gecko/layout/base/nsCSSRenderingBorders.cpp
Nathan Froyd e4e2da55c9 Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat
The bulk of this commit was generated with a script, executed at the top
level of a typical source code checkout.  The only non-machine-generated
part was modifying MFBT's moz.build to reflect the new naming.

CLOSED TREE makes big refactorings like this a piece of cake.

 # The main substitution.
find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \
    xargs perl -p -i -e '
 s/nsRefPtr\.h/RefPtr\.h/g; # handle includes
 s/nsRefPtr ?</RefPtr</g;   # handle declarations and variables
'

 # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h.
perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h

 # Handle nsRefPtr.h itself, a couple places that define constructors
 # from nsRefPtr, and code generators specially.  We do this here, rather
 # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename
 # things like nsRefPtrHashtable.
perl -p -i -e 's/nsRefPtr/RefPtr/g' \
     mfbt/nsRefPtr.h \
     xpcom/glue/nsCOMPtr.h \
     xpcom/base/OwningNonNull.h \
     ipc/ipdl/ipdl/lower.py \
     ipc/ipdl/ipdl/builtin.py \
     dom/bindings/Codegen.py \
     python/lldbutils/lldbutils/utils.py

 # In our indiscriminate substitution above, we renamed
 # nsRefPtrGetterAddRefs, the class behind getter_AddRefs.  Fix that up.
find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \
    xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g'

if [ -d .git ]; then
    git mv mfbt/nsRefPtr.h mfbt/RefPtr.h
else
    hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h
fi
2015-10-18 01:24:48 -04:00

1895 lines
66 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
// vim:cindent:ts=2:et:sw=2:
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsCSSRenderingBorders.h"
#include "gfxUtils.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/gfx/Helpers.h"
#include "mozilla/gfx/PathHelpers.h"
#include "nsLayoutUtils.h"
#include "nsStyleConsts.h"
#include "nsCSSColorUtils.h"
#include "GeckoProfiler.h"
#include "nsExpirationTracker.h"
#include "RoundedRect.h"
#include "nsClassHashtable.h"
#include "nsStyleStruct.h"
#include "mozilla/gfx/2D.h"
#include "gfx2DGlue.h"
#include "gfxGradientCache.h"
#include <algorithm>
using namespace mozilla;
using namespace mozilla::gfx;
/**
* nsCSSRendering::PaintBorder
* nsCSSRendering::PaintOutline
* -> DrawBorders
*
* DrawBorders
* -> Ability to use specialized approach?
* |- Draw using specialized function
* |- separate corners?
* |- dashed side mask
* |
* -> can border be drawn in 1 pass? (e.g., solid border same color all around)
* |- DrawBorderSides with all 4 sides
* -> more than 1 pass?
* |- for each corner
* |- clip to DoCornerClipSubPath
* |- for each side adjacent to corner
* |- clip to GetSideClipSubPath
* |- DrawBorderSides with one side
* |- for each side
* |- GetSideClipWithoutCornersRect
* |- DrawDashedSide || DrawBorderSides with one side
*/
static void ComputeBorderCornerDimensions(const Rect& aOuterRect,
const Rect& aInnerRect,
const RectCornerRadii& aRadii,
RectCornerRadii *aDimsResult);
// given a side index, get the previous and next side index
#define NEXT_SIDE(_s) mozilla::css::Side(((_s) + 1) & 3)
#define PREV_SIDE(_s) mozilla::css::Side(((_s) + 3) & 3)
// from the given base color and the background color, turn
// color into a color for the given border pattern style
static Color MakeBorderColor(nscolor aColor,
nscolor aBackgroundColor,
BorderColorStyle aBorderColorStyle);
// Given a line index (an index starting from the outside of the
// border going inwards) and an array of line styles, calculate the
// color that that stripe of the border should be rendered in.
static Color ComputeColorForLine(uint32_t aLineIndex,
const BorderColorStyle* aBorderColorStyle,
uint32_t aBorderColorStyleCount,
nscolor aBorderColor,
nscolor aBackgroundColor);
static Color ComputeCompositeColorForLine(uint32_t aLineIndex,
const nsBorderColors* aBorderColors);
// little helper function to check if the array of 4 floats given are
// equal to the given value
static bool
CheckFourFloatsEqual(const Float *vals, Float k)
{
return (vals[0] == k &&
vals[1] == k &&
vals[2] == k &&
vals[3] == k);
}
static bool
IsZeroSize(const Size& sz) {
return sz.width == 0.0 || sz.height == 0.0;
}
static bool
AllCornersZeroSize(const RectCornerRadii& corners) {
return IsZeroSize(corners[NS_CORNER_TOP_LEFT]) &&
IsZeroSize(corners[NS_CORNER_TOP_RIGHT]) &&
IsZeroSize(corners[NS_CORNER_BOTTOM_RIGHT]) &&
IsZeroSize(corners[NS_CORNER_BOTTOM_LEFT]);
}
typedef enum {
// Normal solid square corner. Will be rectangular, the size of the
// adjacent sides. If the corner has a border radius, the corner
// will always be solid, since we don't do dotted/dashed etc.
CORNER_NORMAL,
// Paint the corner in whatever style is not dotted/dashed of the
// adjacent corners.
CORNER_SOLID,
// Paint the corner as a dot, the size of the bigger of the adjacent
// sides.
CORNER_DOT
} CornerStyle;
nsCSSBorderRenderer::nsCSSBorderRenderer(nsPresContext::nsPresContextType aPresContextType,
DrawTarget* aDrawTarget,
Rect& aOuterRect,
const uint8_t* aBorderStyles,
const Float* aBorderWidths,
RectCornerRadii& aBorderRadii,
const nscolor* aBorderColors,
nsBorderColors* const* aCompositeColors,
nscolor aBackgroundColor)
: mPresContextType(aPresContextType),
mDrawTarget(aDrawTarget),
mOuterRect(aOuterRect),
mBorderStyles(aBorderStyles),
mBorderWidths(aBorderWidths),
mBorderRadii(aBorderRadii),
mBorderColors(aBorderColors),
mCompositeColors(aCompositeColors),
mBackgroundColor(aBackgroundColor)
{
if (!mCompositeColors) {
static nsBorderColors * const noColors[4] = { nullptr };
mCompositeColors = &noColors[0];
}
mInnerRect = mOuterRect;
mInnerRect.Deflate(
Margin(mBorderStyles[0] != NS_STYLE_BORDER_STYLE_NONE ? mBorderWidths[0] : 0,
mBorderStyles[1] != NS_STYLE_BORDER_STYLE_NONE ? mBorderWidths[1] : 0,
mBorderStyles[2] != NS_STYLE_BORDER_STYLE_NONE ? mBorderWidths[2] : 0,
mBorderStyles[3] != NS_STYLE_BORDER_STYLE_NONE ? mBorderWidths[3] : 0));
ComputeBorderCornerDimensions(mOuterRect, mInnerRect,
mBorderRadii, &mBorderCornerDimensions);
mOneUnitBorder = CheckFourFloatsEqual(mBorderWidths, 1.0);
mNoBorderRadius = AllCornersZeroSize(mBorderRadii);
mAvoidStroke = false;
}
/* static */ void
nsCSSBorderRenderer::ComputeInnerRadii(const RectCornerRadii& aRadii,
const Float* aBorderSizes,
RectCornerRadii* aInnerRadiiRet)
{
RectCornerRadii& iRadii = *aInnerRadiiRet;
iRadii[C_TL].width = std::max(0.f, aRadii[C_TL].width - aBorderSizes[NS_SIDE_LEFT]);
iRadii[C_TL].height = std::max(0.f, aRadii[C_TL].height - aBorderSizes[NS_SIDE_TOP]);
iRadii[C_TR].width = std::max(0.f, aRadii[C_TR].width - aBorderSizes[NS_SIDE_RIGHT]);
iRadii[C_TR].height = std::max(0.f, aRadii[C_TR].height - aBorderSizes[NS_SIDE_TOP]);
iRadii[C_BR].width = std::max(0.f, aRadii[C_BR].width - aBorderSizes[NS_SIDE_RIGHT]);
iRadii[C_BR].height = std::max(0.f, aRadii[C_BR].height - aBorderSizes[NS_SIDE_BOTTOM]);
iRadii[C_BL].width = std::max(0.f, aRadii[C_BL].width - aBorderSizes[NS_SIDE_LEFT]);
iRadii[C_BL].height = std::max(0.f, aRadii[C_BL].height - aBorderSizes[NS_SIDE_BOTTOM]);
}
/* static */ void
nsCSSBorderRenderer::ComputeOuterRadii(const RectCornerRadii& aRadii,
const Float* aBorderSizes,
RectCornerRadii* aOuterRadiiRet)
{
RectCornerRadii& oRadii = *aOuterRadiiRet;
// default all corners to sharp corners
oRadii = RectCornerRadii(0.f);
// round the edges that have radii > 0.0 to start with
if (aRadii[C_TL].width > 0.f && aRadii[C_TL].height > 0.f) {
oRadii[C_TL].width = std::max(0.f, aRadii[C_TL].width + aBorderSizes[NS_SIDE_LEFT]);
oRadii[C_TL].height = std::max(0.f, aRadii[C_TL].height + aBorderSizes[NS_SIDE_TOP]);
}
if (aRadii[C_TR].width > 0.f && aRadii[C_TR].height > 0.f) {
oRadii[C_TR].width = std::max(0.f, aRadii[C_TR].width + aBorderSizes[NS_SIDE_RIGHT]);
oRadii[C_TR].height = std::max(0.f, aRadii[C_TR].height + aBorderSizes[NS_SIDE_TOP]);
}
if (aRadii[C_BR].width > 0.f && aRadii[C_BR].height > 0.f) {
oRadii[C_BR].width = std::max(0.f, aRadii[C_BR].width + aBorderSizes[NS_SIDE_RIGHT]);
oRadii[C_BR].height = std::max(0.f, aRadii[C_BR].height + aBorderSizes[NS_SIDE_BOTTOM]);
}
if (aRadii[C_BL].width > 0.f && aRadii[C_BL].height > 0.f) {
oRadii[C_BL].width = std::max(0.f, aRadii[C_BL].width + aBorderSizes[NS_SIDE_LEFT]);
oRadii[C_BL].height = std::max(0.f, aRadii[C_BL].height + aBorderSizes[NS_SIDE_BOTTOM]);
}
}
/*static*/ void
ComputeBorderCornerDimensions(const Rect& aOuterRect,
const Rect& aInnerRect,
const RectCornerRadii& aRadii,
RectCornerRadii* aDimsRet)
{
Float leftWidth = aInnerRect.X() - aOuterRect.X();
Float topWidth = aInnerRect.Y() - aOuterRect.Y();
Float rightWidth = aOuterRect.Width() - aInnerRect.Width() - leftWidth;
Float bottomWidth = aOuterRect.Height() - aInnerRect.Height() - topWidth;
if (AllCornersZeroSize(aRadii)) {
// These will always be in pixel units from CSS
(*aDimsRet)[C_TL] = Size(leftWidth, topWidth);
(*aDimsRet)[C_TR] = Size(rightWidth, topWidth);
(*aDimsRet)[C_BR] = Size(rightWidth, bottomWidth);
(*aDimsRet)[C_BL] = Size(leftWidth, bottomWidth);
} else {
// Always round up to whole pixels for the corners; it's safe to
// make the corners bigger than necessary, and this way we ensure
// that we avoid seams.
(*aDimsRet)[C_TL] = Size(ceil(std::max(leftWidth, aRadii[C_TL].width)),
ceil(std::max(topWidth, aRadii[C_TL].height)));
(*aDimsRet)[C_TR] = Size(ceil(std::max(rightWidth, aRadii[C_TR].width)),
ceil(std::max(topWidth, aRadii[C_TR].height)));
(*aDimsRet)[C_BR] = Size(ceil(std::max(rightWidth, aRadii[C_BR].width)),
ceil(std::max(bottomWidth, aRadii[C_BR].height)));
(*aDimsRet)[C_BL] = Size(ceil(std::max(leftWidth, aRadii[C_BL].width)),
ceil(std::max(bottomWidth, aRadii[C_BL].height)));
}
}
bool
nsCSSBorderRenderer::AreBorderSideFinalStylesSame(uint8_t aSides)
{
NS_ASSERTION(aSides != 0 && (aSides & ~SIDE_BITS_ALL) == 0,
"AreBorderSidesSame: invalid whichSides!");
/* First check if the specified styles and colors are the same for all sides */
int firstStyle = 0;
NS_FOR_CSS_SIDES (i) {
if (firstStyle == i) {
if (((1 << i) & aSides) == 0)
firstStyle++;
continue;
}
if (((1 << i) & aSides) == 0) {
continue;
}
if (mBorderStyles[firstStyle] != mBorderStyles[i] ||
mBorderColors[firstStyle] != mBorderColors[i] ||
!nsBorderColors::Equal(mCompositeColors[firstStyle],
mCompositeColors[i]))
return false;
}
/* Then if it's one of the two-tone styles and we're not
* just comparing the TL or BR sides */
switch (mBorderStyles[firstStyle]) {
case NS_STYLE_BORDER_STYLE_GROOVE:
case NS_STYLE_BORDER_STYLE_RIDGE:
case NS_STYLE_BORDER_STYLE_INSET:
case NS_STYLE_BORDER_STYLE_OUTSET:
return ((aSides & ~(SIDE_BIT_TOP | SIDE_BIT_LEFT)) == 0 ||
(aSides & ~(SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) == 0);
}
return true;
}
bool
nsCSSBorderRenderer::IsSolidCornerStyle(uint8_t aStyle, mozilla::css::Corner aCorner)
{
switch (aStyle) {
case NS_STYLE_BORDER_STYLE_DOTTED:
case NS_STYLE_BORDER_STYLE_DASHED:
case NS_STYLE_BORDER_STYLE_SOLID:
return true;
case NS_STYLE_BORDER_STYLE_INSET:
case NS_STYLE_BORDER_STYLE_OUTSET:
return (aCorner == NS_CORNER_TOP_LEFT || aCorner == NS_CORNER_BOTTOM_RIGHT);
case NS_STYLE_BORDER_STYLE_GROOVE:
case NS_STYLE_BORDER_STYLE_RIDGE:
return mOneUnitBorder && (aCorner == NS_CORNER_TOP_LEFT || aCorner == NS_CORNER_BOTTOM_RIGHT);
case NS_STYLE_BORDER_STYLE_DOUBLE:
return mOneUnitBorder;
default:
return false;
}
}
BorderColorStyle
nsCSSBorderRenderer::BorderColorStyleForSolidCorner(uint8_t aStyle, mozilla::css::Corner aCorner)
{
// note that this function assumes that the corner is already solid,
// as per the earlier function
switch (aStyle) {
case NS_STYLE_BORDER_STYLE_DOTTED:
case NS_STYLE_BORDER_STYLE_DASHED:
case NS_STYLE_BORDER_STYLE_SOLID:
case NS_STYLE_BORDER_STYLE_DOUBLE:
return BorderColorStyleSolid;
case NS_STYLE_BORDER_STYLE_INSET:
case NS_STYLE_BORDER_STYLE_GROOVE:
if (aCorner == NS_CORNER_TOP_LEFT)
return BorderColorStyleDark;
else if (aCorner == NS_CORNER_BOTTOM_RIGHT)
return BorderColorStyleLight;
break;
case NS_STYLE_BORDER_STYLE_OUTSET:
case NS_STYLE_BORDER_STYLE_RIDGE:
if (aCorner == NS_CORNER_TOP_LEFT)
return BorderColorStyleLight;
else if (aCorner == NS_CORNER_BOTTOM_RIGHT)
return BorderColorStyleDark;
break;
}
return BorderColorStyleNone;
}
Rect
nsCSSBorderRenderer::GetCornerRect(mozilla::css::Corner aCorner)
{
Point offset(0.f, 0.f);
if (aCorner == C_TR || aCorner == C_BR)
offset.x = mOuterRect.Width() - mBorderCornerDimensions[aCorner].width;
if (aCorner == C_BR || aCorner == C_BL)
offset.y = mOuterRect.Height() - mBorderCornerDimensions[aCorner].height;
return Rect(mOuterRect.TopLeft() + offset,
mBorderCornerDimensions[aCorner]);
}
Rect
nsCSSBorderRenderer::GetSideClipWithoutCornersRect(mozilla::css::Side aSide)
{
Point offset(0.f, 0.f);
// The offset from the outside rect to the start of this side's
// box. For the top and bottom sides, the height of the box
// must be the border height; the x start must take into account
// the corner size (which may be bigger than the right or left
// side's width). The same applies to the right and left sides.
if (aSide == NS_SIDE_TOP) {
offset.x = mBorderCornerDimensions[C_TL].width;
} else if (aSide == NS_SIDE_RIGHT) {
offset.x = mOuterRect.Width() - mBorderWidths[NS_SIDE_RIGHT];
offset.y = mBorderCornerDimensions[C_TR].height;
} else if (aSide == NS_SIDE_BOTTOM) {
offset.x = mBorderCornerDimensions[C_BL].width;
offset.y = mOuterRect.Height() - mBorderWidths[NS_SIDE_BOTTOM];
} else if (aSide == NS_SIDE_LEFT) {
offset.y = mBorderCornerDimensions[C_TL].height;
}
// The sum of the width & height of the corners adjacent to the
// side. This relies on the relationship between side indexing and
// corner indexing; that is, 0 == SIDE_TOP and 0 == CORNER_TOP_LEFT,
// with both proceeding clockwise.
Size sideCornerSum = mBorderCornerDimensions[mozilla::css::Corner(aSide)]
+ mBorderCornerDimensions[mozilla::css::Corner(NEXT_SIDE(aSide))];
Rect rect(mOuterRect.TopLeft() + offset,
mOuterRect.Size() - sideCornerSum);
if (aSide == NS_SIDE_TOP || aSide == NS_SIDE_BOTTOM)
rect.height = mBorderWidths[aSide];
else
rect.width = mBorderWidths[aSide];
return rect;
}
// The side border type and the adjacent border types are
// examined and one of the different types of clipping (listed
// below) is selected.
typedef enum {
// clip to the trapezoid formed by the corners of the
// inner and outer rectangles for the given side
SIDE_CLIP_TRAPEZOID,
// clip to the trapezoid formed by the outer rectangle
// corners and the center of the region, making sure
// that diagonal lines all go directly from the outside
// corner to the inside corner, but that they then continue on
// to the middle.
//
// This is needed for correctly clipping rounded borders,
// which might extend past the SIDE_CLIP_TRAPEZOID trap.
SIDE_CLIP_TRAPEZOID_FULL,
// clip to the rectangle formed by the given side; a specific
// overlap algorithm is used; see the function for details.
// this is currently used for dashing.
SIDE_CLIP_RECTANGLE
} SideClipType;
// Given three points, p0, p1, and midPoint, move p1 further in to the
// rectangle (of which aMidPoint is the center) so that it reaches the
// closer of the horizontal or vertical lines intersecting the midpoint,
// while maintaing the slope of the line. If p0 and p1 are the same,
// just move p1 to midPoint (since there's no slope to maintain).
// FIXME: Extending only to the midpoint isn't actually sufficient for
// boxes with asymmetric radii.
static void
MaybeMoveToMidPoint(Point& aP0, Point& aP1, const Point& aMidPoint)
{
Point ps = aP1 - aP0;
if (ps.x == 0.0) {
if (ps.y == 0.0) {
aP1 = aMidPoint;
} else {
aP1.y = aMidPoint.y;
}
} else {
if (ps.y == 0.0) {
aP1.x = aMidPoint.x;
} else {
Float k = std::min((aMidPoint.x - aP0.x) / ps.x,
(aMidPoint.y - aP0.y) / ps.y);
aP1 = aP0 + ps * k;
}
}
}
already_AddRefed<Path>
nsCSSBorderRenderer::GetSideClipSubPath(mozilla::css::Side aSide)
{
// the clip proceeds clockwise from the top left corner;
// so "start" in each case is the start of the region from that side.
//
// the final path will be formed like:
// s0 ------- e0
// | /
// s1 ----- e1
//
// that is, the second point will always be on the inside
Point start[2];
Point end[2];
#define IS_DASHED_OR_DOTTED(_s) ((_s) == NS_STYLE_BORDER_STYLE_DASHED || (_s) == NS_STYLE_BORDER_STYLE_DOTTED)
bool isDashed = IS_DASHED_OR_DOTTED(mBorderStyles[aSide]);
bool startIsDashed = IS_DASHED_OR_DOTTED(mBorderStyles[PREV_SIDE(aSide)]);
bool endIsDashed = IS_DASHED_OR_DOTTED(mBorderStyles[NEXT_SIDE(aSide)]);
#undef IS_DASHED_OR_DOTTED
SideClipType startType = SIDE_CLIP_TRAPEZOID;
SideClipType endType = SIDE_CLIP_TRAPEZOID;
if (!IsZeroSize(mBorderRadii[mozilla::css::Corner(aSide)]))
startType = SIDE_CLIP_TRAPEZOID_FULL;
else if (startIsDashed && isDashed)
startType = SIDE_CLIP_RECTANGLE;
if (!IsZeroSize(mBorderRadii[mozilla::css::Corner(NEXT_SIDE(aSide))]))
endType = SIDE_CLIP_TRAPEZOID_FULL;
else if (endIsDashed && isDashed)
endType = SIDE_CLIP_RECTANGLE;
Point midPoint = mInnerRect.Center();
start[0] = mOuterRect.CCWCorner(aSide);
start[1] = mInnerRect.CCWCorner(aSide);
end[0] = mOuterRect.CWCorner(aSide);
end[1] = mInnerRect.CWCorner(aSide);
if (startType == SIDE_CLIP_TRAPEZOID_FULL) {
MaybeMoveToMidPoint(start[0], start[1], midPoint);
} else if (startType == SIDE_CLIP_RECTANGLE) {
if (aSide == NS_SIDE_TOP || aSide == NS_SIDE_BOTTOM)
start[1] = Point(mOuterRect.CCWCorner(aSide).x, mInnerRect.CCWCorner(aSide).y);
else
start[1] = Point(mInnerRect.CCWCorner(aSide).x, mOuterRect.CCWCorner(aSide).y);
}
if (endType == SIDE_CLIP_TRAPEZOID_FULL) {
MaybeMoveToMidPoint(end[0], end[1], midPoint);
} else if (endType == SIDE_CLIP_RECTANGLE) {
if (aSide == NS_SIDE_TOP || aSide == NS_SIDE_BOTTOM)
end[0] = Point(mInnerRect.CWCorner(aSide).x, mOuterRect.CWCorner(aSide).y);
else
end[0] = Point(mOuterRect.CWCorner(aSide).x, mInnerRect.CWCorner(aSide).y);
}
RefPtr<PathBuilder> builder = mDrawTarget->CreatePathBuilder();
builder->MoveTo(start[0]);
builder->LineTo(end[0]);
builder->LineTo(end[1]);
builder->LineTo(start[1]);
builder->Close();
return builder->Finish();
}
void
nsCSSBorderRenderer::FillSolidBorder(const Rect& aOuterRect,
const Rect& aInnerRect,
const RectCornerRadii& aBorderRadii,
const Float* aBorderSizes,
int aSides,
const ColorPattern& aColor)
{
// Note that this function is allowed to draw more than just the
// requested sides.
// If we have a border radius, do full rounded rectangles
// and fill, regardless of what sides we're asked to draw.
if (!AllCornersZeroSize(aBorderRadii)) {
RefPtr<PathBuilder> builder = mDrawTarget->CreatePathBuilder();
RectCornerRadii innerRadii;
ComputeInnerRadii(aBorderRadii, aBorderSizes, &innerRadii);
// do the outer border
AppendRoundedRectToPath(builder, aOuterRect, aBorderRadii, true);
// then do the inner border CCW
AppendRoundedRectToPath(builder, aInnerRect, innerRadii, false);
RefPtr<Path> path = builder->Finish();
mDrawTarget->Fill(path, aColor);
return;
}
// If we're asked to draw all sides of an equal-sized border,
// stroking is fastest. This is a fairly common path, but partial
// sides is probably second in the list -- there are a bunch of
// common border styles, such as inset and outset, that are
// top-left/bottom-right split.
if (aSides == SIDE_BITS_ALL &&
CheckFourFloatsEqual(aBorderSizes, aBorderSizes[0]) &&
!mAvoidStroke)
{
Float strokeWidth = aBorderSizes[0];
Rect r(aOuterRect);
r.Deflate(strokeWidth / 2.f);
mDrawTarget->StrokeRect(r, aColor, StrokeOptions(strokeWidth));
return;
}
// Otherwise, we have unequal sized borders or we're only
// drawing some sides; create rectangles for each side
// and fill them.
Rect r[4];
// compute base rects for each side
if (aSides & SIDE_BIT_TOP) {
r[NS_SIDE_TOP] =
Rect(aOuterRect.X(), aOuterRect.Y(),
aOuterRect.Width(), aBorderSizes[NS_SIDE_TOP]);
}
if (aSides & SIDE_BIT_BOTTOM) {
r[NS_SIDE_BOTTOM] =
Rect(aOuterRect.X(), aOuterRect.YMost() - aBorderSizes[NS_SIDE_BOTTOM],
aOuterRect.Width(), aBorderSizes[NS_SIDE_BOTTOM]);
}
if (aSides & SIDE_BIT_LEFT) {
r[NS_SIDE_LEFT] =
Rect(aOuterRect.X(), aOuterRect.Y(),
aBorderSizes[NS_SIDE_LEFT], aOuterRect.Height());
}
if (aSides & SIDE_BIT_RIGHT) {
r[NS_SIDE_RIGHT] =
Rect(aOuterRect.XMost() - aBorderSizes[NS_SIDE_RIGHT], aOuterRect.Y(),
aBorderSizes[NS_SIDE_RIGHT], aOuterRect.Height());
}
// If two sides meet at a corner that we're rendering, then
// make sure that we adjust one of the sides to avoid overlap.
// This is especially important in the case of colors with
// an alpha channel.
if ((aSides & (SIDE_BIT_TOP | SIDE_BIT_LEFT)) == (SIDE_BIT_TOP | SIDE_BIT_LEFT)) {
// adjust the left's top down a bit
r[NS_SIDE_LEFT].y += aBorderSizes[NS_SIDE_TOP];
r[NS_SIDE_LEFT].height -= aBorderSizes[NS_SIDE_TOP];
}
if ((aSides & (SIDE_BIT_TOP | SIDE_BIT_RIGHT)) == (SIDE_BIT_TOP | SIDE_BIT_RIGHT)) {
// adjust the top's left a bit
r[NS_SIDE_TOP].width -= aBorderSizes[NS_SIDE_RIGHT];
}
if ((aSides & (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) == (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) {
// adjust the right's bottom a bit
r[NS_SIDE_RIGHT].height -= aBorderSizes[NS_SIDE_BOTTOM];
}
if ((aSides & (SIDE_BIT_BOTTOM | SIDE_BIT_LEFT)) == (SIDE_BIT_BOTTOM | SIDE_BIT_LEFT)) {
// adjust the bottom's left a bit
r[NS_SIDE_BOTTOM].x += aBorderSizes[NS_SIDE_LEFT];
r[NS_SIDE_BOTTOM].width -= aBorderSizes[NS_SIDE_LEFT];
}
// Filling these one by one is faster than filling them all at once.
for (uint32_t i = 0; i < 4; i++) {
if (aSides & (1 << i)) {
MaybeSnapToDevicePixels(r[i], *mDrawTarget, true);
mDrawTarget->FillRect(r[i], aColor);
}
}
}
Color
MakeBorderColor(nscolor aColor, nscolor aBackgroundColor,
BorderColorStyle aBorderColorStyle)
{
nscolor colors[2];
int k = 0;
switch (aBorderColorStyle) {
case BorderColorStyleNone:
return Color(0.f, 0.f, 0.f, 0.f); // transparent black
case BorderColorStyleLight:
k = 1;
/* fall through */
case BorderColorStyleDark:
NS_GetSpecial3DColors(colors, aBackgroundColor, aColor);
return Color::FromABGR(colors[k]);
case BorderColorStyleSolid:
default:
return Color::FromABGR(aColor);
}
}
Color
ComputeColorForLine(uint32_t aLineIndex,
const BorderColorStyle* aBorderColorStyle,
uint32_t aBorderColorStyleCount,
nscolor aBorderColor,
nscolor aBackgroundColor)
{
NS_ASSERTION(aLineIndex < aBorderColorStyleCount, "Invalid lineIndex given");
return MakeBorderColor(aBorderColor, aBackgroundColor,
aBorderColorStyle[aLineIndex]);
}
Color
ComputeCompositeColorForLine(uint32_t aLineIndex,
const nsBorderColors* aBorderColors)
{
while (aLineIndex-- && aBorderColors->mNext)
aBorderColors = aBorderColors->mNext;
return Color::FromABGR(aBorderColors->mColor);
}
void
nsCSSBorderRenderer::DrawBorderSidesCompositeColors(int aSides, const nsBorderColors *aCompositeColors)
{
RectCornerRadii radii = mBorderRadii;
// the generic composite colors path; each border is 1px in size
Rect soRect = mOuterRect;
Float maxBorderWidth = 0;
NS_FOR_CSS_SIDES (i) {
maxBorderWidth = std::max(maxBorderWidth, Float(mBorderWidths[i]));
}
Float fakeBorderSizes[4];
Point itl = mInnerRect.TopLeft();
Point ibr = mInnerRect.BottomRight();
for (uint32_t i = 0; i < uint32_t(maxBorderWidth); i++) {
ColorPattern color(ToDeviceColor(
ComputeCompositeColorForLine(i, aCompositeColors)));
Rect siRect = soRect;
siRect.Deflate(1.0);
// now cap the rects to the real mInnerRect
Point tl = siRect.TopLeft();
Point br = siRect.BottomRight();
tl.x = std::min(tl.x, itl.x);
tl.y = std::min(tl.y, itl.y);
br.x = std::max(br.x, ibr.x);
br.y = std::max(br.y, ibr.y);
siRect = Rect(tl.x, tl.y, br.x - tl.x , br.y - tl.y);
fakeBorderSizes[NS_SIDE_TOP] = siRect.TopLeft().y - soRect.TopLeft().y;
fakeBorderSizes[NS_SIDE_RIGHT] = soRect.TopRight().x - siRect.TopRight().x;
fakeBorderSizes[NS_SIDE_BOTTOM] = soRect.BottomRight().y - siRect.BottomRight().y;
fakeBorderSizes[NS_SIDE_LEFT] = siRect.BottomLeft().x - soRect.BottomLeft().x;
FillSolidBorder(soRect, siRect, radii, fakeBorderSizes, aSides, color);
soRect = siRect;
ComputeInnerRadii(radii, fakeBorderSizes, &radii);
}
}
void
nsCSSBorderRenderer::DrawBorderSides(int aSides)
{
if (aSides == 0 || (aSides & ~SIDE_BITS_ALL) != 0) {
NS_WARNING("DrawBorderSides: invalid sides!");
return;
}
uint8_t borderRenderStyle = NS_STYLE_BORDER_STYLE_NONE;
nscolor borderRenderColor;
const nsBorderColors *compositeColors = nullptr;
uint32_t borderColorStyleCount = 0;
BorderColorStyle borderColorStyleTopLeft[3], borderColorStyleBottomRight[3];
BorderColorStyle *borderColorStyle = nullptr;
NS_FOR_CSS_SIDES (i) {
if ((aSides & (1 << i)) == 0)
continue;
borderRenderStyle = mBorderStyles[i];
borderRenderColor = mBorderColors[i];
compositeColors = mCompositeColors[i];
break;
}
if (borderRenderStyle == NS_STYLE_BORDER_STYLE_NONE ||
borderRenderStyle == NS_STYLE_BORDER_STYLE_HIDDEN)
return;
// -moz-border-colors is a hack; if we have it for a border, then
// it's always drawn solid, and each color is given 1px. The last
// color is used for the remainder of the border's size. Just
// hand off to another function to do all that.
if (compositeColors) {
DrawBorderSidesCompositeColors(aSides, compositeColors);
return;
}
// We're not doing compositeColors, so we can calculate the
// borderColorStyle based on the specified style. The
// borderColorStyle array goes from the outer to the inner style.
//
// If the border width is 1, we need to change the borderRenderStyle
// a bit to make sure that we get the right colors -- e.g. 'ridge'
// with a 1px border needs to look like solid, not like 'outset'.
if (mOneUnitBorder &&
(borderRenderStyle == NS_STYLE_BORDER_STYLE_RIDGE ||
borderRenderStyle == NS_STYLE_BORDER_STYLE_GROOVE ||
borderRenderStyle == NS_STYLE_BORDER_STYLE_DOUBLE))
borderRenderStyle = NS_STYLE_BORDER_STYLE_SOLID;
switch (borderRenderStyle) {
case NS_STYLE_BORDER_STYLE_SOLID:
case NS_STYLE_BORDER_STYLE_DASHED:
case NS_STYLE_BORDER_STYLE_DOTTED:
borderColorStyleTopLeft[0] = BorderColorStyleSolid;
borderColorStyleBottomRight[0] = BorderColorStyleSolid;
borderColorStyleCount = 1;
break;
case NS_STYLE_BORDER_STYLE_GROOVE:
borderColorStyleTopLeft[0] = BorderColorStyleDark;
borderColorStyleTopLeft[1] = BorderColorStyleLight;
borderColorStyleBottomRight[0] = BorderColorStyleLight;
borderColorStyleBottomRight[1] = BorderColorStyleDark;
borderColorStyleCount = 2;
break;
case NS_STYLE_BORDER_STYLE_RIDGE:
borderColorStyleTopLeft[0] = BorderColorStyleLight;
borderColorStyleTopLeft[1] = BorderColorStyleDark;
borderColorStyleBottomRight[0] = BorderColorStyleDark;
borderColorStyleBottomRight[1] = BorderColorStyleLight;
borderColorStyleCount = 2;
break;
case NS_STYLE_BORDER_STYLE_DOUBLE:
borderColorStyleTopLeft[0] = BorderColorStyleSolid;
borderColorStyleTopLeft[1] = BorderColorStyleNone;
borderColorStyleTopLeft[2] = BorderColorStyleSolid;
borderColorStyleBottomRight[0] = BorderColorStyleSolid;
borderColorStyleBottomRight[1] = BorderColorStyleNone;
borderColorStyleBottomRight[2] = BorderColorStyleSolid;
borderColorStyleCount = 3;
break;
case NS_STYLE_BORDER_STYLE_INSET:
borderColorStyleTopLeft[0] = BorderColorStyleDark;
borderColorStyleBottomRight[0] = BorderColorStyleLight;
borderColorStyleCount = 1;
break;
case NS_STYLE_BORDER_STYLE_OUTSET:
borderColorStyleTopLeft[0] = BorderColorStyleLight;
borderColorStyleBottomRight[0] = BorderColorStyleDark;
borderColorStyleCount = 1;
break;
default:
NS_NOTREACHED("Unhandled border style!!");
break;
}
// The only way to get to here is by having a
// borderColorStyleCount < 1 or > 3; this should never happen,
// since -moz-border-colors doesn't get handled here.
NS_ASSERTION(borderColorStyleCount > 0 && borderColorStyleCount < 4,
"Non-border-colors case with borderColorStyleCount < 1 or > 3; what happened?");
// The caller should never give us anything with a mix
// of TL/BR if the border style would require a
// TL/BR split.
if (aSides & (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT))
borderColorStyle = borderColorStyleBottomRight;
else
borderColorStyle = borderColorStyleTopLeft;
// Distribute the border across the available space.
Float borderWidths[3][4];
if (borderColorStyleCount == 1) {
NS_FOR_CSS_SIDES (i) {
borderWidths[0][i] = mBorderWidths[i];
}
} else if (borderColorStyleCount == 2) {
// with 2 color styles, any extra pixel goes to the outside
NS_FOR_CSS_SIDES (i) {
borderWidths[0][i] = int32_t(mBorderWidths[i]) / 2 + int32_t(mBorderWidths[i]) % 2;
borderWidths[1][i] = int32_t(mBorderWidths[i]) / 2;
}
} else if (borderColorStyleCount == 3) {
// with 3 color styles, any extra pixel (or lack of extra pixel)
// goes to the middle
NS_FOR_CSS_SIDES (i) {
if (mBorderWidths[i] == 1.0) {
borderWidths[0][i] = 1.f;
borderWidths[1][i] = borderWidths[2][i] = 0.f;
} else {
int32_t rest = int32_t(mBorderWidths[i]) % 3;
borderWidths[0][i] = borderWidths[2][i] = borderWidths[1][i] = (int32_t(mBorderWidths[i]) - rest) / 3;
if (rest == 1) {
borderWidths[1][i] += 1.f;
} else if (rest == 2) {
borderWidths[0][i] += 1.f;
borderWidths[2][i] += 1.f;
}
}
}
}
// make a copy that we can modify
RectCornerRadii radii = mBorderRadii;
Rect soRect(mOuterRect);
Rect siRect(mOuterRect);
for (unsigned int i = 0; i < borderColorStyleCount; i++) {
// walk siRect inwards at the start of the loop to get the
// correct inner rect.
siRect.Deflate(Margin(borderWidths[i][0], borderWidths[i][1],
borderWidths[i][2], borderWidths[i][3]));
if (borderColorStyle[i] != BorderColorStyleNone) {
Color c = ComputeColorForLine(i, borderColorStyle, borderColorStyleCount,
borderRenderColor, mBackgroundColor);
ColorPattern color(ToDeviceColor(c));
FillSolidBorder(soRect, siRect, radii, borderWidths[i], aSides, color);
}
ComputeInnerRadii(radii, borderWidths[i], &radii);
// And now soRect is the same as siRect, for the next line in.
soRect = siRect;
}
}
void
nsCSSBorderRenderer::DrawDashedSide(mozilla::css::Side aSide)
{
Float dashWidth;
Float dash[2];
uint8_t style = mBorderStyles[aSide];
Float borderWidth = mBorderWidths[aSide];
nscolor borderColor = mBorderColors[aSide];
if (borderWidth == 0.0)
return;
if (style == NS_STYLE_BORDER_STYLE_NONE ||
style == NS_STYLE_BORDER_STYLE_HIDDEN)
return;
StrokeOptions strokeOptions(borderWidth);
if (style == NS_STYLE_BORDER_STYLE_DASHED) {
dashWidth = Float(borderWidth * DOT_LENGTH * DASH_LENGTH);
dash[0] = dashWidth;
dash[1] = dashWidth;
} else if (style == NS_STYLE_BORDER_STYLE_DOTTED) {
dashWidth = Float(borderWidth * DOT_LENGTH);
if (borderWidth > 2.0) {
dash[0] = 0.0;
dash[1] = dashWidth * 2.0;
strokeOptions.mLineCap = CapStyle::ROUND;
} else {
dash[0] = dashWidth;
dash[1] = dashWidth;
}
} else {
PrintAsFormatString("DrawDashedSide: style: %d!!\n", style);
NS_ERROR("DrawDashedSide called with style other than DASHED or DOTTED; someone's not playing nice");
return;
}
PrintAsFormatString("dash: %f %f\n", dash[0], dash[1]);
strokeOptions.mDashPattern = dash;
strokeOptions.mDashLength = MOZ_ARRAY_LENGTH(dash);
Point start = mOuterRect.CCWCorner(aSide);
Point end = mOuterRect.CWCorner(aSide);
if (aSide == NS_SIDE_TOP) {
start.x += mBorderCornerDimensions[C_TL].width;
end.x -= mBorderCornerDimensions[C_TR].width;
start.y += borderWidth / 2.0;
end.y += borderWidth / 2.0;
} else if (aSide == NS_SIDE_RIGHT) {
start.x -= borderWidth / 2.0;
end.x -= borderWidth / 2.0;
start.y += mBorderCornerDimensions[C_TR].height;
end.y -= mBorderCornerDimensions[C_BR].height;
} else if (aSide == NS_SIDE_BOTTOM) {
start.x -= mBorderCornerDimensions[C_BR].width;
end.x += mBorderCornerDimensions[C_BL].width;
start.y -= borderWidth / 2.0;
end.y -= borderWidth / 2.0;
} else if (aSide == NS_SIDE_LEFT) {
start.x += borderWidth / 2.0;
end.x += borderWidth / 2.0;
start.y -= mBorderCornerDimensions[C_BL].height;
end.y += mBorderCornerDimensions[C_TL].height;
}
mDrawTarget->StrokeLine(start, end, ColorPattern(ToDeviceColor(borderColor)),
strokeOptions);
}
bool
nsCSSBorderRenderer::AllBordersSameWidth()
{
if (mBorderWidths[0] == mBorderWidths[1] &&
mBorderWidths[0] == mBorderWidths[2] &&
mBorderWidths[0] == mBorderWidths[3])
{
return true;
}
return false;
}
bool
nsCSSBorderRenderer::AllBordersSolid(bool *aHasCompositeColors)
{
*aHasCompositeColors = false;
NS_FOR_CSS_SIDES(i) {
if (mCompositeColors[i] != nullptr) {
*aHasCompositeColors = true;
}
if (mBorderStyles[i] == NS_STYLE_BORDER_STYLE_SOLID ||
mBorderStyles[i] == NS_STYLE_BORDER_STYLE_NONE ||
mBorderStyles[i] == NS_STYLE_BORDER_STYLE_HIDDEN)
{
continue;
}
return false;
}
return true;
}
bool IsVisible(int aStyle)
{
if (aStyle != NS_STYLE_BORDER_STYLE_NONE &&
aStyle != NS_STYLE_BORDER_STYLE_HIDDEN) {
return true;
}
return false;
}
struct twoFloats
{
Float a, b;
twoFloats operator*(const Size& aSize) const {
return { a * aSize.width, b * aSize.height };
}
twoFloats operator*(Float aScale) const {
return { a * aScale, b * aScale };
}
twoFloats operator+(const Point& aPoint) const {
return { a + aPoint.x, b + aPoint.y };
}
operator Point() const {
return Point(a, b);
}
};
void
nsCSSBorderRenderer::DrawSingleWidthSolidBorder()
{
// Easy enough to deal with.
Rect rect = mOuterRect;
rect.Deflate(0.5);
const twoFloats cornerAdjusts[4] = { { +0.5, 0 },
{ 0, +0.5 },
{ -0.5, 0 },
{ 0, -0.5 } };
NS_FOR_CSS_SIDES(side) {
Point firstCorner = rect.CCWCorner(side) + cornerAdjusts[side];
Point secondCorner = rect.CWCorner(side) + cornerAdjusts[side];
ColorPattern color(ToDeviceColor(mBorderColors[side]));
mDrawTarget->StrokeLine(firstCorner, secondCorner, color);
}
}
// Intersect a ray from the inner corner to the outer corner
// with the border radius, yielding the intersection point.
static Point
IntersectBorderRadius(const Point& aCenter, const Size& aRadius,
const Point& aInnerCorner,
const Point& aCornerDirection)
{
Point toCorner = aCornerDirection;
// transform to-corner ray to unit-circle space
toCorner.x /= aRadius.width;
toCorner.y /= aRadius.height;
// normalize to-corner ray
Float cornerDist = toCorner.Length();
if (cornerDist < 1.0e-6f) {
return aInnerCorner;
}
toCorner = toCorner / cornerDist;
// ray from inner corner to border radius center
Point toCenter = aCenter - aInnerCorner;
// transform to-center ray to unit-circle space
toCenter.x /= aRadius.width;
toCenter.y /= aRadius.height;
// compute offset of intersection with border radius unit circle
Float offset = toCenter.DotProduct(toCorner);
// compute discriminant to check for intersections
Float discrim = 1.0f - toCenter.DotProduct(toCenter) + offset * offset;
// choose farthest intersection
offset += sqrtf(std::max(discrim, 0.0f));
// transform to-corner ray back out of unit-circle space
toCorner.x *= aRadius.width;
toCorner.y *= aRadius.height;
return aInnerCorner + toCorner * offset;
}
// Calculate the split point and split angle for a border radius with
// differing sides.
static inline void
SplitBorderRadius(const Point& aCenter, const Size& aRadius,
const Point& aOuterCorner, const Point& aInnerCorner,
const twoFloats& aCornerMults, Float aStartAngle,
Point& aSplit, Float& aSplitAngle)
{
Point cornerDir = aOuterCorner - aInnerCorner;
if (cornerDir.x == cornerDir.y && aRadius.IsSquare()) {
// optimize 45-degree intersection with circle since we can assume
// the circle center lies along the intersection edge
aSplit = aCenter - aCornerMults * (aRadius * Float(1.0f / M_SQRT2));
aSplitAngle = aStartAngle + 0.5f * M_PI / 2.0f;
} else {
aSplit = IntersectBorderRadius(aCenter, aRadius, aInnerCorner, cornerDir);
aSplitAngle =
atan2f((aSplit.y - aCenter.y) / aRadius.height,
(aSplit.x - aCenter.x) / aRadius.width);
}
}
// Compute the size of the skirt needed, given the color alphas
// of each corner side and the slope between them.
static void
ComputeCornerSkirtSize(Float aAlpha1, Float aAlpha2,
Float aSlopeY, Float aSlopeX,
Float& aSizeResult, Float& aSlopeResult)
{
// If either side is (almost) invisible or there is no diagonal edge,
// then don't try to render a skirt.
if (aAlpha1 < 0.01f || aAlpha2 < 0.01f) {
return;
}
aSlopeX = fabs(aSlopeX);
aSlopeY = fabs(aSlopeY);
if (aSlopeX < 1.0e-6f || aSlopeY < 1.0e-6f) {
return;
}
// If first and second color don't match, we need to split the corner in
// half. The diagonal edges created may not have full pixel coverage given
// anti-aliasing, so we need to compute a small subpixel skirt edge. This
// assumes each half has half coverage to start with, and that coverage
// increases as the skirt is pushed over, with the end result that we want
// to roughly preserve the alpha value along this edge.
// Given slope m, alphas a and A, use quadratic formula to solve for S in:
// a*(1 - 0.5*(1-S)*(1-mS))*(1 - 0.5*A) + 0.5*A = A
// yielding:
// S = ((1+m) - sqrt((1+m)*(1+m) + 4*m*(1 - A/(a*(1-0.5*A))))) / (2*m)
// and substitute k = (1+m)/(2*m):
// S = k - sqrt(k*k + (1 - A/(a*(1-0.5*A)))/m)
Float slope = aSlopeY / aSlopeX;
Float slopeScale = (1.0f + slope) / (2.0f * slope);
Float discrim =
slopeScale*slopeScale +
(1 - aAlpha2 / (aAlpha1 * (1.0f - 0.49f * aAlpha2))) / slope;
if (discrim >= 0) {
aSizeResult = slopeScale - sqrtf(discrim);
aSlopeResult = slope;
}
}
// Draws a border radius with possibly different sides.
// A skirt is drawn underneath the corner intersection to hide possible
// seams when anti-aliased drawing is used.
static void
DrawBorderRadius(DrawTarget* aDrawTarget,
mozilla::css::Corner c,
const Point& aOuterCorner, const Point& aInnerCorner,
const twoFloats& aCornerMultPrev, const twoFloats& aCornerMultNext,
const Size& aCornerDims,
const Size& aOuterRadius, const Size& aInnerRadius,
const Color& aFirstColor, const Color& aSecondColor,
Float aSkirtSize, Float aSkirtSlope)
{
// Connect edge to outer arc start point
Point outerCornerStart = aOuterCorner + aCornerMultPrev * aCornerDims;
// Connect edge to outer arc end point
Point outerCornerEnd = aOuterCorner + aCornerMultNext * aCornerDims;
// Connect edge to inner arc start point
Point innerCornerStart =
outerCornerStart +
aCornerMultNext * (aCornerDims - aInnerRadius);
// Connect edge to inner arc end point
Point innerCornerEnd =
outerCornerEnd +
aCornerMultPrev * (aCornerDims - aInnerRadius);
// Outer arc start point
Point outerArcStart = aOuterCorner + aCornerMultPrev * aOuterRadius;
// Outer arc end point
Point outerArcEnd = aOuterCorner + aCornerMultNext * aOuterRadius;
// Inner arc start point
Point innerArcStart = aInnerCorner + aCornerMultPrev * aInnerRadius;
// Inner arc end point
Point innerArcEnd = aInnerCorner + aCornerMultNext * aInnerRadius;
// Outer radius center
Point outerCenter = aOuterCorner + (aCornerMultPrev + aCornerMultNext) * aOuterRadius;
// Inner radius center
Point innerCenter = aInnerCorner + (aCornerMultPrev + aCornerMultNext) * aInnerRadius;
RefPtr<PathBuilder> builder;
RefPtr<Path> path;
if (aFirstColor.a > 0) {
builder = aDrawTarget->CreatePathBuilder();
builder->MoveTo(outerCornerStart);
}
if (aFirstColor != aSecondColor) {
// Start and end angles of corner quadrant
Float startAngle = (c * M_PI) / 2.0f - M_PI,
endAngle = startAngle + M_PI / 2.0f,
outerSplitAngle, innerSplitAngle;
Point outerSplit, innerSplit;
// Outer half-way point
SplitBorderRadius(outerCenter, aOuterRadius, aOuterCorner, aInnerCorner,
aCornerMultPrev + aCornerMultNext, startAngle,
outerSplit, outerSplitAngle);
// Inner half-way point
if (aInnerRadius.IsEmpty()) {
innerSplit = aInnerCorner;
innerSplitAngle = endAngle;
} else {
SplitBorderRadius(innerCenter, aInnerRadius, aOuterCorner, aInnerCorner,
aCornerMultPrev + aCornerMultNext, startAngle,
innerSplit, innerSplitAngle);
}
// Draw first half with first color
if (aFirstColor.a > 0) {
AcuteArcToBezier(builder.get(), outerCenter, aOuterRadius,
outerArcStart, outerSplit, startAngle, outerSplitAngle);
// Draw skirt as part of first half
if (aSkirtSize > 0) {
builder->LineTo(outerSplit + aCornerMultNext * aSkirtSize);
builder->LineTo(innerSplit - aCornerMultPrev * (aSkirtSize * aSkirtSlope));
}
AcuteArcToBezier(builder.get(), innerCenter, aInnerRadius,
innerSplit, innerArcStart, innerSplitAngle, startAngle);
if ((innerCornerStart - innerArcStart).DotProduct(aCornerMultPrev) > 0) {
builder->LineTo(innerCornerStart);
}
builder->Close();
path = builder->Finish();
aDrawTarget->Fill(path, ColorPattern(aFirstColor));
}
// Draw second half with second color
if (aSecondColor.a > 0) {
builder = aDrawTarget->CreatePathBuilder();
builder->MoveTo(outerCornerEnd);
if ((innerArcEnd - innerCornerEnd).DotProduct(aCornerMultNext) < 0) {
builder->LineTo(innerCornerEnd);
}
AcuteArcToBezier(builder.get(), innerCenter, aInnerRadius,
innerArcEnd, innerSplit, endAngle, innerSplitAngle);
AcuteArcToBezier(builder.get(), outerCenter, aOuterRadius,
outerSplit, outerArcEnd, outerSplitAngle, endAngle);
builder->Close();
path = builder->Finish();
aDrawTarget->Fill(path, ColorPattern(aSecondColor));
}
} else if (aFirstColor.a > 0) {
// Draw corner with single color
AcuteArcToBezier(builder.get(), outerCenter, aOuterRadius,
outerArcStart, outerArcEnd);
builder->LineTo(outerCornerEnd);
if ((innerArcEnd - innerCornerEnd).DotProduct(aCornerMultNext) < 0) {
builder->LineTo(innerCornerEnd);
}
AcuteArcToBezier(builder.get(), innerCenter, aInnerRadius,
innerArcEnd, innerArcStart, -kKappaFactor);
if ((innerCornerStart - innerArcStart).DotProduct(aCornerMultPrev) > 0) {
builder->LineTo(innerCornerStart);
}
builder->Close();
path = builder->Finish();
aDrawTarget->Fill(path, ColorPattern(aFirstColor));
}
}
// Draw a corner with possibly different sides.
// A skirt is drawn underneath the corner intersection to hide possible
// seams when anti-aliased drawing is used.
static void
DrawCorner(DrawTarget* aDrawTarget,
mozilla::css::Corner c,
const Point& aOuterCorner, const Point& aInnerCorner,
const twoFloats& aCornerMultPrev, const twoFloats& aCornerMultNext,
const Size& aCornerDims,
const Color& aFirstColor, const Color& aSecondColor,
Float aSkirtSize, Float aSkirtSlope)
{
// Corner box start point
Point cornerStart = aOuterCorner + aCornerMultPrev * aCornerDims;
// Corner box end point
Point cornerEnd = aOuterCorner + aCornerMultNext * aCornerDims;
RefPtr<PathBuilder> builder;
RefPtr<Path> path;
if (aFirstColor.a > 0) {
builder = aDrawTarget->CreatePathBuilder();
builder->MoveTo(cornerStart);
}
if (aFirstColor != aSecondColor) {
// Draw first half with first color
if (aFirstColor.a > 0) {
builder->LineTo(aOuterCorner);
// Draw skirt as part of first half
if (aSkirtSize > 0) {
builder->LineTo(aOuterCorner + aCornerMultNext * aSkirtSize);
builder->LineTo(aInnerCorner - aCornerMultPrev * (aSkirtSize * aSkirtSlope));
}
builder->LineTo(aInnerCorner);
builder->Close();
path = builder->Finish();
aDrawTarget->Fill(path, ColorPattern(aFirstColor));
}
// Draw second half with second color
if (aSecondColor.a > 0) {
builder = aDrawTarget->CreatePathBuilder();
builder->MoveTo(cornerEnd);
builder->LineTo(aInnerCorner);
builder->LineTo(aOuterCorner);
builder->Close();
path = builder->Finish();
aDrawTarget->Fill(path, ColorPattern(aSecondColor));
}
} else if (aFirstColor.a > 0) {
// Draw corner with single color
builder->LineTo(aOuterCorner);
builder->LineTo(cornerEnd);
builder->LineTo(aInnerCorner);
builder->Close();
path = builder->Finish();
aDrawTarget->Fill(path, ColorPattern(aFirstColor));
}
}
void
nsCSSBorderRenderer::DrawNoCompositeColorSolidBorder()
{
const twoFloats cornerMults[4] = { { -1, 0 },
{ 0, -1 },
{ +1, 0 },
{ 0, +1 } };
const twoFloats centerAdjusts[4] = { { 0, +0.5 },
{ -0.5, 0 },
{ 0, -0.5 },
{ +0.5, 0 } };
RectCornerRadii innerRadii;
ComputeInnerRadii(mBorderRadii, mBorderWidths, &innerRadii);
Rect strokeRect = mOuterRect;
strokeRect.Deflate(Margin(mBorderWidths[0] / 2.0, mBorderWidths[1] / 2.0,
mBorderWidths[2] / 2.0, mBorderWidths[3] / 2.0));
NS_FOR_CSS_SIDES(i) {
// We now draw the current side and the CW corner following it.
// The CCW corner of this side was already drawn in the previous iteration.
// The side will be drawn as an explicit stroke, and the CW corner will be
// filled separately.
// If the next side does not have a matching color, then we split the
// corner into two halves, one of each side's color and draw both.
// Thus, the CCW corner of the next side will end up drawn here.
// the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw)
mozilla::css::Corner c = mozilla::css::Corner((i+1) % 4);
mozilla::css::Corner prevCorner = mozilla::css::Corner(i);
// i+2 and i+3 respectively. These are used to index into the corner
// multiplier table, and were deduced by calculating out the long form
// of each corner and finding a pattern in the signs and values.
int i1 = (i+1) % 4;
int i2 = (i+2) % 4;
int i3 = (i+3) % 4;
Float sideWidth = 0.0f;
Color firstColor, secondColor;
if (IsVisible(mBorderStyles[i]) && mBorderWidths[i]) {
// draw the side since it is visible
sideWidth = mBorderWidths[i];
firstColor = ToDeviceColor(mBorderColors[i]);
// if the next side is visible, use its color for corner
secondColor =
IsVisible(mBorderStyles[i1]) && mBorderWidths[i1] ?
ToDeviceColor(mBorderColors[i1]) :
firstColor;
} else if (IsVisible(mBorderStyles[i1]) && mBorderWidths[i1]) {
// assign next side's color to both corner sides
firstColor = ToDeviceColor(mBorderColors[i1]);
secondColor = firstColor;
} else {
// neither side is visible, so nothing to do
continue;
}
Point outerCorner = mOuterRect.AtCorner(c);
Point innerCorner = mInnerRect.AtCorner(c);
// start and end points of border side stroke between corners
Point sideStart =
mOuterRect.AtCorner(prevCorner) +
cornerMults[i2] * mBorderCornerDimensions[prevCorner];
Point sideEnd = outerCorner + cornerMults[i] * mBorderCornerDimensions[c];
// check if the side is visible and not inverted
if (sideWidth > 0 && firstColor.a > 0 &&
-(sideEnd - sideStart).DotProduct(cornerMults[i]) > 0) {
mDrawTarget->StrokeLine(sideStart + centerAdjusts[i] * sideWidth,
sideEnd + centerAdjusts[i] * sideWidth,
ColorPattern(firstColor),
StrokeOptions(sideWidth));
}
Float skirtSize = 0.0f, skirtSlope = 0.0f;
// the sides don't match, so compute a skirt
if (firstColor != secondColor &&
mPresContextType != nsPresContext::eContext_Print) {
Point cornerDir = outerCorner - innerCorner;
ComputeCornerSkirtSize(firstColor.a, secondColor.a,
cornerDir.DotProduct(cornerMults[i]),
cornerDir.DotProduct(cornerMults[i3]),
skirtSize, skirtSlope);
}
if (!mBorderRadii[c].IsEmpty()) {
// the corner has a border radius
DrawBorderRadius(mDrawTarget,
c, outerCorner, innerCorner,
cornerMults[i], cornerMults[i3],
mBorderCornerDimensions[c],
mBorderRadii[c], innerRadii[c],
firstColor, secondColor, skirtSize, skirtSlope);
} else if (!mBorderCornerDimensions[c].IsEmpty()) {
// a corner with no border radius
DrawCorner(mDrawTarget,
c, outerCorner, innerCorner,
cornerMults[i], cornerMults[i3],
mBorderCornerDimensions[c],
firstColor, secondColor, skirtSize, skirtSlope);
}
}
}
void
nsCSSBorderRenderer::DrawRectangularCompositeColors()
{
nsBorderColors *currentColors[4];
memcpy(currentColors, mCompositeColors, sizeof(nsBorderColors*) * 4);
Rect rect = mOuterRect;
rect.Deflate(0.5);
const twoFloats cornerAdjusts[4] = { { +0.5, 0 },
{ 0, +0.5 },
{ -0.5, 0 },
{ 0, -0.5 } };
for (int i = 0; i < mBorderWidths[0]; i++) {
NS_FOR_CSS_SIDES(side) {
int sideNext = (side + 1) % 4;
Point firstCorner = rect.CCWCorner(side) + cornerAdjusts[side];
Point secondCorner = rect.CWCorner(side) - cornerAdjusts[side];
Color currentColor = Color::FromABGR(
currentColors[side] ? currentColors[side]->mColor
: mBorderColors[side]);
mDrawTarget->StrokeLine(firstCorner, secondCorner,
ColorPattern(ToDeviceColor(currentColor)));
Point cornerTopLeft = rect.CWCorner(side) - Point(0.5, 0.5);
Color nextColor = Color::FromABGR(
currentColors[sideNext] ? currentColors[sideNext]->mColor
: mBorderColors[sideNext]);
Color cornerColor((currentColor.r + nextColor.r) / 2.f,
(currentColor.g + nextColor.g) / 2.f,
(currentColor.b + nextColor.b) / 2.f,
(currentColor.a + nextColor.a) / 2.f);
mDrawTarget->FillRect(Rect(cornerTopLeft, Size(1, 1)),
ColorPattern(ToDeviceColor(cornerColor)));
if (side != 0) {
// We'll have to keep side 0 for the color averaging on side 3.
if (currentColors[side] && currentColors[side]->mNext) {
currentColors[side] = currentColors[side]->mNext;
}
}
}
// Now advance the color for side 0.
if (currentColors[0] && currentColors[0]->mNext) {
currentColors[0] = currentColors[0]->mNext;
}
rect.Deflate(1);
}
}
void
nsCSSBorderRenderer::DrawBorders()
{
bool forceSeparateCorners = false;
// Examine the border style to figure out if we can draw it in one
// go or not.
bool tlBordersSame = AreBorderSideFinalStylesSame(SIDE_BIT_TOP | SIDE_BIT_LEFT);
bool brBordersSame = AreBorderSideFinalStylesSame(SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT);
bool allBordersSame = AreBorderSideFinalStylesSame(SIDE_BITS_ALL);
if (allBordersSame &&
((mCompositeColors[0] == nullptr &&
(mBorderStyles[0] == NS_STYLE_BORDER_STYLE_NONE ||
mBorderStyles[0] == NS_STYLE_BORDER_STYLE_HIDDEN ||
mBorderColors[0] == NS_RGBA(0,0,0,0))) ||
(mCompositeColors[0] &&
(mCompositeColors[0]->mColor == NS_RGBA(0,0,0,0) &&
!mCompositeColors[0]->mNext))))
{
// All borders are the same style, and the style is either none or hidden, or the color
// is transparent.
// This also checks if the first composite color is transparent, and there are
// no others. It doesn't check if there are subsequent transparent ones, because
// that would be very silly.
return;
}
AutoRestoreTransform autoRestoreTransform;
Matrix mat = mDrawTarget->GetTransform();
// Clamp the CTM to be pixel-aligned; we do this only
// for translation-only matrices now, but we could do it
// if the matrix has just a scale as well. We should not
// do it if there's a rotation.
if (mat.HasNonTranslation()) {
if (!mat.HasNonAxisAlignedTransform()) {
// Scale + transform. Avoid stroke fast-paths so that we have a chance
// of snapping to pixel boundaries.
mAvoidStroke = true;
}
} else {
mat._31 = floor(mat._31 + 0.5);
mat._32 = floor(mat._32 + 0.5);
autoRestoreTransform.Init(mDrawTarget);
mDrawTarget->SetTransform(mat);
// round mOuterRect and mInnerRect; they're already an integer
// number of pixels apart and should stay that way after
// rounding. We don't do this if there's a scale in the current transform
// since this loses information that might be relevant when we're scaling.
mOuterRect.Round();
mInnerRect.Round();
}
bool allBordersSameWidth = AllBordersSameWidth();
if (allBordersSameWidth && mBorderWidths[0] == 0.0) {
// Some of the allBordersSameWidth codepaths depend on the border
// width being greater than zero.
return;
}
// Initial values only used when the border colors/widths are all the same:
ColorPattern color(ToDeviceColor(mBorderColors[NS_SIDE_TOP]));
StrokeOptions strokeOptions(mBorderWidths[NS_SIDE_TOP]); // stroke width
bool allBordersSolid;
// First there's a couple of 'special cases' that have specifically optimized
// drawing paths, when none of these can be used we move on to the generalized
// border drawing code.
if (allBordersSame &&
mCompositeColors[0] == nullptr &&
allBordersSameWidth &&
mBorderStyles[0] == NS_STYLE_BORDER_STYLE_SOLID &&
mNoBorderRadius &&
!mAvoidStroke)
{
// Very simple case.
Rect rect = mOuterRect;
rect.Deflate(mBorderWidths[0] / 2.0);
mDrawTarget->StrokeRect(rect, color, strokeOptions);
return;
}
if (allBordersSame &&
mCompositeColors[0] == nullptr &&
allBordersSameWidth &&
mBorderStyles[0] == NS_STYLE_BORDER_STYLE_DOTTED &&
mBorderWidths[0] < 3 &&
mNoBorderRadius &&
!mAvoidStroke)
{
// Very simple case. We draw this rectangular dotted borner without
// antialiasing. The dots should be pixel aligned.
Rect rect = mOuterRect;
rect.Deflate(mBorderWidths[0] / 2.0);
Float dash = mBorderWidths[0];
strokeOptions.mDashPattern = &dash;
strokeOptions.mDashLength = 1;
strokeOptions.mDashOffset = 0.5f;
DrawOptions drawOptions;
drawOptions.mAntialiasMode = AntialiasMode::NONE;
mDrawTarget->StrokeRect(rect, color, strokeOptions, drawOptions);
return;
}
if (allBordersSame &&
mCompositeColors[0] == nullptr &&
mBorderStyles[0] == NS_STYLE_BORDER_STYLE_SOLID &&
!mAvoidStroke &&
!mNoBorderRadius)
{
// Relatively simple case.
gfxRect outerRect = ThebesRect(mOuterRect);
RoundedRect borderInnerRect(outerRect, mBorderRadii);
borderInnerRect.Deflate(mBorderWidths[NS_SIDE_TOP],
mBorderWidths[NS_SIDE_BOTTOM],
mBorderWidths[NS_SIDE_LEFT],
mBorderWidths[NS_SIDE_RIGHT]);
// Instead of stroking we just use two paths: an inner and an outer.
// This allows us to draw borders that we couldn't when stroking. For example,
// borders with a border width >= the border radius. (i.e. when there are
// square corners on the inside)
//
// Further, this approach can be more efficient because the backend
// doesn't need to compute an offset curve to stroke the path. We know that
// the rounded parts are elipses we can offset exactly and can just compute
// a new cubic approximation.
RefPtr<PathBuilder> builder = mDrawTarget->CreatePathBuilder();
AppendRoundedRectToPath(builder, mOuterRect, mBorderRadii, true);
AppendRoundedRectToPath(builder, ToRect(borderInnerRect.rect), borderInnerRect.corners, false);
RefPtr<Path> path = builder->Finish();
mDrawTarget->Fill(path, color);
return;
}
bool hasCompositeColors;
allBordersSolid = AllBordersSolid(&hasCompositeColors);
// This leaves the border corners non-interpolated for single width borders.
// Doing this is slightly faster and shouldn't be a problem visually.
if (allBordersSolid &&
allBordersSameWidth &&
mCompositeColors[0] == nullptr &&
mBorderWidths[0] == 1 &&
mNoBorderRadius &&
!mAvoidStroke)
{
DrawSingleWidthSolidBorder();
return;
}
if (allBordersSolid && !hasCompositeColors &&
!mAvoidStroke)
{
DrawNoCompositeColorSolidBorder();
return;
}
if (allBordersSolid &&
allBordersSameWidth &&
mNoBorderRadius &&
!mAvoidStroke)
{
// Easy enough to deal with.
DrawRectangularCompositeColors();
return;
}
// If we have composite colors -and- border radius,
// then use separate corners so we get OP_ADD for the corners.
// Otherwise, we'll get artifacts as we draw stacked 1px-wide curves.
if (allBordersSame && mCompositeColors[0] != nullptr && !mNoBorderRadius)
forceSeparateCorners = true;
PrintAsString(" mOuterRect: "), PrintAsString(mOuterRect), PrintAsStringNewline();
PrintAsString(" mInnerRect: "), PrintAsString(mInnerRect), PrintAsStringNewline();
PrintAsFormatString(" mBorderColors: 0x%08x 0x%08x 0x%08x 0x%08x\n", mBorderColors[0], mBorderColors[1], mBorderColors[2], mBorderColors[3]);
// if conditioning the outside rect failed, then bail -- the outside
// rect is supposed to enclose the entire border
{
gfxRect outerRect = ThebesRect(mOuterRect);
outerRect.Condition();
if (outerRect.IsEmpty())
return;
mOuterRect = ToRect(outerRect);
gfxRect innerRect = ThebesRect(mInnerRect);
innerRect.Condition();
mInnerRect = ToRect(innerRect);
}
int dashedSides = 0;
NS_FOR_CSS_SIDES(i) {
uint8_t style = mBorderStyles[i];
if (style == NS_STYLE_BORDER_STYLE_DASHED ||
style == NS_STYLE_BORDER_STYLE_DOTTED)
{
// pretend that all borders aren't the same; we need to draw
// things separately for dashed/dotting
allBordersSame = false;
dashedSides |= (1 << i);
}
}
PrintAsFormatString(" allBordersSame: %d dashedSides: 0x%02x\n", allBordersSame, dashedSides);
if (allBordersSame && !forceSeparateCorners) {
/* Draw everything in one go */
DrawBorderSides(SIDE_BITS_ALL);
PrintAsStringNewline("---------------- (1)");
} else {
PROFILER_LABEL("nsCSSBorderRenderer", "DrawBorders::multipass",
js::ProfileEntry::Category::GRAPHICS);
/* We have more than one pass to go. Draw the corners separately from the sides. */
/*
* If we have a 1px-wide border, the corners are going to be
* negligible, so don't bother doing anything fancy. Just extend
* the top and bottom borders to the right 1px and the left border
* to the bottom 1px. We do this by twiddling the corner dimensions,
* which causes the right to happen later on. Only do this if we have
* a 1.0 unit border all around and no border radius.
*/
NS_FOR_CSS_CORNERS(corner) {
const mozilla::css::Side sides[2] = { mozilla::css::Side(corner), PREV_SIDE(corner) };
if (!IsZeroSize(mBorderRadii[corner]))
continue;
if (mBorderWidths[sides[0]] == 1.0 && mBorderWidths[sides[1]] == 1.0) {
if (corner == NS_CORNER_TOP_LEFT || corner == NS_CORNER_TOP_RIGHT)
mBorderCornerDimensions[corner].width = 0.0;
else
mBorderCornerDimensions[corner].height = 0.0;
}
}
// First, the corners
NS_FOR_CSS_CORNERS(corner) {
// if there's no corner, don't do all this work for it
if (IsZeroSize(mBorderCornerDimensions[corner]))
continue;
const int sides[2] = { corner, PREV_SIDE(corner) };
int sideBits = (1 << sides[0]) | (1 << sides[1]);
bool simpleCornerStyle = mCompositeColors[sides[0]] == nullptr &&
mCompositeColors[sides[1]] == nullptr &&
AreBorderSideFinalStylesSame(sideBits);
// If we don't have anything complex going on in this corner,
// then we can just fill the corner with a solid color, and avoid
// the potentially expensive clip.
if (simpleCornerStyle &&
IsZeroSize(mBorderRadii[corner]) &&
IsSolidCornerStyle(mBorderStyles[sides[0]], corner))
{
Color color = MakeBorderColor(mBorderColors[sides[0]],
mBackgroundColor,
BorderColorStyleForSolidCorner(mBorderStyles[sides[0]], corner));
mDrawTarget->FillRect(GetCornerRect(corner),
ColorPattern(ToDeviceColor(color)));
continue;
}
// clip to the corner
mDrawTarget->PushClipRect(GetCornerRect(corner));
if (simpleCornerStyle) {
// we don't need a group for this corner, the sides are the same,
// but we weren't able to render just a solid block for the corner.
DrawBorderSides(sideBits);
} else {
// Sides are different. We could draw using OP_ADD to
// get correct color blending behaviour at the seam. We'd need
// to do it in an offscreen surface to ensure that we're
// always compositing on transparent black. If the colors
// don't have transparency and the current destination surface
// has an alpha channel, we could just clear the region and
// avoid the temporary, but that situation doesn't happen all
// that often in practice (we double buffer to no-alpha
// surfaces). We choose just to seam though, as the performance
// advantages outway the modest easthetic improvement.
for (int cornerSide = 0; cornerSide < 2; cornerSide++) {
mozilla::css::Side side = mozilla::css::Side(sides[cornerSide]);
uint8_t style = mBorderStyles[side];
PrintAsFormatString("corner: %d cornerSide: %d side: %d style: %d\n", corner, cornerSide, side, style);
RefPtr<Path> path = GetSideClipSubPath(side);
mDrawTarget->PushClip(path);
DrawBorderSides(1 << side);
mDrawTarget->PopClip();
}
}
mDrawTarget->PopClip();
PrintAsStringNewline();
}
// in the case of a single-unit border, we already munged the
// corners up above; so we can just draw the top left and bottom
// right sides separately, if they're the same.
//
// We need to check for mNoBorderRadius, because when there is
// one, FillSolidBorder always draws the full rounded rectangle
// and expects there to be a clip in place.
int alreadyDrawnSides = 0;
if (mOneUnitBorder &&
mNoBorderRadius &&
(dashedSides & (SIDE_BIT_TOP | SIDE_BIT_LEFT)) == 0)
{
if (tlBordersSame) {
DrawBorderSides(SIDE_BIT_TOP | SIDE_BIT_LEFT);
alreadyDrawnSides |= (SIDE_BIT_TOP | SIDE_BIT_LEFT);
}
if (brBordersSame && (dashedSides & (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) == 0) {
DrawBorderSides(SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT);
alreadyDrawnSides |= (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT);
}
}
// We're done with the corners, now draw the sides.
NS_FOR_CSS_SIDES (side) {
// if we drew it above, skip it
if (alreadyDrawnSides & (1 << side))
continue;
// If there's no border on this side, skip it
if (mBorderWidths[side] == 0.0 ||
mBorderStyles[side] == NS_STYLE_BORDER_STYLE_HIDDEN ||
mBorderStyles[side] == NS_STYLE_BORDER_STYLE_NONE)
continue;
if (dashedSides & (1 << side)) {
// Dashed sides will always draw just the part ignoring the
// corners for the side, so no need to clip.
DrawDashedSide (side);
PrintAsStringNewline("---------------- (d)");
continue;
}
// Undashed sides will currently draw the entire side,
// including parts that would normally be covered by a corner,
// so we need to clip.
//
// XXX Optimization -- it would be good to make this work like
// DrawDashedSide, and have a DrawOneSide function that just
// draws one side and not the corners, because then we can
// avoid the potentially expensive clip.
mDrawTarget->PushClipRect(GetSideClipWithoutCornersRect(side));
DrawBorderSides(1 << side);
mDrawTarget->PopClip();
PrintAsStringNewline("---------------- (*)");
}
}
}