gecko/content/media/webaudio/blink/HRTFElevation.cpp
Karl Tomlinson 76bf3e40c2 b=937057 provide a null ptr instead of a zero buffer when processing resampler tail r=padenot
--HG--
extra : transplant_source : %8EK%22q%A6%E9%82%F1%5E-%9E%BEs%01%F1%D1Jj%097
2013-12-03 12:07:17 +13:00

317 lines
13 KiB
C++

/*
* Copyright (C) 2010 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "HRTFElevation.h"
#include "speex/speex_resampler.h"
#include "mozilla/PodOperations.h"
#include "AudioSampleFormat.h"
#include "IRC_Composite_C_R0195-incl.cpp"
using namespace std;
using namespace mozilla;
namespace WebCore {
const int elevationSpacing = irc_composite_c_r0195_elevation_interval;
const int firstElevation = irc_composite_c_r0195_first_elevation;
const int numberOfElevations = MOZ_ARRAY_LENGTH(irc_composite_c_r0195);
const unsigned HRTFElevation::NumberOfTotalAzimuths = 360 / 15 * 8;
const int rawSampleRate = irc_composite_c_r0195_sample_rate;
// Number of frames in an individual impulse response.
const size_t ResponseFrameSize = 256;
size_t HRTFElevation::fftSizeForSampleRate(float sampleRate)
{
// The IRCAM HRTF impulse responses were 512 sample-frames @44.1KHz,
// but these have been truncated to 256 samples.
// An FFT-size of twice impulse response size is used (for convolution).
// So for sample rates of 44.1KHz an FFT size of 512 is good.
// We double the FFT-size only for sample rates at least double this.
// If the FFT size is too large then the impulse response will be padded
// with zeros without the fade-out provided by HRTFKernel.
MOZ_ASSERT(sampleRate > 1.0 && sampleRate < 1048576.0);
// This is the size if we were to use all raw response samples.
unsigned resampledLength =
floorf(ResponseFrameSize * sampleRate / rawSampleRate);
// Keep things semi-sane, with max FFT size of 1024 and minimum of 4.
// "size |= 3" ensures a minimum of 4 (with the size++ below) and sets the
// 2 least significant bits for rounding up to the next power of 2 below.
unsigned size = min(resampledLength, 1023U);
size |= 3;
// Round up to the next power of 2, making the FFT size no more than twice
// the impulse response length. This doubles size for values that are
// already powers of 2. This works by filling in 7 bits to right of the
// most significant bit. The most significant bit is no greater than
// 1 << 9, and the least significant 2 bits were already set above.
size |= (size >> 1);
size |= (size >> 2);
size |= (size >> 4);
size++;
MOZ_ASSERT((size & (size - 1)) == 0);
return size;
}
nsReturnRef<HRTFKernel> HRTFElevation::calculateKernelForAzimuthElevation(int azimuth, int elevation, SpeexResamplerState* resampler, float sampleRate)
{
int elevationIndex = (elevation - firstElevation) / elevationSpacing;
MOZ_ASSERT(elevationIndex >= 0 && elevationIndex <= numberOfElevations);
int numberOfAzimuths = irc_composite_c_r0195[elevationIndex].count;
int azimuthSpacing = 360 / numberOfAzimuths;
MOZ_ASSERT(numberOfAzimuths * azimuthSpacing == 360);
int azimuthIndex = azimuth / azimuthSpacing;
MOZ_ASSERT(azimuthIndex * azimuthSpacing == azimuth);
const int16_t (&impulse_response_data)[ResponseFrameSize] =
irc_composite_c_r0195[elevationIndex].azimuths[azimuthIndex];
// When libspeex_resampler is compiled with FIXED_POINT, samples in
// speex_resampler_process_float are rounded directly to int16_t, which
// only works well if the floats are in the range +/-32767. On such
// platforms it's better to resample before converting to float anyway.
#ifdef MOZ_SAMPLE_TYPE_S16
# define RESAMPLER_PROCESS speex_resampler_process_int
const int16_t* response = impulse_response_data;
const int16_t* resampledResponse;
#else
# define RESAMPLER_PROCESS speex_resampler_process_float
float response[ResponseFrameSize];
ConvertAudioSamples(impulse_response_data, response, ResponseFrameSize);
float* resampledResponse;
#endif
// Note that depending on the fftSize returned by the panner, we may be truncating the impulse response.
const size_t resampledResponseLength = fftSizeForSampleRate(sampleRate) / 2;
nsAutoTArray<AudioDataValue, 2 * ResponseFrameSize> resampled;
if (sampleRate == rawSampleRate) {
resampledResponse = response;
MOZ_ASSERT(resampledResponseLength == ResponseFrameSize);
} else {
resampled.SetLength(resampledResponseLength);
resampledResponse = resampled.Elements();
speex_resampler_skip_zeros(resampler);
// Feed the input buffer into the resampler.
spx_uint32_t in_len = ResponseFrameSize;
spx_uint32_t out_len = resampled.Length();
RESAMPLER_PROCESS(resampler, 0, response, &in_len,
resampled.Elements(), &out_len);
if (out_len < resampled.Length()) {
// The input should have all been processed.
MOZ_ASSERT(in_len == ResponseFrameSize);
// Feed in zeros get the data remaining in the resampler.
spx_uint32_t out_index = out_len;
in_len = speex_resampler_get_input_latency(resampler);
out_len = resampled.Length() - out_index;
RESAMPLER_PROCESS(resampler, 0, nullptr, &in_len,
resampled.Elements() + out_index, &out_len);
out_index += out_len;
// There may be some uninitialized samples remaining for very low
// sample rates.
PodZero(resampled.Elements() + out_index,
resampled.Length() - out_index);
}
speex_resampler_reset_mem(resampler);
}
#ifdef MOZ_SAMPLE_TYPE_S16
nsAutoTArray<float, 2 * ResponseFrameSize> floatArray;
floatArray.SetLength(resampledResponseLength);
float *floatResponse = floatArray.Elements();
ConvertAudioSamples(resampledResponse,
floatResponse, resampledResponseLength);
#else
float *floatResponse = resampledResponse;
#endif
#undef RESAMPLER_PROCESS
return HRTFKernel::create(floatResponse, resampledResponseLength, sampleRate);
}
// The range of elevations for the IRCAM impulse responses varies depending on azimuth, but the minimum elevation appears to always be -45.
//
// Here's how it goes:
static int maxElevations[] = {
// Azimuth
//
90, // 0
45, // 15
60, // 30
45, // 45
75, // 60
45, // 75
60, // 90
45, // 105
75, // 120
45, // 135
60, // 150
45, // 165
75, // 180
45, // 195
60, // 210
45, // 225
75, // 240
45, // 255
60, // 270
45, // 285
75, // 300
45, // 315
60, // 330
45 // 345
};
nsReturnRef<HRTFElevation> HRTFElevation::createBuiltin(int elevation, float sampleRate)
{
if (elevation < firstElevation ||
elevation > firstElevation + numberOfElevations * elevationSpacing ||
(elevation / elevationSpacing) * elevationSpacing != elevation)
return nsReturnRef<HRTFElevation>();
// Spacing, in degrees, between every azimuth loaded from resource.
// Some elevations do not have data for all these intervals.
// See maxElevations.
static const unsigned AzimuthSpacing = 15;
static const unsigned NumberOfRawAzimuths = 360 / AzimuthSpacing;
static_assert(AzimuthSpacing * NumberOfRawAzimuths == 360,
"Not a multiple");
static const unsigned InterpolationFactor =
NumberOfTotalAzimuths / NumberOfRawAzimuths;
static_assert(NumberOfTotalAzimuths ==
NumberOfRawAzimuths * InterpolationFactor, "Not a multiple");
HRTFKernelList kernelListL;
kernelListL.SetLength(NumberOfTotalAzimuths);
SpeexResamplerState* resampler = sampleRate == rawSampleRate ? nullptr :
speex_resampler_init(1, rawSampleRate, sampleRate,
SPEEX_RESAMPLER_QUALITY_DEFAULT, nullptr);
// Load convolution kernels from HRTF files.
int interpolatedIndex = 0;
for (unsigned rawIndex = 0; rawIndex < NumberOfRawAzimuths; ++rawIndex) {
// Don't let elevation exceed maximum for this azimuth.
int maxElevation = maxElevations[rawIndex];
int actualElevation = min(elevation, maxElevation);
kernelListL[interpolatedIndex] = calculateKernelForAzimuthElevation(rawIndex * AzimuthSpacing, actualElevation, resampler, sampleRate);
interpolatedIndex += InterpolationFactor;
}
if (resampler)
speex_resampler_destroy(resampler);
// Now go back and interpolate intermediate azimuth values.
for (unsigned i = 0; i < NumberOfTotalAzimuths; i += InterpolationFactor) {
int j = (i + InterpolationFactor) % NumberOfTotalAzimuths;
// Create the interpolated convolution kernels and delays.
for (unsigned jj = 1; jj < InterpolationFactor; ++jj) {
float x = float(jj) / float(InterpolationFactor); // interpolate from 0 -> 1
kernelListL[i + jj] = HRTFKernel::createInterpolatedKernel(kernelListL[i], kernelListL[j], x);
}
}
return nsReturnRef<HRTFElevation>(new HRTFElevation(&kernelListL, elevation, sampleRate));
}
nsReturnRef<HRTFElevation> HRTFElevation::createByInterpolatingSlices(HRTFElevation* hrtfElevation1, HRTFElevation* hrtfElevation2, float x, float sampleRate)
{
MOZ_ASSERT(hrtfElevation1 && hrtfElevation2);
if (!hrtfElevation1 || !hrtfElevation2)
return nsReturnRef<HRTFElevation>();
MOZ_ASSERT(x >= 0.0 && x < 1.0);
HRTFKernelList kernelListL;
kernelListL.SetLength(NumberOfTotalAzimuths);
const HRTFKernelList& kernelListL1 = hrtfElevation1->kernelListL();
const HRTFKernelList& kernelListL2 = hrtfElevation2->kernelListL();
// Interpolate kernels of corresponding azimuths of the two elevations.
for (unsigned i = 0; i < NumberOfTotalAzimuths; ++i) {
kernelListL[i] = HRTFKernel::createInterpolatedKernel(kernelListL1[i], kernelListL2[i], x);
}
// Interpolate elevation angle.
double angle = (1.0 - x) * hrtfElevation1->elevationAngle() + x * hrtfElevation2->elevationAngle();
return nsReturnRef<HRTFElevation>(new HRTFElevation(&kernelListL, static_cast<int>(angle), sampleRate));
}
void HRTFElevation::getKernelsFromAzimuth(double azimuthBlend, unsigned azimuthIndex, HRTFKernel* &kernelL, HRTFKernel* &kernelR, double& frameDelayL, double& frameDelayR)
{
bool checkAzimuthBlend = azimuthBlend >= 0.0 && azimuthBlend < 1.0;
MOZ_ASSERT(checkAzimuthBlend);
if (!checkAzimuthBlend)
azimuthBlend = 0.0;
unsigned numKernels = m_kernelListL.Length();
bool isIndexGood = azimuthIndex < numKernels;
MOZ_ASSERT(isIndexGood);
if (!isIndexGood) {
kernelL = 0;
kernelR = 0;
return;
}
// Return the left and right kernels,
// using symmetry to produce the right kernel.
kernelL = m_kernelListL[azimuthIndex];
int azimuthIndexR = (numKernels - azimuthIndex) % numKernels;
kernelR = m_kernelListL[azimuthIndexR];
frameDelayL = kernelL->frameDelay();
frameDelayR = kernelR->frameDelay();
int azimuthIndex2L = (azimuthIndex + 1) % numKernels;
double frameDelay2L = m_kernelListL[azimuthIndex2L]->frameDelay();
int azimuthIndex2R = (numKernels - azimuthIndex2L) % numKernels;
double frameDelay2R = m_kernelListL[azimuthIndex2R]->frameDelay();
// Linearly interpolate delays.
frameDelayL = (1.0 - azimuthBlend) * frameDelayL + azimuthBlend * frameDelay2L;
frameDelayR = (1.0 - azimuthBlend) * frameDelayR + azimuthBlend * frameDelay2R;
}
} // namespace WebCore