gecko/ipc/glue/MessageChannel.cpp
Ting-Yu Chou 254b648fac Bug 999351 - Fix an IPC leak by clearing MessageChannel resource before destruction. r=bent
Once we have a channel error (like, child process dies) we don't immediately do
anything with additional messages that were pending from that child. They stay
queued and eventually get freed when the channel is destroyed. This patch clears
the resource earlier whenever there is an error, or the channel is closed.
2014-04-24 15:26:50 +08:00

1755 lines
52 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: sw=4 ts=4 et :
*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/ipc/MessageChannel.h"
#include "mozilla/ipc/ProtocolUtils.h"
#include "mozilla/Assertions.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Move.h"
#include "nsDebug.h"
#include "nsISupportsImpl.h"
// Undo the damage done by mozzconf.h
#undef compress
using namespace mozilla;
using namespace std;
using mozilla::MonitorAutoLock;
using mozilla::MonitorAutoUnlock;
template<>
struct RunnableMethodTraits<mozilla::ipc::MessageChannel>
{
static void RetainCallee(mozilla::ipc::MessageChannel* obj) { }
static void ReleaseCallee(mozilla::ipc::MessageChannel* obj) { }
};
#define IPC_ASSERT(_cond, ...) \
do { \
if (!(_cond)) \
DebugAbort(__FILE__, __LINE__, #_cond,## __VA_ARGS__); \
} while (0)
namespace mozilla {
namespace ipc {
const int32_t MessageChannel::kNoTimeout = INT32_MIN;
// static
bool MessageChannel::sIsPumpingMessages = false;
enum Direction
{
IN_MESSAGE,
OUT_MESSAGE
};
class MessageChannel::InterruptFrame
{
private:
enum Semantics
{
INTR_SEMS,
SYNC_SEMS,
ASYNC_SEMS
};
public:
InterruptFrame(Direction direction, const Message* msg)
: mMessageName(strdup(msg->name())),
mMessageRoutingId(msg->routing_id()),
mMesageSemantics(msg->is_interrupt() ? INTR_SEMS :
msg->is_sync() ? SYNC_SEMS :
ASYNC_SEMS),
mDirection(direction),
mMoved(false)
{
MOZ_ASSERT(mMessageName);
}
InterruptFrame(InterruptFrame&& aOther)
{
MOZ_ASSERT(aOther.mMessageName);
mMessageName = aOther.mMessageName;
aOther.mMessageName = nullptr;
aOther.mMoved = true;
mMessageRoutingId = aOther.mMessageRoutingId;
mMesageSemantics = aOther.mMesageSemantics;
mDirection = aOther.mDirection;
}
~InterruptFrame()
{
MOZ_ASSERT_IF(!mMessageName, mMoved);
if (mMessageName)
free(const_cast<char*>(mMessageName));
}
InterruptFrame& operator=(InterruptFrame&& aOther)
{
MOZ_ASSERT(&aOther != this);
this->~InterruptFrame();
new (this) InterruptFrame(mozilla::Move(aOther));
return *this;
}
bool IsInterruptIncall() const
{
return INTR_SEMS == mMesageSemantics && IN_MESSAGE == mDirection;
}
bool IsInterruptOutcall() const
{
return INTR_SEMS == mMesageSemantics && OUT_MESSAGE == mDirection;
}
void Describe(int32_t* id, const char** dir, const char** sems,
const char** name) const
{
*id = mMessageRoutingId;
*dir = (IN_MESSAGE == mDirection) ? "in" : "out";
*sems = (INTR_SEMS == mMesageSemantics) ? "intr" :
(SYNC_SEMS == mMesageSemantics) ? "sync" :
"async";
*name = mMessageName;
}
private:
const char* mMessageName;
int32_t mMessageRoutingId;
Semantics mMesageSemantics;
Direction mDirection;
DebugOnly<bool> mMoved;
// Disable harmful methods.
InterruptFrame(const InterruptFrame& aOther) MOZ_DELETE;
InterruptFrame& operator=(const InterruptFrame&) MOZ_DELETE;
};
class MOZ_STACK_CLASS MessageChannel::CxxStackFrame
{
public:
CxxStackFrame(MessageChannel& that, Direction direction, const Message* msg)
: mThat(that)
{
mThat.AssertWorkerThread();
if (mThat.mCxxStackFrames.empty())
mThat.EnteredCxxStack();
mThat.mCxxStackFrames.append(InterruptFrame(direction, msg));
const InterruptFrame& frame = mThat.mCxxStackFrames.back();
if (frame.IsInterruptIncall())
mThat.EnteredCall();
mThat.mSawInterruptOutMsg |= frame.IsInterruptOutcall();
}
~CxxStackFrame() {
mThat.AssertWorkerThread();
MOZ_ASSERT(!mThat.mCxxStackFrames.empty());
bool exitingCall = mThat.mCxxStackFrames.back().IsInterruptIncall();
mThat.mCxxStackFrames.shrinkBy(1);
bool exitingStack = mThat.mCxxStackFrames.empty();
// mListener could have gone away if Close() was called while
// MessageChannel code was still on the stack
if (!mThat.mListener)
return;
if (exitingCall)
mThat.ExitedCall();
if (exitingStack)
mThat.ExitedCxxStack();
}
private:
MessageChannel& mThat;
// Disable harmful methods.
CxxStackFrame() MOZ_DELETE;
CxxStackFrame(const CxxStackFrame&) MOZ_DELETE;
CxxStackFrame& operator=(const CxxStackFrame&) MOZ_DELETE;
};
MessageChannel::MessageChannel(MessageListener *aListener)
: mListener(aListener->asWeakPtr()),
mChannelState(ChannelClosed),
mSide(UnknownSide),
mLink(nullptr),
mWorkerLoop(nullptr),
mChannelErrorTask(nullptr),
mWorkerLoopID(-1),
mTimeoutMs(kNoTimeout),
mInTimeoutSecondHalf(false),
mNextSeqno(0),
mPendingSyncReplies(0),
mPendingUrgentReplies(0),
mPendingRPCReplies(0),
mCurrentRPCTransaction(0),
mDispatchingSyncMessage(false),
mDispatchingUrgentMessageCount(0),
mRemoteStackDepthGuess(false),
mSawInterruptOutMsg(false),
mAbortOnError(false)
{
MOZ_COUNT_CTOR(ipc::MessageChannel);
#ifdef OS_WIN
mTopFrame = nullptr;
#endif
mDequeueOneTask = new RefCountedTask(NewRunnableMethod(
this,
&MessageChannel::OnMaybeDequeueOne));
#ifdef OS_WIN
mEvent = CreateEventW(nullptr, TRUE, FALSE, nullptr);
NS_ASSERTION(mEvent, "CreateEvent failed! Nothing is going to work!");
#endif
}
MessageChannel::~MessageChannel()
{
MOZ_COUNT_DTOR(ipc::MessageChannel);
IPC_ASSERT(mCxxStackFrames.empty(), "mismatched CxxStackFrame ctor/dtors");
#ifdef OS_WIN
DebugOnly<BOOL> ok = CloseHandle(mEvent);
MOZ_ASSERT(ok);
#endif
Clear();
}
static void
PrintErrorMessage(Side side, const char* channelName, const char* msg)
{
const char *from = (side == ChildSide)
? "Child"
: ((side == ParentSide) ? "Parent" : "Unknown");
printf_stderr("\n###!!! [%s][%s] Error: %s\n\n", from, channelName, msg);
}
bool
MessageChannel::Connected() const
{
mMonitor->AssertCurrentThreadOwns();
// The transport layer allows us to send messages before
// receiving the "connected" ack from the remote side.
return (ChannelOpening == mChannelState || ChannelConnected == mChannelState);
}
bool
MessageChannel::CanSend() const
{
MonitorAutoLock lock(*mMonitor);
return Connected();
}
void
MessageChannel::Clear()
{
// Don't clear mWorkerLoopID; we use it in AssertLinkThread() and
// AssertWorkerThread().
//
// Also don't clear mListener. If we clear it, then sending a message
// through this channel after it's Clear()'ed can cause this process to
// crash.
//
// In practice, mListener owns the channel, so the channel gets deleted
// before mListener. But just to be safe, mListener is a weak pointer.
mDequeueOneTask->Cancel();
mWorkerLoop = nullptr;
delete mLink;
mLink = nullptr;
if (mChannelErrorTask) {
mChannelErrorTask->Cancel();
mChannelErrorTask = nullptr;
}
// Free up any memory used by pending messages.
mPending.clear();
mPendingUrgentRequest = nullptr;
mPendingRPCCall = nullptr;
mOutOfTurnReplies.clear();
while (!mDeferred.empty()) {
mDeferred.pop();
}
}
bool
MessageChannel::Open(Transport* aTransport, MessageLoop* aIOLoop, Side aSide)
{
NS_PRECONDITION(!mLink, "Open() called > once");
mMonitor = new RefCountedMonitor();
mWorkerLoop = MessageLoop::current();
mWorkerLoopID = mWorkerLoop->id();
ProcessLink *link = new ProcessLink(this);
link->Open(aTransport, aIOLoop, aSide); // :TODO: n.b.: sets mChild
mLink = link;
return true;
}
bool
MessageChannel::Open(MessageChannel *aTargetChan, MessageLoop *aTargetLoop, Side aSide)
{
// Opens a connection to another thread in the same process.
// This handshake proceeds as follows:
// - Let A be the thread initiating the process (either child or parent)
// and B be the other thread.
// - A spawns thread for B, obtaining B's message loop
// - A creates ProtocolChild and ProtocolParent instances.
// Let PA be the one appropriate to A and PB the side for B.
// - A invokes PA->Open(PB, ...):
// - set state to mChannelOpening
// - this will place a work item in B's worker loop (see next bullet)
// and then spins until PB->mChannelState becomes mChannelConnected
// - meanwhile, on PB's worker loop, the work item is removed and:
// - invokes PB->SlaveOpen(PA, ...):
// - sets its state and that of PA to Connected
NS_PRECONDITION(aTargetChan, "Need a target channel");
NS_PRECONDITION(ChannelClosed == mChannelState, "Not currently closed");
CommonThreadOpenInit(aTargetChan, aSide);
Side oppSide = UnknownSide;
switch(aSide) {
case ChildSide: oppSide = ParentSide; break;
case ParentSide: oppSide = ChildSide; break;
case UnknownSide: break;
}
mMonitor = new RefCountedMonitor();
MonitorAutoLock lock(*mMonitor);
mChannelState = ChannelOpening;
aTargetLoop->PostTask(
FROM_HERE,
NewRunnableMethod(aTargetChan, &MessageChannel::OnOpenAsSlave, this, oppSide));
while (ChannelOpening == mChannelState)
mMonitor->Wait();
NS_ASSERTION(ChannelConnected == mChannelState, "not connected when awoken");
return (ChannelConnected == mChannelState);
}
void
MessageChannel::OnOpenAsSlave(MessageChannel *aTargetChan, Side aSide)
{
// Invoked when the other side has begun the open.
NS_PRECONDITION(ChannelClosed == mChannelState,
"Not currently closed");
NS_PRECONDITION(ChannelOpening == aTargetChan->mChannelState,
"Target channel not in the process of opening");
CommonThreadOpenInit(aTargetChan, aSide);
mMonitor = aTargetChan->mMonitor;
MonitorAutoLock lock(*mMonitor);
NS_ASSERTION(ChannelOpening == aTargetChan->mChannelState,
"Target channel not in the process of opening");
mChannelState = ChannelConnected;
aTargetChan->mChannelState = ChannelConnected;
aTargetChan->mMonitor->Notify();
}
void
MessageChannel::CommonThreadOpenInit(MessageChannel *aTargetChan, Side aSide)
{
mWorkerLoop = MessageLoop::current();
mWorkerLoopID = mWorkerLoop->id();
mLink = new ThreadLink(this, aTargetChan);
mSide = aSide;
}
bool
MessageChannel::Echo(Message* aMsg)
{
nsAutoPtr<Message> msg(aMsg);
AssertWorkerThread();
mMonitor->AssertNotCurrentThreadOwns();
if (MSG_ROUTING_NONE == msg->routing_id()) {
ReportMessageRouteError("MessageChannel::Echo");
return false;
}
MonitorAutoLock lock(*mMonitor);
if (!Connected()) {
ReportConnectionError("MessageChannel");
return false;
}
mLink->EchoMessage(msg.forget());
return true;
}
bool
MessageChannel::Send(Message* aMsg)
{
CxxStackFrame frame(*this, OUT_MESSAGE, aMsg);
nsAutoPtr<Message> msg(aMsg);
AssertWorkerThread();
mMonitor->AssertNotCurrentThreadOwns();
if (MSG_ROUTING_NONE == msg->routing_id()) {
ReportMessageRouteError("MessageChannel::Send");
return false;
}
MonitorAutoLock lock(*mMonitor);
if (!Connected()) {
ReportConnectionError("MessageChannel");
return false;
}
mLink->SendMessage(msg.forget());
return true;
}
bool
MessageChannel::MaybeInterceptSpecialIOMessage(const Message& aMsg)
{
AssertLinkThread();
mMonitor->AssertCurrentThreadOwns();
if (MSG_ROUTING_NONE == aMsg.routing_id() &&
GOODBYE_MESSAGE_TYPE == aMsg.type())
{
// :TODO: Sort out Close() on this side racing with Close() on the
// other side
mChannelState = ChannelClosing;
if (LoggingEnabled()) {
printf("NOTE: %s process received `Goodbye', closing down\n",
(mSide == ChildSide) ? "child" : "parent");
}
return true;
}
return false;
}
void
MessageChannel::OnMessageReceivedFromLink(const Message& aMsg)
{
AssertLinkThread();
mMonitor->AssertCurrentThreadOwns();
if (MaybeInterceptSpecialIOMessage(aMsg))
return;
// Regardless of the Interrupt stack, if we're awaiting a sync or urgent reply,
// we know that it needs to be immediately handled to unblock us.
if ((AwaitingSyncReply() && aMsg.is_sync()) ||
(AwaitingUrgentReply() && aMsg.is_urgent()) ||
(AwaitingRPCReply() && aMsg.is_rpc()))
{
mRecvd = new Message(aMsg);
NotifyWorkerThread();
return;
}
// Urgent messages cannot be compressed.
MOZ_ASSERT(!aMsg.compress() || !aMsg.is_urgent());
bool compress = (aMsg.compress() && !mPending.empty() &&
mPending.back().type() == aMsg.type() &&
mPending.back().routing_id() == aMsg.routing_id());
if (compress) {
// This message type has compression enabled, and the back of the
// queue was the same message type and routed to the same destination.
// Replace it with the newer message.
MOZ_ASSERT(mPending.back().compress());
mPending.pop_back();
}
bool shouldWakeUp = AwaitingInterruptReply() ||
// Allow incoming RPCs to be processed inside an urgent message.
(AwaitingUrgentReply() && aMsg.is_rpc()) ||
// Always process urgent messages while blocked.
((AwaitingSyncReply() || AwaitingRPCReply()) && aMsg.is_urgent());
// There are four cases we're concerned about, relating to the state of the
// main thread:
//
// (1) We are waiting on a sync|rpc reply - main thread is blocked on the
// IPC monitor.
// - If the message is high priority, we wake up the main thread to
// deliver the message. Otherwise, we leave it in the mPending queue,
// posting a task to the main event loop, where it will be processed
// once the synchronous reply has been received.
//
// (2) We are waiting on an Interrupt reply - main thread is blocked on the
// IPC monitor.
// - Always notify and wake up the main thread.
//
// (3) We are not waiting on a reply.
// - We post a task to the main event loop.
//
// Note that, we may notify the main thread even though the monitor is not
// blocked. This is okay, since we always check for pending events before
// blocking again.
if (shouldWakeUp && (AwaitingUrgentReply() && aMsg.is_rpc())) {
// If we're receiving an RPC message while blocked on an urgent message,
// we must defer any messages that were not sent as part of the child
// answering the urgent message.
//
// We must also be sure that we will not accidentally defer any RPC
// message that was sent while answering an urgent message. Otherwise,
// we will deadlock.
//
// On the parent side, the current transaction can only transition from 0
// to an ID, either by us issuing an urgent request while not blocked, or
// by receiving an RPC request while not blocked. When we unblock, the
// current transaction is reset to 0.
//
// When the child side receives an urgent message, any RPC messages sent
// before issuing the urgent reply will carry the urgent message's
// transaction ID.
//
// Since AwaitingUrgentReply() implies we are blocked, it also implies
// that we are within a transaction that will not change until we are
// completely unblocked (i.e, the transaction has completed).
if (aMsg.transaction_id() != mCurrentRPCTransaction)
shouldWakeUp = false;
}
if (aMsg.is_urgent()) {
MOZ_ASSERT(!mPendingUrgentRequest);
mPendingUrgentRequest = new Message(aMsg);
} else if (aMsg.is_rpc() && shouldWakeUp) {
// Only use this slot if we need to wake up for an RPC call. Otherwise
// we treat it like a normal async or sync message.
MOZ_ASSERT(!mPendingRPCCall);
mPendingRPCCall = new Message(aMsg);
} else {
mPending.push_back(aMsg);
}
if (shouldWakeUp) {
// Always wake up Interrupt waiters, sync waiters for urgent messages,
// RPC waiters for urgent messages, and urgent waiters for RPCs in the
// same transaction.
NotifyWorkerThread();
} else {
// Worker thread is either not blocked on a reply, or this is an
// incoming Interrupt that raced with outgoing sync, and needs to be
// deferred to a later event-loop iteration.
if (!compress) {
// If we compressed away the previous message, we'll re-use
// its pending task.
mWorkerLoop->PostTask(FROM_HERE, new DequeueTask(mDequeueOneTask));
}
}
}
bool
MessageChannel::Send(Message* aMsg, Message* aReply)
{
// Sanity checks.
AssertWorkerThread();
mMonitor->AssertNotCurrentThreadOwns();
#ifdef OS_WIN
SyncStackFrame frame(this, false);
#endif
CxxStackFrame f(*this, OUT_MESSAGE, aMsg);
MonitorAutoLock lock(*mMonitor);
IPC_ASSERT(aMsg->is_sync(), "can only Send() sync messages here");
IPC_ASSERT(!DispatchingSyncMessage(), "violation of sync handler invariant");
IPC_ASSERT(!DispatchingUrgentMessage(), "sync messages forbidden while handling urgent message");
IPC_ASSERT(!AwaitingSyncReply(), "nested sync messages are not supported");
AutoEnterPendingReply replies(mPendingSyncReplies);
if (!SendAndWait(aMsg, aReply))
return false;
NS_ABORT_IF_FALSE(aReply->is_sync(), "reply is not sync");
return true;
}
bool
MessageChannel::UrgentCall(Message* aMsg, Message* aReply)
{
AssertWorkerThread();
mMonitor->AssertNotCurrentThreadOwns();
IPC_ASSERT(mSide == ParentSide, "cannot send urgent requests from child");
#ifdef OS_WIN
SyncStackFrame frame(this, false);
#endif
CxxStackFrame f(*this, OUT_MESSAGE, aMsg);
MonitorAutoLock lock(*mMonitor);
IPC_ASSERT(!AwaitingInterruptReply(), "urgent calls cannot be issued within Interrupt calls");
IPC_ASSERT(!AwaitingSyncReply(), "urgent calls cannot be issued within sync sends");
AutoEnterRPCTransaction transact(this);
aMsg->set_transaction_id(mCurrentRPCTransaction);
AutoEnterPendingReply replies(mPendingUrgentReplies);
if (!SendAndWait(aMsg, aReply))
return false;
NS_ABORT_IF_FALSE(aReply->is_urgent(), "reply is not urgent");
return true;
}
bool
MessageChannel::RPCCall(Message* aMsg, Message* aReply)
{
AssertWorkerThread();
mMonitor->AssertNotCurrentThreadOwns();
IPC_ASSERT(mSide == ChildSide, "cannot send rpc messages from parent");
#ifdef OS_WIN
SyncStackFrame frame(this, false);
#endif
CxxStackFrame f(*this, OUT_MESSAGE, aMsg);
MonitorAutoLock lock(*mMonitor);
AutoEnterRPCTransaction transact(this);
aMsg->set_transaction_id(mCurrentRPCTransaction);
AutoEnterPendingReply replies(mPendingRPCReplies);
if (!SendAndWait(aMsg, aReply))
return false;
NS_ABORT_IF_FALSE(aReply->is_rpc(), "expected rpc reply");
return true;
}
bool
MessageChannel::SendAndWait(Message* aMsg, Message* aReply)
{
mMonitor->AssertCurrentThreadOwns();
nsAutoPtr<Message> msg(aMsg);
if (!Connected()) {
ReportConnectionError("MessageChannel::SendAndWait");
return false;
}
msg->set_seqno(NextSeqno());
DebugOnly<int32_t> replySeqno = msg->seqno();
DebugOnly<msgid_t> replyType = msg->type() + 1;
mLink->SendMessage(msg.forget());
while (true) {
// Wait for an event to occur.
while (true) {
if (mRecvd || mPendingUrgentRequest || mPendingRPCCall)
break;
bool maybeTimedOut = !WaitForSyncNotify();
if (!Connected()) {
ReportConnectionError("MessageChannel::SendAndWait");
return false;
}
if (maybeTimedOut && !ShouldContinueFromTimeout())
return false;
}
if (mPendingUrgentRequest && !ProcessPendingUrgentRequest())
return false;
if (mPendingRPCCall && !ProcessPendingRPCCall())
return false;
if (mRecvd) {
NS_ABORT_IF_FALSE(mRecvd->is_reply(), "expected reply");
if (mRecvd->is_reply_error()) {
mRecvd = nullptr;
return false;
}
NS_ABORT_IF_FALSE(mRecvd->type() == replyType, "wrong reply type");
NS_ABORT_IF_FALSE(mRecvd->seqno() == replySeqno, "wrong sequence number");
*aReply = *mRecvd;
mRecvd = nullptr;
return true;
}
}
return true;
}
bool
MessageChannel::Call(Message* aMsg, Message* aReply)
{
if (aMsg->is_urgent())
return UrgentCall(aMsg, aReply);
if (aMsg->is_rpc())
return RPCCall(aMsg, aReply);
return InterruptCall(aMsg, aReply);
}
bool
MessageChannel::InterruptCall(Message* aMsg, Message* aReply)
{
AssertWorkerThread();
mMonitor->AssertNotCurrentThreadOwns();
#ifdef OS_WIN
SyncStackFrame frame(this, true);
#endif
// This must come before MonitorAutoLock, as its destructor acquires the
// monitor lock.
CxxStackFrame cxxframe(*this, OUT_MESSAGE, aMsg);
MonitorAutoLock lock(*mMonitor);
if (!Connected()) {
ReportConnectionError("MessageChannel::Call");
return false;
}
// Sanity checks.
IPC_ASSERT(!AwaitingSyncReply() && !AwaitingUrgentReply(),
"cannot issue Interrupt call whiel blocked on sync or urgent");
IPC_ASSERT(!DispatchingSyncMessage() || aMsg->priority() == IPC::Message::PRIORITY_HIGH,
"violation of sync handler invariant");
IPC_ASSERT(aMsg->is_interrupt(), "can only Call() Interrupt messages here");
nsAutoPtr<Message> msg(aMsg);
msg->set_seqno(NextSeqno());
msg->set_interrupt_remote_stack_depth_guess(mRemoteStackDepthGuess);
msg->set_interrupt_local_stack_depth(1 + InterruptStackDepth());
mInterruptStack.push(*msg);
mLink->SendMessage(msg.forget());
while (true) {
// if a handler invoked by *Dispatch*() spun a nested event
// loop, and the connection was broken during that loop, we
// might have already processed the OnError event. if so,
// trying another loop iteration will be futile because
// channel state will have been cleared
if (!Connected()) {
ReportConnectionError("MessageChannel::InterruptCall");
return false;
}
// Now might be the time to process a message deferred because of race
// resolution.
MaybeUndeferIncall();
// Wait for an event to occur.
while (!InterruptEventOccurred()) {
bool maybeTimedOut = !WaitForInterruptNotify();
// We might have received a "subtly deferred" message in a nested
// loop that it's now time to process.
if (InterruptEventOccurred() ||
(!maybeTimedOut && (!mDeferred.empty() || !mOutOfTurnReplies.empty())))
{
break;
}
if (maybeTimedOut && !ShouldContinueFromTimeout())
return false;
}
Message recvd;
MessageMap::iterator it;
if (mPendingUrgentRequest) {
recvd = *mPendingUrgentRequest;
mPendingUrgentRequest = nullptr;
} else if (mPendingRPCCall) {
recvd = *mPendingRPCCall;
mPendingRPCCall = nullptr;
} else if ((it = mOutOfTurnReplies.find(mInterruptStack.top().seqno()))
!= mOutOfTurnReplies.end())
{
recvd = it->second;
mOutOfTurnReplies.erase(it);
} else if (!mPending.empty()) {
recvd = mPending.front();
mPending.pop_front();
} else {
// because of subtleties with nested event loops, it's possible
// that we got here and nothing happened. or, we might have a
// deferred in-call that needs to be processed. either way, we
// won't break the inner while loop again until something new
// happens.
continue;
}
// If the message is not Interrupt, we can dispatch it as normal.
if (!recvd.is_interrupt()) {
// Other side should be blocked.
IPC_ASSERT(!recvd.is_sync() || mPending.empty(), "other side should be blocked");
{
AutoEnterRPCTransaction transaction(this, &recvd);
MonitorAutoUnlock unlock(*mMonitor);
CxxStackFrame frame(*this, IN_MESSAGE, &recvd);
DispatchMessage(recvd);
}
if (!Connected()) {
ReportConnectionError("MessageChannel::DispatchMessage");
return false;
}
continue;
}
// If the message is an Interrupt reply, either process it as a reply to our
// call, or add it to the list of out-of-turn replies we've received.
if (recvd.is_reply()) {
IPC_ASSERT(!mInterruptStack.empty(), "invalid Interrupt stack");
// If this is not a reply the call we've initiated, add it to our
// out-of-turn replies and keep polling for events.
{
const Message &outcall = mInterruptStack.top();
// Note, In the parent, sequence numbers increase from 0, and
// in the child, they decrease from 0.
if ((mSide == ChildSide && recvd.seqno() > outcall.seqno()) ||
(mSide != ChildSide && recvd.seqno() < outcall.seqno()))
{
mOutOfTurnReplies[recvd.seqno()] = recvd;
continue;
}
IPC_ASSERT(recvd.is_reply_error() ||
(recvd.type() == (outcall.type() + 1) &&
recvd.seqno() == outcall.seqno()),
"somebody's misbehavin'", true);
}
// We received a reply to our most recent outstanding call. Pop
// this frame and return the reply.
mInterruptStack.pop();
if (!recvd.is_reply_error()) {
*aReply = recvd;
}
// If we have no more pending out calls waiting on replies, then
// the reply queue should be empty.
IPC_ASSERT(!mInterruptStack.empty() || mOutOfTurnReplies.empty(),
"still have pending replies with no pending out-calls",
true);
return !recvd.is_reply_error();
}
// Dispatch an Interrupt in-call. Snapshot the current stack depth while we
// own the monitor.
size_t stackDepth = InterruptStackDepth();
{
MonitorAutoUnlock unlock(*mMonitor);
CxxStackFrame frame(*this, IN_MESSAGE, &recvd);
DispatchInterruptMessage(recvd, stackDepth);
}
if (!Connected()) {
ReportConnectionError("MessageChannel::DispatchInterruptMessage");
return false;
}
}
return true;
}
bool
MessageChannel::InterruptEventOccurred()
{
AssertWorkerThread();
mMonitor->AssertCurrentThreadOwns();
IPC_ASSERT(InterruptStackDepth() > 0, "not in wait loop");
return (!Connected() ||
!mPending.empty() ||
mPendingUrgentRequest ||
mPendingRPCCall ||
(!mOutOfTurnReplies.empty() &&
mOutOfTurnReplies.find(mInterruptStack.top().seqno()) !=
mOutOfTurnReplies.end()));
}
bool
MessageChannel::ProcessPendingUrgentRequest()
{
AssertWorkerThread();
mMonitor->AssertCurrentThreadOwns();
// Note that it is possible we could have sent a sync message at
// the same time the parent process sent an urgent message, and
// therefore mPendingUrgentRequest is set *and* mRecvd is set as
// well, because the link thread received both before the worker
// thread woke up.
//
// In this case, we process the urgent message first, but we need
// to save the reply.
nsAutoPtr<Message> savedReply(mRecvd.forget());
// We're the child process. We should not be receiving RPC calls.
IPC_ASSERT(!mPendingRPCCall, "unexpected RPC call");
nsAutoPtr<Message> recvd(mPendingUrgentRequest.forget());
{
// In order to send the parent RPC messages and guarantee it will
// wake up, we must re-use its transaction.
AutoEnterRPCTransaction transaction(this, recvd);
MonitorAutoUnlock unlock(*mMonitor);
DispatchUrgentMessage(*recvd);
}
if (!Connected()) {
ReportConnectionError("MessageChannel::DispatchUrgentMessage");
return false;
}
// In between having dispatched our reply to the parent process, and
// re-acquiring the monitor, the parent process could have already
// processed that reply and sent the reply to our sync message. If so,
// our saved reply should be empty.
IPC_ASSERT(!mRecvd || !savedReply, "unknown reply");
if (!mRecvd)
mRecvd = savedReply.forget();
return true;
}
bool
MessageChannel::ProcessPendingRPCCall()
{
AssertWorkerThread();
mMonitor->AssertCurrentThreadOwns();
// See comment above re: mRecvd replies and incoming calls.
nsAutoPtr<Message> savedReply(mRecvd.forget());
IPC_ASSERT(!mPendingUrgentRequest, "unexpected urgent message");
nsAutoPtr<Message> recvd(mPendingRPCCall.forget());
{
// If we are not currently in a transaction, this will begin one,
// and the link thread will not wake us up for any RPC messages not
// apart of this transaction. If we are already in a transaction,
// then this will assert that we're still in the same transaction.
AutoEnterRPCTransaction transaction(this, recvd);
MonitorAutoUnlock unlock(*mMonitor);
DispatchRPCMessage(*recvd);
}
if (!Connected()) {
ReportConnectionError("MessageChannel::DispatchRPCMessage");
return false;
}
// In between having dispatched our reply to the parent process, and
// re-acquiring the monitor, the parent process could have already
// processed that reply and sent the reply to our sync message. If so,
// our saved reply should be empty.
IPC_ASSERT(!mRecvd || !savedReply, "unknown reply");
if (!mRecvd)
mRecvd = savedReply.forget();
return true;
}
bool
MessageChannel::DequeueOne(Message *recvd)
{
AssertWorkerThread();
mMonitor->AssertCurrentThreadOwns();
if (!Connected()) {
ReportConnectionError("OnMaybeDequeueOne");
return false;
}
if (mPendingUrgentRequest) {
*recvd = *mPendingUrgentRequest;
mPendingUrgentRequest = nullptr;
return true;
}
if (mPendingRPCCall) {
*recvd = *mPendingRPCCall;
mPendingRPCCall = nullptr;
return true;
}
if (!mDeferred.empty())
MaybeUndeferIncall();
if (mPending.empty())
return false;
*recvd = mPending.front();
mPending.pop_front();
return true;
}
bool
MessageChannel::OnMaybeDequeueOne()
{
AssertWorkerThread();
mMonitor->AssertNotCurrentThreadOwns();
Message recvd;
MonitorAutoLock lock(*mMonitor);
if (!DequeueOne(&recvd))
return false;
if (IsOnCxxStack() && recvd.is_interrupt() && recvd.is_reply()) {
// We probably just received a reply in a nested loop for an
// Interrupt call sent before entering that loop.
mOutOfTurnReplies[recvd.seqno()] = recvd;
return false;
}
{
// We should not be in a transaction yet if we're not blocked.
MOZ_ASSERT(mCurrentRPCTransaction == 0);
AutoEnterRPCTransaction transaction(this, &recvd);
MonitorAutoUnlock unlock(*mMonitor);
CxxStackFrame frame(*this, IN_MESSAGE, &recvd);
DispatchMessage(recvd);
}
return true;
}
void
MessageChannel::DispatchMessage(const Message &aMsg)
{
if (aMsg.is_sync())
DispatchSyncMessage(aMsg);
else if (aMsg.is_urgent())
DispatchUrgentMessage(aMsg);
else if (aMsg.is_interrupt())
DispatchInterruptMessage(aMsg, 0);
else if (aMsg.is_rpc())
DispatchRPCMessage(aMsg);
else
DispatchAsyncMessage(aMsg);
}
void
MessageChannel::DispatchSyncMessage(const Message& aMsg)
{
AssertWorkerThread();
Message *reply = nullptr;
mDispatchingSyncMessage = true;
Result rv = mListener->OnMessageReceived(aMsg, reply);
mDispatchingSyncMessage = false;
if (!MaybeHandleError(rv, "DispatchSyncMessage")) {
delete reply;
reply = new Message();
reply->set_sync();
reply->set_reply();
reply->set_reply_error();
}
reply->set_seqno(aMsg.seqno());
MonitorAutoLock lock(*mMonitor);
if (ChannelConnected == mChannelState)
mLink->SendMessage(reply);
}
void
MessageChannel::DispatchUrgentMessage(const Message& aMsg)
{
AssertWorkerThread();
MOZ_ASSERT(aMsg.is_urgent());
Message *reply = nullptr;
mDispatchingUrgentMessageCount++;
Result rv = mListener->OnCallReceived(aMsg, reply);
mDispatchingUrgentMessageCount--;
if (!MaybeHandleError(rv, "DispatchUrgentMessage")) {
delete reply;
reply = new Message();
reply->set_urgent();
reply->set_reply();
reply->set_reply_error();
}
reply->set_seqno(aMsg.seqno());
MonitorAutoLock lock(*mMonitor);
if (ChannelConnected == mChannelState)
mLink->SendMessage(reply);
}
void
MessageChannel::DispatchRPCMessage(const Message& aMsg)
{
AssertWorkerThread();
MOZ_ASSERT(aMsg.is_rpc());
Message *reply = nullptr;
if (!MaybeHandleError(mListener->OnCallReceived(aMsg, reply), "DispatchRPCMessage")) {
delete reply;
reply = new Message();
reply->set_rpc();
reply->set_reply();
reply->set_reply_error();
}
reply->set_seqno(aMsg.seqno());
MonitorAutoLock lock(*mMonitor);
if (ChannelConnected == mChannelState)
mLink->SendMessage(reply);
}
void
MessageChannel::DispatchAsyncMessage(const Message& aMsg)
{
AssertWorkerThread();
MOZ_ASSERT(!aMsg.is_interrupt() && !aMsg.is_sync() && !aMsg.is_urgent());
if (aMsg.routing_id() == MSG_ROUTING_NONE) {
NS_RUNTIMEABORT("unhandled special message!");
}
MaybeHandleError(mListener->OnMessageReceived(aMsg), "DispatchAsyncMessage");
}
void
MessageChannel::DispatchInterruptMessage(const Message& aMsg, size_t stackDepth)
{
AssertWorkerThread();
mMonitor->AssertNotCurrentThreadOwns();
IPC_ASSERT(aMsg.is_interrupt() && !aMsg.is_reply(), "wrong message type");
// Race detection: see the long comment near mRemoteStackDepthGuess in
// MessageChannel.h. "Remote" stack depth means our side, and "local" means
// the other side.
if (aMsg.interrupt_remote_stack_depth_guess() != RemoteViewOfStackDepth(stackDepth)) {
// Interrupt in-calls have raced. The winner, if there is one, gets to defer
// processing of the other side's in-call.
bool defer;
const char* winner;
switch (mListener->MediateInterruptRace((mSide == ChildSide) ? aMsg : mInterruptStack.top(),
(mSide != ChildSide) ? mInterruptStack.top() : aMsg))
{
case RIPChildWins:
winner = "child";
defer = (mSide == ChildSide);
break;
case RIPParentWins:
winner = "parent";
defer = (mSide != ChildSide);
break;
case RIPError:
NS_RUNTIMEABORT("NYI: 'Error' Interrupt race policy");
return;
default:
NS_RUNTIMEABORT("not reached");
return;
}
if (LoggingEnabled()) {
printf_stderr(" (%s: %s won, so we're%sdeferring)\n",
(mSide == ChildSide) ? "child" : "parent",
winner,
defer ? " " : " not ");
}
if (defer) {
// We now know the other side's stack has one more frame
// than we thought.
++mRemoteStackDepthGuess; // decremented in MaybeProcessDeferred()
mDeferred.push(aMsg);
return;
}
// We "lost" and need to process the other side's in-call. Don't need
// to fix up the mRemoteStackDepthGuess here, because we're just about
// to increment it in DispatchCall(), which will make it correct again.
}
#ifdef OS_WIN
SyncStackFrame frame(this, true);
#endif
Message* reply = nullptr;
++mRemoteStackDepthGuess;
Result rv = mListener->OnCallReceived(aMsg, reply);
--mRemoteStackDepthGuess;
if (!MaybeHandleError(rv, "DispatchInterruptMessage")) {
delete reply;
reply = new Message();
reply->set_interrupt();
reply->set_reply();
reply->set_reply_error();
}
reply->set_seqno(aMsg.seqno());
MonitorAutoLock lock(*mMonitor);
if (ChannelConnected == mChannelState)
mLink->SendMessage(reply);
}
void
MessageChannel::MaybeUndeferIncall()
{
AssertWorkerThread();
mMonitor->AssertCurrentThreadOwns();
if (mDeferred.empty())
return;
size_t stackDepth = InterruptStackDepth();
// the other side can only *under*-estimate our actual stack depth
IPC_ASSERT(mDeferred.top().interrupt_remote_stack_depth_guess() <= stackDepth,
"fatal logic error");
if (mDeferred.top().interrupt_remote_stack_depth_guess() < RemoteViewOfStackDepth(stackDepth))
return;
// maybe time to process this message
Message call = mDeferred.top();
mDeferred.pop();
// fix up fudge factor we added to account for race
IPC_ASSERT(0 < mRemoteStackDepthGuess, "fatal logic error");
--mRemoteStackDepthGuess;
mPending.push_back(call);
}
void
MessageChannel::FlushPendingInterruptQueue()
{
AssertWorkerThread();
mMonitor->AssertNotCurrentThreadOwns();
{
MonitorAutoLock lock(*mMonitor);
if (mDeferred.empty()) {
if (mPending.empty())
return;
const Message& last = mPending.back();
if (!last.is_interrupt() || last.is_reply())
return;
}
}
while (OnMaybeDequeueOne());
}
void
MessageChannel::ExitedCxxStack()
{
mListener->OnExitedCxxStack();
if (mSawInterruptOutMsg) {
MonitorAutoLock lock(*mMonitor);
// see long comment in OnMaybeDequeueOne()
EnqueuePendingMessages();
mSawInterruptOutMsg = false;
}
}
void
MessageChannel::EnqueuePendingMessages()
{
AssertWorkerThread();
mMonitor->AssertCurrentThreadOwns();
MaybeUndeferIncall();
for (size_t i = 0; i < mDeferred.size(); ++i) {
mWorkerLoop->PostTask(FROM_HERE, new DequeueTask(mDequeueOneTask));
}
// XXX performance tuning knob: could process all or k pending
// messages here, rather than enqueuing for later processing
for (size_t i = 0; i < mPending.size(); ++i) {
mWorkerLoop->PostTask(FROM_HERE, new DequeueTask(mDequeueOneTask));
}
}
static inline bool
IsTimeoutExpired(PRIntervalTime aStart, PRIntervalTime aTimeout)
{
return (aTimeout != PR_INTERVAL_NO_TIMEOUT) &&
(aTimeout <= (PR_IntervalNow() - aStart));
}
bool
MessageChannel::WaitResponse(bool aWaitTimedOut)
{
if (aWaitTimedOut) {
if (mInTimeoutSecondHalf) {
// We've really timed out this time.
return false;
}
// Try a second time.
mInTimeoutSecondHalf = true;
} else {
mInTimeoutSecondHalf = false;
}
return true;
}
#ifndef OS_WIN
bool
MessageChannel::WaitForSyncNotify()
{
PRIntervalTime timeout = (kNoTimeout == mTimeoutMs) ?
PR_INTERVAL_NO_TIMEOUT :
PR_MillisecondsToInterval(mTimeoutMs);
// XXX could optimize away this syscall for "no timeout" case if desired
PRIntervalTime waitStart = PR_IntervalNow();
mMonitor->Wait(timeout);
// If the timeout didn't expire, we know we received an event. The
// converse is not true.
return WaitResponse(IsTimeoutExpired(waitStart, timeout));
}
bool
MessageChannel::WaitForInterruptNotify()
{
return WaitForSyncNotify();
}
void
MessageChannel::NotifyWorkerThread()
{
mMonitor->Notify();
}
#endif
bool
MessageChannel::ShouldContinueFromTimeout()
{
AssertWorkerThread();
mMonitor->AssertCurrentThreadOwns();
bool cont;
{
MonitorAutoUnlock unlock(*mMonitor);
cont = mListener->OnReplyTimeout();
}
static enum { UNKNOWN, NOT_DEBUGGING, DEBUGGING } sDebuggingChildren = UNKNOWN;
if (sDebuggingChildren == UNKNOWN) {
sDebuggingChildren = getenv("MOZ_DEBUG_CHILD_PROCESS") ? DEBUGGING : NOT_DEBUGGING;
}
if (sDebuggingChildren == DEBUGGING) {
return true;
}
if (!cont) {
// NB: there's a sublety here. If parents were allowed to send sync
// messages to children, then it would be possible for this
// synchronous close-on-timeout to race with async |OnMessageReceived|
// tasks arriving from the child, posted to the worker thread's event
// loop. This would complicate cleanup of the *Channel. But since
// IPDL forbids this (and since it doesn't support children timing out
// on parents), the parent can only block on interrupt messages to the child,
// and in that case arriving async messages are enqueued to the interrupt
// channel's special queue. They're then ignored because the channel
// state changes to ChannelTimeout (i.e. !Connected).
SynchronouslyClose();
mChannelState = ChannelTimeout;
}
return cont;
}
void
MessageChannel::SetReplyTimeoutMs(int32_t aTimeoutMs)
{
// Set channel timeout value. Since this is broken up into
// two period, the minimum timeout value is 2ms.
AssertWorkerThread();
mTimeoutMs = (aTimeoutMs <= 0)
? kNoTimeout
: (int32_t)ceil((double)aTimeoutMs / 2.0);
}
void
MessageChannel::OnChannelConnected(int32_t peer_id)
{
mWorkerLoop->PostTask(
FROM_HERE,
NewRunnableMethod(this,
&MessageChannel::DispatchOnChannelConnected,
peer_id));
}
void
MessageChannel::DispatchOnChannelConnected(int32_t peer_pid)
{
AssertWorkerThread();
if (mListener)
mListener->OnChannelConnected(peer_pid);
}
void
MessageChannel::ReportMessageRouteError(const char* channelName) const
{
PrintErrorMessage(mSide, channelName, "Need a route");
mListener->OnProcessingError(MsgRouteError);
}
void
MessageChannel::ReportConnectionError(const char* aChannelName) const
{
AssertWorkerThread();
mMonitor->AssertCurrentThreadOwns();
const char* errorMsg = nullptr;
switch (mChannelState) {
case ChannelClosed:
errorMsg = "Closed channel: cannot send/recv";
break;
case ChannelOpening:
errorMsg = "Opening channel: not yet ready for send/recv";
break;
case ChannelTimeout:
errorMsg = "Channel timeout: cannot send/recv";
break;
case ChannelClosing:
errorMsg = "Channel closing: too late to send/recv, messages will be lost";
break;
case ChannelError:
errorMsg = "Channel error: cannot send/recv";
break;
default:
NS_RUNTIMEABORT("unreached");
}
PrintErrorMessage(mSide, aChannelName, errorMsg);
MonitorAutoUnlock unlock(*mMonitor);
mListener->OnProcessingError(MsgDropped);
}
bool
MessageChannel::MaybeHandleError(Result code, const char* channelName)
{
if (MsgProcessed == code)
return true;
const char* errorMsg = nullptr;
switch (code) {
case MsgNotKnown:
errorMsg = "Unknown message: not processed";
break;
case MsgNotAllowed:
errorMsg = "Message not allowed: cannot be sent/recvd in this state";
break;
case MsgPayloadError:
errorMsg = "Payload error: message could not be deserialized";
break;
case MsgProcessingError:
errorMsg = "Processing error: message was deserialized, but the handler returned false (indicating failure)";
break;
case MsgRouteError:
errorMsg = "Route error: message sent to unknown actor ID";
break;
case MsgValueError:
errorMsg = "Value error: message was deserialized, but contained an illegal value";
break;
default:
NS_RUNTIMEABORT("unknown Result code");
return false;
}
PrintErrorMessage(mSide, channelName, errorMsg);
mListener->OnProcessingError(code);
return false;
}
void
MessageChannel::OnChannelErrorFromLink()
{
AssertLinkThread();
mMonitor->AssertCurrentThreadOwns();
if (InterruptStackDepth() > 0)
NotifyWorkerThread();
if (AwaitingSyncReply() || AwaitingRPCReply() || AwaitingUrgentReply())
NotifyWorkerThread();
if (ChannelClosing != mChannelState) {
if (mAbortOnError) {
NS_RUNTIMEABORT("Aborting on channel error.");
}
mChannelState = ChannelError;
mMonitor->Notify();
}
PostErrorNotifyTask();
}
void
MessageChannel::NotifyMaybeChannelError()
{
mMonitor->AssertNotCurrentThreadOwns();
// TODO sort out Close() on this side racing with Close() on the other side
if (ChannelClosing == mChannelState) {
// the channel closed, but we received a "Goodbye" message warning us
// about it. no worries
mChannelState = ChannelClosed;
NotifyChannelClosed();
return;
}
// Oops, error! Let the listener know about it.
mChannelState = ChannelError;
mListener->OnChannelError();
Clear();
}
void
MessageChannel::OnNotifyMaybeChannelError()
{
AssertWorkerThread();
mMonitor->AssertNotCurrentThreadOwns();
mChannelErrorTask = nullptr;
// OnChannelError holds mMonitor when it posts this task and this
// task cannot be allowed to run until OnChannelError has
// exited. We enforce that order by grabbing the mutex here which
// should only continue once OnChannelError has completed.
{
MonitorAutoLock lock(*mMonitor);
// nothing to do here
}
if (IsOnCxxStack()) {
mChannelErrorTask =
NewRunnableMethod(this, &MessageChannel::OnNotifyMaybeChannelError);
// 10 ms delay is completely arbitrary
mWorkerLoop->PostDelayedTask(FROM_HERE, mChannelErrorTask, 10);
return;
}
NotifyMaybeChannelError();
}
void
MessageChannel::PostErrorNotifyTask()
{
mMonitor->AssertCurrentThreadOwns();
if (mChannelErrorTask)
return;
// This must be the last code that runs on this thread!
mChannelErrorTask =
NewRunnableMethod(this, &MessageChannel::OnNotifyMaybeChannelError);
mWorkerLoop->PostTask(FROM_HERE, mChannelErrorTask);
}
// Special async message.
class GoodbyeMessage : public IPC::Message
{
public:
GoodbyeMessage() :
IPC::Message(MSG_ROUTING_NONE, GOODBYE_MESSAGE_TYPE, PRIORITY_NORMAL)
{
}
static bool Read(const Message* msg) {
return true;
}
void Log(const std::string& aPrefix, FILE* aOutf) const {
fputs("(special `Goodbye' message)", aOutf);
}
};
void
MessageChannel::SynchronouslyClose()
{
AssertWorkerThread();
mMonitor->AssertCurrentThreadOwns();
mLink->SendClose();
while (ChannelClosed != mChannelState)
mMonitor->Wait();
}
void
MessageChannel::CloseWithError()
{
AssertWorkerThread();
MonitorAutoLock lock(*mMonitor);
if (ChannelConnected != mChannelState) {
return;
}
SynchronouslyClose();
mChannelState = ChannelError;
PostErrorNotifyTask();
}
void
MessageChannel::Close()
{
AssertWorkerThread();
{
MonitorAutoLock lock(*mMonitor);
if (ChannelError == mChannelState || ChannelTimeout == mChannelState) {
// See bug 538586: if the listener gets deleted while the
// IO thread's NotifyChannelError event is still enqueued
// and subsequently deletes us, then the error event will
// also be deleted and the listener will never be notified
// of the channel error.
if (mListener) {
MonitorAutoUnlock unlock(*mMonitor);
NotifyMaybeChannelError();
}
return;
}
if (ChannelOpening == mChannelState) {
// Mimic CloseWithError().
SynchronouslyClose();
mChannelState = ChannelError;
PostErrorNotifyTask();
return;
}
if (ChannelConnected != mChannelState) {
// XXX be strict about this until there's a compelling reason
// to relax
NS_RUNTIMEABORT("Close() called on closed channel!");
}
// notify the other side that we're about to close our socket
mLink->SendMessage(new GoodbyeMessage());
SynchronouslyClose();
}
NotifyChannelClosed();
}
void
MessageChannel::NotifyChannelClosed()
{
mMonitor->AssertNotCurrentThreadOwns();
if (ChannelClosed != mChannelState)
NS_RUNTIMEABORT("channel should have been closed!");
// OK, the IO thread just closed the channel normally. Let the
// listener know about it.
mListener->OnChannelClose();
Clear();
}
void
MessageChannel::DebugAbort(const char* file, int line, const char* cond,
const char* why,
bool reply) const
{
printf_stderr("###!!! [MessageChannel][%s][%s:%d] "
"Assertion (%s) failed. %s %s\n",
mSide == ChildSide ? "Child" : "Parent",
file, line, cond,
why,
reply ? "(reply)" : "");
// technically we need the mutex for this, but we're dying anyway
DumpInterruptStack(" ");
printf_stderr(" remote Interrupt stack guess: %lu\n",
mRemoteStackDepthGuess);
printf_stderr(" deferred stack size: %lu\n",
mDeferred.size());
printf_stderr(" out-of-turn Interrupt replies stack size: %lu\n",
mOutOfTurnReplies.size());
printf_stderr(" Pending queue size: %lu, front to back:\n",
mPending.size());
MessageQueue pending = mPending;
while (!pending.empty()) {
printf_stderr(" [ %s%s ]\n",
pending.front().is_interrupt() ? "intr" :
(pending.front().is_sync() ? "sync" : "async"),
pending.front().is_reply() ? "reply" : "");
pending.pop_front();
}
NS_RUNTIMEABORT(why);
}
void
MessageChannel::DumpInterruptStack(const char* const pfx) const
{
NS_WARN_IF_FALSE(MessageLoop::current() != mWorkerLoop,
"The worker thread had better be paused in a debugger!");
printf_stderr("%sMessageChannel 'backtrace':\n", pfx);
// print a python-style backtrace, first frame to last
for (uint32_t i = 0; i < mCxxStackFrames.length(); ++i) {
int32_t id;
const char* dir, *sems, *name;
mCxxStackFrames[i].Describe(&id, &dir, &sems, &name);
printf_stderr("%s[(%u) %s %s %s(actor=%d) ]\n", pfx,
i, dir, sems, name, id);
}
}
} // ipc
} // mozilla