mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
1c0f450eca
Windows messages can trigger sync ipc messages to the child process. That means if we handle windows messages while waiting for the response to a sync a11y ipc message we can end up reentering the code to send ipc messages which is bad. Try and avoid this situation by not handling windows messages while waiting for a sync a11y message.
760 lines
25 KiB
C++
760 lines
25 KiB
C++
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
* vim: sw=4 ts=4 et :
|
|
*/
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifndef ipc_glue_MessageChannel_h
|
|
#define ipc_glue_MessageChannel_h 1
|
|
|
|
#include "base/basictypes.h"
|
|
#include "base/message_loop.h"
|
|
|
|
#include "mozilla/DebugOnly.h"
|
|
#include "mozilla/Monitor.h"
|
|
#include "mozilla/Vector.h"
|
|
#include "mozilla/WeakPtr.h"
|
|
#if defined(OS_WIN)
|
|
#include "mozilla/ipc/Neutering.h"
|
|
#endif // defined(OS_WIN)
|
|
#include "mozilla/ipc/Transport.h"
|
|
#include "MessageLink.h"
|
|
#include "nsAutoPtr.h"
|
|
|
|
#include <deque>
|
|
#include <stack>
|
|
#include <math.h>
|
|
|
|
namespace mozilla {
|
|
namespace ipc {
|
|
|
|
class MessageChannel;
|
|
|
|
class RefCountedMonitor : public Monitor
|
|
{
|
|
public:
|
|
RefCountedMonitor()
|
|
: Monitor("mozilla.ipc.MessageChannel.mMonitor")
|
|
{}
|
|
|
|
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(RefCountedMonitor)
|
|
|
|
private:
|
|
~RefCountedMonitor() {}
|
|
};
|
|
|
|
class MessageChannel : HasResultCodes
|
|
{
|
|
friend class ProcessLink;
|
|
friend class ThreadLink;
|
|
|
|
class CxxStackFrame;
|
|
class InterruptFrame;
|
|
|
|
typedef mozilla::Monitor Monitor;
|
|
|
|
public:
|
|
static const int32_t kNoTimeout;
|
|
|
|
typedef IPC::Message Message;
|
|
typedef mozilla::ipc::Transport Transport;
|
|
|
|
explicit MessageChannel(MessageListener *aListener);
|
|
~MessageChannel();
|
|
|
|
// "Open" from the perspective of the transport layer; the underlying
|
|
// socketpair/pipe should already be created.
|
|
//
|
|
// Returns true if the transport layer was successfully connected,
|
|
// i.e., mChannelState == ChannelConnected.
|
|
bool Open(Transport* aTransport, MessageLoop* aIOLoop=0, Side aSide=UnknownSide);
|
|
|
|
// "Open" a connection to another thread in the same process.
|
|
//
|
|
// Returns true if the transport layer was successfully connected,
|
|
// i.e., mChannelState == ChannelConnected.
|
|
//
|
|
// For more details on the process of opening a channel between
|
|
// threads, see the extended comment on this function
|
|
// in MessageChannel.cpp.
|
|
bool Open(MessageChannel *aTargetChan, MessageLoop *aTargetLoop, Side aSide);
|
|
|
|
// Close the underlying transport channel.
|
|
void Close();
|
|
|
|
// Force the channel to behave as if a channel error occurred. Valid
|
|
// for process links only, not thread links.
|
|
void CloseWithError();
|
|
|
|
void CloseWithTimeout();
|
|
|
|
void SetAbortOnError(bool abort)
|
|
{
|
|
mAbortOnError = abort;
|
|
}
|
|
|
|
// Misc. behavioral traits consumers can request for this channel
|
|
enum ChannelFlags {
|
|
REQUIRE_DEFAULT = 0,
|
|
// Windows: if this channel operates on the UI thread, indicates
|
|
// WindowsMessageLoop code should enable deferred native message
|
|
// handling to prevent deadlocks. Should only be used for protocols
|
|
// that manage child processes which might create native UI, like
|
|
// plugins.
|
|
REQUIRE_DEFERRED_MESSAGE_PROTECTION = 1 << 0
|
|
};
|
|
void SetChannelFlags(ChannelFlags aFlags) { mFlags = aFlags; }
|
|
ChannelFlags GetChannelFlags() { return mFlags; }
|
|
|
|
void BlockScripts();
|
|
|
|
bool ShouldBlockScripts() const
|
|
{
|
|
return mBlockScripts;
|
|
}
|
|
|
|
// Asynchronously send a message to the other side of the channel
|
|
bool Send(Message* aMsg);
|
|
|
|
// Asynchronously deliver a message back to this side of the
|
|
// channel
|
|
bool Echo(Message* aMsg);
|
|
|
|
// Synchronously send |msg| (i.e., wait for |reply|)
|
|
bool Send(Message* aMsg, Message* aReply);
|
|
|
|
// Make an Interrupt call to the other side of the channel
|
|
bool Call(Message* aMsg, Message* aReply);
|
|
|
|
// Wait until a message is received
|
|
bool WaitForIncomingMessage();
|
|
|
|
bool CanSend() const;
|
|
|
|
// Currently only for debugging purposes, doesn't aquire mMonitor.
|
|
ChannelState GetChannelState__TotallyRacy() const {
|
|
return mChannelState;
|
|
}
|
|
|
|
void SetReplyTimeoutMs(int32_t aTimeoutMs);
|
|
|
|
bool IsOnCxxStack() const {
|
|
return !mCxxStackFrames.empty();
|
|
}
|
|
|
|
void CancelCurrentTransaction();
|
|
|
|
/**
|
|
* This function is used by hang annotation code to determine which IPDL
|
|
* actor is highest in the call stack at the time of the hang. It should
|
|
* be called from the main thread when a sync or intr message is about to
|
|
* be sent.
|
|
*/
|
|
int32_t GetTopmostMessageRoutingId() const;
|
|
|
|
void FlushPendingInterruptQueue();
|
|
|
|
// Unsound_IsClosed and Unsound_NumQueuedMessages are safe to call from any
|
|
// thread, but they make no guarantees about whether you'll get an
|
|
// up-to-date value; the values are written on one thread and read without
|
|
// locking, on potentially different threads. Thus you should only use
|
|
// them when you don't particularly care about getting a recent value (e.g.
|
|
// in a memory report).
|
|
bool Unsound_IsClosed() const {
|
|
return mLink ? mLink->Unsound_IsClosed() : true;
|
|
}
|
|
uint32_t Unsound_NumQueuedMessages() const {
|
|
return mLink ? mLink->Unsound_NumQueuedMessages() : 0;
|
|
}
|
|
|
|
static bool IsPumpingMessages() {
|
|
return sIsPumpingMessages;
|
|
}
|
|
static void SetIsPumpingMessages(bool aIsPumping) {
|
|
sIsPumpingMessages = aIsPumping;
|
|
}
|
|
|
|
#ifdef MOZ_NUWA_PROCESS
|
|
void Block() {
|
|
mLink->Block();
|
|
}
|
|
|
|
void Unblock() {
|
|
mLink->Unblock();
|
|
}
|
|
#endif
|
|
|
|
#ifdef OS_WIN
|
|
struct MOZ_STACK_CLASS SyncStackFrame
|
|
{
|
|
SyncStackFrame(MessageChannel* channel, bool interrupt);
|
|
~SyncStackFrame();
|
|
|
|
bool mInterrupt;
|
|
bool mSpinNestedEvents;
|
|
bool mListenerNotified;
|
|
MessageChannel* mChannel;
|
|
|
|
// The previous stack frame for this channel.
|
|
SyncStackFrame* mPrev;
|
|
|
|
// The previous stack frame on any channel.
|
|
SyncStackFrame* mStaticPrev;
|
|
};
|
|
friend struct MessageChannel::SyncStackFrame;
|
|
|
|
static bool IsSpinLoopActive() {
|
|
for (SyncStackFrame* frame = sStaticTopFrame; frame; frame = frame->mPrev) {
|
|
if (frame->mSpinNestedEvents)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
protected:
|
|
// The deepest sync stack frame for this channel.
|
|
SyncStackFrame* mTopFrame;
|
|
|
|
bool mIsSyncWaitingOnNonMainThread;
|
|
|
|
// The deepest sync stack frame on any channel.
|
|
static SyncStackFrame* sStaticTopFrame;
|
|
|
|
public:
|
|
void ProcessNativeEventsInInterruptCall();
|
|
static void NotifyGeckoEventDispatch();
|
|
|
|
private:
|
|
void SpinInternalEventLoop();
|
|
#endif
|
|
|
|
private:
|
|
void CommonThreadOpenInit(MessageChannel *aTargetChan, Side aSide);
|
|
void OnOpenAsSlave(MessageChannel *aTargetChan, Side aSide);
|
|
|
|
void PostErrorNotifyTask();
|
|
void OnNotifyMaybeChannelError();
|
|
void ReportConnectionError(const char* aChannelName, Message* aMsg = nullptr) const;
|
|
void ReportMessageRouteError(const char* channelName) const;
|
|
bool MaybeHandleError(Result code, const Message& aMsg, const char* channelName);
|
|
|
|
void Clear();
|
|
|
|
// Send OnChannelConnected notification to listeners.
|
|
void DispatchOnChannelConnected();
|
|
|
|
bool InterruptEventOccurred();
|
|
bool HasPendingEvents();
|
|
|
|
void ProcessPendingRequests();
|
|
bool ProcessPendingRequest(const Message &aUrgent);
|
|
|
|
void MaybeUndeferIncall();
|
|
void EnqueuePendingMessages();
|
|
|
|
// Executed on the worker thread. Dequeues one pending message.
|
|
bool OnMaybeDequeueOne();
|
|
bool DequeueOne(Message *recvd);
|
|
|
|
// Dispatches an incoming message to its appropriate handler.
|
|
void DispatchMessage(const Message &aMsg);
|
|
|
|
// DispatchMessage will route to one of these functions depending on the
|
|
// protocol type of the message.
|
|
void DispatchSyncMessage(const Message &aMsg, Message*& aReply);
|
|
void DispatchUrgentMessage(const Message &aMsg);
|
|
void DispatchAsyncMessage(const Message &aMsg);
|
|
void DispatchRPCMessage(const Message &aMsg);
|
|
void DispatchInterruptMessage(const Message &aMsg, size_t aStackDepth);
|
|
|
|
// Return true if the wait ended because a notification was received.
|
|
//
|
|
// Return false if the time elapsed from when we started the process of
|
|
// waiting until afterwards exceeded the currently allotted timeout.
|
|
// That *DOES NOT* mean false => "no event" (== timeout); there are many
|
|
// circumstances that could cause the measured elapsed time to exceed the
|
|
// timeout EVEN WHEN we were notified.
|
|
//
|
|
// So in sum: true is a meaningful return value; false isn't,
|
|
// necessarily.
|
|
bool WaitForSyncNotify(bool aHandleWindowsMessages);
|
|
bool WaitForInterruptNotify();
|
|
|
|
bool WaitResponse(bool aWaitTimedOut);
|
|
|
|
bool ShouldContinueFromTimeout();
|
|
|
|
void CancelCurrentTransactionInternal();
|
|
|
|
// The "remote view of stack depth" can be different than the
|
|
// actual stack depth when there are out-of-turn replies. When we
|
|
// receive one, our actual Interrupt stack depth doesn't decrease, but
|
|
// the other side (that sent the reply) thinks it has. So, the
|
|
// "view" returned here is |stackDepth| minus the number of
|
|
// out-of-turn replies.
|
|
//
|
|
// Only called from the worker thread.
|
|
size_t RemoteViewOfStackDepth(size_t stackDepth) const {
|
|
AssertWorkerThread();
|
|
return stackDepth - mOutOfTurnReplies.size();
|
|
}
|
|
|
|
int32_t NextSeqno() {
|
|
AssertWorkerThread();
|
|
return (mSide == ChildSide) ? --mNextSeqno : ++mNextSeqno;
|
|
}
|
|
|
|
// This helper class manages mCxxStackDepth on behalf of MessageChannel.
|
|
// When the stack depth is incremented from zero to non-zero, it invokes
|
|
// a callback, and similarly for when the depth goes from non-zero to zero.
|
|
void EnteredCxxStack() {
|
|
mListener->OnEnteredCxxStack();
|
|
}
|
|
|
|
void ExitedCxxStack();
|
|
|
|
void EnteredCall() {
|
|
mListener->OnEnteredCall();
|
|
}
|
|
|
|
void ExitedCall() {
|
|
mListener->OnExitedCall();
|
|
}
|
|
|
|
void EnteredSyncSend() {
|
|
mListener->OnEnteredSyncSend();
|
|
}
|
|
|
|
void ExitedSyncSend() {
|
|
mListener->OnExitedSyncSend();
|
|
}
|
|
|
|
MessageListener *Listener() const {
|
|
return mListener.get();
|
|
}
|
|
|
|
void DebugAbort(const char* file, int line, const char* cond,
|
|
const char* why,
|
|
bool reply=false) const;
|
|
|
|
// This method is only safe to call on the worker thread, or in a
|
|
// debugger with all threads paused.
|
|
void DumpInterruptStack(const char* const pfx="") const;
|
|
|
|
private:
|
|
// Called from both threads
|
|
size_t InterruptStackDepth() const {
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
return mInterruptStack.size();
|
|
}
|
|
|
|
// Returns true if we're blocking waiting for a reply.
|
|
bool AwaitingSyncReply() const {
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
return mAwaitingSyncReply;
|
|
}
|
|
int AwaitingSyncReplyPriority() const {
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
return mAwaitingSyncReplyPriority;
|
|
}
|
|
bool AwaitingInterruptReply() const {
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
return !mInterruptStack.empty();
|
|
}
|
|
bool AwaitingIncomingMessage() const {
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
return mIsWaitingForIncoming;
|
|
}
|
|
|
|
class MOZ_STACK_CLASS AutoEnterWaitForIncoming
|
|
{
|
|
public:
|
|
explicit AutoEnterWaitForIncoming(MessageChannel& aChannel)
|
|
: mChannel(aChannel)
|
|
{
|
|
aChannel.mMonitor->AssertCurrentThreadOwns();
|
|
aChannel.mIsWaitingForIncoming = true;
|
|
}
|
|
|
|
~AutoEnterWaitForIncoming()
|
|
{
|
|
mChannel.mIsWaitingForIncoming = false;
|
|
}
|
|
|
|
private:
|
|
MessageChannel& mChannel;
|
|
};
|
|
friend class AutoEnterWaitForIncoming;
|
|
|
|
// Returns true if we're dispatching a sync message's callback.
|
|
bool DispatchingSyncMessage() const {
|
|
AssertWorkerThread();
|
|
return mDispatchingSyncMessage;
|
|
}
|
|
|
|
int DispatchingSyncMessagePriority() const {
|
|
AssertWorkerThread();
|
|
return mDispatchingSyncMessagePriority;
|
|
}
|
|
|
|
bool DispatchingAsyncMessage() const {
|
|
AssertWorkerThread();
|
|
return mDispatchingAsyncMessage;
|
|
}
|
|
|
|
int DispatchingAsyncMessagePriority() const {
|
|
AssertWorkerThread();
|
|
return mDispatchingAsyncMessagePriority;
|
|
}
|
|
|
|
bool Connected() const;
|
|
|
|
private:
|
|
// Executed on the IO thread.
|
|
void NotifyWorkerThread();
|
|
|
|
// Return true if |aMsg| is a special message targeted at the IO
|
|
// thread, in which case it shouldn't be delivered to the worker.
|
|
bool MaybeInterceptSpecialIOMessage(const Message& aMsg);
|
|
|
|
void OnChannelConnected(int32_t peer_id);
|
|
|
|
// Tell the IO thread to close the channel and wait for it to ACK.
|
|
void SynchronouslyClose();
|
|
|
|
bool WasTransactionCanceled(int transaction, int prio);
|
|
bool ShouldDeferMessage(const Message& aMsg);
|
|
void OnMessageReceivedFromLink(const Message& aMsg);
|
|
void OnChannelErrorFromLink();
|
|
|
|
private:
|
|
// Run on the not current thread.
|
|
void NotifyChannelClosed();
|
|
void NotifyMaybeChannelError();
|
|
|
|
private:
|
|
// Can be run on either thread
|
|
void AssertWorkerThread() const
|
|
{
|
|
MOZ_RELEASE_ASSERT(mWorkerLoopID == MessageLoop::current()->id(),
|
|
"not on worker thread!");
|
|
}
|
|
|
|
// The "link" thread is either the I/O thread (ProcessLink) or the
|
|
// other actor's work thread (ThreadLink). In either case, it is
|
|
// NOT our worker thread.
|
|
void AssertLinkThread() const
|
|
{
|
|
MOZ_RELEASE_ASSERT(mWorkerLoopID != MessageLoop::current()->id(),
|
|
"on worker thread but should not be!");
|
|
}
|
|
|
|
private:
|
|
typedef IPC::Message::msgid_t msgid_t;
|
|
typedef std::deque<Message> MessageQueue;
|
|
typedef std::map<size_t, Message> MessageMap;
|
|
|
|
// All dequeuing tasks require a single point of cancellation,
|
|
// which is handled via a reference-counted task.
|
|
class RefCountedTask
|
|
{
|
|
public:
|
|
explicit RefCountedTask(CancelableTask* aTask)
|
|
: mTask(aTask)
|
|
{ }
|
|
private:
|
|
~RefCountedTask() { delete mTask; }
|
|
public:
|
|
void Run() { mTask->Run(); }
|
|
void Cancel() { mTask->Cancel(); }
|
|
|
|
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(RefCountedTask)
|
|
|
|
private:
|
|
CancelableTask* mTask;
|
|
};
|
|
|
|
// Wrap an existing task which can be cancelled at any time
|
|
// without the wrapper's knowledge.
|
|
class DequeueTask : public Task
|
|
{
|
|
public:
|
|
explicit DequeueTask(RefCountedTask* aTask)
|
|
: mTask(aTask)
|
|
{ }
|
|
void Run() override { mTask->Run(); }
|
|
|
|
private:
|
|
nsRefPtr<RefCountedTask> mTask;
|
|
};
|
|
|
|
private:
|
|
mozilla::WeakPtr<MessageListener> mListener;
|
|
ChannelState mChannelState;
|
|
nsRefPtr<RefCountedMonitor> mMonitor;
|
|
Side mSide;
|
|
MessageLink* mLink;
|
|
MessageLoop* mWorkerLoop; // thread where work is done
|
|
CancelableTask* mChannelErrorTask; // NotifyMaybeChannelError runnable
|
|
|
|
// id() of mWorkerLoop. This persists even after mWorkerLoop is cleared
|
|
// during channel shutdown.
|
|
int mWorkerLoopID;
|
|
|
|
// A task encapsulating dequeuing one pending message.
|
|
nsRefPtr<RefCountedTask> mDequeueOneTask;
|
|
|
|
// Timeout periods are broken up in two to prevent system suspension from
|
|
// triggering an abort. This method (called by WaitForEvent with a 'did
|
|
// timeout' flag) decides if we should wait again for half of mTimeoutMs
|
|
// or give up.
|
|
int32_t mTimeoutMs;
|
|
bool mInTimeoutSecondHalf;
|
|
|
|
// Worker-thread only; sequence numbers for messages that require
|
|
// synchronous replies.
|
|
int32_t mNextSeqno;
|
|
|
|
static bool sIsPumpingMessages;
|
|
|
|
template<class T>
|
|
class AutoSetValue {
|
|
public:
|
|
explicit AutoSetValue(T &var, const T &newValue)
|
|
: mVar(var), mPrev(var)
|
|
{
|
|
mVar = newValue;
|
|
}
|
|
~AutoSetValue() {
|
|
mVar = mPrev;
|
|
}
|
|
private:
|
|
T& mVar;
|
|
T mPrev;
|
|
};
|
|
|
|
// Worker thread only.
|
|
bool mAwaitingSyncReply;
|
|
int mAwaitingSyncReplyPriority;
|
|
|
|
// Set while we are dispatching a synchronous message. Only for use on the
|
|
// worker thread.
|
|
bool mDispatchingSyncMessage;
|
|
int mDispatchingSyncMessagePriority;
|
|
|
|
bool mDispatchingAsyncMessage;
|
|
int mDispatchingAsyncMessagePriority;
|
|
|
|
// When we send an urgent request from the parent process, we could race
|
|
// with an RPC message that was issued by the child beforehand. In this
|
|
// case, if the parent were to wake up while waiting for the urgent reply,
|
|
// and process the RPC, it could send an additional urgent message. The
|
|
// child would wake up to process the urgent message (as it always will),
|
|
// then send a reply, which could be received by the parent out-of-order
|
|
// with respect to the first urgent reply.
|
|
//
|
|
// To address this problem, urgent or RPC requests are associated with a
|
|
// "transaction". Whenever one side of the channel wishes to start a
|
|
// chain of RPC/urgent messages, it allocates a new transaction ID. Any
|
|
// messages the parent receives, not apart of this transaction, are
|
|
// deferred. When issuing RPC/urgent requests on top of a started
|
|
// transaction, the initiating transaction ID is used.
|
|
//
|
|
// To ensure IDs are unique, we use sequence numbers for transaction IDs,
|
|
// which grow in opposite directions from child to parent.
|
|
|
|
// The current transaction ID.
|
|
int32_t mCurrentTransaction;
|
|
|
|
class AutoEnterTransaction
|
|
{
|
|
public:
|
|
explicit AutoEnterTransaction(MessageChannel *aChan, int32_t aMsgSeqno)
|
|
: mChan(aChan),
|
|
mNewTransaction(INT32_MAX),
|
|
mOldTransaction(mChan->mCurrentTransaction)
|
|
{
|
|
mChan->mMonitor->AssertCurrentThreadOwns();
|
|
if (mChan->mCurrentTransaction == 0) {
|
|
mNewTransaction = aMsgSeqno;
|
|
mChan->mCurrentTransaction = aMsgSeqno;
|
|
}
|
|
}
|
|
explicit AutoEnterTransaction(MessageChannel *aChan, const Message &aMessage)
|
|
: mChan(aChan),
|
|
mNewTransaction(aMessage.transaction_id()),
|
|
mOldTransaction(mChan->mCurrentTransaction)
|
|
{
|
|
mChan->mMonitor->AssertCurrentThreadOwns();
|
|
|
|
if (!aMessage.is_sync())
|
|
return;
|
|
|
|
MOZ_ASSERT_IF(mChan->mSide == ParentSide && mOldTransaction != aMessage.transaction_id(),
|
|
!mOldTransaction || aMessage.priority() > mChan->AwaitingSyncReplyPriority());
|
|
mChan->mCurrentTransaction = aMessage.transaction_id();
|
|
}
|
|
~AutoEnterTransaction() {
|
|
mChan->mMonitor->AssertCurrentThreadOwns();
|
|
if (mChan->mCurrentTransaction == mNewTransaction) {
|
|
mChan->mCurrentTransaction = mOldTransaction;
|
|
}
|
|
}
|
|
|
|
private:
|
|
MessageChannel *mChan;
|
|
int32_t mNewTransaction, mOldTransaction;
|
|
};
|
|
|
|
// If a sync message times out, we store its sequence number here. Any
|
|
// future sync messages will fail immediately. Once the reply for original
|
|
// sync message is received, we allow sync messages again.
|
|
//
|
|
// When a message times out, nothing is done to inform the other side. The
|
|
// other side will eventually dispatch the message and send a reply. Our
|
|
// side is responsible for replying to all sync messages sent by the other
|
|
// side when it dispatches the timed out message. The response is always an
|
|
// error.
|
|
//
|
|
// A message is only timed out if it initiated a transaction. This avoids
|
|
// hitting a lot of corner cases with message nesting that we don't really
|
|
// care about.
|
|
int32_t mTimedOutMessageSeqno;
|
|
int mTimedOutMessagePriority;
|
|
|
|
// If waiting for the reply to a sync out-message, it will be saved here
|
|
// on the I/O thread and then read and cleared by the worker thread.
|
|
nsAutoPtr<Message> mRecvd;
|
|
|
|
// If a sync message reply that is an error arrives, we increment this
|
|
// counter rather than storing it in mRecvd.
|
|
size_t mRecvdErrors;
|
|
|
|
// Queue of all incoming messages, except for replies to sync and urgent
|
|
// messages, which are delivered directly to mRecvd, and any pending urgent
|
|
// incall, which is stored in mPendingUrgentRequest.
|
|
//
|
|
// If both this side and the other side are functioning correctly, the queue
|
|
// can only be in certain configurations. Let
|
|
//
|
|
// |A<| be an async in-message,
|
|
// |S<| be a sync in-message,
|
|
// |C<| be an Interrupt in-call,
|
|
// |R<| be an Interrupt reply.
|
|
//
|
|
// The queue can only match this configuration
|
|
//
|
|
// A<* (S< | C< | R< (?{mStack.size() == 1} A<* (S< | C<)))
|
|
//
|
|
// The other side can send as many async messages |A<*| as it wants before
|
|
// sending us a blocking message.
|
|
//
|
|
// The first case is |S<|, a sync in-msg. The other side must be blocked,
|
|
// and thus can't send us any more messages until we process the sync
|
|
// in-msg.
|
|
//
|
|
// The second case is |C<|, an Interrupt in-call; the other side must be blocked.
|
|
// (There's a subtlety here: this in-call might have raced with an
|
|
// out-call, but we detect that with the mechanism below,
|
|
// |mRemoteStackDepth|, and races don't matter to the queue.)
|
|
//
|
|
// Final case, the other side replied to our most recent out-call |R<|.
|
|
// If that was the *only* out-call on our stack, |?{mStack.size() == 1}|,
|
|
// then other side "finished with us," and went back to its own business.
|
|
// That business might have included sending any number of async message
|
|
// |A<*| until sending a blocking message |(S< | C<)|. If we had more than
|
|
// one Interrupt call on our stack, the other side *better* not have sent us
|
|
// another blocking message, because it's blocked on a reply from us.
|
|
//
|
|
MessageQueue mPending;
|
|
|
|
// Stack of all the out-calls on which this channel is awaiting responses.
|
|
// Each stack refers to a different protocol and the stacks are mutually
|
|
// exclusive: multiple outcalls of the same kind cannot be initiated while
|
|
// another is active.
|
|
std::stack<Message> mInterruptStack;
|
|
|
|
// This is what we think the Interrupt stack depth is on the "other side" of this
|
|
// Interrupt channel. We maintain this variable so that we can detect racy Interrupt
|
|
// calls. With each Interrupt out-call sent, we send along what *we* think the
|
|
// stack depth of the remote side is *before* it will receive the Interrupt call.
|
|
//
|
|
// After sending the out-call, our stack depth is "incremented" by pushing
|
|
// that pending message onto mPending.
|
|
//
|
|
// Then when processing an in-call |c|, it must be true that
|
|
//
|
|
// mStack.size() == c.remoteDepth
|
|
//
|
|
// I.e., my depth is actually the same as what the other side thought it
|
|
// was when it sent in-call |c|. If this fails to hold, we have detected
|
|
// racy Interrupt calls.
|
|
//
|
|
// We then increment mRemoteStackDepth *just before* processing the
|
|
// in-call, since we know the other side is waiting on it, and decrement
|
|
// it *just after* finishing processing that in-call, since our response
|
|
// will pop the top of the other side's |mPending|.
|
|
//
|
|
// One nice aspect of this race detection is that it is symmetric; if one
|
|
// side detects a race, then the other side must also detect the same race.
|
|
size_t mRemoteStackDepthGuess;
|
|
|
|
// Approximation of code frames on the C++ stack. It can only be
|
|
// interpreted as the implication:
|
|
//
|
|
// !mCxxStackFrames.empty() => MessageChannel code on C++ stack
|
|
//
|
|
// This member is only accessed on the worker thread, and so is not
|
|
// protected by mMonitor. It is managed exclusively by the helper
|
|
// |class CxxStackFrame|.
|
|
mozilla::Vector<InterruptFrame> mCxxStackFrames;
|
|
|
|
// Did we process an Interrupt out-call during this stack? Only meaningful in
|
|
// ExitedCxxStack(), from which this variable is reset.
|
|
bool mSawInterruptOutMsg;
|
|
|
|
// Are we waiting on this channel for an incoming message? This is used
|
|
// to implement WaitForIncomingMessage(). Must only be accessed while owning
|
|
// mMonitor.
|
|
bool mIsWaitingForIncoming;
|
|
|
|
// Map of replies received "out of turn", because of Interrupt
|
|
// in-calls racing with replies to outstanding in-calls. See
|
|
// https://bugzilla.mozilla.org/show_bug.cgi?id=521929.
|
|
MessageMap mOutOfTurnReplies;
|
|
|
|
// Stack of Interrupt in-calls that were deferred because of race
|
|
// conditions.
|
|
std::stack<Message> mDeferred;
|
|
|
|
#ifdef OS_WIN
|
|
HANDLE mEvent;
|
|
#endif
|
|
|
|
// Should the channel abort the process from the I/O thread when
|
|
// a channel error occurs?
|
|
bool mAbortOnError;
|
|
|
|
// Should we prevent scripts from running while dispatching urgent messages?
|
|
bool mBlockScripts;
|
|
|
|
// See SetChannelFlags
|
|
ChannelFlags mFlags;
|
|
|
|
// Task and state used to asynchronously notify channel has been connected
|
|
// safely. This is necessary to be able to cancel notification if we are
|
|
// closed at the same time.
|
|
nsRefPtr<RefCountedTask> mOnChannelConnectedTask;
|
|
DebugOnly<bool> mPeerPidSet;
|
|
int32_t mPeerPid;
|
|
};
|
|
|
|
void
|
|
CancelCPOWs();
|
|
|
|
} // namespace ipc
|
|
} // namespace mozilla
|
|
|
|
#endif // ifndef ipc_glue_MessageChannel_h
|