gecko/content/media/MediaDecoderStateMachine.cpp
Karl Tomlinson d4faed6b58 b=1023697 change MediaDecoderStateMachine::mSyncPointInMediaStream from StreamTime to µs r=roc
This allows the conversion from StreamTime to be performed while a stream is
available.

--HG--
extra : transplant_source : %3A%AD%5C%1A%84%C3%1BC%8B%04%D5%5B%90%3Cv%BE%A6%D6%C0%9D
2014-06-12 16:44:56 +12:00

3380 lines
116 KiB
C++

/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifdef XP_WIN
// Include Windows headers required for enabling high precision timers.
#include "windows.h"
#include "mmsystem.h"
#endif
#include "mozilla/DebugOnly.h"
#include <stdint.h>
#include "MediaDecoderStateMachine.h"
#include "AudioStream.h"
#include "nsTArray.h"
#include "MediaDecoder.h"
#include "MediaDecoderReader.h"
#include "mozilla/mozalloc.h"
#include "VideoUtils.h"
#include "mozilla/dom/TimeRanges.h"
#include "nsDeque.h"
#include "AudioSegment.h"
#include "VideoSegment.h"
#include "ImageContainer.h"
#include "nsComponentManagerUtils.h"
#include "nsITimer.h"
#include "nsContentUtils.h"
#include "MediaShutdownManager.h"
#include "SharedThreadPool.h"
#include "MediaTaskQueue.h"
#include "nsIEventTarget.h"
#include "prenv.h"
#include "mozilla/Preferences.h"
#include "gfx2DGlue.h"
#include <algorithm>
namespace mozilla {
using namespace mozilla::layers;
using namespace mozilla::dom;
using namespace mozilla::gfx;
// avoid redefined macro in unified build
#undef DECODER_LOG
#undef VERBOSE_LOG
#ifdef PR_LOGGING
extern PRLogModuleInfo* gMediaDecoderLog;
#define DECODER_LOG(type, msg, ...) \
PR_LOG(gMediaDecoderLog, type, ("Decoder=%p " msg, mDecoder.get(), ##__VA_ARGS__))
#define VERBOSE_LOG(msg, ...) \
PR_BEGIN_MACRO \
if (!PR_GetEnv("MOZ_QUIET")) { \
DECODER_LOG(PR_LOG_DEBUG, msg, ##__VA_ARGS__); \
} \
PR_END_MACRO
#define SAMPLE_LOG(msg, ...) \
PR_BEGIN_MACRO \
if (PR_GetEnv("MEDIA_LOG_SAMPLES")) { \
DECODER_LOG(PR_LOG_DEBUG, msg, ##__VA_ARGS__); \
} \
PR_END_MACRO
#else
#define DECODER_LOG(type, msg, ...)
#define VERBOSE_LOG(msg, ...)
#define SAMPLE_LOG(msg, ...)
#endif
// GetCurrentTime is defined in winbase.h as zero argument macro forwarding to
// GetTickCount() and conflicts with MediaDecoderStateMachine::GetCurrentTime
// implementation. With unified builds, putting this in headers is not enough.
#ifdef GetCurrentTime
#undef GetCurrentTime
#endif
// Wait this number of seconds when buffering, then leave and play
// as best as we can if the required amount of data hasn't been
// retrieved.
static const uint32_t BUFFERING_WAIT_S = 30;
// If audio queue has less than this many usecs of decoded audio, we won't risk
// trying to decode the video, we'll skip decoding video up to the next
// keyframe. We may increase this value for an individual decoder if we
// encounter video frames which take a long time to decode.
static const uint32_t LOW_AUDIO_USECS = 300000;
// If more than this many usecs of decoded audio is queued, we'll hold off
// decoding more audio. If we increase the low audio threshold (see
// LOW_AUDIO_USECS above) we'll also increase this value to ensure it's not
// less than the low audio threshold.
const int64_t AMPLE_AUDIO_USECS = 1000000;
// When we're only playing audio and we don't have a video stream, we divide
// AMPLE_AUDIO_USECS and LOW_AUDIO_USECS by the following value. This reduces
// the amount of decoded audio we buffer, reducing our memory usage. We only
// need to decode far ahead when we're decoding video using software decoding,
// as otherwise a long video decode could cause an audio underrun.
const int64_t NO_VIDEO_AMPLE_AUDIO_DIVISOR = 8;
// Maximum number of bytes we'll allocate and write at once to the audio
// hardware when the audio stream contains missing frames and we're
// writing silence in order to fill the gap. We limit our silence-writes
// to 32KB in order to avoid allocating an impossibly large chunk of
// memory if we encounter a large chunk of silence.
const uint32_t SILENCE_BYTES_CHUNK = 32 * 1024;
// If we have fewer than LOW_VIDEO_FRAMES decoded frames, and
// we're not "prerolling video", we'll skip the video up to the next keyframe
// which is at or after the current playback position.
static const uint32_t LOW_VIDEO_FRAMES = 1;
// Arbitrary "frame duration" when playing only audio.
static const int AUDIO_DURATION_USECS = 40000;
// If we increase our "low audio threshold" (see LOW_AUDIO_USECS above), we
// use this as a factor in all our calculations. Increasing this will cause
// us to be more likely to increase our low audio threshold, and to
// increase it by more.
static const int THRESHOLD_FACTOR = 2;
// If we have less than this much undecoded data available, we'll consider
// ourselves to be running low on undecoded data. We determine how much
// undecoded data we have remaining using the reader's GetBuffered()
// implementation.
static const int64_t LOW_DATA_THRESHOLD_USECS = 5000000;
// LOW_DATA_THRESHOLD_USECS needs to be greater than AMPLE_AUDIO_USECS, otherwise
// the skip-to-keyframe logic can activate when we're running low on data.
static_assert(LOW_DATA_THRESHOLD_USECS > AMPLE_AUDIO_USECS,
"LOW_DATA_THRESHOLD_USECS is too small");
// Amount of excess usecs of data to add in to the "should we buffer" calculation.
static const uint32_t EXHAUSTED_DATA_MARGIN_USECS = 60000;
// If we enter buffering within QUICK_BUFFER_THRESHOLD_USECS seconds of starting
// decoding, we'll enter "quick buffering" mode, which exits a lot sooner than
// normal buffering mode. This exists so that if the decode-ahead exhausts the
// downloaded data while decode/playback is just starting up (for example
// after a seek while the media is still playing, or when playing a media
// as soon as it's load started), we won't necessarily stop for 30s and wait
// for buffering. We may actually be able to playback in this case, so exit
// buffering early and try to play. If it turns out we can't play, we'll fall
// back to buffering normally.
static const uint32_t QUICK_BUFFER_THRESHOLD_USECS = 2000000;
// If we're quick buffering, we'll remain in buffering mode while we have less than
// QUICK_BUFFERING_LOW_DATA_USECS of decoded data available.
static const uint32_t QUICK_BUFFERING_LOW_DATA_USECS = 1000000;
// If QUICK_BUFFERING_LOW_DATA_USECS is > AMPLE_AUDIO_USECS, we won't exit
// quick buffering in a timely fashion, as the decode pauses when it
// reaches AMPLE_AUDIO_USECS decoded data, and thus we'll never reach
// QUICK_BUFFERING_LOW_DATA_USECS.
static_assert(QUICK_BUFFERING_LOW_DATA_USECS <= AMPLE_AUDIO_USECS,
"QUICK_BUFFERING_LOW_DATA_USECS is too large");
// This value has been chosen empirically.
static const uint32_t AUDIOSTREAM_MIN_WRITE_BEFORE_START_USECS = 200000;
// The amount of instability we tollerate in calls to
// MediaDecoderStateMachine::UpdateEstimatedDuration(); changes of duration
// less than this are ignored, as they're assumed to be the result of
// instability in the duration estimation.
static const int64_t ESTIMATED_DURATION_FUZZ_FACTOR_USECS = USECS_PER_S / 2;
static TimeDuration UsecsToDuration(int64_t aUsecs) {
return TimeDuration::FromMilliseconds(static_cast<double>(aUsecs) / USECS_PER_MS);
}
static int64_t DurationToUsecs(TimeDuration aDuration) {
return static_cast<int64_t>(aDuration.ToSeconds() * USECS_PER_S);
}
MediaDecoderStateMachine::MediaDecoderStateMachine(MediaDecoder* aDecoder,
MediaDecoderReader* aReader,
bool aRealTime) :
mDecoder(aDecoder),
mState(DECODER_STATE_DECODING_METADATA),
mInRunningStateMachine(false),
mSyncPointInMediaStream(-1),
mSyncPointInDecodedStream(-1),
mResetPlayStartTime(false),
mPlayDuration(0),
mStartTime(-1),
mEndTime(-1),
mFragmentEndTime(-1),
mReader(aReader),
mCurrentFrameTime(0),
mAudioStartTime(-1),
mAudioEndTime(-1),
mVideoFrameEndTime(-1),
mVolume(1.0),
mPlaybackRate(1.0),
mPreservesPitch(true),
mBasePosition(0),
mAmpleVideoFrames(2),
mLowAudioThresholdUsecs(LOW_AUDIO_USECS),
mAmpleAudioThresholdUsecs(AMPLE_AUDIO_USECS),
mAudioRequestPending(false),
mVideoRequestPending(false),
mAudioCaptured(false),
mTransportSeekable(true),
mMediaSeekable(true),
mPositionChangeQueued(false),
mAudioCompleted(false),
mGotDurationFromMetaData(false),
mDispatchedEventToDecode(false),
mStopAudioThread(true),
mQuickBuffering(false),
mMinimizePreroll(false),
mDecodeThreadWaiting(false),
mRealTime(aRealTime),
mDispatchedDecodeMetadataTask(false),
mDropAudioUntilNextDiscontinuity(false),
mDropVideoUntilNextDiscontinuity(false),
mDecodeToSeekTarget(false),
mLastFrameStatus(MediaDecoderOwner::NEXT_FRAME_UNINITIALIZED),
mTimerId(0)
{
MOZ_COUNT_CTOR(MediaDecoderStateMachine);
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
// Only enable realtime mode when "media.realtime_decoder.enabled" is true.
if (Preferences::GetBool("media.realtime_decoder.enabled", false) == false)
mRealTime = false;
mAmpleVideoFrames =
std::max<uint32_t>(Preferences::GetUint("media.video-queue.default-size", 10), 3);
mBufferingWait = mRealTime ? 0 : BUFFERING_WAIT_S;
mLowDataThresholdUsecs = mRealTime ? 0 : LOW_DATA_THRESHOLD_USECS;
mVideoPrerollFrames = mRealTime ? 0 : mAmpleVideoFrames / 2;
mAudioPrerollUsecs = mRealTime ? 0 : LOW_AUDIO_USECS * 2;
#ifdef XP_WIN
// Ensure high precision timers are enabled on Windows, otherwise the state
// machine thread isn't woken up at reliable intervals to set the next frame,
// and we drop frames while painting. Note that multiple calls to this
// function per-process is OK, provided each call is matched by a corresponding
// timeEndPeriod() call.
timeBeginPeriod(1);
#endif
}
MediaDecoderStateMachine::~MediaDecoderStateMachine()
{
MOZ_ASSERT(NS_IsMainThread(), "Should be on main thread.");
MOZ_COUNT_DTOR(MediaDecoderStateMachine);
NS_ASSERTION(!mPendingWakeDecoder.get(),
"WakeDecoder should have been revoked already");
MOZ_ASSERT(!mDecodeTaskQueue, "Should be released in SHUTDOWN");
// No need to cancel the timer here for we've done that in SHUTDOWN.
MOZ_ASSERT(!mTimer, "Should be released in SHUTDOWN");
mReader = nullptr;
#ifdef XP_WIN
timeEndPeriod(1);
#endif
}
bool MediaDecoderStateMachine::HasFutureAudio() {
AssertCurrentThreadInMonitor();
NS_ASSERTION(HasAudio(), "Should only call HasFutureAudio() when we have audio");
// We've got audio ready to play if:
// 1. We've not completed playback of audio, and
// 2. we either have more than the threshold of decoded audio available, or
// we've completely decoded all audio (but not finished playing it yet
// as per 1).
return !mAudioCompleted &&
(AudioDecodedUsecs() > LOW_AUDIO_USECS * mPlaybackRate || AudioQueue().IsFinished());
}
bool MediaDecoderStateMachine::HaveNextFrameData() {
AssertCurrentThreadInMonitor();
return (!HasAudio() || HasFutureAudio()) &&
(!HasVideo() || VideoQueue().GetSize() > 0);
}
int64_t MediaDecoderStateMachine::GetDecodedAudioDuration() {
NS_ASSERTION(OnDecodeThread() || OnStateMachineThread(),
"Should be on decode thread or state machine thread");
AssertCurrentThreadInMonitor();
int64_t audioDecoded = AudioQueue().Duration();
if (mAudioEndTime != -1) {
audioDecoded += mAudioEndTime - GetMediaTime();
}
return audioDecoded;
}
void MediaDecoderStateMachine::SendStreamAudio(AudioData* aAudio,
DecodedStreamData* aStream,
AudioSegment* aOutput)
{
NS_ASSERTION(OnDecodeThread() ||
OnStateMachineThread(), "Should be on decode thread or state machine thread");
AssertCurrentThreadInMonitor();
if (aAudio->mTime <= aStream->mLastAudioPacketTime) {
// ignore packet that we've already processed
return;
}
aStream->mLastAudioPacketTime = aAudio->mTime;
aStream->mLastAudioPacketEndTime = aAudio->GetEndTime();
// This logic has to mimic AudioLoop closely to make sure we write
// the exact same silences
CheckedInt64 audioWrittenOffset = UsecsToFrames(mInfo.mAudio.mRate,
aStream->mInitialTime + mStartTime) + aStream->mAudioFramesWritten;
CheckedInt64 frameOffset = UsecsToFrames(mInfo.mAudio.mRate, aAudio->mTime);
if (!audioWrittenOffset.isValid() || !frameOffset.isValid())
return;
if (audioWrittenOffset.value() < frameOffset.value()) {
// Write silence to catch up
VERBOSE_LOG("writing %d frames of silence to MediaStream",
int32_t(frameOffset.value() - audioWrittenOffset.value()));
AudioSegment silence;
silence.InsertNullDataAtStart(frameOffset.value() - audioWrittenOffset.value());
aStream->mAudioFramesWritten += silence.GetDuration();
aOutput->AppendFrom(&silence);
}
int64_t offset;
if (aStream->mAudioFramesWritten == 0) {
NS_ASSERTION(frameOffset.value() <= audioWrittenOffset.value(),
"Otherwise we'd have taken the write-silence path");
// We're starting in the middle of a packet. Split the packet.
offset = audioWrittenOffset.value() - frameOffset.value();
} else {
// Write the entire packet.
offset = 0;
}
if (offset >= aAudio->mFrames)
return;
aAudio->EnsureAudioBuffer();
nsRefPtr<SharedBuffer> buffer = aAudio->mAudioBuffer;
AudioDataValue* bufferData = static_cast<AudioDataValue*>(buffer->Data());
nsAutoTArray<const AudioDataValue*,2> channels;
for (uint32_t i = 0; i < aAudio->mChannels; ++i) {
channels.AppendElement(bufferData + i*aAudio->mFrames + offset);
}
aOutput->AppendFrames(buffer.forget(), channels, aAudio->mFrames);
VERBOSE_LOG("writing %d frames of data to MediaStream for AudioData at %lld",
aAudio->mFrames - int32_t(offset), aAudio->mTime);
aStream->mAudioFramesWritten += aAudio->mFrames - int32_t(offset);
}
static void WriteVideoToMediaStream(layers::Image* aImage,
int64_t aDuration,
const IntSize& aIntrinsicSize,
VideoSegment* aOutput)
{
nsRefPtr<layers::Image> image = aImage;
aOutput->AppendFrame(image.forget(), aDuration, aIntrinsicSize);
}
static const TrackID TRACK_AUDIO = 1;
static const TrackID TRACK_VIDEO = 2;
static const TrackRate RATE_VIDEO = USECS_PER_S;
void MediaDecoderStateMachine::SendStreamData()
{
NS_ASSERTION(OnDecodeThread() ||
OnStateMachineThread(), "Should be on decode thread or state machine thread");
AssertCurrentThreadInMonitor();
DecodedStreamData* stream = mDecoder->GetDecodedStream();
if (!stream)
return;
if (mState == DECODER_STATE_DECODING_METADATA)
return;
// If there's still an audio thread alive, then we can't send any stream
// data yet since both SendStreamData and the audio thread want to be in
// charge of popping the audio queue. We're waiting for the audio thread
// to die before sending anything to our stream.
if (mAudioThread)
return;
int64_t minLastAudioPacketTime = INT64_MAX;
bool finished =
(!mInfo.HasAudio() || AudioQueue().IsFinished()) &&
(!mInfo.HasVideo() || VideoQueue().IsFinished());
if (mDecoder->IsSameOriginMedia()) {
SourceMediaStream* mediaStream = stream->mStream;
StreamTime endPosition = 0;
if (!stream->mStreamInitialized) {
if (mInfo.HasAudio()) {
AudioSegment* audio = new AudioSegment();
mediaStream->AddTrack(TRACK_AUDIO, mInfo.mAudio.mRate, 0, audio);
stream->mStream->DispatchWhenNotEnoughBuffered(TRACK_AUDIO,
GetStateMachineThread(), GetWakeDecoderRunnable());
}
if (mInfo.HasVideo()) {
VideoSegment* video = new VideoSegment();
mediaStream->AddTrack(TRACK_VIDEO, RATE_VIDEO, 0, video);
stream->mStream->DispatchWhenNotEnoughBuffered(TRACK_VIDEO,
GetStateMachineThread(), GetWakeDecoderRunnable());
}
stream->mStreamInitialized = true;
}
if (mInfo.HasAudio()) {
nsAutoTArray<AudioData*,10> audio;
// It's OK to hold references to the AudioData because while audio
// is captured, only the decoder thread pops from the queue (see below).
AudioQueue().GetElementsAfter(stream->mLastAudioPacketTime, &audio);
AudioSegment output;
for (uint32_t i = 0; i < audio.Length(); ++i) {
SendStreamAudio(audio[i], stream, &output);
}
if (output.GetDuration() > 0) {
mediaStream->AppendToTrack(TRACK_AUDIO, &output);
}
if (AudioQueue().IsFinished() && !stream->mHaveSentFinishAudio) {
mediaStream->EndTrack(TRACK_AUDIO);
stream->mHaveSentFinishAudio = true;
}
minLastAudioPacketTime = std::min(minLastAudioPacketTime, stream->mLastAudioPacketTime);
endPosition = std::max(endPosition,
TicksToTimeRoundDown(mInfo.mAudio.mRate, stream->mAudioFramesWritten));
}
if (mInfo.HasVideo()) {
nsAutoTArray<VideoData*,10> video;
// It's OK to hold references to the VideoData only the decoder thread
// pops from the queue.
VideoQueue().GetElementsAfter(stream->mNextVideoTime, &video);
VideoSegment output;
for (uint32_t i = 0; i < video.Length(); ++i) {
VideoData* v = video[i];
if (stream->mNextVideoTime < v->mTime) {
VERBOSE_LOG("writing last video to MediaStream %p for %lldus",
mediaStream, v->mTime - stream->mNextVideoTime);
// Write last video frame to catch up. mLastVideoImage can be null here
// which is fine, it just means there's no video.
WriteVideoToMediaStream(stream->mLastVideoImage,
v->mTime - stream->mNextVideoTime, stream->mLastVideoImageDisplaySize,
&output);
stream->mNextVideoTime = v->mTime;
}
if (stream->mNextVideoTime < v->GetEndTime()) {
VERBOSE_LOG("writing video frame %lldus to MediaStream %p for %lldus",
v->mTime, mediaStream, v->GetEndTime() - stream->mNextVideoTime);
WriteVideoToMediaStream(v->mImage,
v->GetEndTime() - stream->mNextVideoTime, v->mDisplay,
&output);
stream->mNextVideoTime = v->GetEndTime();
stream->mLastVideoImage = v->mImage;
stream->mLastVideoImageDisplaySize = v->mDisplay;
} else {
VERBOSE_LOG("skipping writing video frame %lldus (end %lldus) to MediaStream",
v->mTime, v->GetEndTime());
}
}
if (output.GetDuration() > 0) {
mediaStream->AppendToTrack(TRACK_VIDEO, &output);
}
if (VideoQueue().IsFinished() && !stream->mHaveSentFinishVideo) {
mediaStream->EndTrack(TRACK_VIDEO);
stream->mHaveSentFinishVideo = true;
}
endPosition = std::max(endPosition,
TicksToTimeRoundDown(RATE_VIDEO, stream->mNextVideoTime - stream->mInitialTime));
}
if (!stream->mHaveSentFinish) {
stream->mStream->AdvanceKnownTracksTime(endPosition);
}
if (finished && !stream->mHaveSentFinish) {
stream->mHaveSentFinish = true;
stream->mStream->Finish();
}
}
if (mAudioCaptured) {
// Discard audio packets that are no longer needed.
while (true) {
const AudioData* a = AudioQueue().PeekFront();
// Packet times are not 100% reliable so this may discard packets that
// actually contain data for mCurrentFrameTime. This means if someone might
// create a new output stream and we actually don't have the audio for the
// very start. That's OK, we'll play silence instead for a brief moment.
// That's OK. Seeking to this time would have a similar issue for such
// badly muxed resources.
if (!a || a->GetEndTime() >= minLastAudioPacketTime)
break;
mAudioEndTime = std::max(mAudioEndTime, a->GetEndTime());
delete AudioQueue().PopFront();
}
if (finished) {
mAudioCompleted = true;
UpdateReadyState();
}
}
}
MediaDecoderStateMachine::WakeDecoderRunnable*
MediaDecoderStateMachine::GetWakeDecoderRunnable()
{
AssertCurrentThreadInMonitor();
if (!mPendingWakeDecoder.get()) {
mPendingWakeDecoder = new WakeDecoderRunnable(this);
}
return mPendingWakeDecoder.get();
}
bool MediaDecoderStateMachine::HaveEnoughDecodedAudio(int64_t aAmpleAudioUSecs)
{
AssertCurrentThreadInMonitor();
if (AudioQueue().GetSize() == 0 ||
GetDecodedAudioDuration() < aAmpleAudioUSecs) {
return false;
}
if (!mAudioCaptured) {
return true;
}
DecodedStreamData* stream = mDecoder->GetDecodedStream();
if (stream && stream->mStreamInitialized && !stream->mHaveSentFinishAudio) {
if (!stream->mStream->HaveEnoughBuffered(TRACK_AUDIO)) {
return false;
}
stream->mStream->DispatchWhenNotEnoughBuffered(TRACK_AUDIO,
GetStateMachineThread(), GetWakeDecoderRunnable());
}
return true;
}
bool MediaDecoderStateMachine::HaveEnoughDecodedVideo()
{
AssertCurrentThreadInMonitor();
if (static_cast<uint32_t>(VideoQueue().GetSize()) < mAmpleVideoFrames * mPlaybackRate) {
return false;
}
DecodedStreamData* stream = mDecoder->GetDecodedStream();
if (stream && stream->mStreamInitialized && !stream->mHaveSentFinishVideo) {
if (!stream->mStream->HaveEnoughBuffered(TRACK_VIDEO)) {
return false;
}
stream->mStream->DispatchWhenNotEnoughBuffered(TRACK_VIDEO,
GetStateMachineThread(), GetWakeDecoderRunnable());
}
return true;
}
bool
MediaDecoderStateMachine::NeedToDecodeVideo()
{
AssertCurrentThreadInMonitor();
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
"Should be on state machine or decode thread.");
return IsVideoDecoding() &&
((mState == DECODER_STATE_SEEKING && mDecodeToSeekTarget) ||
(!mMinimizePreroll && !HaveEnoughDecodedVideo()));
}
void
MediaDecoderStateMachine::DecodeVideo()
{
int64_t currentTime = 0;
bool skipToNextKeyFrame = false;
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
if (mState != DECODER_STATE_DECODING &&
mState != DECODER_STATE_BUFFERING &&
mState != DECODER_STATE_SEEKING) {
mVideoRequestPending = false;
DispatchDecodeTasksIfNeeded();
return;
}
// We don't want to consider skipping to the next keyframe if we've
// only just started up the decode loop, so wait until we've decoded
// some frames before enabling the keyframe skip logic on video.
if (mIsVideoPrerolling &&
(static_cast<uint32_t>(VideoQueue().GetSize())
>= mVideoPrerollFrames * mPlaybackRate))
{
mIsVideoPrerolling = false;
}
// We'll skip the video decode to the nearest keyframe if we're low on
// audio, or if we're low on video, provided we're not running low on
// data to decode. If we're running low on downloaded data to decode,
// we won't start keyframe skipping, as we'll be pausing playback to buffer
// soon anyway and we'll want to be able to display frames immediately
// after buffering finishes.
if (mState == DECODER_STATE_DECODING &&
mIsVideoDecoding &&
((!mIsAudioPrerolling && mIsAudioDecoding &&
GetDecodedAudioDuration() < mLowAudioThresholdUsecs * mPlaybackRate) ||
(!mIsVideoPrerolling && IsVideoDecoding() &&
// don't skip frame when |clock time| <= |mVideoFrameEndTime| for
// we are still in the safe range without underrunning video frames
GetClock() > mVideoFrameEndTime &&
(static_cast<uint32_t>(VideoQueue().GetSize())
< LOW_VIDEO_FRAMES * mPlaybackRate))) &&
!HasLowUndecodedData())
{
skipToNextKeyFrame = true;
DECODER_LOG(PR_LOG_DEBUG, "Skipping video decode to the next keyframe");
}
currentTime = mState == DECODER_STATE_SEEKING ? 0 : GetMediaTime();
// Time the video decode, so that if it's slow, we can increase our low
// audio threshold to reduce the chance of an audio underrun while we're
// waiting for a video decode to complete.
mVideoDecodeStartTime = TimeStamp::Now();
}
mReader->RequestVideoData(skipToNextKeyFrame, currentTime);
}
bool
MediaDecoderStateMachine::NeedToDecodeAudio()
{
AssertCurrentThreadInMonitor();
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
"Should be on state machine or decode thread.");
return IsAudioDecoding() &&
((mState == DECODER_STATE_SEEKING && mDecodeToSeekTarget) ||
(!mMinimizePreroll &&
!HaveEnoughDecodedAudio(mAmpleAudioThresholdUsecs * mPlaybackRate) &&
(mState != DECODER_STATE_SEEKING || mDecodeToSeekTarget)));
}
void
MediaDecoderStateMachine::DecodeAudio()
{
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
if (mState != DECODER_STATE_DECODING &&
mState != DECODER_STATE_BUFFERING &&
mState != DECODER_STATE_SEEKING) {
mAudioRequestPending = false;
DispatchDecodeTasksIfNeeded();
mon.NotifyAll();
return;
}
// We don't want to consider skipping to the next keyframe if we've
// only just started up the decode loop, so wait until we've decoded
// some audio data before enabling the keyframe skip logic on audio.
if (mIsAudioPrerolling &&
GetDecodedAudioDuration() >= mAudioPrerollUsecs * mPlaybackRate) {
mIsAudioPrerolling = false;
}
}
mReader->RequestAudioData();
}
bool
MediaDecoderStateMachine::IsAudioSeekComplete()
{
AssertCurrentThreadInMonitor();
SAMPLE_LOG("IsAudioSeekComplete() curTarVal=%d mAudDis=%d aqFin=%d aqSz=%d",
mCurrentSeekTarget.IsValid(), mDropAudioUntilNextDiscontinuity, AudioQueue().IsFinished(), AudioQueue().GetSize());
return
!HasAudio() ||
(mCurrentSeekTarget.IsValid() &&
!mDropAudioUntilNextDiscontinuity &&
(AudioQueue().IsFinished() || AudioQueue().GetSize() > 0));
}
bool
MediaDecoderStateMachine::IsVideoSeekComplete()
{
AssertCurrentThreadInMonitor();
SAMPLE_LOG("IsVideoSeekComplete() curTarVal=%d mVidDis=%d vqFin=%d vqSz=%d",
mCurrentSeekTarget.IsValid(), mDropVideoUntilNextDiscontinuity, VideoQueue().IsFinished(), VideoQueue().GetSize());
return
!HasVideo() ||
(mCurrentSeekTarget.IsValid() &&
!mDropVideoUntilNextDiscontinuity &&
(VideoQueue().IsFinished() || VideoQueue().GetSize() > 0));
}
void
MediaDecoderStateMachine::OnAudioEOS()
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
SAMPLE_LOG("OnAudioEOS");
mAudioRequestPending = false;
AudioQueue().Finish();
switch (mState) {
case DECODER_STATE_DECODING_METADATA: {
MaybeFinishDecodeMetadata();
return;
}
case DECODER_STATE_BUFFERING:
case DECODER_STATE_DECODING: {
CheckIfDecodeComplete();
SendStreamData();
// The ready state can change when we've decoded data, so update the
// ready state, so that DOM events can fire.
UpdateReadyState();
mDecoder->GetReentrantMonitor().NotifyAll();
return;
}
case DECODER_STATE_SEEKING: {
if (!mCurrentSeekTarget.IsValid()) {
// We've received an EOS from a previous decode. Discard it.
return;
}
mDropAudioUntilNextDiscontinuity = false;
CheckIfSeekComplete();
return;
}
default: {
// Ignore other cases.
return;
}
}
}
void
MediaDecoderStateMachine::OnAudioDecoded(AudioData* aAudioSample)
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
nsAutoPtr<AudioData> audio(aAudioSample);
MOZ_ASSERT(audio);
mAudioRequestPending = false;
SAMPLE_LOG("OnAudioDecoded [%lld,%lld] disc=%d",
(audio ? audio->mTime : -1),
(audio ? audio->GetEndTime() : -1),
(audio ? audio->mDiscontinuity : 0));
switch (mState) {
case DECODER_STATE_DECODING_METADATA: {
Push(audio.forget());
MaybeFinishDecodeMetadata();
return;
}
case DECODER_STATE_BUFFERING:
case DECODER_STATE_DECODING: {
// In buffering and decoding state, we simply enqueue samples.
Push(audio.forget());
return;
}
case DECODER_STATE_SEEKING: {
if (!mCurrentSeekTarget.IsValid()) {
// We've received a sample from a previous decode. Discard it.
return;
}
if (audio->mDiscontinuity) {
mDropAudioUntilNextDiscontinuity = false;
}
if (!mDropAudioUntilNextDiscontinuity) {
// We must be after the discontinuity; we're receiving samples
// at or after the seek target.
if (mCurrentSeekTarget.mType == SeekTarget::PrevSyncPoint) {
// Non-precise seek; we can stop the seek at the first sample.
AudioQueue().Push(audio.forget());
} else {
// We're doing an accurate seek. We must discard
// MediaData up to the one containing exact seek target.
if (NS_FAILED(DropAudioUpToSeekTarget(audio.forget()))) {
DecodeError();
return;
}
}
}
CheckIfSeekComplete();
return;
}
default: {
// Ignore other cases.
return;
}
}
}
void
MediaDecoderStateMachine::Push(AudioData* aSample)
{
MOZ_ASSERT(aSample);
// TODO: Send aSample to MSG and recalculate readystate before pushing,
// otherwise AdvanceFrame may pop the sample before we have a chance
// to reach playing.
AudioQueue().Push(aSample);
if (mState > DECODER_STATE_DECODING_METADATA) {
SendStreamData();
// The ready state can change when we've decoded data, so update the
// ready state, so that DOM events can fire.
UpdateReadyState();
DispatchDecodeTasksIfNeeded();
mDecoder->GetReentrantMonitor().NotifyAll();
}
}
void
MediaDecoderStateMachine::Push(VideoData* aSample)
{
MOZ_ASSERT(aSample);
// TODO: Send aSample to MSG and recalculate readystate before pushing,
// otherwise AdvanceFrame may pop the sample before we have a chance
// to reach playing.
VideoQueue().Push(aSample);
if (mState > DECODER_STATE_DECODING_METADATA) {
SendStreamData();
// The ready state can change when we've decoded data, so update the
// ready state, so that DOM events can fire.
UpdateReadyState();
DispatchDecodeTasksIfNeeded();
mDecoder->GetReentrantMonitor().NotifyAll();
}
}
void
MediaDecoderStateMachine::OnDecodeError()
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
DecodeError();
}
void
MediaDecoderStateMachine::MaybeFinishDecodeMetadata()
{
AssertCurrentThreadInMonitor();
if ((IsAudioDecoding() && AudioQueue().GetSize() == 0) ||
(IsVideoDecoding() && VideoQueue().GetSize() == 0)) {
return;
}
if (NS_FAILED(FinishDecodeMetadata())) {
DecodeError();
}
}
void
MediaDecoderStateMachine::OnVideoEOS()
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
SAMPLE_LOG("OnVideoEOS");
mVideoRequestPending = false;
switch (mState) {
case DECODER_STATE_DECODING_METADATA: {
VideoQueue().Finish();
MaybeFinishDecodeMetadata();
return;
}
case DECODER_STATE_BUFFERING:
case DECODER_STATE_DECODING: {
VideoQueue().Finish();
CheckIfDecodeComplete();
SendStreamData();
// The ready state can change when we've decoded data, so update the
// ready state, so that DOM events can fire.
UpdateReadyState();
mDecoder->GetReentrantMonitor().NotifyAll();
return;
}
case DECODER_STATE_SEEKING: {
if (!mCurrentSeekTarget.IsValid()) {
// We've received a sample from a previous decode. Discard it.
return;
}
// Null sample. Hit end of stream. If we have decoded a frame,
// insert it into the queue so that we have something to display.
if (mFirstVideoFrameAfterSeek) {
VideoQueue().Push(mFirstVideoFrameAfterSeek.forget());
}
VideoQueue().Finish();
mDropVideoUntilNextDiscontinuity = false;
CheckIfSeekComplete();
return;
}
default: {
// Ignore other cases.
return;
}
}
}
void
MediaDecoderStateMachine::OnVideoDecoded(VideoData* aVideoSample)
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
nsAutoPtr<VideoData> video(aVideoSample);
mVideoRequestPending = false;
SAMPLE_LOG("OnVideoDecoded [%lld,%lld] disc=%d",
(video ? video->mTime : -1),
(video ? video->GetEndTime() : -1),
(video ? video->mDiscontinuity : 0));
switch (mState) {
case DECODER_STATE_DECODING_METADATA: {
Push(video.forget());
MaybeFinishDecodeMetadata();
return;
}
case DECODER_STATE_BUFFERING:
case DECODER_STATE_DECODING: {
Push(video.forget());
// If the requested video sample was slow to arrive, increase the
// amount of audio we buffer to ensure that we don't run out of audio.
// TODO: Detect when we're truly async, and don't do this if so, as
// it's not necessary.
TimeDuration decodeTime = TimeStamp::Now() - mVideoDecodeStartTime;
if (THRESHOLD_FACTOR * DurationToUsecs(decodeTime) > mLowAudioThresholdUsecs &&
!HasLowUndecodedData())
{
mLowAudioThresholdUsecs =
std::min(THRESHOLD_FACTOR * DurationToUsecs(decodeTime), AMPLE_AUDIO_USECS);
mAmpleAudioThresholdUsecs = std::max(THRESHOLD_FACTOR * mLowAudioThresholdUsecs,
mAmpleAudioThresholdUsecs);
DECODER_LOG(PR_LOG_DEBUG, "Slow video decode, set mLowAudioThresholdUsecs=%lld mAmpleAudioThresholdUsecs=%lld",
mLowAudioThresholdUsecs, mAmpleAudioThresholdUsecs);
}
return;
}
case DECODER_STATE_SEEKING: {
if (!mCurrentSeekTarget.IsValid()) {
// We've received a sample from a previous decode. Discard it.
return;
}
if (mDropVideoUntilNextDiscontinuity) {
if (video->mDiscontinuity) {
mDropVideoUntilNextDiscontinuity = false;
}
}
if (!mDropVideoUntilNextDiscontinuity) {
// We must be after the discontinuity; we're receiving samples
// at or after the seek target.
if (mCurrentSeekTarget.mType == SeekTarget::PrevSyncPoint) {
// Non-precise seek; we can stop the seek at the first sample.
VideoQueue().Push(video.forget());
} else {
// We're doing an accurate seek. We still need to discard
// MediaData up to the one containing exact seek target.
if (NS_FAILED(DropVideoUpToSeekTarget(video.forget()))) {
DecodeError();
return;
}
}
}
CheckIfSeekComplete();
return;
}
default: {
// Ignore other cases.
return;
}
}
}
void
MediaDecoderStateMachine::CheckIfSeekComplete()
{
AssertCurrentThreadInMonitor();
const bool videoSeekComplete = IsVideoSeekComplete();
if (HasVideo() && !videoSeekComplete) {
// We haven't reached the target. Ensure we have requested another sample.
if (NS_FAILED(EnsureVideoDecodeTaskQueued())) {
NS_WARNING("Failed to request video during seek");
DecodeError();
}
}
const bool audioSeekComplete = IsAudioSeekComplete();
if (HasAudio() && !audioSeekComplete) {
// We haven't reached the target. Ensure we have requested another sample.
if (NS_FAILED(EnsureAudioDecodeTaskQueued())) {
NS_WARNING("Failed to request audio during seek");
DecodeError();
}
}
SAMPLE_LOG("CheckIfSeekComplete() audioSeekComplete=%d videoSeekComplete=%d",
audioSeekComplete, videoSeekComplete);
if (audioSeekComplete && videoSeekComplete) {
mDecodeToSeekTarget = false;
RefPtr<nsIRunnable> task(
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::SeekCompleted));
nsresult rv = mDecodeTaskQueue->Dispatch(task);
if (NS_FAILED(rv)) {
DecodeError();
}
}
}
bool
MediaDecoderStateMachine::IsAudioDecoding()
{
AssertCurrentThreadInMonitor();
return HasAudio() && !AudioQueue().IsFinished();
}
bool
MediaDecoderStateMachine::IsVideoDecoding()
{
AssertCurrentThreadInMonitor();
return HasVideo() && !VideoQueue().IsFinished();
}
void
MediaDecoderStateMachine::CheckIfDecodeComplete()
{
AssertCurrentThreadInMonitor();
if (mState == DECODER_STATE_SHUTDOWN ||
mState == DECODER_STATE_SEEKING ||
mState == DECODER_STATE_COMPLETED) {
// Don't change our state if we've already been shutdown, or we're seeking,
// since we don't want to abort the shutdown or seek processes.
return;
}
if (!IsVideoDecoding() && !IsAudioDecoding()) {
// We've finished decoding all active streams,
// so move to COMPLETED state.
mState = DECODER_STATE_COMPLETED;
DispatchDecodeTasksIfNeeded();
ScheduleStateMachine();
}
DECODER_LOG(PR_LOG_DEBUG, "CheckIfDecodeComplete %scompleted",
((mState == DECODER_STATE_COMPLETED) ? "" : "NOT "));
}
bool MediaDecoderStateMachine::IsPlaying()
{
AssertCurrentThreadInMonitor();
return !mPlayStartTime.IsNull();
}
// If we have already written enough frames to the AudioStream, start the
// playback.
static void
StartAudioStreamPlaybackIfNeeded(AudioStream* aStream)
{
// We want to have enough data in the buffer to start the stream.
if (static_cast<double>(aStream->GetWritten()) / aStream->GetRate() >=
static_cast<double>(AUDIOSTREAM_MIN_WRITE_BEFORE_START_USECS) / USECS_PER_S) {
aStream->Start();
}
}
static void WriteSilence(AudioStream* aStream, uint32_t aFrames)
{
uint32_t numSamples = aFrames * aStream->GetChannels();
nsAutoTArray<AudioDataValue, 1000> buf;
buf.SetLength(numSamples);
memset(buf.Elements(), 0, numSamples * sizeof(AudioDataValue));
aStream->Write(buf.Elements(), aFrames);
StartAudioStreamPlaybackIfNeeded(aStream);
}
void MediaDecoderStateMachine::AudioLoop()
{
NS_ASSERTION(OnAudioThread(), "Should be on audio thread.");
DECODER_LOG(PR_LOG_DEBUG, "Begun audio thread/loop");
int64_t audioDuration = 0;
int64_t audioStartTime = -1;
uint32_t channels, rate;
double volume = -1;
bool setVolume;
double playbackRate = -1;
bool setPlaybackRate;
bool preservesPitch;
bool setPreservesPitch;
AudioChannel audioChannel;
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
mAudioCompleted = false;
audioStartTime = mAudioStartTime;
NS_ASSERTION(audioStartTime != -1, "Should have audio start time by now");
channels = mInfo.mAudio.mChannels;
rate = mInfo.mAudio.mRate;
audioChannel = mDecoder->GetAudioChannel();
volume = mVolume;
preservesPitch = mPreservesPitch;
playbackRate = mPlaybackRate;
}
{
// AudioStream initialization can block for extended periods in unusual
// circumstances, so we take care to drop the decoder monitor while
// initializing.
RefPtr<AudioStream> audioStream(new AudioStream());
audioStream->Init(channels, rate, audioChannel, AudioStream::HighLatency);
audioStream->SetVolume(volume);
if (audioStream->SetPreservesPitch(preservesPitch) != NS_OK) {
NS_WARNING("Setting the pitch preservation failed at AudioLoop start.");
}
if (playbackRate != 1.0) {
NS_ASSERTION(playbackRate != 0,
"Don't set the playbackRate to 0 on an AudioStream.");
if (audioStream->SetPlaybackRate(playbackRate) != NS_OK) {
NS_WARNING("Setting the playback rate failed at AudioLoop start.");
}
}
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
mAudioStream = audioStream.forget();
}
}
while (1) {
// Wait while we're not playing, and we're not shutting down, or we're
// playing and we've got no audio to play.
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
NS_ASSERTION(mState != DECODER_STATE_DECODING_METADATA,
"Should have meta data before audio started playing.");
while (mState != DECODER_STATE_SHUTDOWN &&
!mStopAudioThread &&
(!IsPlaying() ||
mState == DECODER_STATE_BUFFERING ||
(AudioQueue().GetSize() == 0 &&
!AudioQueue().AtEndOfStream())))
{
if (!IsPlaying() && !mAudioStream->IsPaused()) {
mAudioStream->Pause();
}
mon.Wait();
}
// If we're shutting down, break out and exit the audio thread.
// Also break out if audio is being captured.
if (mState == DECODER_STATE_SHUTDOWN ||
mStopAudioThread ||
AudioQueue().AtEndOfStream())
{
break;
}
// We only want to go to the expense of changing the volume if
// the volume has changed.
setVolume = volume != mVolume;
volume = mVolume;
// Same for the playbackRate.
setPlaybackRate = playbackRate != mPlaybackRate;
playbackRate = mPlaybackRate;
// Same for the pitch preservation.
setPreservesPitch = preservesPitch != mPreservesPitch;
preservesPitch = mPreservesPitch;
if (IsPlaying() && mAudioStream->IsPaused()) {
mAudioStream->Resume();
}
}
if (setVolume) {
mAudioStream->SetVolume(volume);
}
if (setPlaybackRate) {
NS_ASSERTION(playbackRate != 0,
"Don't set the playbackRate to 0 in the AudioStreams");
if (mAudioStream->SetPlaybackRate(playbackRate) != NS_OK) {
NS_WARNING("Setting the playback rate failed in AudioLoop.");
}
}
if (setPreservesPitch) {
if (mAudioStream->SetPreservesPitch(preservesPitch) != NS_OK) {
NS_WARNING("Setting the pitch preservation failed in AudioLoop.");
}
}
NS_ASSERTION(AudioQueue().GetSize() > 0,
"Should have data to play");
// See if there's a gap in the audio. If there is, push silence into the
// audio hardware, so we can play across the gap.
const AudioData* s = AudioQueue().PeekFront();
// Calculate the number of frames that have been pushed onto the audio
// hardware.
CheckedInt64 playedFrames = UsecsToFrames(audioStartTime, rate) +
audioDuration;
// Calculate the timestamp of the next chunk of audio in numbers of
// samples.
CheckedInt64 sampleTime = UsecsToFrames(s->mTime, rate);
CheckedInt64 missingFrames = sampleTime - playedFrames;
if (!missingFrames.isValid() || !sampleTime.isValid()) {
NS_WARNING("Int overflow adding in AudioLoop()");
break;
}
int64_t framesWritten = 0;
if (missingFrames.value() > 0) {
// The next audio chunk begins some time after the end of the last chunk
// we pushed to the audio hardware. We must push silence into the audio
// hardware so that the next audio chunk begins playback at the correct
// time.
missingFrames = std::min<int64_t>(UINT32_MAX, missingFrames.value());
VERBOSE_LOG("playing %d frames of silence", int32_t(missingFrames.value()));
framesWritten = PlaySilence(static_cast<uint32_t>(missingFrames.value()),
channels, playedFrames.value());
} else {
framesWritten = PlayFromAudioQueue(sampleTime.value(), channels);
}
audioDuration += framesWritten;
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
CheckedInt64 playedUsecs = FramesToUsecs(audioDuration, rate) + audioStartTime;
if (!playedUsecs.isValid()) {
NS_WARNING("Int overflow calculating audio end time");
break;
}
mAudioEndTime = playedUsecs.value();
}
}
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (AudioQueue().AtEndOfStream() &&
mState != DECODER_STATE_SHUTDOWN &&
!mStopAudioThread)
{
// If the media was too short to trigger the start of the audio stream,
// start it now.
mAudioStream->Start();
// Last frame pushed to audio hardware, wait for the audio to finish,
// before the audio thread terminates.
bool seeking = false;
{
int64_t oldPosition = -1;
int64_t position = GetMediaTime();
while (oldPosition != position &&
mAudioEndTime - position > 0 &&
mState != DECODER_STATE_SEEKING &&
mState != DECODER_STATE_SHUTDOWN)
{
const int64_t DRAIN_BLOCK_USECS = 100000;
Wait(std::min(mAudioEndTime - position, DRAIN_BLOCK_USECS));
oldPosition = position;
position = GetMediaTime();
}
seeking = mState == DECODER_STATE_SEEKING;
}
if (!seeking && !mAudioStream->IsPaused()) {
{
ReentrantMonitorAutoExit exit(mDecoder->GetReentrantMonitor());
mAudioStream->Drain();
}
}
}
}
DECODER_LOG(PR_LOG_DEBUG, "Reached audio stream end.");
{
// Must hold lock while shutting down and anulling the audio stream to prevent
// state machine thread trying to use it while we're destroying it.
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
mAudioStream->Shutdown();
mAudioStream = nullptr;
if (!mAudioCaptured) {
mAudioCompleted = true;
UpdateReadyState();
// Kick the decode thread; it may be sleeping waiting for this to finish.
mDecoder->GetReentrantMonitor().NotifyAll();
}
}
DECODER_LOG(PR_LOG_DEBUG, "Audio stream finished playing, audio thread exit");
}
uint32_t MediaDecoderStateMachine::PlaySilence(uint32_t aFrames,
uint32_t aChannels,
uint64_t aFrameOffset)
{
NS_ASSERTION(OnAudioThread(), "Only call on audio thread.");
NS_ASSERTION(!mAudioStream->IsPaused(), "Don't play when paused");
uint32_t maxFrames = SILENCE_BYTES_CHUNK / aChannels / sizeof(AudioDataValue);
uint32_t frames = std::min(aFrames, maxFrames);
WriteSilence(mAudioStream, frames);
return frames;
}
uint32_t MediaDecoderStateMachine::PlayFromAudioQueue(uint64_t aFrameOffset,
uint32_t aChannels)
{
NS_ASSERTION(OnAudioThread(), "Only call on audio thread.");
NS_ASSERTION(!mAudioStream->IsPaused(), "Don't play when paused");
nsAutoPtr<AudioData> audio(AudioQueue().PopFront());
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
NS_WARN_IF_FALSE(IsPlaying(), "Should be playing");
// Awaken the decode loop if it's waiting for space to free up in the
// audio queue.
mDecoder->GetReentrantMonitor().NotifyAll();
}
int64_t offset = -1;
uint32_t frames = 0;
VERBOSE_LOG("playing %d frames of data to stream for AudioData at %lld",
audio->mFrames, audio->mTime);
mAudioStream->Write(audio->mAudioData,
audio->mFrames);
aChannels = mAudioStream->GetOutChannels();
StartAudioStreamPlaybackIfNeeded(mAudioStream);
offset = audio->mOffset;
frames = audio->mFrames;
if (offset != -1) {
mDecoder->UpdatePlaybackOffset(offset);
}
return frames;
}
nsresult MediaDecoderStateMachine::Init(MediaDecoderStateMachine* aCloneDonor)
{
MOZ_ASSERT(NS_IsMainThread());
RefPtr<SharedThreadPool> decodePool(GetMediaDecodeThreadPool());
NS_ENSURE_TRUE(decodePool, NS_ERROR_FAILURE);
RefPtr<SharedThreadPool> stateMachinePool(
SharedThreadPool::Get(NS_LITERAL_CSTRING("Media State Machine"), 1));
NS_ENSURE_TRUE(stateMachinePool, NS_ERROR_FAILURE);
mDecodeTaskQueue = new MediaTaskQueue(decodePool.forget());
NS_ENSURE_TRUE(mDecodeTaskQueue, NS_ERROR_FAILURE);
MediaDecoderReader* cloneReader = nullptr;
if (aCloneDonor) {
cloneReader = aCloneDonor->mReader;
}
mStateMachineThreadPool = stateMachinePool;
nsresult rv;
mTimer = do_CreateInstance("@mozilla.org/timer;1", &rv);
NS_ENSURE_SUCCESS(rv, rv);
rv = mTimer->SetTarget(GetStateMachineThread());
NS_ENSURE_SUCCESS(rv, rv);
// Note: This creates a cycle, broken in shutdown.
mMediaDecodedListener =
new MediaDataDecodedListener<MediaDecoderStateMachine>(this,
mDecodeTaskQueue);
mReader->SetCallback(mMediaDecodedListener);
mReader->SetTaskQueue(mDecodeTaskQueue);
rv = mReader->Init(cloneReader);
NS_ENSURE_SUCCESS(rv, rv);
return NS_OK;
}
void MediaDecoderStateMachine::StopPlayback()
{
DECODER_LOG(PR_LOG_DEBUG, "StopPlayback()");
AssertCurrentThreadInMonitor();
mDecoder->NotifyPlaybackStopped();
if (IsPlaying()) {
mPlayDuration = GetClock();
mPlayStartTime = TimeStamp();
}
// Notify the audio thread, so that it notices that we've stopped playing,
// so it can pause audio playback.
mDecoder->GetReentrantMonitor().NotifyAll();
NS_ASSERTION(!IsPlaying(), "Should report not playing at end of StopPlayback()");
mDecoder->UpdateStreamBlockingForStateMachinePlaying();
DispatchDecodeTasksIfNeeded();
}
void MediaDecoderStateMachine::SetSyncPointForMediaStream()
{
AssertCurrentThreadInMonitor();
DecodedStreamData* stream = mDecoder->GetDecodedStream();
if (!stream) {
return;
}
mSyncPointInMediaStream = stream->GetLastOutputTime();
mSyncPointInDecodedStream = mStartTime + mPlayDuration;
}
int64_t MediaDecoderStateMachine::GetCurrentTimeViaMediaStreamSync()
{
AssertCurrentThreadInMonitor();
NS_ASSERTION(mSyncPointInDecodedStream >= 0, "Should have set up sync point");
DecodedStreamData* stream = mDecoder->GetDecodedStream();
int64_t streamDelta = stream->GetLastOutputTime() - mSyncPointInMediaStream;
return mSyncPointInDecodedStream + streamDelta;
}
void MediaDecoderStateMachine::StartPlayback()
{
DECODER_LOG(PR_LOG_DEBUG, "StartPlayback()");
NS_ASSERTION(!IsPlaying(), "Shouldn't be playing when StartPlayback() is called");
AssertCurrentThreadInMonitor();
mDecoder->NotifyPlaybackStarted();
mPlayStartTime = TimeStamp::Now();
NS_ASSERTION(IsPlaying(), "Should report playing by end of StartPlayback()");
if (NS_FAILED(StartAudioThread())) {
NS_WARNING("Failed to create audio thread");
}
mDecoder->GetReentrantMonitor().NotifyAll();
mDecoder->UpdateStreamBlockingForStateMachinePlaying();
DispatchDecodeTasksIfNeeded();
}
void MediaDecoderStateMachine::UpdatePlaybackPositionInternal(int64_t aTime)
{
SAMPLE_LOG("UpdatePlaybackPositionInternal(%lld) (mStartTime=%lld)", aTime, mStartTime);
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
"Should be on state machine thread.");
AssertCurrentThreadInMonitor();
NS_ASSERTION(mStartTime >= 0, "Should have positive mStartTime");
mCurrentFrameTime = aTime - mStartTime;
NS_ASSERTION(mCurrentFrameTime >= 0, "CurrentTime should be positive!");
if (aTime > mEndTime) {
NS_ASSERTION(mCurrentFrameTime > GetDuration(),
"CurrentTime must be after duration if aTime > endTime!");
mEndTime = aTime;
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethod(mDecoder, &MediaDecoder::DurationChanged);
NS_DispatchToMainThread(event);
}
}
void MediaDecoderStateMachine::UpdatePlaybackPosition(int64_t aTime)
{
UpdatePlaybackPositionInternal(aTime);
bool fragmentEnded = mFragmentEndTime >= 0 && GetMediaTime() >= mFragmentEndTime;
if (!mPositionChangeQueued || fragmentEnded) {
mPositionChangeQueued = true;
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethod(mDecoder, &MediaDecoder::PlaybackPositionChanged);
NS_DispatchToMainThread(event);
}
mMetadataManager.DispatchMetadataIfNeeded(mDecoder, aTime);
if (fragmentEnded) {
StopPlayback();
}
}
void MediaDecoderStateMachine::ClearPositionChangeFlag()
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
AssertCurrentThreadInMonitor();
mPositionChangeQueued = false;
}
MediaDecoderOwner::NextFrameStatus MediaDecoderStateMachine::GetNextFrameStatus()
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (IsBuffering() || IsSeeking()) {
return MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE_BUFFERING;
} else if (HaveNextFrameData()) {
return MediaDecoderOwner::NEXT_FRAME_AVAILABLE;
}
return MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE;
}
void MediaDecoderStateMachine::SetVolume(double volume)
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
mVolume = volume;
}
void MediaDecoderStateMachine::SetAudioCaptured(bool aCaptured)
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (!mAudioCaptured && aCaptured && !mStopAudioThread) {
// Make sure the state machine runs as soon as possible. That will
// stop the audio thread.
// If mStopAudioThread is true then we're already stopping the audio thread
// and since we set mAudioCaptured to true, nothing can start it again.
ScheduleStateMachine();
}
mAudioCaptured = aCaptured;
}
double MediaDecoderStateMachine::GetCurrentTime() const
{
NS_ASSERTION(NS_IsMainThread() ||
OnStateMachineThread() ||
OnDecodeThread(),
"Should be on main, decode, or state machine thread.");
return static_cast<double>(mCurrentFrameTime) / static_cast<double>(USECS_PER_S);
}
int64_t MediaDecoderStateMachine::GetDuration()
{
AssertCurrentThreadInMonitor();
if (mEndTime == -1 || mStartTime == -1)
return -1;
return mEndTime - mStartTime;
}
void MediaDecoderStateMachine::SetDuration(int64_t aDuration)
{
NS_ASSERTION(NS_IsMainThread() || OnDecodeThread(),
"Should be on main or decode thread.");
AssertCurrentThreadInMonitor();
if (aDuration == -1) {
return;
}
if (mStartTime != -1) {
mEndTime = mStartTime + aDuration;
} else {
mStartTime = 0;
mEndTime = aDuration;
}
}
void MediaDecoderStateMachine::UpdateEstimatedDuration(int64_t aDuration)
{
AssertCurrentThreadInMonitor();
int64_t duration = GetDuration();
if (aDuration != duration &&
abs(aDuration - duration) > ESTIMATED_DURATION_FUZZ_FACTOR_USECS) {
SetDuration(aDuration);
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethod(mDecoder, &MediaDecoder::DurationChanged);
NS_DispatchToMainThread(event);
}
}
void MediaDecoderStateMachine::SetMediaEndTime(int64_t aEndTime)
{
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread");
AssertCurrentThreadInMonitor();
mEndTime = aEndTime;
}
void MediaDecoderStateMachine::SetFragmentEndTime(int64_t aEndTime)
{
AssertCurrentThreadInMonitor();
mFragmentEndTime = aEndTime < 0 ? aEndTime : aEndTime + mStartTime;
}
void MediaDecoderStateMachine::SetTransportSeekable(bool aTransportSeekable)
{
NS_ASSERTION(NS_IsMainThread() || OnDecodeThread(),
"Should be on main thread or the decoder thread.");
AssertCurrentThreadInMonitor();
mTransportSeekable = aTransportSeekable;
}
void MediaDecoderStateMachine::SetMediaSeekable(bool aMediaSeekable)
{
NS_ASSERTION(NS_IsMainThread() || OnDecodeThread(),
"Should be on main thread or the decoder thread.");
mMediaSeekable = aMediaSeekable;
}
bool MediaDecoderStateMachine::IsDormantNeeded()
{
return mReader->IsDormantNeeded();
}
void MediaDecoderStateMachine::SetDormant(bool aDormant)
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
AssertCurrentThreadInMonitor();
if (!mReader) {
return;
}
if (aDormant) {
ScheduleStateMachine();
mState = DECODER_STATE_DORMANT;
mDecoder->GetReentrantMonitor().NotifyAll();
} else if ((aDormant != true) && (mState == DECODER_STATE_DORMANT)) {
ScheduleStateMachine();
mStartTime = 0;
mCurrentFrameTime = 0;
mState = DECODER_STATE_DECODING_METADATA;
mDecoder->GetReentrantMonitor().NotifyAll();
}
}
void MediaDecoderStateMachine::Shutdown()
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
// Once we've entered the shutdown state here there's no going back.
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
// Change state before issuing shutdown request to threads so those
// threads can start exiting cleanly during the Shutdown call.
DECODER_LOG(PR_LOG_DEBUG, "Changed state to SHUTDOWN");
ScheduleStateMachine();
mState = DECODER_STATE_SHUTDOWN;
mDecoder->GetReentrantMonitor().NotifyAll();
}
void MediaDecoderStateMachine::StartDecoding()
{
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
"Should be on state machine or decode thread.");
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (mState == DECODER_STATE_DECODING) {
return;
}
mState = DECODER_STATE_DECODING;
mDecodeStartTime = TimeStamp::Now();
CheckIfDecodeComplete();
if (mState == DECODER_STATE_COMPLETED) {
return;
}
// Reset other state to pristine values before starting decode.
mIsAudioPrerolling = true;
mIsVideoPrerolling = true;
// Ensure that we've got tasks enqueued to decode data if we need to.
DispatchDecodeTasksIfNeeded();
ScheduleStateMachine();
}
void MediaDecoderStateMachine::StartWaitForResources()
{
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
"Should be on state machine or decode thread.");
AssertCurrentThreadInMonitor();
mState = DECODER_STATE_WAIT_FOR_RESOURCES;
}
void MediaDecoderStateMachine::NotifyWaitingForResourcesStatusChanged()
{
AssertCurrentThreadInMonitor();
if (mState != DECODER_STATE_WAIT_FOR_RESOURCES ||
mReader->IsWaitingMediaResources()) {
return;
}
// The reader is no longer waiting for resources (say a hardware decoder),
// we can now proceed to decode metadata.
mState = DECODER_STATE_DECODING_METADATA;
EnqueueDecodeMetadataTask();
}
void MediaDecoderStateMachine::Play()
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
// When asked to play, switch to decoding state only if
// we are currently buffering. In other cases, we'll start playing anyway
// when the state machine notices the decoder's state change to PLAYING.
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (mState == DECODER_STATE_BUFFERING) {
DECODER_LOG(PR_LOG_DEBUG, "Changed state from BUFFERING to DECODING");
mState = DECODER_STATE_DECODING;
mDecodeStartTime = TimeStamp::Now();
}
// Once we start playing, we don't want to minimize our prerolling, as we
// assume the user is likely to want to keep playing in future.
mMinimizePreroll = false;
ScheduleStateMachine();
}
void MediaDecoderStateMachine::ResetPlayback()
{
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
MOZ_ASSERT(mState == DECODER_STATE_SEEKING);
mVideoFrameEndTime = -1;
mAudioStartTime = -1;
mAudioEndTime = -1;
mAudioCompleted = false;
AudioQueue().Reset();
VideoQueue().Reset();
mFirstVideoFrameAfterSeek = nullptr;
mDropAudioUntilNextDiscontinuity = true;
mDropVideoUntilNextDiscontinuity = true;
}
void MediaDecoderStateMachine::NotifyDataArrived(const char* aBuffer,
uint32_t aLength,
int64_t aOffset)
{
NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
mReader->NotifyDataArrived(aBuffer, aLength, aOffset);
// While playing an unseekable stream of unknown duration, mEndTime is
// updated (in AdvanceFrame()) as we play. But if data is being downloaded
// faster than played, mEndTime won't reflect the end of playable data
// since we haven't played the frame at the end of buffered data. So update
// mEndTime here as new data is downloaded to prevent such a lag.
dom::TimeRanges buffered;
if (mDecoder->IsInfinite() &&
NS_SUCCEEDED(mDecoder->GetBuffered(&buffered)))
{
uint32_t length = 0;
buffered.GetLength(&length);
if (length) {
double end = 0;
buffered.End(length - 1, &end);
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
mEndTime = std::max<int64_t>(mEndTime, end * USECS_PER_S);
}
}
}
void MediaDecoderStateMachine::Seek(const SeekTarget& aTarget)
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
// We need to be able to seek both at a transport level and at a media level
// to seek.
if (!mMediaSeekable) {
return;
}
// MediaDecoder::mPlayState should be SEEKING while we seek, and
// in that case MediaDecoder shouldn't be calling us.
NS_ASSERTION(mState != DECODER_STATE_SEEKING,
"We shouldn't already be seeking");
NS_ASSERTION(mState >= DECODER_STATE_DECODING,
"We should have loaded metadata");
// Bound the seek time to be inside the media range.
NS_ASSERTION(mStartTime != -1, "Should know start time by now");
NS_ASSERTION(mEndTime != -1, "Should know end time by now");
int64_t seekTime = aTarget.mTime + mStartTime;
seekTime = std::min(seekTime, mEndTime);
seekTime = std::max(mStartTime, seekTime);
NS_ASSERTION(seekTime >= mStartTime && seekTime <= mEndTime,
"Can only seek in range [0,duration]");
mSeekTarget = SeekTarget(seekTime, aTarget.mType);
DECODER_LOG(PR_LOG_DEBUG, "Changed state to SEEKING (to %lld)", mSeekTarget.mTime);
mState = DECODER_STATE_SEEKING;
if (mDecoder->GetDecodedStream()) {
mDecoder->RecreateDecodedStream(seekTime - mStartTime);
}
ScheduleStateMachine();
}
void MediaDecoderStateMachine::StopAudioThread()
{
NS_ASSERTION(OnDecodeThread() ||
OnStateMachineThread(), "Should be on decode thread or state machine thread");
AssertCurrentThreadInMonitor();
if (mStopAudioThread) {
// Nothing to do, since the thread is already stopping
return;
}
mStopAudioThread = true;
mDecoder->GetReentrantMonitor().NotifyAll();
if (mAudioThread) {
DECODER_LOG(PR_LOG_DEBUG, "Shutdown audio thread");
{
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
mAudioThread->Shutdown();
}
mAudioThread = nullptr;
// Now that the audio thread is dead, try sending data to our MediaStream(s).
// That may have been waiting for the audio thread to stop.
SendStreamData();
}
}
nsresult
MediaDecoderStateMachine::EnqueueDecodeMetadataTask()
{
AssertCurrentThreadInMonitor();
if (mState != DECODER_STATE_DECODING_METADATA ||
mDispatchedDecodeMetadataTask) {
return NS_OK;
}
RefPtr<nsIRunnable> task(
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::CallDecodeMetadata));
nsresult rv = mDecodeTaskQueue->Dispatch(task);
if (NS_SUCCEEDED(rv)) {
mDispatchedDecodeMetadataTask = true;
} else {
NS_WARNING("Dispatch ReadMetadata task failed.");
return rv;
}
return NS_OK;
}
void
MediaDecoderStateMachine::SetReaderIdle()
{
#ifdef PR_LOGGING
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
DECODER_LOG(PR_LOG_DEBUG, "SetReaderIdle() audioQueue=%lld videoQueue=%lld",
GetDecodedAudioDuration(),
VideoQueue().Duration());
}
#endif
MOZ_ASSERT(OnDecodeThread());
mReader->SetIdle();
}
void
MediaDecoderStateMachine::DispatchDecodeTasksIfNeeded()
{
AssertCurrentThreadInMonitor();
if (mState != DECODER_STATE_DECODING &&
mState != DECODER_STATE_BUFFERING &&
mState != DECODER_STATE_SEEKING) {
return;
}
// NeedToDecodeAudio() can go from false to true while we hold the
// monitor, but it can't go from true to false. This can happen because
// NeedToDecodeAudio() takes into account the amount of decoded audio
// that's been written to the AudioStream but not played yet. So if we
// were calling NeedToDecodeAudio() twice and we thread-context switch
// between the calls, audio can play, which can affect the return value
// of NeedToDecodeAudio() giving inconsistent results. So we cache the
// value returned by NeedToDecodeAudio(), and make decisions
// based on the cached value. If NeedToDecodeAudio() has
// returned false, and then subsequently returns true and we're not
// playing, it will probably be OK since we don't need to consume data
// anyway.
const bool needToDecodeAudio = NeedToDecodeAudio();
const bool needToDecodeVideo = NeedToDecodeVideo();
// If we're in completed state, we should not need to decode anything else.
MOZ_ASSERT(mState != DECODER_STATE_COMPLETED ||
(!needToDecodeAudio && !needToDecodeVideo));
bool needIdle = !mDecoder->IsLogicallyPlaying() &&
mState != DECODER_STATE_SEEKING &&
!needToDecodeAudio &&
!needToDecodeVideo &&
!IsPlaying();
if (needToDecodeAudio) {
EnsureAudioDecodeTaskQueued();
}
if (needToDecodeVideo) {
EnsureVideoDecodeTaskQueued();
}
SAMPLE_LOG("DispatchDecodeTasksIfNeeded needAudio=%d dispAudio=%d needVideo=%d dispVid=%d needIdle=%d",
needToDecodeAudio, mAudioRequestPending,
needToDecodeVideo, mVideoRequestPending,
needIdle);
if (needIdle) {
RefPtr<nsIRunnable> event = NS_NewRunnableMethod(
this, &MediaDecoderStateMachine::SetReaderIdle);
nsresult rv = mDecodeTaskQueue->Dispatch(event.forget());
if (NS_FAILED(rv) && mState != DECODER_STATE_SHUTDOWN) {
NS_WARNING("Failed to dispatch event to set decoder idle state");
}
}
}
nsresult
MediaDecoderStateMachine::EnqueueDecodeSeekTask()
{
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
"Should be on state machine or decode thread.");
AssertCurrentThreadInMonitor();
if (mState != DECODER_STATE_SEEKING ||
!mSeekTarget.IsValid() ||
mCurrentSeekTarget.IsValid()) {
return NS_OK;
}
mCurrentSeekTarget = mSeekTarget;
mSeekTarget.Reset();
mDropAudioUntilNextDiscontinuity = HasAudio();
mDropVideoUntilNextDiscontinuity = HasVideo();
RefPtr<nsIRunnable> task(
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::DecodeSeek));
nsresult rv = mDecodeTaskQueue->Dispatch(task);
if (NS_FAILED(rv)) {
NS_WARNING("Dispatch DecodeSeek task failed.");
mCurrentSeekTarget.Reset();
DecodeError();
}
return rv;
}
nsresult
MediaDecoderStateMachine::DispatchAudioDecodeTaskIfNeeded()
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
"Should be on state machine or decode thread.");
if (NeedToDecodeAudio()) {
return EnsureAudioDecodeTaskQueued();
}
return NS_OK;
}
nsresult
MediaDecoderStateMachine::EnsureAudioDecodeTaskQueued()
{
AssertCurrentThreadInMonitor();
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
"Should be on state machine or decode thread.");
SAMPLE_LOG("EnsureAudioDecodeTaskQueued isDecoding=%d dispatched=%d",
IsAudioDecoding(), mAudioRequestPending);
if (mState >= DECODER_STATE_COMPLETED) {
return NS_OK;
}
MOZ_ASSERT(mState > DECODER_STATE_DECODING_METADATA);
if (IsAudioDecoding() && !mAudioRequestPending) {
RefPtr<nsIRunnable> task(
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::DecodeAudio));
nsresult rv = mDecodeTaskQueue->Dispatch(task);
if (NS_SUCCEEDED(rv)) {
mAudioRequestPending = true;
} else {
NS_WARNING("Failed to dispatch task to decode audio");
}
}
return NS_OK;
}
nsresult
MediaDecoderStateMachine::DispatchVideoDecodeTaskIfNeeded()
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
"Should be on state machine or decode thread.");
if (NeedToDecodeVideo()) {
return EnsureVideoDecodeTaskQueued();
}
return NS_OK;
}
nsresult
MediaDecoderStateMachine::EnsureVideoDecodeTaskQueued()
{
AssertCurrentThreadInMonitor();
SAMPLE_LOG("EnsureVideoDecodeTaskQueued isDecoding=%d dispatched=%d",
IsVideoDecoding(), mVideoRequestPending);
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
"Should be on state machine or decode thread.");
if (mState >= DECODER_STATE_COMPLETED) {
return NS_OK;
}
MOZ_ASSERT(mState > DECODER_STATE_DECODING_METADATA);
if (IsVideoDecoding() && !mVideoRequestPending) {
RefPtr<nsIRunnable> task(
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::DecodeVideo));
nsresult rv = mDecodeTaskQueue->Dispatch(task);
if (NS_SUCCEEDED(rv)) {
mVideoRequestPending = true;
} else {
NS_WARNING("Failed to dispatch task to decode video");
}
}
return NS_OK;
}
nsresult
MediaDecoderStateMachine::StartAudioThread()
{
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
"Should be on state machine or decode thread.");
AssertCurrentThreadInMonitor();
if (mAudioCaptured) {
NS_ASSERTION(mStopAudioThread, "mStopAudioThread must always be true if audio is captured");
return NS_OK;
}
mStopAudioThread = false;
if (HasAudio() && !mAudioThread) {
nsresult rv = NS_NewNamedThread("Media Audio",
getter_AddRefs(mAudioThread),
nullptr,
MEDIA_THREAD_STACK_SIZE);
if (NS_FAILED(rv)) {
DECODER_LOG(PR_LOG_WARNING, "Changed state to SHUTDOWN because failed to create audio thread");
mState = DECODER_STATE_SHUTDOWN;
return rv;
}
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::AudioLoop);
mAudioThread->Dispatch(event, NS_DISPATCH_NORMAL);
}
return NS_OK;
}
int64_t MediaDecoderStateMachine::AudioDecodedUsecs()
{
NS_ASSERTION(HasAudio(),
"Should only call AudioDecodedUsecs() when we have audio");
// The amount of audio we have decoded is the amount of audio data we've
// already decoded and pushed to the hardware, plus the amount of audio
// data waiting to be pushed to the hardware.
int64_t pushed = (mAudioEndTime != -1) ? (mAudioEndTime - GetMediaTime()) : 0;
return pushed + AudioQueue().Duration();
}
bool MediaDecoderStateMachine::HasLowDecodedData(int64_t aAudioUsecs)
{
AssertCurrentThreadInMonitor();
// We consider ourselves low on decoded data if we're low on audio,
// provided we've not decoded to the end of the audio stream, or
// if we're low on video frames, provided
// we've not decoded to the end of the video stream.
return ((IsAudioDecoding() && AudioDecodedUsecs() < aAudioUsecs) ||
(IsVideoDecoding() &&
static_cast<uint32_t>(VideoQueue().GetSize()) < LOW_VIDEO_FRAMES));
}
bool MediaDecoderStateMachine::HasLowUndecodedData()
{
return HasLowUndecodedData(mLowDataThresholdUsecs);
}
bool MediaDecoderStateMachine::HasLowUndecodedData(double aUsecs)
{
AssertCurrentThreadInMonitor();
NS_ASSERTION(mState > DECODER_STATE_DECODING_METADATA,
"Must have loaded metadata for GetBuffered() to work");
bool reliable;
double bytesPerSecond = mDecoder->ComputePlaybackRate(&reliable);
if (!reliable) {
// Default to assuming we have enough
return false;
}
MediaResource* stream = mDecoder->GetResource();
int64_t currentPos = stream->Tell();
int64_t requiredPos = currentPos + int64_t((aUsecs/1000000.0)*bytesPerSecond);
int64_t length = stream->GetLength();
if (length >= 0) {
requiredPos = std::min(requiredPos, length);
}
return stream->GetCachedDataEnd(currentPos) < requiredPos;
}
void
MediaDecoderStateMachine::DecodeError()
{
AssertCurrentThreadInMonitor();
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
if (mState == DECODER_STATE_SHUTDOWN) {
// Already shutdown.
return;
}
// Change state to shutdown before sending error report to MediaDecoder
// and the HTMLMediaElement, so that our pipeline can start exiting
// cleanly during the sync dispatch below.
DECODER_LOG(PR_LOG_WARNING, "Decode error, changed state to SHUTDOWN due to error");
ScheduleStateMachine();
mState = DECODER_STATE_SHUTDOWN;
mDecoder->GetReentrantMonitor().NotifyAll();
// Dispatch the event to call DecodeError synchronously. This ensures
// we're in shutdown state by the time we exit the decode thread.
// If we just moved to shutdown state here on the decode thread, we may
// cause the state machine to shutdown/free memory without closing its
// media stream properly, and we'll get callbacks from the media stream
// causing a crash.
{
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethod(mDecoder, &MediaDecoder::DecodeError);
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
NS_DispatchToMainThread(event, NS_DISPATCH_SYNC);
}
}
void
MediaDecoderStateMachine::CallDecodeMetadata()
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
AutoSetOnScopeExit<bool> unsetOnExit(mDispatchedDecodeMetadataTask, false);
if (mState != DECODER_STATE_DECODING_METADATA) {
return;
}
if (NS_FAILED(DecodeMetadata())) {
DECODER_LOG(PR_LOG_WARNING, "Decode metadata failed, shutting down decoder");
DecodeError();
}
}
nsresult MediaDecoderStateMachine::DecodeMetadata()
{
AssertCurrentThreadInMonitor();
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
DECODER_LOG(PR_LOG_DEBUG, "Decoding Media Headers");
if (mState != DECODER_STATE_DECODING_METADATA) {
return NS_ERROR_FAILURE;
}
nsresult res;
MediaInfo info;
{
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
res = mReader->ReadMetadata(&info, getter_Transfers(mMetadataTags));
}
if (NS_SUCCEEDED(res)) {
if (mState == DECODER_STATE_DECODING_METADATA &&
mReader->IsWaitingMediaResources()) {
// change state to DECODER_STATE_WAIT_FOR_RESOURCES
StartWaitForResources();
return NS_OK;
}
}
mInfo = info;
if (NS_FAILED(res) || (!info.HasValidMedia())) {
return NS_ERROR_FAILURE;
}
mDecoder->StartProgressUpdates();
mGotDurationFromMetaData = (GetDuration() != -1);
if (HasAudio()) {
RefPtr<nsIRunnable> decodeTask(
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::DispatchAudioDecodeTaskIfNeeded));
AudioQueue().AddPopListener(decodeTask, mDecodeTaskQueue);
}
if (HasVideo()) {
RefPtr<nsIRunnable> decodeTask(
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::DispatchVideoDecodeTaskIfNeeded));
VideoQueue().AddPopListener(decodeTask, mDecodeTaskQueue);
}
if (mRealTime) {
SetStartTime(0);
res = FinishDecodeMetadata();
NS_ENSURE_SUCCESS(res, res);
} else {
if (HasAudio()) {
ReentrantMonitorAutoExit unlock(mDecoder->GetReentrantMonitor());
mReader->RequestAudioData();
}
if (HasVideo()) {
ReentrantMonitorAutoExit unlock(mDecoder->GetReentrantMonitor());
mReader->RequestVideoData(false, 0);
}
}
return NS_OK;
}
nsresult
MediaDecoderStateMachine::FinishDecodeMetadata()
{
AssertCurrentThreadInMonitor();
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
DECODER_LOG(PR_LOG_DEBUG, "Decoding Media Headers");
if (mState == DECODER_STATE_SHUTDOWN) {
return NS_ERROR_FAILURE;
}
if (!mRealTime) {
const VideoData* v = VideoQueue().PeekFront();
const AudioData* a = AudioQueue().PeekFront();
int64_t startTime = std::min<int64_t>(a ? a->mTime : INT64_MAX,
v ? v->mTime : INT64_MAX);
if (startTime == INT64_MAX) {
startTime = 0;
}
DECODER_LOG(PR_LOG_DEBUG, "DecodeMetadata first video frame start %lld",
v ? v->mTime : -1);
DECODER_LOG(PR_LOG_DEBUG, "DecodeMetadata first audio frame start %lld",
a ? a->mTime : -1);
SetStartTime(startTime);
if (VideoQueue().GetSize()) {
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
RenderVideoFrame(VideoQueue().PeekFront(), TimeStamp::Now());
}
}
NS_ASSERTION(mStartTime != -1, "Must have start time");
MOZ_ASSERT((!HasVideo() && !HasAudio()) ||
!(mMediaSeekable && mTransportSeekable) || mEndTime != -1,
"Active seekable media should have end time");
MOZ_ASSERT(!(mMediaSeekable && mTransportSeekable) ||
GetDuration() != -1, "Seekable media should have duration");
DECODER_LOG(PR_LOG_DEBUG, "Media goes from %lld to %lld (duration %lld) "
"transportSeekable=%d, mediaSeekable=%d",
mStartTime, mEndTime, GetDuration(), mTransportSeekable, mMediaSeekable);
if (HasAudio() && !HasVideo()) {
// We're playing audio only. We don't need to worry about slow video
// decodes causing audio underruns, so don't buffer so much audio in
// order to reduce memory usage.
mAmpleAudioThresholdUsecs /= NO_VIDEO_AMPLE_AUDIO_DIVISOR;
mLowAudioThresholdUsecs /= NO_VIDEO_AMPLE_AUDIO_DIVISOR;
}
// Inform the element that we've loaded the metadata and the first frame.
nsCOMPtr<nsIRunnable> metadataLoadedEvent =
new AudioMetadataEventRunner(mDecoder,
mInfo.mAudio.mChannels,
mInfo.mAudio.mRate,
HasAudio(),
HasVideo(),
mMetadataTags.forget());
NS_DispatchToMainThread(metadataLoadedEvent, NS_DISPATCH_NORMAL);
if (mState == DECODER_STATE_DECODING_METADATA) {
DECODER_LOG(PR_LOG_DEBUG, "Changed state from DECODING_METADATA to DECODING");
StartDecoding();
}
// For very short media the metadata decode can decode the entire media.
// So we need to check if this has occurred, else our decode pipeline won't
// run (since it doesn't need to) and we won't detect end of stream.
CheckIfDecodeComplete();
if ((mState == DECODER_STATE_DECODING || mState == DECODER_STATE_COMPLETED) &&
mDecoder->GetState() == MediaDecoder::PLAY_STATE_PLAYING &&
!IsPlaying())
{
StartPlayback();
}
return NS_OK;
}
void MediaDecoderStateMachine::DecodeSeek()
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
if (mState != DECODER_STATE_SEEKING) {
return;
}
// During the seek, don't have a lock on the decoder state,
// otherwise long seek operations can block the main thread.
// The events dispatched to the main thread are SYNC calls.
// These calls are made outside of the decode monitor lock so
// it is safe for the main thread to makes calls that acquire
// the lock since it won't deadlock. We check the state when
// acquiring the lock again in case shutdown has occurred
// during the time when we didn't have the lock.
int64_t seekTime = mCurrentSeekTarget.mTime;
mDecoder->StopProgressUpdates();
bool currentTimeChanged = false;
const int64_t mediaTime = GetMediaTime();
if (mediaTime != seekTime) {
currentTimeChanged = true;
// Stop playback now to ensure that while we're outside the monitor
// dispatching SeekingStarted, playback doesn't advance and mess with
// mCurrentFrameTime that we've setting to seekTime here.
StopPlayback();
UpdatePlaybackPositionInternal(seekTime);
}
// Update mBasePosition only after StopPlayback() which will call GetClock()
// which will call GetVideoStreamPosition() which will read mBasePosition.
// If we update mBasePosition too early in Seek(), |pos -= mBasePosition|
// will be wrong and assertion will fail in GetVideoStreamPosition().
mBasePosition = seekTime - mStartTime;
// SeekingStarted will do a UpdateReadyStateForData which will
// inform the element and its users that we have no frames
// to display
{
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
nsCOMPtr<nsIRunnable> startEvent =
NS_NewRunnableMethod(mDecoder, &MediaDecoder::SeekingStarted);
NS_DispatchToMainThread(startEvent, NS_DISPATCH_SYNC);
}
if (mState != DECODER_STATE_SEEKING) {
// May have shutdown while we released the monitor.
return;
}
if (!currentTimeChanged) {
DECODER_LOG(PR_LOG_DEBUG, "Seek !currentTimeChanged...");
mDecodeToSeekTarget = false;
nsresult rv = mDecodeTaskQueue->Dispatch(
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::SeekCompleted));
if (NS_FAILED(rv)) {
DecodeError();
}
} else {
// The seek target is different than the current playback position,
// we'll need to seek the playback position, so shutdown our decode
// and audio threads.
StopAudioThread();
ResetPlayback();
nsresult res;
{
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
// We must not hold the state machine monitor while we call into
// the reader, since it could do I/O or deadlock some other way.
res = mReader->ResetDecode();
if (NS_SUCCEEDED(res)) {
res = mReader->Seek(seekTime,
mStartTime,
mEndTime,
mediaTime);
}
}
if (NS_FAILED(res)) {
DecodeError();
return;
}
// We must decode the first samples of active streams, so we can determine
// the new stream time. So dispatch tasks to do that.
mDecodeToSeekTarget = true;
DispatchDecodeTasksIfNeeded();
}
}
void
MediaDecoderStateMachine::SeekCompleted()
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
// We must reset the seek target when exiting this function, but not
// before, as if we dropped the monitor in any function called here,
// we may begin a new seek on the state machine thread, and be in
// an inconsistent state.
AutoSetOnScopeExit<SeekTarget> reset(mCurrentSeekTarget, SeekTarget());
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
if (mState != DECODER_STATE_SEEKING) {
return;
}
int64_t seekTime = mCurrentSeekTarget.mTime;
int64_t newCurrentTime = mCurrentSeekTarget.mTime;
// Setup timestamp state.
VideoData* video = VideoQueue().PeekFront();
if (seekTime == mEndTime) {
newCurrentTime = mAudioStartTime = seekTime;
} else if (HasAudio()) {
AudioData* audio = AudioQueue().PeekFront();
newCurrentTime = mAudioStartTime = audio ? audio->mTime : seekTime;
} else {
newCurrentTime = video ? video->mTime : seekTime;
}
mPlayDuration = newCurrentTime - mStartTime;
if (HasVideo()) {
if (video) {
{
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
RenderVideoFrame(video, TimeStamp::Now());
}
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethod(mDecoder, &MediaDecoder::Invalidate);
NS_DispatchToMainThread(event, NS_DISPATCH_NORMAL);
}
}
mDecoder->StartProgressUpdates();
if (mState == DECODER_STATE_DECODING_METADATA ||
mState == DECODER_STATE_DORMANT ||
mState == DECODER_STATE_SHUTDOWN) {
return;
}
// Change state to DECODING or COMPLETED now. SeekingStopped will
// call MediaDecoderStateMachine::Seek to reset our state to SEEKING
// if we need to seek again.
nsCOMPtr<nsIRunnable> stopEvent;
bool isLiveStream = mDecoder->GetResource()->GetLength() == -1;
if (GetMediaTime() == mEndTime && !isLiveStream) {
// Seeked to end of media, move to COMPLETED state. Note we don't do
// this if we're playing a live stream, since the end of media will advance
// once we download more data!
DECODER_LOG(PR_LOG_DEBUG, "Changed state from SEEKING (to %lld) to COMPLETED", seekTime);
stopEvent = NS_NewRunnableMethod(mDecoder, &MediaDecoder::SeekingStoppedAtEnd);
// Explicitly set our state so we don't decode further, and so
// we report playback ended to the media element.
mState = DECODER_STATE_COMPLETED;
DispatchDecodeTasksIfNeeded();
} else {
DECODER_LOG(PR_LOG_DEBUG, "Changed state from SEEKING (to %lld) to DECODING", seekTime);
stopEvent = NS_NewRunnableMethod(mDecoder, &MediaDecoder::SeekingStopped);
StartDecoding();
}
// Ensure timestamps are up to date.
UpdatePlaybackPositionInternal(newCurrentTime);
if (mDecoder->GetDecodedStream()) {
SetSyncPointForMediaStream();
}
// Try to decode another frame to detect if we're at the end...
DECODER_LOG(PR_LOG_DEBUG, "Seek completed, mCurrentFrameTime=%lld", mCurrentFrameTime);
{
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
NS_DispatchToMainThread(stopEvent, NS_DISPATCH_SYNC);
}
// Reset quick buffering status. This ensures that if we began the
// seek while quick-buffering, we won't bypass quick buffering mode
// if we need to buffer after the seek.
mQuickBuffering = false;
ScheduleStateMachine();
}
// Runnable to dispose of the decoder and state machine on the main thread.
class nsDecoderDisposeEvent : public nsRunnable {
public:
nsDecoderDisposeEvent(already_AddRefed<MediaDecoder> aDecoder,
already_AddRefed<MediaDecoderStateMachine> aStateMachine)
: mDecoder(aDecoder), mStateMachine(aStateMachine) {}
NS_IMETHOD Run() {
NS_ASSERTION(NS_IsMainThread(), "Must be on main thread.");
MOZ_ASSERT(mStateMachine);
MOZ_ASSERT(mDecoder);
mStateMachine->BreakCycles();
mDecoder->BreakCycles();
mStateMachine = nullptr;
mDecoder = nullptr;
return NS_OK;
}
private:
nsRefPtr<MediaDecoder> mDecoder;
nsRefPtr<MediaDecoderStateMachine> mStateMachine;
};
// Runnable which dispatches an event to the main thread to dispose of the
// decoder and state machine. This runs on the state machine thread after
// the state machine has shutdown, and all events for that state machine have
// finished running.
class nsDispatchDisposeEvent : public nsRunnable {
public:
nsDispatchDisposeEvent(MediaDecoder* aDecoder,
MediaDecoderStateMachine* aStateMachine)
: mDecoder(aDecoder), mStateMachine(aStateMachine) {}
NS_IMETHOD Run() {
NS_DispatchToMainThread(new nsDecoderDisposeEvent(mDecoder.forget(),
mStateMachine.forget()));
return NS_OK;
}
private:
nsRefPtr<MediaDecoder> mDecoder;
nsRefPtr<MediaDecoderStateMachine> mStateMachine;
};
nsresult MediaDecoderStateMachine::RunStateMachine()
{
AssertCurrentThreadInMonitor();
MediaResource* resource = mDecoder->GetResource();
NS_ENSURE_TRUE(resource, NS_ERROR_NULL_POINTER);
switch (mState) {
case DECODER_STATE_SHUTDOWN: {
if (IsPlaying()) {
StopPlayback();
}
// Put a task in the decode queue to shutdown the reader.
RefPtr<nsIRunnable> task(
NS_NewRunnableMethod(mReader, &MediaDecoderReader::Shutdown));
mDecodeTaskQueue->Dispatch(task);
StopAudioThread();
// If mAudioThread is non-null after StopAudioThread completes, we are
// running in a nested event loop waiting for Shutdown() on
// mAudioThread to complete. Return to the event loop and let it
// finish processing before continuing with shutdown.
if (mAudioThread) {
MOZ_ASSERT(mStopAudioThread);
return NS_OK;
}
{
// Wait for the thread decoding to exit.
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
mDecodeTaskQueue->Shutdown();
mDecodeTaskQueue = nullptr;
}
AudioQueue().Reset();
VideoQueue().Reset();
// The reader's listeners hold references to the state machine,
// creating a cycle which keeps the state machine and its shared
// thread pools alive. So break it here.
AudioQueue().ClearListeners();
VideoQueue().ClearListeners();
// Now that those threads are stopped, there's no possibility of
// mPendingWakeDecoder being needed again. Revoke it.
mPendingWakeDecoder = nullptr;
MOZ_ASSERT(mState == DECODER_STATE_SHUTDOWN,
"How did we escape from the shutdown state?");
// We must daisy-chain these events to destroy the decoder. We must
// destroy the decoder on the main thread, but we can't destroy the
// decoder while this thread holds the decoder monitor. We can't
// dispatch an event to the main thread to destroy the decoder from
// here, as the event may run before the dispatch returns, and we
// hold the decoder monitor here. We also want to guarantee that the
// state machine is destroyed on the main thread, and so the
// event runner running this function (which holds a reference to the
// state machine) needs to finish and be released in order to allow
// that. So we dispatch an event to run after this event runner has
// finished and released its monitor/references. That event then will
// dispatch an event to the main thread to release the decoder and
// state machine.
GetStateMachineThread()->Dispatch(
new nsDispatchDisposeEvent(mDecoder, this), NS_DISPATCH_NORMAL);
mTimer->Cancel();
mTimer = nullptr;
return NS_OK;
}
case DECODER_STATE_DORMANT: {
if (IsPlaying()) {
StopPlayback();
}
StopAudioThread();
// Now that those threads are stopped, there's no possibility of
// mPendingWakeDecoder being needed again. Revoke it.
mPendingWakeDecoder = nullptr;
{
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
// Wait for the thread decoding, if any, to exit.
mDecodeTaskQueue->AwaitIdle();
mReader->ReleaseMediaResources();
}
return NS_OK;
}
case DECODER_STATE_WAIT_FOR_RESOURCES: {
return NS_OK;
}
case DECODER_STATE_DECODING_METADATA: {
// Ensure we have a decode thread to decode metadata.
return EnqueueDecodeMetadataTask();
}
case DECODER_STATE_DECODING: {
if (mDecoder->GetState() != MediaDecoder::PLAY_STATE_PLAYING &&
IsPlaying())
{
// We're playing, but the element/decoder is in paused state. Stop
// playing!
StopPlayback();
}
if (mDecoder->GetState() == MediaDecoder::PLAY_STATE_PLAYING &&
!IsPlaying()) {
// We are playing, but the state machine does not know it yet. Tell it
// that it is, so that the clock can be properly queried.
StartPlayback();
}
AdvanceFrame();
NS_ASSERTION(mDecoder->GetState() != MediaDecoder::PLAY_STATE_PLAYING ||
IsStateMachineScheduled() ||
mPlaybackRate == 0.0, "Must have timer scheduled");
return NS_OK;
}
case DECODER_STATE_BUFFERING: {
TimeStamp now = TimeStamp::Now();
NS_ASSERTION(!mBufferingStart.IsNull(), "Must know buffering start time.");
// We will remain in the buffering state if we've not decoded enough
// data to begin playback, or if we've not downloaded a reasonable
// amount of data inside our buffering time.
TimeDuration elapsed = now - mBufferingStart;
bool isLiveStream = resource->GetLength() == -1;
if ((isLiveStream || !mDecoder->CanPlayThrough()) &&
elapsed < TimeDuration::FromSeconds(mBufferingWait * mPlaybackRate) &&
(mQuickBuffering ? HasLowDecodedData(QUICK_BUFFERING_LOW_DATA_USECS)
: HasLowUndecodedData(mBufferingWait * USECS_PER_S)) &&
!mDecoder->IsDataCachedToEndOfResource() &&
!resource->IsSuspended())
{
DECODER_LOG(PR_LOG_DEBUG, "Buffering: wait %ds, timeout in %.3lfs %s",
mBufferingWait, mBufferingWait - elapsed.ToSeconds(),
(mQuickBuffering ? "(quick exit)" : ""));
ScheduleStateMachine(USECS_PER_S);
return NS_OK;
} else {
DECODER_LOG(PR_LOG_DEBUG, "Changed state from BUFFERING to DECODING");
DECODER_LOG(PR_LOG_DEBUG, "Buffered for %.3lfs", (now - mBufferingStart).ToSeconds());
StartDecoding();
}
// Notify to allow blocked decoder thread to continue
mDecoder->GetReentrantMonitor().NotifyAll();
UpdateReadyState();
if (mDecoder->GetState() == MediaDecoder::PLAY_STATE_PLAYING &&
!IsPlaying())
{
StartPlayback();
}
NS_ASSERTION(IsStateMachineScheduled(), "Must have timer scheduled");
return NS_OK;
}
case DECODER_STATE_SEEKING: {
return EnqueueDecodeSeekTask();
}
case DECODER_STATE_COMPLETED: {
// Play the remaining media. We want to run AdvanceFrame() at least
// once to ensure the current playback position is advanced to the
// end of the media, and so that we update the readyState.
if (VideoQueue().GetSize() > 0 ||
(HasAudio() && !mAudioCompleted) ||
(mDecoder->GetDecodedStream() && !mDecoder->GetDecodedStream()->IsFinished()))
{
AdvanceFrame();
NS_ASSERTION(mDecoder->GetState() != MediaDecoder::PLAY_STATE_PLAYING ||
mPlaybackRate == 0 ||
IsStateMachineScheduled(),
"Must have timer scheduled");
return NS_OK;
}
// StopPlayback in order to reset the IsPlaying() state so audio
// is restarted correctly.
StopPlayback();
if (mState != DECODER_STATE_COMPLETED) {
// While we're presenting a frame we can change state. Whatever changed
// our state should have scheduled another state machine run.
NS_ASSERTION(IsStateMachineScheduled(), "Must have timer scheduled");
return NS_OK;
}
StopAudioThread();
// When we're decoding to a stream, the stream's main-thread finish signal
// will take care of calling MediaDecoder::PlaybackEnded.
if (mDecoder->GetState() == MediaDecoder::PLAY_STATE_PLAYING &&
!mDecoder->GetDecodedStream()) {
int64_t videoTime = HasVideo() ? mVideoFrameEndTime : 0;
int64_t clockTime = std::max(mEndTime, std::max(videoTime, GetAudioClock()));
UpdatePlaybackPosition(clockTime);
{
// Wait for the state change is completed in the main thread,
// otherwise we might see |mDecoder->GetState() == MediaDecoder::PLAY_STATE_PLAYING|
// in next loop and send |MediaDecoder::PlaybackEnded| again to trigger 'ended'
// event twice in the media element.
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethod(mDecoder, &MediaDecoder::PlaybackEnded);
NS_DispatchToMainThread(event, NS_DISPATCH_SYNC);
}
}
return NS_OK;
}
}
return NS_OK;
}
void MediaDecoderStateMachine::RenderVideoFrame(VideoData* aData,
TimeStamp aTarget)
{
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
"Should be on state machine or decode thread.");
mDecoder->GetReentrantMonitor().AssertNotCurrentThreadIn();
if (aData->mDuplicate) {
return;
}
VERBOSE_LOG("playing video frame %lld", aData->mTime);
VideoFrameContainer* container = mDecoder->GetVideoFrameContainer();
if (container) {
container->SetCurrentFrame(ThebesIntSize(aData->mDisplay), aData->mImage,
aTarget);
}
}
int64_t
MediaDecoderStateMachine::GetAudioClock()
{
// We must hold the decoder monitor while using the audio stream off the
// audio thread to ensure that it doesn't get destroyed on the audio thread
// while we're using it.
AssertCurrentThreadInMonitor();
if (!HasAudio() || mAudioCaptured)
return -1;
if (!mAudioStream) {
// Audio thread hasn't played any data yet.
return mAudioStartTime;
}
int64_t t = mAudioStream->GetPosition();
return (t == -1) ? -1 : t + mAudioStartTime;
}
int64_t MediaDecoderStateMachine::GetVideoStreamPosition()
{
AssertCurrentThreadInMonitor();
if (!IsPlaying()) {
return mPlayDuration + mStartTime;
}
// The playbackRate has been just been changed, reset the playstartTime.
if (mResetPlayStartTime) {
mPlayStartTime = TimeStamp::Now();
mResetPlayStartTime = false;
}
int64_t pos = DurationToUsecs(TimeStamp::Now() - mPlayStartTime) + mPlayDuration;
pos -= mBasePosition;
NS_ASSERTION(pos >= 0, "Video stream position should be positive.");
return mBasePosition + pos * mPlaybackRate + mStartTime;
}
int64_t MediaDecoderStateMachine::GetClock()
{
AssertCurrentThreadInMonitor();
// Determine the clock time. If we've got audio, and we've not reached
// the end of the audio, use the audio clock. However if we've finished
// audio, or don't have audio, use the system clock. If our output is being
// fed to a MediaStream, use that stream as the source of the clock.
int64_t clock_time = -1;
DecodedStreamData* stream = mDecoder->GetDecodedStream();
if (!IsPlaying()) {
clock_time = mPlayDuration + mStartTime;
} else if (stream) {
clock_time = GetCurrentTimeViaMediaStreamSync();
} else {
int64_t audio_time = GetAudioClock();
if (HasAudio() && !mAudioCompleted && audio_time != -1) {
clock_time = audio_time;
// Resync against the audio clock, while we're trusting the
// audio clock. This ensures no "drift", particularly on Linux.
mPlayDuration = clock_time - mStartTime;
mPlayStartTime = TimeStamp::Now();
} else {
// Audio is disabled on this system. Sync to the system clock.
clock_time = GetVideoStreamPosition();
// Ensure the clock can never go backwards.
NS_ASSERTION(mCurrentFrameTime <= clock_time || mPlaybackRate <= 0,
"Clock should go forwards if the playback rate is > 0.");
}
}
return clock_time;
}
void MediaDecoderStateMachine::AdvanceFrame()
{
NS_ASSERTION(OnStateMachineThread(), "Should be on state machine thread.");
AssertCurrentThreadInMonitor();
NS_ASSERTION(!HasAudio() || mAudioStartTime != -1,
"Should know audio start time if we have audio.");
if (mDecoder->GetState() != MediaDecoder::PLAY_STATE_PLAYING) {
return;
}
// If playbackRate is 0.0, we should stop the progress, but not be in paused
// state, per spec.
if (mPlaybackRate == 0.0) {
return;
}
int64_t clock_time = GetClock();
// Skip frames up to the frame at the playback position, and figure out
// the time remaining until it's time to display the next frame.
int64_t remainingTime = AUDIO_DURATION_USECS;
NS_ASSERTION(clock_time >= mStartTime, "Should have positive clock time.");
nsAutoPtr<VideoData> currentFrame;
#ifdef PR_LOGGING
int32_t droppedFrames = 0;
#endif
if (VideoQueue().GetSize() > 0) {
VideoData* frame = VideoQueue().PeekFront();
while (mRealTime || clock_time >= frame->mTime) {
mVideoFrameEndTime = frame->GetEndTime();
currentFrame = frame;
#ifdef PR_LOGGING
VERBOSE_LOG("discarding video frame %lld", frame->mTime);
if (droppedFrames++) {
VERBOSE_LOG("discarding video frame %lld (%d so far)", frame->mTime, droppedFrames-1);
}
#endif
VideoQueue().PopFront();
// Notify the decode thread that the video queue's buffers may have
// free'd up space for more frames.
mDecoder->GetReentrantMonitor().NotifyAll();
mDecoder->UpdatePlaybackOffset(frame->mOffset);
if (VideoQueue().GetSize() == 0)
break;
frame = VideoQueue().PeekFront();
}
// Current frame has already been presented, wait until it's time to
// present the next frame.
if (frame && !currentFrame) {
int64_t now = IsPlaying() ? clock_time : mPlayDuration;
remainingTime = frame->mTime - now;
}
}
// Check to see if we don't have enough data to play up to the next frame.
// If we don't, switch to buffering mode.
MediaResource* resource = mDecoder->GetResource();
if (mState == DECODER_STATE_DECODING &&
mDecoder->GetState() == MediaDecoder::PLAY_STATE_PLAYING &&
HasLowDecodedData(remainingTime + EXHAUSTED_DATA_MARGIN_USECS) &&
!mDecoder->IsDataCachedToEndOfResource() &&
!resource->IsSuspended()) {
if (JustExitedQuickBuffering() || HasLowUndecodedData()) {
if (currentFrame) {
VideoQueue().PushFront(currentFrame.forget());
}
StartBuffering();
// Don't go straight back to the state machine loop since that might
// cause us to start decoding again and we could flip-flop between
// decoding and quick-buffering.
ScheduleStateMachine(USECS_PER_S);
return;
}
}
// We've got enough data to keep playing until at least the next frame.
// Start playing now if need be.
if (!IsPlaying() && ((mFragmentEndTime >= 0 && clock_time < mFragmentEndTime) || mFragmentEndTime < 0)) {
StartPlayback();
}
if (currentFrame) {
// Decode one frame and display it.
TimeStamp presTime = mPlayStartTime - UsecsToDuration(mPlayDuration) +
UsecsToDuration(currentFrame->mTime - mStartTime);
NS_ASSERTION(currentFrame->mTime >= mStartTime, "Should have positive frame time");
// Filter out invalid frames by checking the frame time. FrameTime could be
// zero if it's a initial frame.
int64_t frameTime = currentFrame->mTime - mStartTime;
if (frameTime > 0 || (frameTime == 0 && mPlayDuration == 0)) {
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
// If we have video, we want to increment the clock in steps of the frame
// duration.
RenderVideoFrame(currentFrame, presTime);
}
// If we're no longer playing after dropping and reacquiring the lock,
// playback must've been stopped on the decode thread (by a seek, for
// example). In that case, the current frame is probably out of date.
if (!IsPlaying()) {
ScheduleStateMachine();
return;
}
MediaDecoder::FrameStatistics& frameStats = mDecoder->GetFrameStatistics();
frameStats.NotifyPresentedFrame();
remainingTime = currentFrame->GetEndTime() - clock_time;
currentFrame = nullptr;
}
// Cap the current time to the larger of the audio and video end time.
// This ensures that if we're running off the system clock, we don't
// advance the clock to after the media end time.
if (mVideoFrameEndTime != -1 || mAudioEndTime != -1) {
// These will be non -1 if we've displayed a video frame, or played an audio frame.
clock_time = std::min(clock_time, std::max(mVideoFrameEndTime, mAudioEndTime));
if (clock_time > GetMediaTime()) {
// Only update the playback position if the clock time is greater
// than the previous playback position. The audio clock can
// sometimes report a time less than its previously reported in
// some situations, and we need to gracefully handle that.
UpdatePlaybackPosition(clock_time);
}
}
// If the number of audio/video frames queued has changed, either by
// this function popping and playing a video frame, or by the audio
// thread popping and playing an audio frame, we may need to update our
// ready state. Post an update to do so.
UpdateReadyState();
ScheduleStateMachine(remainingTime);
}
void MediaDecoderStateMachine::Wait(int64_t aUsecs) {
NS_ASSERTION(OnAudioThread(), "Only call on the audio thread");
AssertCurrentThreadInMonitor();
TimeStamp end = TimeStamp::Now() + UsecsToDuration(std::max<int64_t>(USECS_PER_MS, aUsecs));
TimeStamp now;
while ((now = TimeStamp::Now()) < end &&
mState != DECODER_STATE_SHUTDOWN &&
mState != DECODER_STATE_SEEKING &&
!mStopAudioThread &&
IsPlaying())
{
int64_t ms = static_cast<int64_t>(NS_round((end - now).ToSeconds() * 1000));
if (ms == 0 || ms > UINT32_MAX) {
break;
}
mDecoder->GetReentrantMonitor().Wait(PR_MillisecondsToInterval(static_cast<uint32_t>(ms)));
}
}
nsresult
MediaDecoderStateMachine::DropVideoUpToSeekTarget(VideoData* aSample)
{
nsAutoPtr<VideoData> video(aSample);
const int64_t target = mCurrentSeekTarget.mTime;
// If the frame end time is less than the seek target, we won't want
// to display this frame after the seek, so discard it.
if (target >= video->GetEndTime()) {
DECODER_LOG(PR_LOG_DEBUG,
"DropVideoUpToSeekTarget() pop video frame [%lld, %lld] target=%lld",
video->mTime, video->GetEndTime(), target);
mFirstVideoFrameAfterSeek = video;
} else {
if (target >= video->mTime && video->GetEndTime() >= target) {
// The seek target lies inside this frame's time slice. Adjust the frame's
// start time to match the seek target. We do this by replacing the
// first frame with a shallow copy which has the new timestamp.
VideoData* temp = VideoData::ShallowCopyUpdateTimestamp(video, target);
video = temp;
}
mFirstVideoFrameAfterSeek = nullptr;
DECODER_LOG(PR_LOG_DEBUG,
"DropVideoUpToSeekTarget() found video frame [%lld, %lld] containing target=%lld",
video->mTime, video->GetEndTime(), target);
VideoQueue().PushFront(video.forget());
}
return NS_OK;
}
nsresult
MediaDecoderStateMachine::DropAudioUpToSeekTarget(AudioData* aSample)
{
nsAutoPtr<AudioData> audio(aSample);
MOZ_ASSERT(audio &&
mCurrentSeekTarget.IsValid() &&
mCurrentSeekTarget.mType == SeekTarget::Accurate);
CheckedInt64 startFrame = UsecsToFrames(audio->mTime,
mInfo.mAudio.mRate);
CheckedInt64 targetFrame = UsecsToFrames(mCurrentSeekTarget.mTime,
mInfo.mAudio.mRate);
if (!startFrame.isValid() || !targetFrame.isValid()) {
return NS_ERROR_FAILURE;
}
if (startFrame.value() + audio->mFrames <= targetFrame.value()) {
// Our seek target lies after the frames in this AudioData. Don't
// push it onto the audio queue, and keep decoding forwards.
return NS_OK;
}
if (startFrame.value() > targetFrame.value()) {
// The seek target doesn't lie in the audio block just after the last
// audio frames we've seen which were before the seek target. This
// could have been the first audio data we've seen after seek, i.e. the
// seek terminated after the seek target in the audio stream. Just
// abort the audio decode-to-target, the state machine will play
// silence to cover the gap. Typically this happens in poorly muxed
// files.
NS_WARNING("Audio not synced after seek, maybe a poorly muxed file?");
AudioQueue().Push(audio.forget());
return NS_OK;
}
// The seek target lies somewhere in this AudioData's frames, strip off
// any frames which lie before the seek target, so we'll begin playback
// exactly at the seek target.
NS_ASSERTION(targetFrame.value() >= startFrame.value(),
"Target must at or be after data start.");
NS_ASSERTION(targetFrame.value() < startFrame.value() + audio->mFrames,
"Data must end after target.");
int64_t framesToPrune = targetFrame.value() - startFrame.value();
if (framesToPrune > audio->mFrames) {
// We've messed up somehow. Don't try to trim frames, the |frames|
// variable below will overflow.
NS_WARNING("Can't prune more frames that we have!");
return NS_ERROR_FAILURE;
}
uint32_t frames = audio->mFrames - static_cast<uint32_t>(framesToPrune);
uint32_t channels = audio->mChannels;
nsAutoArrayPtr<AudioDataValue> audioData(new AudioDataValue[frames * channels]);
memcpy(audioData.get(),
audio->mAudioData.get() + (framesToPrune * channels),
frames * channels * sizeof(AudioDataValue));
CheckedInt64 duration = FramesToUsecs(frames, mInfo.mAudio.mRate);
if (!duration.isValid()) {
return NS_ERROR_FAILURE;
}
nsAutoPtr<AudioData> data(new AudioData(audio->mOffset,
mCurrentSeekTarget.mTime,
duration.value(),
frames,
audioData.forget(),
channels));
AudioQueue().PushFront(data.forget());
return NS_OK;
}
void MediaDecoderStateMachine::SetStartTime(int64_t aStartTimeUsecs)
{
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
DECODER_LOG(PR_LOG_DEBUG, "SetStartTime(%lld)", aStartTimeUsecs);
mStartTime = 0;
if (aStartTimeUsecs != 0) {
mStartTime = aStartTimeUsecs;
if (mGotDurationFromMetaData) {
NS_ASSERTION(mEndTime != -1,
"We should have mEndTime as supplied duration here");
// We were specified a duration from a Content-Duration HTTP header.
// Adjust mEndTime so that mEndTime-mStartTime matches the specified
// duration.
mEndTime = mStartTime + mEndTime;
}
}
// Set the audio start time to be start of media. If this lies before the
// first actual audio frame we have, we'll inject silence during playback
// to ensure the audio starts at the correct time.
mAudioStartTime = mStartTime;
DECODER_LOG(PR_LOG_DEBUG, "Set media start time to %lld", mStartTime);
}
void MediaDecoderStateMachine::UpdateReadyState() {
AssertCurrentThreadInMonitor();
MediaDecoderOwner::NextFrameStatus nextFrameStatus = GetNextFrameStatus();
if (nextFrameStatus == mLastFrameStatus) {
return;
}
mLastFrameStatus = nextFrameStatus;
/* This is a bit tricky. MediaDecoder::UpdateReadyStateForData will run on
* the main thread and re-evaluate GetNextFrameStatus there, passing it to
* HTMLMediaElement::UpdateReadyStateForData. It doesn't use the value of
* GetNextFrameStatus we computed here, because what we're computing here
* could be stale by the time MediaDecoder::UpdateReadyStateForData runs.
* We only compute GetNextFrameStatus here to avoid posting runnables to the main
* thread unnecessarily.
*/
nsCOMPtr<nsIRunnable> event;
event = NS_NewRunnableMethod(mDecoder, &MediaDecoder::UpdateReadyStateForData);
NS_DispatchToMainThread(event);
}
bool MediaDecoderStateMachine::JustExitedQuickBuffering()
{
return !mDecodeStartTime.IsNull() &&
mQuickBuffering &&
(TimeStamp::Now() - mDecodeStartTime) < TimeDuration::FromMicroseconds(QUICK_BUFFER_THRESHOLD_USECS);
}
void MediaDecoderStateMachine::StartBuffering()
{
AssertCurrentThreadInMonitor();
if (mState != DECODER_STATE_DECODING) {
// We only move into BUFFERING state if we're actually decoding.
// If we're currently doing something else, we don't need to buffer,
// and more importantly, we shouldn't overwrite mState to interrupt
// the current operation, as that could leave us in an inconsistent
// state!
return;
}
if (IsPlaying()) {
StopPlayback();
}
TimeDuration decodeDuration = TimeStamp::Now() - mDecodeStartTime;
// Go into quick buffering mode provided we've not just left buffering using
// a "quick exit". This stops us flip-flopping between playing and buffering
// when the download speed is similar to the decode speed.
mQuickBuffering =
!JustExitedQuickBuffering() &&
decodeDuration < UsecsToDuration(QUICK_BUFFER_THRESHOLD_USECS);
mBufferingStart = TimeStamp::Now();
// We need to tell the element that buffering has started.
// We can't just directly send an asynchronous runnable that
// eventually fires the "waiting" event. The problem is that
// there might be pending main-thread events, such as "data
// received" notifications, that mean we're not actually still
// buffering by the time this runnable executes. So instead
// we just trigger UpdateReadyStateForData; when it runs, it
// will check the current state and decide whether to tell
// the element we're buffering or not.
UpdateReadyState();
mState = DECODER_STATE_BUFFERING;
DECODER_LOG(PR_LOG_DEBUG, "Changed state from DECODING to BUFFERING, decoded for %.3lfs",
decodeDuration.ToSeconds());
#ifdef PR_LOGGING
MediaDecoder::Statistics stats = mDecoder->GetStatistics();
DECODER_LOG(PR_LOG_DEBUG, "Playback rate: %.1lfKB/s%s download rate: %.1lfKB/s%s",
stats.mPlaybackRate/1024, stats.mPlaybackRateReliable ? "" : " (unreliable)",
stats.mDownloadRate/1024, stats.mDownloadRateReliable ? "" : " (unreliable)");
#endif
}
nsresult MediaDecoderStateMachine::GetBuffered(dom::TimeRanges* aBuffered) {
MediaResource* resource = mDecoder->GetResource();
NS_ENSURE_TRUE(resource, NS_ERROR_FAILURE);
resource->Pin();
nsresult res = mReader->GetBuffered(aBuffered, mStartTime);
resource->Unpin();
return res;
}
nsresult MediaDecoderStateMachine::CallRunStateMachine()
{
AssertCurrentThreadInMonitor();
NS_ASSERTION(OnStateMachineThread(), "Should be on state machine thread.");
// If audio is being captured, stop the audio thread if it's running
if (mAudioCaptured) {
StopAudioThread();
}
MOZ_ASSERT(!mInRunningStateMachine, "State machine cycles must run in sequence!");
mTimeout = TimeStamp();
mInRunningStateMachine = true;
nsresult res = RunStateMachine();
mInRunningStateMachine = false;
return res;
}
nsresult MediaDecoderStateMachine::TimeoutExpired(int aTimerId)
{
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
NS_ASSERTION(OnStateMachineThread(), "Must be on state machine thread");
mTimer->Cancel();
if (mTimerId == aTimerId) {
return CallRunStateMachine();
} else {
return NS_OK;
}
}
void MediaDecoderStateMachine::ScheduleStateMachineWithLockAndWakeDecoder() {
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
DispatchAudioDecodeTaskIfNeeded();
DispatchVideoDecodeTaskIfNeeded();
}
class TimerEvent : public nsITimerCallback, public nsRunnable {
NS_DECL_THREADSAFE_ISUPPORTS
public:
TimerEvent(MediaDecoderStateMachine* aStateMachine, int aTimerId)
: mStateMachine(aStateMachine), mTimerId(aTimerId) {}
NS_IMETHOD Run() MOZ_OVERRIDE {
return mStateMachine->TimeoutExpired(mTimerId);
}
NS_IMETHOD Notify(nsITimer* aTimer) {
return mStateMachine->TimeoutExpired(mTimerId);
}
private:
const nsRefPtr<MediaDecoderStateMachine> mStateMachine;
int mTimerId;
};
NS_IMPL_ISUPPORTS(TimerEvent, nsITimerCallback, nsIRunnable);
nsresult MediaDecoderStateMachine::ScheduleStateMachine(int64_t aUsecs) {
AssertCurrentThreadInMonitor();
NS_ABORT_IF_FALSE(GetStateMachineThread(),
"Must have a state machine thread to schedule");
if (mState == DECODER_STATE_SHUTDOWN) {
return NS_ERROR_FAILURE;
}
aUsecs = std::max<int64_t>(aUsecs, 0);
TimeStamp timeout = TimeStamp::Now() + UsecsToDuration(aUsecs);
if (!mTimeout.IsNull() && timeout >= mTimeout) {
// We've already scheduled a timer set to expire at or before this time,
// or have an event dispatched to run the state machine.
return NS_OK;
}
uint32_t ms = static_cast<uint32_t>((aUsecs / USECS_PER_MS) & 0xFFFFFFFF);
if (mRealTime && ms > 40) {
ms = 40;
}
// Don't cancel the timer here for this function will be called from
// different threads.
nsresult rv = NS_ERROR_FAILURE;
nsRefPtr<TimerEvent> event = new TimerEvent(this, mTimerId+1);
if (ms == 0) {
// Dispatch a runnable to the state machine thread when delay is 0.
// It will has less latency than dispatching a runnable to the state
// machine thread which will then schedule a zero-delay timer.
rv = GetStateMachineThread()->Dispatch(event, NS_DISPATCH_NORMAL);
} else if (OnStateMachineThread()) {
rv = mTimer->InitWithCallback(event, ms, nsITimer::TYPE_ONE_SHOT);
} else {
MOZ_ASSERT(false, "non-zero delay timer should be only scheduled in state machine thread");
}
if (NS_SUCCEEDED(rv)) {
mTimeout = timeout;
++mTimerId;
} else {
NS_WARNING("Failed to schedule state machine");
}
return rv;
}
bool MediaDecoderStateMachine::OnDecodeThread() const
{
return mDecodeTaskQueue->IsCurrentThreadIn();
}
bool MediaDecoderStateMachine::OnStateMachineThread() const
{
bool rv = false;
mStateMachineThreadPool->IsOnCurrentThread(&rv);
return rv;
}
nsIEventTarget* MediaDecoderStateMachine::GetStateMachineThread()
{
return mStateMachineThreadPool->GetEventTarget();
}
void MediaDecoderStateMachine::SetPlaybackRate(double aPlaybackRate)
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
NS_ASSERTION(aPlaybackRate != 0,
"PlaybackRate == 0 should be handled before this function.");
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (mPlaybackRate == aPlaybackRate) {
return;
}
// Get position of the last time we changed the rate.
if (!HasAudio()) {
// mBasePosition is a position in the video stream, not an absolute time.
if (mState == DECODER_STATE_SEEKING) {
mBasePosition = mCurrentSeekTarget.mTime - mStartTime;
} else {
mBasePosition = GetVideoStreamPosition();
}
mPlayDuration = mBasePosition;
mResetPlayStartTime = true;
mPlayStartTime = TimeStamp::Now();
}
mPlaybackRate = aPlaybackRate;
}
void MediaDecoderStateMachine::SetPreservesPitch(bool aPreservesPitch)
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
mPreservesPitch = aPreservesPitch;
}
void
MediaDecoderStateMachine::SetMinimizePrerollUntilPlaybackStarts()
{
AssertCurrentThreadInMonitor();
mMinimizePreroll = true;
}
bool MediaDecoderStateMachine::IsShutdown()
{
AssertCurrentThreadInMonitor();
return GetState() == DECODER_STATE_SHUTDOWN;
}
void MediaDecoderStateMachine::QueueMetadata(int64_t aPublishTime,
int aChannels,
int aRate,
bool aHasAudio,
bool aHasVideo,
MetadataTags* aTags)
{
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
AssertCurrentThreadInMonitor();
TimedMetadata* metadata = new TimedMetadata;
metadata->mPublishTime = aPublishTime;
metadata->mChannels = aChannels;
metadata->mRate = aRate;
metadata->mHasAudio = aHasAudio;
metadata->mHasVideo = aHasVideo;
metadata->mTags = aTags;
mMetadataManager.QueueMetadata(metadata);
}
} // namespace mozilla
// avoid redefined macro in unified build
#undef DECODER_LOG
#undef VERBOSE_LOG