foundNonZero = true;
break;
}
}
NS_ENSURE_ARG(foundNonZero);
CK_BYTE gx3Buf[NUM_ELEM(p)/2], gv3Buf[NUM_ELEM(p)/2], r3Buf [NUM_ELEM(p)/2];
CK_BYTE gx4Buf[NUM_ELEM(p)/2], gv4Buf[NUM_ELEM(p)/2], r4Buf [NUM_ELEM(p)/2];
CK_BYTE gxABuf[NUM_ELEM(p)/2], gvABuf[NUM_ELEM(p)/2], rABuf [NUM_ELEM(p)/2];
nsresult rv = fromHexString(aGX3, gx3Buf, sizeof gx3Buf);
if (rv == NS_OK) rv = fromHexString(aGV3, gv3Buf, sizeof gv3Buf);
if (rv == NS_OK) rv = fromHexString(aR3, r3Buf, sizeof r3Buf);
if (rv == NS_OK) rv = fromHexString(aGX4, gx4Buf, sizeof gx4Buf);
if (rv == NS_OK) rv = fromHexString(aGV4, gv4Buf, sizeof gv4Buf);
if (rv == NS_OK) rv = fromHexString(aR4, r4Buf, sizeof r4Buf);
if (rv != NS_OK)
return rv;
CK_NSS_JPAKERound2Params rp;
rp.pSharedKey = (CK_BYTE *) aPIN.Data();
rp.ulSharedKeyLen = aPIN.Length();
rp.gx3.pGX = gx3Buf; rp.gx3.ulGXLen = aGX3.Length() / 2;
rp.gx3.pGV = gv3Buf; rp.gx3.ulGVLen = aGV3.Length() / 2;
rp.gx3.pR = r3Buf; rp.gx3.ulRLen = aR3 .Length() / 2;
rp.gx4.pGX = gx4Buf; rp.gx4.ulGXLen = aGX4.Length() / 2;
rp.gx4.pGV = gv4Buf; rp.gx4.ulGVLen = aGV4.Length() / 2;
rp.gx4.pR = r4Buf; rp.gx4.ulRLen = aR4 .Length() / 2;
rp.A.pGX = gxABuf; rp.A .ulGXLen = sizeof gxABuf;
rp.A.pGV = gvABuf; rp.A .ulGVLen = sizeof gxABuf;
rp.A.pR = rABuf; rp.A .ulRLen = sizeof gxABuf;
// Bug 629090: NSS 3.12.9 J-PAKE fails to check that gx^4 != 1, so check here.
bool gx4Good = false;
for (unsigned i = 0; i < rp.gx4.ulGXLen; ++i) {
if (rp.gx4.pGX[i] > 1 || (rp.gx4.pGX[i] != 0 && i < rp.gx4.ulGXLen - 1)) {
gx4Good = true;
break;
}
}
NS_ENSURE_ARG(gx4Good);
SECItem paramsItem;
paramsItem.data = (unsigned char *) &rp;
paramsItem.len = sizeof rp;
CK_KEY_TYPE keyType = CKK_NSS_JPAKE_ROUND2;
CK_ATTRIBUTE keyTemplate[] = {
{ CKA_NSS_JPAKE_PEERID, (CK_BYTE *) aPeerID.Data(), aPeerID.Length(), },
{ CKA_KEY_TYPE, &keyType, sizeof keyType }
};
PK11SymKey * newKey = PK11_DeriveWithTemplate(key,
CKM_NSS_JPAKE_ROUND2_SHA256,
&paramsItem,
CKM_NSS_JPAKE_FINAL_SHA256,
CKA_DERIVE, 0,
keyTemplate,
NUM_ELEM(keyTemplate),
false);
if (newKey != nullptr) {
if (toHexString(rp.A.pGX, rp.A.ulGXLen, aA) &&
toHexString(rp.A.pGV, rp.A.ulGVLen, aGVA) &&
toHexString(rp.A.pR, rp.A.ulRLen, aRA)) {
round = JPAKEAfterRound2;
PK11_FreeSymKey(key);
key = newKey;
return NS_OK;
} else {
PK11_FreeSymKey(newKey);
rv = NS_ERROR_OUT_OF_MEMORY;
}
} else
rv = mapErrno();
return rv;
}
static nsresult
setBase64(const unsigned char * data, unsigned len, nsACString & out)
{
nsresult rv = NS_OK;
const char * base64 = BTOA_DataToAscii(data, len);
if (base64 != nullptr) {
size_t len = PORT_Strlen(base64);
if (out.SetCapacity(len, fallible)) {
out.SetLength(0);
out.Append(base64, len);
PORT_Free((void*) base64);
} else {
rv = NS_ERROR_OUT_OF_MEMORY;
}
} else {
rv = NS_ERROR_OUT_OF_MEMORY;
}
return rv;
}
static nsresult
base64KeyValue(PK11SymKey * key, nsACString & keyString)
{
nsresult rv = NS_OK;
if (PK11_ExtractKeyValue(key) == SECSuccess) {
const SECItem * value = PK11_GetKeyData(key);
rv = value != nullptr && value->data != nullptr && value->len > 0
? setBase64(value->data, value->len, keyString)
: NS_ERROR_UNEXPECTED;
} else {
rv = mapErrno();
}
return rv;
}
static nsresult
extractBase64KeyValue(PK11SymKey * keyBlock, CK_ULONG bitPosition,
CK_MECHANISM_TYPE destMech, int keySize,
nsACString & keyString)
{
SECItem paramsItem;
paramsItem.data = (CK_BYTE *) &bitPosition;
paramsItem.len = sizeof bitPosition;
PK11SymKey * key = PK11_Derive(keyBlock, CKM_EXTRACT_KEY_FROM_KEY,
&paramsItem, destMech,
CKA_SIGN, keySize);
if (key == nullptr)
return mapErrno();
nsresult rv = base64KeyValue(key, keyString);
PK11_FreeSymKey(key);
return rv;
}
NS_IMETHODIMP nsSyncJPAKE::Final(const nsACString & aB,
const nsACString & aGVB,
const nsACString & aRB,
const nsACString & aHKDFInfo,
nsACString & aAES256Key,
nsACString & aHMAC256Key)
{
static const unsigned AES256_KEY_SIZE = 256 / 8;
static const unsigned HMAC_SHA256_KEY_SIZE = 256 / 8;
CK_EXTRACT_PARAMS aesBitPosition = 0;
CK_EXTRACT_PARAMS hmacBitPosition = aesBitPosition + (AES256_KEY_SIZE * 8);
NS_ENSURE_STATE(round == JPAKEAfterRound2);
NS_ENSURE_STATE(key != nullptr);
CK_BYTE gxBBuf[NUM_ELEM(p)/2], gvBBuf[NUM_ELEM(p)/2], rBBuf [NUM_ELEM(p)/2];
nsresult rv = fromHexString(aB, gxBBuf, sizeof gxBBuf);
if (rv == NS_OK) rv = fromHexString(aGVB, gvBBuf, sizeof gvBBuf);
if (rv == NS_OK) rv = fromHexString(aRB, rBBuf, sizeof rBBuf);
if (rv != NS_OK)
return rv;
CK_NSS_JPAKEFinalParams rp;
rp.B.pGX = gxBBuf; rp.B.ulGXLen = aB .Length() / 2;
rp.B.pGV = gvBBuf; rp.B.ulGVLen = aGVB.Length() / 2;
rp.B.pR = rBBuf; rp.B.ulRLen = aRB .Length() / 2;
SECItem paramsItem;
paramsItem.data = (unsigned char *) &rp;
paramsItem.len = sizeof rp;
PK11SymKey * keyMaterial = PK11_Derive(key, CKM_NSS_JPAKE_FINAL_SHA256,
&paramsItem, CKM_NSS_HKDF_SHA256,
CKA_DERIVE, 0);
PK11SymKey * keyBlock = nullptr;
if (keyMaterial == nullptr)
rv = mapErrno();
if (rv == NS_OK) {
CK_NSS_HKDFParams hkdfParams;
hkdfParams.bExtract = CK_TRUE;
hkdfParams.pSalt = nullptr;
hkdfParams.ulSaltLen = 0;
hkdfParams.bExpand = CK_TRUE;
hkdfParams.pInfo = (CK_BYTE *) aHKDFInfo.Data();
hkdfParams.ulInfoLen = aHKDFInfo.Length();
paramsItem.data = (unsigned char *) &hkdfParams;
paramsItem.len = sizeof hkdfParams;
keyBlock = PK11_Derive(keyMaterial, CKM_NSS_HKDF_SHA256,
&paramsItem, CKM_EXTRACT_KEY_FROM_KEY,
CKA_DERIVE, AES256_KEY_SIZE + HMAC_SHA256_KEY_SIZE);
if (keyBlock == nullptr)
rv = mapErrno();
}
if (rv == NS_OK) {
rv = extractBase64KeyValue(keyBlock, aesBitPosition, CKM_AES_CBC,
AES256_KEY_SIZE, aAES256Key);
}
if (rv == NS_OK) {
rv = extractBase64KeyValue(keyBlock, hmacBitPosition, CKM_SHA256_HMAC,
HMAC_SHA256_KEY_SIZE, aHMAC256Key);
}
if (rv == NS_OK) {
SECStatus srv = PK11_ExtractKeyValue(keyMaterial);
NS_ENSURE_TRUE(srv == SECSuccess, NS_ERROR_UNEXPECTED); // XXX leaks
SECItem * keyMaterialBytes = PK11_GetKeyData(keyMaterial);
NS_ENSURE_TRUE(keyMaterialBytes != nullptr, NS_ERROR_UNEXPECTED);
}
if (keyBlock != nullptr)
PK11_FreeSymKey(keyBlock);
if (keyMaterial != nullptr)
PK11_FreeSymKey(keyMaterial);
return rv;
}
NS_GENERIC_FACTORY_CONSTRUCTOR(nsSyncJPAKE)
NS_DEFINE_NAMED_CID(NS_SYNCJPAKE_CID);
nsSyncJPAKE::nsSyncJPAKE() : round(JPAKENotStarted), key(nullptr) { }
nsSyncJPAKE::~nsSyncJPAKE()
{
if (key != nullptr)
PK11_FreeSymKey(key);
}
static const mozilla::Module::CIDEntry kServicesCryptoCIDs[] = {
{ &kNS_SYNCJPAKE_CID, false, nullptr, nsSyncJPAKEConstructor },
{ nullptr }
};
static const mozilla::Module::ContractIDEntry kServicesCryptoContracts[] = {
{ NS_SYNCJPAKE_CONTRACTID, &kNS_SYNCJPAKE_CID },
{ nullptr }
};
static const mozilla::Module kServicesCryptoModule = {
mozilla::Module::kVersion,
kServicesCryptoCIDs,
kServicesCryptoContracts
};
NSMODULE_DEFN(nsServicesCryptoModule) = &kServicesCryptoModule;