gecko/dom/asmjscache/AsmJSCache.cpp
Luke Wagner be3be017dd Bug 963588 - asmjscache: place cache entries apps that request AOT compilation in persistent storage (r=janv)
--HG--
extra : rebase_source : 95bc3d02cb1a7f2728d2615e8b992e0a2b2397f1
2014-03-05 14:47:10 -06:00

1944 lines
52 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "AsmJSCache.h"
#include <stdio.h>
#include "js/RootingAPI.h"
#include "jsfriendapi.h"
#include "mozilla/Assertions.h"
#include "mozilla/CondVar.h"
#include "mozilla/dom/asmjscache/PAsmJSCacheEntryChild.h"
#include "mozilla/dom/asmjscache/PAsmJSCacheEntryParent.h"
#include "mozilla/dom/ContentChild.h"
#include "mozilla/dom/PermissionMessageUtils.h"
#include "mozilla/dom/quota/Client.h"
#include "mozilla/dom/quota/OriginOrPatternString.h"
#include "mozilla/dom/quota/QuotaManager.h"
#include "mozilla/dom/quota/QuotaObject.h"
#include "mozilla/dom/quota/UsageInfo.h"
#include "mozilla/HashFunctions.h"
#include "mozilla/unused.h"
#include "nsIAtom.h"
#include "nsIFile.h"
#include "nsIPermissionManager.h"
#include "nsIPrincipal.h"
#include "nsIRunnable.h"
#include "nsISimpleEnumerator.h"
#include "nsIThread.h"
#include "nsIXULAppInfo.h"
#include "nsJSPrincipals.h"
#include "nsThreadUtils.h"
#include "nsXULAppAPI.h"
#include "prio.h"
#include "private/pprio.h"
#define ASMJSCACHE_METADATA_FILE_NAME "metadata"
#define ASMJSCACHE_ENTRY_FILE_NAME_BASE "module"
using mozilla::dom::quota::AssertIsOnIOThread;
using mozilla::dom::quota::OriginOrPatternString;
using mozilla::dom::quota::PersistenceType;
using mozilla::dom::quota::QuotaManager;
using mozilla::dom::quota::QuotaObject;
using mozilla::dom::quota::UsageInfo;
using mozilla::unused;
using mozilla::HashString;
namespace mozilla {
MOZ_TYPE_SPECIFIC_SCOPED_POINTER_TEMPLATE(ScopedPRFileDesc, PRFileDesc, PR_Close);
namespace dom {
namespace asmjscache {
namespace {
bool
IsMainProcess()
{
return XRE_GetProcessType() == GeckoProcessType_Default;
}
// Anything smaller should compile fast enough that caching will just add
// overhead.
static const size_t sMinCachedModuleLength = 10000;
// The number of characters to hash into the Metadata::Entry::mFastHash.
static const unsigned sNumFastHashChars = 4096;
nsresult
WriteMetadataFile(nsIFile* aMetadataFile, const Metadata& aMetadata)
{
int32_t openFlags = PR_WRONLY | PR_TRUNCATE | PR_CREATE_FILE;
JS::BuildIdCharVector buildId;
bool ok = GetBuildId(&buildId);
NS_ENSURE_TRUE(ok, NS_ERROR_OUT_OF_MEMORY);
ScopedPRFileDesc fd;
nsresult rv = aMetadataFile->OpenNSPRFileDesc(openFlags, 0644, &fd.rwget());
NS_ENSURE_SUCCESS(rv, rv);
uint32_t length = buildId.length();
int32_t bytesWritten = PR_Write(fd, &length, sizeof(length));
NS_ENSURE_TRUE(bytesWritten == sizeof(length), NS_ERROR_UNEXPECTED);
bytesWritten = PR_Write(fd, buildId.begin(), length);
NS_ENSURE_TRUE(bytesWritten == int32_t(length), NS_ERROR_UNEXPECTED);
bytesWritten = PR_Write(fd, &aMetadata, sizeof(aMetadata));
NS_ENSURE_TRUE(bytesWritten == sizeof(aMetadata), NS_ERROR_UNEXPECTED);
return NS_OK;
}
nsresult
ReadMetadataFile(nsIFile* aMetadataFile, Metadata& aMetadata)
{
int32_t openFlags = PR_RDONLY;
ScopedPRFileDesc fd;
nsresult rv = aMetadataFile->OpenNSPRFileDesc(openFlags, 0644, &fd.rwget());
NS_ENSURE_SUCCESS(rv, rv);
// Read the buildid and check that it matches the current buildid
JS::BuildIdCharVector currentBuildId;
bool ok = GetBuildId(&currentBuildId);
NS_ENSURE_TRUE(ok, NS_ERROR_OUT_OF_MEMORY);
uint32_t length;
int32_t bytesRead = PR_Read(fd, &length, sizeof(length));
NS_ENSURE_TRUE(bytesRead == sizeof(length), NS_ERROR_UNEXPECTED);
NS_ENSURE_TRUE(currentBuildId.length() == length, NS_ERROR_UNEXPECTED);
JS::BuildIdCharVector fileBuildId;
ok = fileBuildId.resize(length);
NS_ENSURE_TRUE(ok, NS_ERROR_OUT_OF_MEMORY);
bytesRead = PR_Read(fd, fileBuildId.begin(), length);
NS_ENSURE_TRUE(bytesRead == int32_t(length), NS_ERROR_UNEXPECTED);
for (uint32_t i = 0; i < length; i++) {
if (currentBuildId[i] != fileBuildId[i]) {
return NS_ERROR_FAILURE;
}
}
// Read the Metadata struct
bytesRead = PR_Read(fd, &aMetadata, sizeof(aMetadata));
NS_ENSURE_TRUE(bytesRead == sizeof(aMetadata), NS_ERROR_UNEXPECTED);
return NS_OK;
}
nsresult
GetCacheFile(nsIFile* aDirectory, unsigned aModuleIndex, nsIFile** aCacheFile)
{
nsCOMPtr<nsIFile> cacheFile;
nsresult rv = aDirectory->Clone(getter_AddRefs(cacheFile));
NS_ENSURE_SUCCESS(rv, rv);
nsString cacheFileName = NS_LITERAL_STRING(ASMJSCACHE_ENTRY_FILE_NAME_BASE);
cacheFileName.AppendInt(aModuleIndex);
rv = cacheFile->Append(cacheFileName);
NS_ENSURE_SUCCESS(rv, rv);
cacheFile.forget(aCacheFile);
return NS_OK;
}
class AutoDecreaseUsageForOrigin
{
const nsACString& mGroup;
const nsACString& mOrigin;
public:
uint64_t mFreed;
AutoDecreaseUsageForOrigin(const nsACString& aGroup,
const nsACString& aOrigin)
: mGroup(aGroup),
mOrigin(aOrigin),
mFreed(0)
{ }
~AutoDecreaseUsageForOrigin()
{
AssertIsOnIOThread();
if (!mFreed) {
return;
}
QuotaManager* qm = QuotaManager::Get();
MOZ_ASSERT(qm, "We are on the QuotaManager's IO thread");
qm->DecreaseUsageForOrigin(quota::PERSISTENCE_TYPE_TEMPORARY,
mGroup, mOrigin, mFreed);
}
};
static void
EvictEntries(nsIFile* aDirectory, const nsACString& aGroup,
const nsACString& aOrigin, uint64_t aNumBytes,
Metadata& aMetadata)
{
AssertIsOnIOThread();
AutoDecreaseUsageForOrigin usage(aGroup, aOrigin);
for (int i = Metadata::kLastEntry; i >= 0 && usage.mFreed < aNumBytes; i--) {
Metadata::Entry& entry = aMetadata.mEntries[i];
unsigned moduleIndex = entry.mModuleIndex;
nsCOMPtr<nsIFile> file;
nsresult rv = GetCacheFile(aDirectory, moduleIndex, getter_AddRefs(file));
if (NS_WARN_IF(NS_FAILED(rv))) {
return;
}
bool exists;
rv = file->Exists(&exists);
if (NS_WARN_IF(NS_FAILED(rv))) {
return;
}
if (exists) {
int64_t fileSize;
rv = file->GetFileSize(&fileSize);
if (NS_WARN_IF(NS_FAILED(rv))) {
return;
}
rv = file->Remove(false);
if (NS_WARN_IF(NS_FAILED(rv))) {
return;
}
usage.mFreed += fileSize;
}
entry.clear();
}
}
// FileDescriptorHolder owns a file descriptor and its memory mapping.
// FileDescriptorHolder is derived by all three runnable classes (that is,
// (Single|Parent|Child)ProcessRunnable. To avoid awkward workarouds,
// FileDescriptorHolder is derived virtually by File and MainProcessRunnable for
// the benefit of SingleProcessRunnable, which derives both. Since File and
// MainProcessRunnable both need to be runnables, FileDescriptorHolder also
// derives nsRunnable.
class FileDescriptorHolder : public nsRunnable
{
public:
FileDescriptorHolder()
: mQuotaObject(nullptr),
mFileSize(INT64_MIN),
mFileDesc(nullptr),
mFileMap(nullptr),
mMappedMemory(nullptr)
{ }
~FileDescriptorHolder()
{
// These resources should have already been released by Finish().
MOZ_ASSERT(!mQuotaObject);
MOZ_ASSERT(!mMappedMemory);
MOZ_ASSERT(!mFileMap);
MOZ_ASSERT(!mFileDesc);
}
size_t
FileSize() const
{
MOZ_ASSERT(mFileSize >= 0, "Accessing FileSize of unopened file");
return mFileSize;
}
PRFileDesc*
FileDesc() const
{
MOZ_ASSERT(mFileDesc, "Accessing FileDesc of unopened file");
return mFileDesc;
}
bool
MapMemory(OpenMode aOpenMode)
{
MOZ_ASSERT(!mFileMap, "Cannot call MapMemory twice");
PRFileMapProtect mapFlags = aOpenMode == eOpenForRead ? PR_PROT_READONLY
: PR_PROT_READWRITE;
mFileMap = PR_CreateFileMap(mFileDesc, mFileSize, mapFlags);
NS_ENSURE_TRUE(mFileMap, false);
mMappedMemory = PR_MemMap(mFileMap, 0, mFileSize);
NS_ENSURE_TRUE(mMappedMemory, false);
return true;
}
void*
MappedMemory() const
{
MOZ_ASSERT(mMappedMemory, "Accessing MappedMemory of un-mapped file");
return mMappedMemory;
}
protected:
// This method must be called before AllowNextSynchronizedOp (which releases
// the lock protecting these resources). It is idempotent, so it is ok to call
// multiple times (or before the file has been fully opened).
void
Finish()
{
if (mMappedMemory) {
PR_MemUnmap(mMappedMemory, mFileSize);
mMappedMemory = nullptr;
}
if (mFileMap) {
PR_CloseFileMap(mFileMap);
mFileMap = nullptr;
}
if (mFileDesc) {
PR_Close(mFileDesc);
mFileDesc = nullptr;
}
// Holding the QuotaObject alive until all the cache files are closed enables
// assertions in QuotaManager that the cache entry isn't cleared while we
// are working on it.
mQuotaObject = nullptr;
}
nsRefPtr<QuotaObject> mQuotaObject;
int64_t mFileSize;
PRFileDesc* mFileDesc;
PRFileMap* mFileMap;
void* mMappedMemory;
};
// File is a base class shared by (Single|Client)ProcessEntryRunnable that
// presents a single interface to the AsmJSCache ops which need to wait until
// the file is open, regardless of whether we are executing in the main process
// or not.
class File : public virtual FileDescriptorHolder
{
public:
class AutoClose
{
File* mFile;
public:
explicit AutoClose(File* aFile = nullptr)
: mFile(aFile)
{ }
void
Init(File* aFile)
{
MOZ_ASSERT(!mFile);
mFile = aFile;
}
File*
operator->() const
{
MOZ_ASSERT(mFile);
return mFile;
}
void
Forget(File** aFile)
{
*aFile = mFile;
mFile = nullptr;
}
~AutoClose()
{
if (mFile) {
mFile->Close();
}
}
};
bool
BlockUntilOpen(AutoClose* aCloser)
{
MOZ_ASSERT(!mWaiting, "Can only call BlockUntilOpen once");
MOZ_ASSERT(!mOpened, "Can only call BlockUntilOpen once");
mWaiting = true;
nsresult rv = NS_DispatchToMainThread(this);
NS_ENSURE_SUCCESS(rv, false);
{
MutexAutoLock lock(mMutex);
while (mWaiting) {
mCondVar.Wait();
}
}
if (!mOpened) {
return false;
}
// Now that we're open, we're guarnateed a Close() call. However, we are
// not guarnateed someone is holding an outstanding reference until the File
// is closed, so we do that ourselves and Release() in OnClose().
aCloser->Init(this);
AddRef();
return true;
}
// This method must be called if BlockUntilOpen returns 'true'. AutoClose
// mostly takes care of this. A derived class that implements Close() must
// guarnatee that OnClose() is called (eventually).
virtual void
Close() = 0;
protected:
File()
: mMutex("File::mMutex"),
mCondVar(mMutex, "File::mCondVar"),
mWaiting(false),
mOpened(false)
{ }
~File()
{
MOZ_ASSERT(!mWaiting, "Shouldn't be destroyed while thread is waiting");
MOZ_ASSERT(!mOpened, "OnClose() should have been called");
}
void
OnOpen()
{
Notify(true);
}
void
OnFailure()
{
FileDescriptorHolder::Finish();
Notify(false);
}
void
OnClose()
{
FileDescriptorHolder::Finish();
MOZ_ASSERT(mOpened);
mOpened = false;
// Match the AddRef in BlockUntilOpen(). The main thread event loop still
// holds an outstanding ref which will keep 'this' alive until returning to
// the event loop.
Release();
}
private:
void
Notify(bool aSuccess)
{
MOZ_ASSERT(NS_IsMainThread());
MutexAutoLock lock(mMutex);
MOZ_ASSERT(mWaiting);
mWaiting = false;
mOpened = aSuccess;
mCondVar.Notify();
}
Mutex mMutex;
CondVar mCondVar;
bool mWaiting;
bool mOpened;
};
// MainProcessRunnable is a base class shared by (Single|Parent)ProcessRunnable
// that factors out the runnable state machine required to open a cache entry
// that runs in the main process.
class MainProcessRunnable : public virtual FileDescriptorHolder
{
public:
NS_DECL_NSIRUNNABLE
// MainProcessRunnable runnable assumes that the derived class ensures
// (through ref-counting or preconditions) that aPrincipal is kept alive for
// the lifetime of the MainProcessRunnable.
MainProcessRunnable(nsIPrincipal* aPrincipal,
OpenMode aOpenMode,
WriteParams aWriteParams)
: mPrincipal(aPrincipal),
mOpenMode(aOpenMode),
mWriteParams(aWriteParams),
mNeedAllowNextSynchronizedOp(false),
mPersistence(quota::PERSISTENCE_TYPE_INVALID),
mState(eInitial)
{
MOZ_ASSERT(IsMainProcess());
}
virtual ~MainProcessRunnable()
{
MOZ_ASSERT(mState == eFinished);
MOZ_ASSERT(!mNeedAllowNextSynchronizedOp);
}
protected:
// This method is called by the derived class on the main thread when a
// cache entry has been selected to open.
void
OpenForRead(unsigned aModuleIndex)
{
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(mState == eWaitingToOpenCacheFileForRead);
MOZ_ASSERT(mOpenMode == eOpenForRead);
mModuleIndex = aModuleIndex;
mState = eReadyToOpenCacheFileForRead;
DispatchToIOThread();
}
// This method is called by the derived class on the main thread when no cache
// entry was found to open. If we just tried a lookup in persistent storage
// then we might still get a hit in temporary storage (for an asm.js module
// that wasn't compiled at install-time).
void
CacheMiss()
{
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(mState == eFailedToReadMetadata ||
mState == eWaitingToOpenCacheFileForRead);
MOZ_ASSERT(mOpenMode == eOpenForRead);
if (mPersistence == quota::PERSISTENCE_TYPE_TEMPORARY) {
Fail();
return;
}
// Try again with a clean slate. InitOnMainThread will see that mPersistence
// is initialized and switch to temporary storage.
MOZ_ASSERT(mPersistence == quota::PERSISTENCE_TYPE_PERSISTENT);
FinishOnMainThread();
mState = eInitial;
NS_DispatchToMainThread(this);
}
// This method is called by the derived class (either on the JS compilation
// thread or the main thread) when the JS engine is finished reading/writing
// the cache entry.
void
Close()
{
MOZ_ASSERT(mState == eOpened);
mState = eClosing;
NS_DispatchToMainThread(this);
}
// This method is called both internally and by derived classes upon any
// failure that prevents the eventual opening of the cache entry.
void
Fail()
{
MOZ_ASSERT(mState != eOpened &&
mState != eClosing &&
mState != eFailing &&
mState != eFinished);
mState = eFailing;
NS_DispatchToMainThread(this);
}
// Called by MainProcessRunnable on the main thread after metadata is open:
virtual void
OnOpenMetadataForRead(const Metadata& aMetadata) = 0;
// Called by MainProcessRunnable on the main thread after the entry is open:
virtual void
OnOpenCacheFile() = 0;
// This method may be overridden, but it must be called from the overrider.
// Called by MainProcessRunnable on the main thread after a call to Fail():
virtual void
OnFailure()
{
FinishOnMainThread();
}
// This method may be overridden, but it must be called from the overrider.
// Called by MainProcessRunnable on the main thread after a call to Close():
virtual void
OnClose()
{
FinishOnMainThread();
}
private:
nsresult
InitOnMainThread();
nsresult
ReadMetadata();
nsresult
OpenCacheFileForWrite();
nsresult
OpenCacheFileForRead();
void
FinishOnMainThread();
void
DispatchToIOThread()
{
// If shutdown just started, the QuotaManager may have been deleted.
QuotaManager* qm = QuotaManager::Get();
if (!qm) {
Fail();
return;
}
nsresult rv = qm->IOThread()->Dispatch(this, NS_DISPATCH_NORMAL);
if (NS_FAILED(rv)) {
Fail();
return;
}
}
nsIPrincipal* const mPrincipal;
const OpenMode mOpenMode;
const WriteParams mWriteParams;
// State initialized during eInitial:
bool mNeedAllowNextSynchronizedOp;
quota::PersistenceType mPersistence;
nsCString mGroup;
nsCString mOrigin;
nsCString mStorageId;
// State initialized during eReadyToReadMetadata
nsCOMPtr<nsIFile> mDirectory;
nsCOMPtr<nsIFile> mMetadataFile;
Metadata mMetadata;
// State initialized during eWaitingToOpenCacheFileForRead
unsigned mModuleIndex;
enum State {
eInitial, // Just created, waiting to be dispatched to main thread
eWaitingToOpenMetadata, // Waiting to be called back from WaitForOpenAllowed
eReadyToReadMetadata, // Waiting to read the metadata file on the IO thread
eFailedToReadMetadata, // Waiting to be dispatched to main thread after fail
eSendingMetadataForRead, // Waiting to send OnOpenMetadataForRead
eWaitingToOpenCacheFileForRead, // Waiting to hear back from child
eReadyToOpenCacheFileForRead, // Waiting to open cache file for read
eSendingCacheFile, // Waiting to send OnOpenCacheFile on the main thread
eOpened, // Finished calling OnOpen, waiting to be closed
eClosing, // Waiting to be dispatched to main thread again
eFailing, // Just failed, waiting to be dispatched to the main thread
eFinished, // Terminal state
};
State mState;
};
nsresult
MainProcessRunnable::InitOnMainThread()
{
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(mState == eInitial);
QuotaManager* qm = QuotaManager::GetOrCreate();
NS_ENSURE_STATE(qm);
nsresult rv = QuotaManager::GetInfoFromPrincipal(mPrincipal, &mGroup,
&mOrigin, nullptr, nullptr);
NS_ENSURE_SUCCESS(rv, rv);
bool isApp = mPrincipal->GetAppStatus() !=
nsIPrincipal::APP_STATUS_NOT_INSTALLED;
if (mOpenMode == eOpenForWrite) {
MOZ_ASSERT(mPersistence == quota::PERSISTENCE_TYPE_INVALID);
if (mWriteParams.mInstalled) {
// If we are performing install-time caching of an app, we'd like to store
// the cache entry in persistent storage so the entry is never evicted,
// but we need to verify that the app has unlimited storage permissions
// first. Unlimited storage permissions justify us in skipping all quota
// checks when storing the cache entry and avoids all the issues around
// the persistent quota prompt.
MOZ_ASSERT(isApp);
nsCOMPtr<nsIPermissionManager> pm =
do_GetService(NS_PERMISSIONMANAGER_CONTRACTID);
NS_ENSURE_TRUE(pm, NS_ERROR_UNEXPECTED);
uint32_t permission;
rv = pm->TestPermissionFromPrincipal(mPrincipal,
PERMISSION_STORAGE_UNLIMITED,
&permission);
NS_ENSURE_SUCCESS(rv, NS_ERROR_UNEXPECTED);
// If app doens't have the unlimited storage permission, we can still
// cache in temporary for a likely good first-run experience.
mPersistence = permission == nsIPermissionManager::ALLOW_ACTION
? quota::PERSISTENCE_TYPE_PERSISTENT
: quota::PERSISTENCE_TYPE_TEMPORARY;
} else {
mPersistence = quota::PERSISTENCE_TYPE_TEMPORARY;
}
} else {
// For the reasons described above, apps may have cache entries in both
// persistent and temporary storage. At lookup time we don't know how and
// where the given script was cached, so start the search in persistent
// storage and, if that fails, search in temporary storage. (Non-apps can
// only be stored in temporary storage.)
if (mPersistence == quota::PERSISTENCE_TYPE_INVALID) {
mPersistence = isApp ? quota::PERSISTENCE_TYPE_PERSISTENT
: quota::PERSISTENCE_TYPE_TEMPORARY;
} else {
MOZ_ASSERT(isApp);
MOZ_ASSERT(mPersistence == quota::PERSISTENCE_TYPE_PERSISTENT);
mPersistence = quota::PERSISTENCE_TYPE_TEMPORARY;
}
}
QuotaManager::GetStorageId(mPersistence, mOrigin, quota::Client::ASMJS,
NS_LITERAL_STRING("asmjs"), mStorageId);
return NS_OK;
}
nsresult
MainProcessRunnable::ReadMetadata()
{
AssertIsOnIOThread();
MOZ_ASSERT(mState == eReadyToReadMetadata);
QuotaManager* qm = QuotaManager::Get();
MOZ_ASSERT(qm, "We are on the QuotaManager's IO thread");
// Only track quota for temporary storage. For persistent storage, we've
// already checked that we have unlimited-storage permissions.
bool trackQuota = mPersistence == quota::PERSISTENCE_TYPE_TEMPORARY;
nsresult rv = qm->EnsureOriginIsInitialized(mPersistence, mGroup, mOrigin,
trackQuota,
getter_AddRefs(mDirectory));
NS_ENSURE_SUCCESS(rv, rv);
rv = mDirectory->Append(NS_LITERAL_STRING(ASMJSCACHE_DIRECTORY_NAME));
NS_ENSURE_SUCCESS(rv, rv);
bool exists;
rv = mDirectory->Exists(&exists);
NS_ENSURE_SUCCESS(rv, rv);
if (!exists) {
rv = mDirectory->Create(nsIFile::DIRECTORY_TYPE, 0755);
NS_ENSURE_SUCCESS(rv, rv);
} else {
DebugOnly<bool> isDirectory;
MOZ_ASSERT(NS_SUCCEEDED(mDirectory->IsDirectory(&isDirectory)));
MOZ_ASSERT(isDirectory, "Should have caught this earlier!");
}
rv = mDirectory->Clone(getter_AddRefs(mMetadataFile));
NS_ENSURE_SUCCESS(rv, rv);
rv = mMetadataFile->Append(NS_LITERAL_STRING(ASMJSCACHE_METADATA_FILE_NAME));
NS_ENSURE_SUCCESS(rv, rv);
rv = mMetadataFile->Exists(&exists);
NS_ENSURE_SUCCESS(rv, rv);
if (exists && NS_FAILED(ReadMetadataFile(mMetadataFile, mMetadata))) {
exists = false;
}
if (!exists) {
// If we are reading, we can't possibly have a cache hit.
if (mOpenMode == eOpenForRead) {
return NS_ERROR_FILE_NOT_FOUND;
}
// Initialize Metadata with a valid empty state for the LRU cache.
for (unsigned i = 0; i < Metadata::kNumEntries; i++) {
Metadata::Entry& entry = mMetadata.mEntries[i];
entry.mModuleIndex = i;
entry.clear();
}
}
return NS_OK;
}
nsresult
MainProcessRunnable::OpenCacheFileForWrite()
{
AssertIsOnIOThread();
MOZ_ASSERT(mState == eReadyToReadMetadata);
MOZ_ASSERT(mOpenMode == eOpenForWrite);
mFileSize = mWriteParams.mSize;
// Kick out the oldest entry in the LRU queue in the metadata.
mModuleIndex = mMetadata.mEntries[Metadata::kLastEntry].mModuleIndex;
nsCOMPtr<nsIFile> file;
nsresult rv = GetCacheFile(mDirectory, mModuleIndex, getter_AddRefs(file));
NS_ENSURE_SUCCESS(rv, rv);
QuotaManager* qm = QuotaManager::Get();
MOZ_ASSERT(qm, "We are on the QuotaManager's IO thread");
// If we are allocating in temporary storage, ask the QuotaManager if we're
// within the quota. If we are allocating in persistent storage, we've already
// checked that we have the unlimited-storage permission, so there is nothing
// to check.
if (mPersistence == quota::PERSISTENCE_TYPE_TEMPORARY) {
// Create the QuotaObject before all file IO and keep it alive until caching
// completes to get maximum assertion coverage in QuotaManager against
// concurrent removal, etc.
mQuotaObject = qm->GetQuotaObject(mPersistence, mGroup, mOrigin, file);
NS_ENSURE_STATE(mQuotaObject);
if (!mQuotaObject->MaybeAllocateMoreSpace(0, mWriteParams.mSize)) {
// If the request fails, it might be because mOrigin is using too much
// space (MaybeAllocateMoreSpace will not evict our own origin since it is
// active). Try to make some space by evicting LRU entries until there is
// enough space.
EvictEntries(mDirectory, mGroup, mOrigin, mWriteParams.mSize, mMetadata);
if (!mQuotaObject->MaybeAllocateMoreSpace(0, mWriteParams.mSize)) {
return NS_ERROR_FAILURE;
}
}
}
int32_t openFlags = PR_RDWR | PR_TRUNCATE | PR_CREATE_FILE;
rv = file->OpenNSPRFileDesc(openFlags, 0644, &mFileDesc);
NS_ENSURE_SUCCESS(rv, rv);
// Move the mModuleIndex's LRU entry to the recent end of the queue.
PodMove(mMetadata.mEntries + 1, mMetadata.mEntries, Metadata::kLastEntry);
Metadata::Entry& entry = mMetadata.mEntries[0];
entry.mFastHash = mWriteParams.mFastHash;
entry.mNumChars = mWriteParams.mNumChars;
entry.mFullHash = mWriteParams.mFullHash;
entry.mModuleIndex = mModuleIndex;
rv = WriteMetadataFile(mMetadataFile, mMetadata);
NS_ENSURE_SUCCESS(rv, rv);
return NS_OK;
}
nsresult
MainProcessRunnable::OpenCacheFileForRead()
{
AssertIsOnIOThread();
MOZ_ASSERT(mState == eReadyToOpenCacheFileForRead);
MOZ_ASSERT(mOpenMode == eOpenForRead);
nsCOMPtr<nsIFile> file;
nsresult rv = GetCacheFile(mDirectory, mModuleIndex, getter_AddRefs(file));
NS_ENSURE_SUCCESS(rv, rv);
QuotaManager* qm = QuotaManager::Get();
MOZ_ASSERT(qm, "We are on the QuotaManager's IO thread");
if (mPersistence == quota::PERSISTENCE_TYPE_TEMPORARY) {
// Even though it's not strictly necessary, create the QuotaObject before
// all file IO and keep it alive until caching completes to get maximum
// assertion coverage in QuotaManager against concurrent removal, etc.
mQuotaObject = qm->GetQuotaObject(mPersistence, mGroup, mOrigin, file);
NS_ENSURE_STATE(mQuotaObject);
}
rv = file->GetFileSize(&mFileSize);
NS_ENSURE_SUCCESS(rv, rv);
int32_t openFlags = PR_RDONLY | nsIFile::OS_READAHEAD;
rv = file->OpenNSPRFileDesc(openFlags, 0644, &mFileDesc);
NS_ENSURE_SUCCESS(rv, rv);
// Move the mModuleIndex's LRU entry to the recent end of the queue.
unsigned lruIndex = 0;
while (mMetadata.mEntries[lruIndex].mModuleIndex != mModuleIndex) {
if (++lruIndex == Metadata::kNumEntries) {
return NS_ERROR_UNEXPECTED;
}
}
Metadata::Entry entry = mMetadata.mEntries[lruIndex];
PodMove(mMetadata.mEntries + 1, mMetadata.mEntries, lruIndex);
mMetadata.mEntries[0] = entry;
rv = WriteMetadataFile(mMetadataFile, mMetadata);
NS_ENSURE_SUCCESS(rv, rv);
return NS_OK;
}
void
MainProcessRunnable::FinishOnMainThread()
{
MOZ_ASSERT(NS_IsMainThread());
// Per FileDescriptorHolder::Finish()'s comment, call before
// AllowNextSynchronizedOp.
FileDescriptorHolder::Finish();
if (mNeedAllowNextSynchronizedOp) {
mNeedAllowNextSynchronizedOp = false;
QuotaManager* qm = QuotaManager::Get();
if (qm) {
qm->AllowNextSynchronizedOp(OriginOrPatternString::FromOrigin(mOrigin),
Nullable<PersistenceType>(mPersistence),
mStorageId);
}
}
}
NS_IMETHODIMP
MainProcessRunnable::Run()
{
nsresult rv;
// All success/failure paths must eventually call Finish() to avoid leaving
// the parser hanging.
switch (mState) {
case eInitial: {
MOZ_ASSERT(NS_IsMainThread());
rv = InitOnMainThread();
if (NS_FAILED(rv)) {
Fail();
return NS_OK;
}
mState = eWaitingToOpenMetadata;
rv = QuotaManager::Get()->WaitForOpenAllowed(
OriginOrPatternString::FromOrigin(mOrigin),
Nullable<PersistenceType>(mPersistence),
mStorageId, this);
if (NS_FAILED(rv)) {
Fail();
return NS_OK;
}
mNeedAllowNextSynchronizedOp = true;
return NS_OK;
}
case eWaitingToOpenMetadata: {
MOZ_ASSERT(NS_IsMainThread());
mState = eReadyToReadMetadata;
DispatchToIOThread();
return NS_OK;
}
case eReadyToReadMetadata: {
AssertIsOnIOThread();
rv = ReadMetadata();
if (NS_FAILED(rv)) {
mState = eFailedToReadMetadata;
NS_DispatchToMainThread(this);
return NS_OK;
}
if (mOpenMode == eOpenForRead) {
mState = eSendingMetadataForRead;
NS_DispatchToMainThread(this);
return NS_OK;
}
rv = OpenCacheFileForWrite();
if (NS_FAILED(rv)) {
Fail();
return NS_OK;
}
mState = eSendingCacheFile;
NS_DispatchToMainThread(this);
return NS_OK;
}
case eFailedToReadMetadata: {
MOZ_ASSERT(NS_IsMainThread());
CacheMiss();
return NS_OK;
}
case eSendingMetadataForRead: {
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(mOpenMode == eOpenForRead);
mState = eWaitingToOpenCacheFileForRead;
OnOpenMetadataForRead(mMetadata);
return NS_OK;
}
case eReadyToOpenCacheFileForRead: {
AssertIsOnIOThread();
MOZ_ASSERT(mOpenMode == eOpenForRead);
rv = OpenCacheFileForRead();
if (NS_FAILED(rv)) {
Fail();
return NS_OK;
}
mState = eSendingCacheFile;
NS_DispatchToMainThread(this);
return NS_OK;
}
case eSendingCacheFile: {
MOZ_ASSERT(NS_IsMainThread());
mState = eOpened;
OnOpenCacheFile();
return NS_OK;
}
case eFailing: {
MOZ_ASSERT(NS_IsMainThread());
mState = eFinished;
OnFailure();
return NS_OK;
}
case eClosing: {
MOZ_ASSERT(NS_IsMainThread());
mState = eFinished;
OnClose();
return NS_OK;
}
case eWaitingToOpenCacheFileForRead:
case eOpened:
case eFinished: {
MOZ_ASSUME_UNREACHABLE("Shouldn't Run() in this state");
}
}
MOZ_ASSUME_UNREACHABLE("Corrupt state");
return NS_OK;
}
bool
FindHashMatch(const Metadata& aMetadata, const ReadParams& aReadParams,
unsigned* aModuleIndex)
{
// Perform a fast hash of the first sNumFastHashChars chars. Each cache entry
// also stores an mFastHash of its first sNumFastHashChars so this gives us a
// fast way to probabilistically determine whether we have a cache hit. We
// still do a full hash of all the chars before returning the cache file to
// the engine to avoid penalizing the case where there are multiple cached
// asm.js modules where the first sNumFastHashChars are the same. The
// mFullHash of each cache entry can have a different mNumChars so the fast
// hash allows us to avoid performing up to Metadata::kNumEntries separate
// full hashes.
uint32_t numChars = aReadParams.mLimit - aReadParams.mBegin;
MOZ_ASSERT(numChars > sNumFastHashChars);
uint32_t fastHash = HashString(aReadParams.mBegin, sNumFastHashChars);
for (unsigned i = 0; i < Metadata::kNumEntries ; i++) {
// Compare the "fast hash" first to see whether it is worthwhile to
// hash all the chars.
Metadata::Entry entry = aMetadata.mEntries[i];
if (entry.mFastHash != fastHash) {
continue;
}
// Assuming we have enough characters, hash all the chars it would take
// to match this cache entry and compare to the cache entry. If we get a
// hit we'll still do a full source match later (in the JS engine), but
// the full hash match means this is probably the cache entry we want.
if (numChars < entry.mNumChars) {
continue;
}
uint32_t fullHash = HashString(aReadParams.mBegin, entry.mNumChars);
if (entry.mFullHash != fullHash) {
continue;
}
*aModuleIndex = entry.mModuleIndex;
return true;
}
return false;
}
// A runnable that executes for a cache access originating in the main process.
class SingleProcessRunnable MOZ_FINAL : public File,
private MainProcessRunnable
{
public:
// In the single-process case, the calling JS compilation thread holds the
// nsIPrincipal alive indirectly (via the global object -> compartment ->
// principal) so we don't have to ref-count it here. This is fortunate since
// we are off the main thread and nsIPrincipals can only be ref-counted on
// the main thread.
SingleProcessRunnable(nsIPrincipal* aPrincipal,
OpenMode aOpenMode,
WriteParams aWriteParams,
ReadParams aReadParams)
: MainProcessRunnable(aPrincipal, aOpenMode, aWriteParams),
mReadParams(aReadParams)
{
MOZ_ASSERT(IsMainProcess());
MOZ_ASSERT(!NS_IsMainThread());
MOZ_COUNT_CTOR(SingleProcessRunnable);
}
~SingleProcessRunnable()
{
MOZ_COUNT_DTOR(SingleProcessRunnable);
}
private:
void
OnOpenMetadataForRead(const Metadata& aMetadata) MOZ_OVERRIDE
{
uint32_t moduleIndex;
if (FindHashMatch(aMetadata, mReadParams, &moduleIndex)) {
MainProcessRunnable::OpenForRead(moduleIndex);
} else {
MainProcessRunnable::CacheMiss();
}
}
void
OnOpenCacheFile() MOZ_OVERRIDE
{
File::OnOpen();
}
void
Close() MOZ_OVERRIDE MOZ_FINAL
{
MainProcessRunnable::Close();
}
void
OnFailure() MOZ_OVERRIDE
{
MainProcessRunnable::OnFailure();
File::OnFailure();
}
void
OnClose() MOZ_OVERRIDE MOZ_FINAL
{
MainProcessRunnable::OnClose();
File::OnClose();
}
// Avoid MSVC 'dominance' warning by having clear Run() override.
NS_IMETHODIMP
Run() MOZ_OVERRIDE
{
return MainProcessRunnable::Run();
}
ReadParams mReadParams;
};
// A runnable that executes in a parent process for a cache access originating
// in the content process. This runnable gets registered as an IPDL subprotocol
// actor so that it can communicate with the corresponding ChildProcessRunnable.
class ParentProcessRunnable MOZ_FINAL : public PAsmJSCacheEntryParent,
public MainProcessRunnable
{
public:
// The given principal comes from an IPC::Principal which will be dec-refed
// at the end of the message, so we must ref-count it here. Fortunately, we
// are on the main thread (where PContent messages are delivered).
ParentProcessRunnable(nsIPrincipal* aPrincipal,
OpenMode aOpenMode,
WriteParams aWriteParams)
: MainProcessRunnable(aPrincipal, aOpenMode, aWriteParams),
mPrincipalHolder(aPrincipal),
mActorDestroyed(false),
mOpened(false),
mFinished(false)
{
MOZ_ASSERT(IsMainProcess());
MOZ_ASSERT(NS_IsMainThread());
MOZ_COUNT_CTOR(ParentProcessRunnable);
}
private:
~ParentProcessRunnable()
{
MOZ_ASSERT(!mPrincipalHolder, "Should have already been released");
MOZ_ASSERT(mActorDestroyed);
MOZ_ASSERT(mFinished);
MOZ_COUNT_DTOR(ParentProcessRunnable);
}
bool
Recv__delete__() MOZ_OVERRIDE
{
MOZ_ASSERT(!mFinished);
mFinished = true;
if (mOpened) {
MainProcessRunnable::Close();
} else {
MainProcessRunnable::Fail();
}
return true;
}
void
ActorDestroy(ActorDestroyReason why) MOZ_OVERRIDE
{
MOZ_ASSERT(!mActorDestroyed);
mActorDestroyed = true;
// Assume ActorDestroy can happen at any time, so probe the current state to
// determine what needs to happen.
if (mFinished) {
return;
}
mFinished = true;
if (mOpened) {
MainProcessRunnable::Close();
} else {
MainProcessRunnable::Fail();
}
}
void
OnOpenMetadataForRead(const Metadata& aMetadata) MOZ_OVERRIDE
{
MOZ_ASSERT(NS_IsMainThread());
if (!SendOnOpenMetadataForRead(aMetadata)) {
unused << Send__delete__(this);
}
}
bool
RecvSelectCacheFileToRead(const uint32_t& aModuleIndex) MOZ_OVERRIDE
{
MainProcessRunnable::OpenForRead(aModuleIndex);
return true;
}
bool
RecvCacheMiss() MOZ_OVERRIDE
{
MainProcessRunnable::CacheMiss();
return true;
}
void
OnOpenCacheFile() MOZ_OVERRIDE
{
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(!mOpened);
mOpened = true;
FileDescriptor::PlatformHandleType handle =
FileDescriptor::PlatformHandleType(PR_FileDesc2NativeHandle(mFileDesc));
if (!SendOnOpenCacheFile(mFileSize, handle)) {
unused << Send__delete__(this);
}
}
void
OnClose() MOZ_OVERRIDE MOZ_FINAL
{
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(mOpened);
mFinished = true;
MainProcessRunnable::OnClose();
MOZ_ASSERT(mActorDestroyed);
mPrincipalHolder = nullptr;
}
void
OnFailure() MOZ_OVERRIDE
{
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(!mOpened);
mFinished = true;
MainProcessRunnable::OnFailure();
if (!mActorDestroyed) {
unused << Send__delete__(this);
}
mPrincipalHolder = nullptr;
}
nsCOMPtr<nsIPrincipal> mPrincipalHolder;
bool mActorDestroyed;
bool mOpened;
bool mFinished;
};
} // unnamed namespace
PAsmJSCacheEntryParent*
AllocEntryParent(OpenMode aOpenMode,
WriteParams aWriteParams,
nsIPrincipal* aPrincipal)
{
ParentProcessRunnable* runnable =
new ParentProcessRunnable(aPrincipal, aOpenMode, aWriteParams);
// AddRef to keep the runnable alive until DeallocEntryParent.
runnable->AddRef();
nsresult rv = NS_DispatchToMainThread(runnable);
NS_ENSURE_SUCCESS(rv, nullptr);
return runnable;
}
void
DeallocEntryParent(PAsmJSCacheEntryParent* aActor)
{
// Match the AddRef in AllocEntryParent.
static_cast<ParentProcessRunnable*>(aActor)->Release();
}
namespace {
class ChildProcessRunnable MOZ_FINAL : public File,
public PAsmJSCacheEntryChild
{
public:
NS_DECL_NSIRUNNABLE
// In the single-process case, the calling JS compilation thread holds the
// nsIPrincipal alive indirectly (via the global object -> compartment ->
// principal) so we don't have to ref-count it here. This is fortunate since
// we are off the main thread and nsIPrincipals can only be ref-counted on
// the main thread.
ChildProcessRunnable(nsIPrincipal* aPrincipal,
OpenMode aOpenMode,
WriteParams aWriteParams,
ReadParams aReadParams)
: mPrincipal(aPrincipal),
mOpenMode(aOpenMode),
mWriteParams(aWriteParams),
mReadParams(aReadParams),
mActorDestroyed(false),
mState(eInitial)
{
MOZ_ASSERT(!IsMainProcess());
MOZ_ASSERT(!NS_IsMainThread());
MOZ_COUNT_CTOR(ChildProcessRunnable);
}
~ChildProcessRunnable()
{
MOZ_ASSERT(mState == eFinished);
MOZ_ASSERT(mActorDestroyed);
MOZ_COUNT_DTOR(ChildProcessRunnable);
}
private:
bool
RecvOnOpenMetadataForRead(const Metadata& aMetadata) MOZ_OVERRIDE
{
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(mState == eOpening);
uint32_t moduleIndex;
if (FindHashMatch(aMetadata, mReadParams, &moduleIndex)) {
return SendSelectCacheFileToRead(moduleIndex);
}
return SendCacheMiss();
}
bool
RecvOnOpenCacheFile(const int64_t& aFileSize,
const FileDescriptor& aFileDesc) MOZ_OVERRIDE
{
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(mState == eOpening);
mFileSize = aFileSize;
mFileDesc = PR_ImportFile(PROsfd(aFileDesc.PlatformHandle()));
if (!mFileDesc) {
return false;
}
mState = eOpened;
File::OnOpen();
return true;
}
bool
Recv__delete__() MOZ_OVERRIDE
{
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(mState == eOpening);
Fail();
return true;
}
void
ActorDestroy(ActorDestroyReason why) MOZ_OVERRIDE
{
MOZ_ASSERT(NS_IsMainThread());
mActorDestroyed = true;
}
void
Close() MOZ_OVERRIDE MOZ_FINAL
{
MOZ_ASSERT(mState == eOpened);
mState = eClosing;
NS_DispatchToMainThread(this);
}
private:
void
Fail()
{
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(mState == eInitial || mState == eOpening);
mState = eFinished;
File::OnFailure();
}
nsIPrincipal* const mPrincipal;
const OpenMode mOpenMode;
WriteParams mWriteParams;
ReadParams mReadParams;
bool mActorDestroyed;
enum State {
eInitial, // Just created, waiting to dispatched to the main thread
eOpening, // Waiting for the parent process to respond
eOpened, // Parent process opened the entry and sent it back
eClosing, // Waiting to be dispatched to the main thread to Send__delete__
eFinished // Terminal state
};
State mState;
};
NS_IMETHODIMP
ChildProcessRunnable::Run()
{
switch (mState) {
case eInitial: {
MOZ_ASSERT(NS_IsMainThread());
// AddRef to keep this runnable alive until IPDL deallocates the
// subprotocol (DeallocEntryChild).
AddRef();
if (!ContentChild::GetSingleton()->SendPAsmJSCacheEntryConstructor(
this, mOpenMode, mWriteParams, IPC::Principal(mPrincipal)))
{
// On failure, undo the AddRef (since DeallocEntryChild will not be
// called) and unblock the parsing thread with a failure. The main
// thread event loop still holds an outstanding ref which will keep
// 'this' alive until returning to the event loop.
Release();
Fail();
return NS_OK;
}
mState = eOpening;
return NS_OK;
}
case eClosing: {
MOZ_ASSERT(NS_IsMainThread());
// Per FileDescriptorHolder::Finish()'s comment, call before
// AllowNextSynchronizedOp (which happens in the parent upon receipt of
// the Send__delete__ message).
File::OnClose();
if (!mActorDestroyed) {
unused << Send__delete__(this);
}
mState = eFinished;
return NS_OK;
}
case eOpening:
case eOpened:
case eFinished: {
MOZ_ASSUME_UNREACHABLE("Shouldn't Run() in this state");
}
}
MOZ_ASSUME_UNREACHABLE("Corrupt state");
return NS_OK;
}
} // unnamed namespace
void
DeallocEntryChild(PAsmJSCacheEntryChild* aActor)
{
// Match the AddRef before SendPAsmJSCacheEntryConstructor.
static_cast<ChildProcessRunnable*>(aActor)->Release();
}
namespace {
bool
OpenFile(nsIPrincipal* aPrincipal,
OpenMode aOpenMode,
WriteParams aWriteParams,
ReadParams aReadParams,
File::AutoClose* aFile)
{
MOZ_ASSERT_IF(aOpenMode == eOpenForRead, aWriteParams.mSize == 0);
MOZ_ASSERT_IF(aOpenMode == eOpenForWrite, aReadParams.mBegin == nullptr);
// There are three reasons we don't attempt caching from the main thread:
// 1. In the parent process: QuotaManager::WaitForOpenAllowed prevents
// synchronous waiting on the main thread requiring a runnable to be
// dispatched to the main thread.
// 2. In the child process: the IPDL PContent messages we need to
// synchronously wait on are dispatched to the main thread.
// 3. While a cache lookup *should* be much faster than compilation, IO
// operations can be unpredictably slow and we'd like to avoid the
// occasional janks on the main thread.
// We could use a nested event loop to address 1 and 2, but we're potentially
// in the middle of running JS (eval()) and nested event loops can be
// semantically observable.
if (NS_IsMainThread()) {
return false;
}
// If we are in a child process, we need to synchronously call into the
// parent process to open the file and interact with the QuotaManager. The
// child can then map the file into its address space to perform I/O.
nsRefPtr<File> file;
if (IsMainProcess()) {
file = new SingleProcessRunnable(aPrincipal, aOpenMode, aWriteParams,
aReadParams);
} else {
file = new ChildProcessRunnable(aPrincipal, aOpenMode, aWriteParams,
aReadParams);
}
if (!file->BlockUntilOpen(aFile)) {
return false;
}
return file->MapMemory(aOpenMode);
}
} // anonymous namespace
typedef uint32_t AsmJSCookieType;
static const uint32_t sAsmJSCookie = 0x600d600d;
bool
OpenEntryForRead(nsIPrincipal* aPrincipal,
const jschar* aBegin,
const jschar* aLimit,
size_t* aSize,
const uint8_t** aMemory,
intptr_t* aFile)
{
if (size_t(aLimit - aBegin) < sMinCachedModuleLength) {
return false;
}
ReadParams readParams;
readParams.mBegin = aBegin;
readParams.mLimit = aLimit;
File::AutoClose file;
WriteParams notAWrite;
if (!OpenFile(aPrincipal, eOpenForRead, notAWrite, readParams, &file)) {
return false;
}
// Although we trust that the stored cache files have not been arbitrarily
// corrupted, it is possible that a previous execution aborted in the middle
// of writing a cache file (crash, OOM-killer, etc). To protect against
// partially-written cache files, we use the following scheme:
// - Allocate an extra word at the beginning of every cache file which
// starts out 0 (OpenFile opens with PR_TRUNCATE).
// - After the asm.js serialization is complete, PR_SyncMemMap to write
// everything to disk and then store a non-zero value (sAsmJSCookie)
// in the first word.
// - When attempting to read a cache file, check whether the first word is
// sAsmJSCookie.
if (file->FileSize() < sizeof(AsmJSCookieType) ||
*(AsmJSCookieType*)file->MappedMemory() != sAsmJSCookie) {
return false;
}
*aSize = file->FileSize() - sizeof(AsmJSCookieType);
*aMemory = (uint8_t*) file->MappedMemory() + sizeof(AsmJSCookieType);
// The caller guarnatees a call to CloseEntryForRead (on success or
// failure) at which point the file will be closed.
file.Forget(reinterpret_cast<File**>(aFile));
return true;
}
void
CloseEntryForRead(JS::Handle<JSObject*> global,
size_t aSize,
const uint8_t* aMemory,
intptr_t aFile)
{
File::AutoClose file(reinterpret_cast<File*>(aFile));
MOZ_ASSERT(aSize + sizeof(AsmJSCookieType) == file->FileSize());
MOZ_ASSERT(aMemory - sizeof(AsmJSCookieType) == file->MappedMemory());
}
bool
OpenEntryForWrite(nsIPrincipal* aPrincipal,
bool aInstalled,
const jschar* aBegin,
const jschar* aEnd,
size_t aSize,
uint8_t** aMemory,
intptr_t* aFile)
{
if (size_t(aEnd - aBegin) < sMinCachedModuleLength) {
return false;
}
// Add extra space for the AsmJSCookieType (see OpenEntryForRead).
aSize += sizeof(AsmJSCookieType);
static_assert(sNumFastHashChars < sMinCachedModuleLength, "HashString safe");
WriteParams writeParams;
writeParams.mInstalled = aInstalled;
writeParams.mSize = aSize;
writeParams.mFastHash = HashString(aBegin, sNumFastHashChars);
writeParams.mNumChars = aEnd - aBegin;
writeParams.mFullHash = HashString(aBegin, writeParams.mNumChars);
File::AutoClose file;
ReadParams notARead;
if (!OpenFile(aPrincipal, eOpenForWrite, writeParams, notARead, &file)) {
return false;
}
// Strip off the AsmJSCookieType from the buffer returned to the caller,
// which expects a buffer of aSize, not a buffer of sizeWithCookie starting
// with a cookie.
*aMemory = (uint8_t*) file->MappedMemory() + sizeof(AsmJSCookieType);
// The caller guarnatees a call to CloseEntryForWrite (on success or
// failure) at which point the file will be closed
file.Forget(reinterpret_cast<File**>(aFile));
return true;
}
void
CloseEntryForWrite(JS::Handle<JSObject*> global,
size_t aSize,
uint8_t* aMemory,
intptr_t aFile)
{
File::AutoClose file(reinterpret_cast<File*>(aFile));
MOZ_ASSERT(aSize + sizeof(AsmJSCookieType) == file->FileSize());
MOZ_ASSERT(aMemory - sizeof(AsmJSCookieType) == file->MappedMemory());
// Flush to disk before writing the cookie (see OpenEntryForRead).
if (PR_SyncMemMap(file->FileDesc(),
file->MappedMemory(),
file->FileSize()) == PR_SUCCESS) {
*(AsmJSCookieType*)file->MappedMemory() = sAsmJSCookie;
}
}
bool
GetBuildId(JS::BuildIdCharVector* aBuildID)
{
nsCOMPtr<nsIXULAppInfo> info = do_GetService("@mozilla.org/xre/app-info;1");
if (!info) {
return false;
}
nsCString buildID;
nsresult rv = info->GetPlatformBuildID(buildID);
NS_ENSURE_SUCCESS(rv, false);
if (!aBuildID->resize(buildID.Length())) {
return false;
}
for (size_t i = 0; i < buildID.Length(); i++) {
(*aBuildID)[i] = buildID[i];
}
return true;
}
class Client : public quota::Client
{
public:
NS_IMETHOD_(nsrefcnt)
AddRef() MOZ_OVERRIDE;
NS_IMETHOD_(nsrefcnt)
Release() MOZ_OVERRIDE;
virtual Type
GetType() MOZ_OVERRIDE
{
return ASMJS;
}
virtual nsresult
InitOrigin(PersistenceType aPersistenceType,
const nsACString& aGroup,
const nsACString& aOrigin,
UsageInfo* aUsageInfo) MOZ_OVERRIDE
{
if (!aUsageInfo) {
return NS_OK;
}
return GetUsageForOrigin(aPersistenceType, aGroup, aOrigin, aUsageInfo);
}
virtual nsresult
GetUsageForOrigin(PersistenceType aPersistenceType,
const nsACString& aGroup,
const nsACString& aOrigin,
UsageInfo* aUsageInfo) MOZ_OVERRIDE
{
QuotaManager* qm = QuotaManager::Get();
MOZ_ASSERT(qm, "We were being called by the QuotaManager");
nsCOMPtr<nsIFile> directory;
nsresult rv = qm->GetDirectoryForOrigin(aPersistenceType, aOrigin,
getter_AddRefs(directory));
NS_ENSURE_SUCCESS(rv, rv);
MOZ_ASSERT(directory, "We're here because the origin directory exists");
rv = directory->Append(NS_LITERAL_STRING(ASMJSCACHE_DIRECTORY_NAME));
NS_ENSURE_SUCCESS(rv, rv);
DebugOnly<bool> exists;
MOZ_ASSERT(NS_SUCCEEDED(directory->Exists(&exists)) && exists);
nsCOMPtr<nsISimpleEnumerator> entries;
rv = directory->GetDirectoryEntries(getter_AddRefs(entries));
NS_ENSURE_SUCCESS(rv, rv);
bool hasMore;
while (NS_SUCCEEDED((rv = entries->HasMoreElements(&hasMore))) &&
hasMore && !aUsageInfo->Canceled()) {
nsCOMPtr<nsISupports> entry;
rv = entries->GetNext(getter_AddRefs(entry));
NS_ENSURE_SUCCESS(rv, rv);
nsCOMPtr<nsIFile> file = do_QueryInterface(entry);
NS_ENSURE_TRUE(file, NS_NOINTERFACE);
int64_t fileSize;
rv = file->GetFileSize(&fileSize);
NS_ENSURE_SUCCESS(rv, rv);
MOZ_ASSERT(fileSize >= 0, "Negative size?!");
// Since the client is not explicitly storing files, append to database
// usage which represents implicit storage allocation.
aUsageInfo->AppendToDatabaseUsage(uint64_t(fileSize));
}
NS_ENSURE_SUCCESS(rv, rv);
return NS_OK;
}
virtual void
OnOriginClearCompleted(PersistenceType aPersistenceType,
const OriginOrPatternString& aOriginOrPattern)
MOZ_OVERRIDE
{ }
virtual void
ReleaseIOThreadObjects() MOZ_OVERRIDE
{ }
virtual bool
IsFileServiceUtilized() MOZ_OVERRIDE
{
return false;
}
virtual bool
IsTransactionServiceActivated() MOZ_OVERRIDE
{
return false;
}
virtual void
WaitForStoragesToComplete(nsTArray<nsIOfflineStorage*>& aStorages,
nsIRunnable* aCallback) MOZ_OVERRIDE
{
MOZ_ASSUME_UNREACHABLE("There are no storages");
}
virtual void
AbortTransactionsForStorage(nsIOfflineStorage* aStorage) MOZ_OVERRIDE
{
MOZ_ASSUME_UNREACHABLE("There are no storages");
}
virtual bool
HasTransactionsForStorage(nsIOfflineStorage* aStorage) MOZ_OVERRIDE
{
return false;
}
virtual void
ShutdownTransactionService() MOZ_OVERRIDE
{ }
private:
nsAutoRefCnt mRefCnt;
NS_DECL_OWNINGTHREAD
};
NS_IMPL_ADDREF(asmjscache::Client)
NS_IMPL_RELEASE(asmjscache::Client)
quota::Client*
CreateClient()
{
return new Client();
}
} // namespace asmjscache
} // namespace dom
} // namespace mozilla
namespace IPC {
using mozilla::dom::asmjscache::Metadata;
using mozilla::dom::asmjscache::WriteParams;
void
ParamTraits<Metadata>::Write(Message* aMsg, const paramType& aParam)
{
for (unsigned i = 0; i < Metadata::kNumEntries; i++) {
const Metadata::Entry& entry = aParam.mEntries[i];
WriteParam(aMsg, entry.mFastHash);
WriteParam(aMsg, entry.mNumChars);
WriteParam(aMsg, entry.mFullHash);
WriteParam(aMsg, entry.mModuleIndex);
}
}
bool
ParamTraits<Metadata>::Read(const Message* aMsg, void** aIter,
paramType* aResult)
{
for (unsigned i = 0; i < Metadata::kNumEntries; i++) {
Metadata::Entry& entry = aResult->mEntries[i];
if (!ReadParam(aMsg, aIter, &entry.mFastHash) ||
!ReadParam(aMsg, aIter, &entry.mNumChars) ||
!ReadParam(aMsg, aIter, &entry.mFullHash) ||
!ReadParam(aMsg, aIter, &entry.mModuleIndex))
{
return false;
}
}
return true;
}
void
ParamTraits<Metadata>::Log(const paramType& aParam, std::wstring* aLog)
{
for (unsigned i = 0; i < Metadata::kNumEntries; i++) {
const Metadata::Entry& entry = aParam.mEntries[i];
LogParam(entry.mFastHash, aLog);
LogParam(entry.mNumChars, aLog);
LogParam(entry.mFullHash, aLog);
LogParam(entry.mModuleIndex, aLog);
}
}
void
ParamTraits<WriteParams>::Write(Message* aMsg, const paramType& aParam)
{
WriteParam(aMsg, aParam.mSize);
WriteParam(aMsg, aParam.mFastHash);
WriteParam(aMsg, aParam.mNumChars);
WriteParam(aMsg, aParam.mFullHash);
WriteParam(aMsg, aParam.mInstalled);
}
bool
ParamTraits<WriteParams>::Read(const Message* aMsg, void** aIter,
paramType* aResult)
{
return ReadParam(aMsg, aIter, &aResult->mSize) &&
ReadParam(aMsg, aIter, &aResult->mFastHash) &&
ReadParam(aMsg, aIter, &aResult->mNumChars) &&
ReadParam(aMsg, aIter, &aResult->mFullHash) &&
ReadParam(aMsg, aIter, &aResult->mInstalled);
}
void
ParamTraits<WriteParams>::Log(const paramType& aParam, std::wstring* aLog)
{
LogParam(aParam.mSize, aLog);
LogParam(aParam.mFastHash, aLog);
LogParam(aParam.mNumChars, aLog);
LogParam(aParam.mFullHash, aLog);
LogParam(aParam.mInstalled, aLog);
}
} // namespace IPC