gecko/layout/base/nsCSSRenderingBorders.cpp
Jeff Muizelaar dd29583933 Bug 809603. Simplify border radius drawing. r=roc
This adds a RoundedRect class that we use to do the offsetting. This class can
probably also be used elsewhere. With this patch we handle the Gmail checkboxes
in a single draw instead of in pieces like we currently do.

--HG--
extra : rebase_source : 8809f12b386eef2ce7364fb98e681fba343efdfe
2012-11-12 17:55:26 -08:00

2123 lines
71 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
// vim:cindent:ts=2:et:sw=2:
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsStyleConsts.h"
#include "nsPoint.h"
#include "nsRect.h"
#include "nsIViewManager.h"
#include "nsFrameManager.h"
#include "nsStyleContext.h"
#include "nsGkAtoms.h"
#include "nsCSSAnonBoxes.h"
#include "nsTransform2D.h"
#include "nsIContent.h"
#include "nsIScrollableFrame.h"
#include "imgIRequest.h"
#include "imgIContainer.h"
#include "nsCSSRendering.h"
#include "nsCSSColorUtils.h"
#include "nsITheme.h"
#include "nsThemeConstants.h"
#include "nsIServiceManager.h"
#include "nsLayoutUtils.h"
#include "nsINameSpaceManager.h"
#include "nsBlockFrame.h"
#include "sampler.h"
#include "nsExpirationTracker.h"
#include "RoundedRect.h"
#include "gfxContext.h"
#include "nsCSSRenderingBorders.h"
#include "mozilla/gfx/2D.h"
#include "gfx2DGlue.h"
using namespace mozilla;
using namespace mozilla::gfx;
struct BorderGradientCacheKey : public PLDHashEntryHdr {
typedef const BorderGradientCacheKey& KeyType;
typedef const BorderGradientCacheKey* KeyTypePointer;
enum { ALLOW_MEMMOVE = true };
const uint32_t mColor1;
const uint32_t mColor2;
const BackendType mBackendType;
BorderGradientCacheKey(const Color& aColor1, const Color& aColor2,
BackendType aBackendType)
: mColor1(aColor1.ToABGR()), mColor2(aColor2.ToABGR())
, mBackendType(aBackendType)
{ }
BorderGradientCacheKey(const BorderGradientCacheKey* aOther)
: mColor1(aOther->mColor1), mColor2(aOther->mColor2)
, mBackendType(aOther->mBackendType)
{ }
static PLDHashNumber
HashKey(const KeyTypePointer aKey)
{
PLDHashNumber hash = 0;
hash = AddToHash(hash, aKey->mColor1);
hash = AddToHash(hash, aKey->mColor2);
hash = AddToHash(hash, aKey->mBackendType);
return hash;
}
bool KeyEquals(KeyTypePointer aKey) const
{
return (aKey->mColor1 == mColor1) &&
(aKey->mColor2 == mColor2) &&
(aKey->mBackendType == mBackendType);
}
static KeyTypePointer KeyToPointer(KeyType aKey)
{
return &aKey;
}
};
/**
* This class is what is cached. It need to be allocated in an object separated
* to the cache entry to be able to be tracked by the nsExpirationTracker.
* */
struct BorderGradientCacheData {
BorderGradientCacheData(GradientStops* aStops, const BorderGradientCacheKey& aKey)
: mStops(aStops), mKey(aKey)
{}
BorderGradientCacheData(const BorderGradientCacheData& aOther)
: mStops(aOther.mStops),
mKey(aOther.mKey)
{ }
nsExpirationState *GetExpirationState() {
return &mExpirationState;
}
nsExpirationState mExpirationState;
RefPtr<GradientStops> mStops;
BorderGradientCacheKey mKey;
};
/**
* This class implements a cache with no maximum size, that retains the
* gradient stops used to draw border corners.
*
* The key is formed by the two gradient stops, they're always both located
* at an offset of 0.5. So they can generously be reused. The key also includes
* the backend type a certain gradient was created for.
*
* An entry stays in the cache as long as it is used often.
*
* This code was pretty bluntly stolen and modified from nsCSSRendering.
*/
class BorderGradientCache MOZ_FINAL : public nsExpirationTracker<BorderGradientCacheData,4>
{
public:
BorderGradientCache()
: nsExpirationTracker<BorderGradientCacheData, 4>(GENERATION_MS)
{
mHashEntries.Init();
mTimerPeriod = GENERATION_MS;
}
virtual void NotifyExpired(BorderGradientCacheData* aObject)
{
// This will free the gfxPattern.
RemoveObject(aObject);
mHashEntries.Remove(aObject->mKey);
}
BorderGradientCacheData* Lookup(const Color& aColor1, const Color& aColor2,
BackendType aBackendType)
{
BorderGradientCacheData* gradient =
mHashEntries.Get(BorderGradientCacheKey(aColor1, aColor2, aBackendType));
if (gradient) {
MarkUsed(gradient);
}
return gradient;
}
// Returns true if we successfully register the gradient in the cache, false
// otherwise.
bool RegisterEntry(BorderGradientCacheData* aValue)
{
nsresult rv = AddObject(aValue);
if (NS_FAILED(rv)) {
// We are OOM, and we cannot track this object. We don't want stall
// entries in the hash table (since the expiration tracker is responsible
// for removing the cache entries), so we avoid putting that entry in the
// table, which is a good things considering we are short on memory
// anyway, we probably don't want to retain things.
return false;
}
mHashEntries.Put(aValue->mKey, aValue);
return true;
}
protected:
uint32_t mTimerPeriod;
static const uint32_t GENERATION_MS = 4000;
/**
* FIXME use nsTHashtable to avoid duplicating the BorderGradientCacheKey.
* This is analogous to the issue for the generic gradient cache:
* https://bugzilla.mozilla.org/show_bug.cgi?id=785794
*/
nsClassHashtable<BorderGradientCacheKey, BorderGradientCacheData> mHashEntries;
};
/**
* nsCSSRendering::PaintBorder
* nsCSSRendering::PaintOutline
* -> DrawBorders
*
* DrawBorders
* -> Ability to use specialized approach?
* |- Draw using specialized function
* |- separate corners?
* |- dashed side mask
* |
* -> can border be drawn in 1 pass? (e.g., solid border same color all around)
* |- DrawBorderSides with all 4 sides
* -> more than 1 pass?
* |- for each corner
* |- clip to DoCornerClipSubPath
* |- for each side adjacent to corner
* |- clip to DoSideClipSubPath
* |- DrawBorderSides with one side
* |- for each side
* |- DoSideClipWithoutCornersSubPath
* |- DrawDashedSide || DrawBorderSides with one side
*/
static void ComputeBorderCornerDimensions(const gfxRect& aOuterRect,
const gfxRect& aInnerRect,
const gfxCornerSizes& aRadii,
gfxCornerSizes *aDimsResult);
// given a side index, get the previous and next side index
#define NEXT_SIDE(_s) mozilla::css::Side(((_s) + 1) & 3)
#define PREV_SIDE(_s) mozilla::css::Side(((_s) + 3) & 3)
// from the given base color and the background color, turn
// color into a color for the given border pattern style
static gfxRGBA MakeBorderColor(const gfxRGBA& aColor,
const gfxRGBA& aBackgroundColor,
BorderColorStyle aBorderColorStyle);
// Given a line index (an index starting from the outside of the
// border going inwards) and an array of line styles, calculate the
// color that that stripe of the border should be rendered in.
static gfxRGBA ComputeColorForLine(uint32_t aLineIndex,
const BorderColorStyle* aBorderColorStyle,
uint32_t aBorderColorStyleCount,
nscolor aBorderColor,
nscolor aBackgroundColor);
static gfxRGBA ComputeCompositeColorForLine(uint32_t aLineIndex,
const nsBorderColors* aBorderColors);
// little helper function to check if the array of 4 floats given are
// equal to the given value
static bool
CheckFourFloatsEqual(const gfxFloat *vals, gfxFloat k)
{
return (vals[0] == k &&
vals[1] == k &&
vals[2] == k &&
vals[3] == k);
}
static bool
IsZeroSize(const gfxSize& sz) {
return sz.width == 0.0 || sz.height == 0.0;
}
static bool
AllCornersZeroSize(const gfxCornerSizes& corners) {
return IsZeroSize(corners[NS_CORNER_TOP_LEFT]) &&
IsZeroSize(corners[NS_CORNER_TOP_RIGHT]) &&
IsZeroSize(corners[NS_CORNER_BOTTOM_RIGHT]) &&
IsZeroSize(corners[NS_CORNER_BOTTOM_LEFT]);
}
typedef enum {
// Normal solid square corner. Will be rectangular, the size of the
// adjacent sides. If the corner has a border radius, the corner
// will always be solid, since we don't do dotted/dashed etc.
CORNER_NORMAL,
// Paint the corner in whatever style is not dotted/dashed of the
// adjacent corners.
CORNER_SOLID,
// Paint the corner as a dot, the size of the bigger of the adjacent
// sides.
CORNER_DOT
} CornerStyle;
static BorderGradientCache* gBorderGradientCache = nullptr;
nsCSSBorderRenderer::nsCSSBorderRenderer(int32_t aAppUnitsPerPixel,
gfxContext* aDestContext,
gfxRect& aOuterRect,
const uint8_t* aBorderStyles,
const gfxFloat* aBorderWidths,
gfxCornerSizes& aBorderRadii,
const nscolor* aBorderColors,
nsBorderColors* const* aCompositeColors,
int aSkipSides,
nscolor aBackgroundColor)
: mContext(aDestContext),
mOuterRect(aOuterRect),
mBorderStyles(aBorderStyles),
mBorderWidths(aBorderWidths),
mBorderRadii(aBorderRadii),
mBorderColors(aBorderColors),
mCompositeColors(aCompositeColors),
mAUPP(aAppUnitsPerPixel),
mSkipSides(aSkipSides),
mBackgroundColor(aBackgroundColor)
{
if (!mCompositeColors) {
static nsBorderColors * const noColors[4] = { NULL };
mCompositeColors = &noColors[0];
}
mInnerRect = mOuterRect;
mInnerRect.Deflate(
gfxMargin(mBorderStyles[3] != NS_STYLE_BORDER_STYLE_NONE ? mBorderWidths[3] : 0,
mBorderStyles[0] != NS_STYLE_BORDER_STYLE_NONE ? mBorderWidths[0] : 0,
mBorderStyles[1] != NS_STYLE_BORDER_STYLE_NONE ? mBorderWidths[1] : 0,
mBorderStyles[2] != NS_STYLE_BORDER_STYLE_NONE ? mBorderWidths[2] : 0));
ComputeBorderCornerDimensions(mOuterRect, mInnerRect, mBorderRadii, &mBorderCornerDimensions);
mOneUnitBorder = CheckFourFloatsEqual(mBorderWidths, 1.0);
mNoBorderRadius = AllCornersZeroSize(mBorderRadii);
mAvoidStroke = false;
}
void
nsCSSBorderRenderer::Init()
{
gBorderGradientCache = new BorderGradientCache();
}
void
nsCSSBorderRenderer::Shutdown()
{
delete gBorderGradientCache;
}
/* static */ void
nsCSSBorderRenderer::ComputeInnerRadii(const gfxCornerSizes& aRadii,
const gfxFloat *aBorderSizes,
gfxCornerSizes *aInnerRadiiRet)
{
gfxCornerSizes& iRadii = *aInnerRadiiRet;
iRadii[C_TL].width = NS_MAX(0.0, aRadii[C_TL].width - aBorderSizes[NS_SIDE_LEFT]);
iRadii[C_TL].height = NS_MAX(0.0, aRadii[C_TL].height - aBorderSizes[NS_SIDE_TOP]);
iRadii[C_TR].width = NS_MAX(0.0, aRadii[C_TR].width - aBorderSizes[NS_SIDE_RIGHT]);
iRadii[C_TR].height = NS_MAX(0.0, aRadii[C_TR].height - aBorderSizes[NS_SIDE_TOP]);
iRadii[C_BR].width = NS_MAX(0.0, aRadii[C_BR].width - aBorderSizes[NS_SIDE_RIGHT]);
iRadii[C_BR].height = NS_MAX(0.0, aRadii[C_BR].height - aBorderSizes[NS_SIDE_BOTTOM]);
iRadii[C_BL].width = NS_MAX(0.0, aRadii[C_BL].width - aBorderSizes[NS_SIDE_LEFT]);
iRadii[C_BL].height = NS_MAX(0.0, aRadii[C_BL].height - aBorderSizes[NS_SIDE_BOTTOM]);
}
/* static */ void
nsCSSBorderRenderer::ComputeOuterRadii(const gfxCornerSizes& aRadii,
const gfxFloat *aBorderSizes,
gfxCornerSizes *aOuterRadiiRet)
{
gfxCornerSizes& oRadii = *aOuterRadiiRet;
// default all corners to sharp corners
oRadii = gfxCornerSizes(0.0);
// round the edges that have radii > 0.0 to start with
if (aRadii[C_TL].width > 0.0 && aRadii[C_TL].height > 0.0) {
oRadii[C_TL].width = NS_MAX(0.0, aRadii[C_TL].width + aBorderSizes[NS_SIDE_LEFT]);
oRadii[C_TL].height = NS_MAX(0.0, aRadii[C_TL].height + aBorderSizes[NS_SIDE_TOP]);
}
if (aRadii[C_TR].width > 0.0 && aRadii[C_TR].height > 0.0) {
oRadii[C_TR].width = NS_MAX(0.0, aRadii[C_TR].width + aBorderSizes[NS_SIDE_RIGHT]);
oRadii[C_TR].height = NS_MAX(0.0, aRadii[C_TR].height + aBorderSizes[NS_SIDE_TOP]);
}
if (aRadii[C_BR].width > 0.0 && aRadii[C_BR].height > 0.0) {
oRadii[C_BR].width = NS_MAX(0.0, aRadii[C_BR].width + aBorderSizes[NS_SIDE_RIGHT]);
oRadii[C_BR].height = NS_MAX(0.0, aRadii[C_BR].height + aBorderSizes[NS_SIDE_BOTTOM]);
}
if (aRadii[C_BL].width > 0.0 && aRadii[C_BL].height > 0.0) {
oRadii[C_BL].width = NS_MAX(0.0, aRadii[C_BL].width + aBorderSizes[NS_SIDE_LEFT]);
oRadii[C_BL].height = NS_MAX(0.0, aRadii[C_BL].height + aBorderSizes[NS_SIDE_BOTTOM]);
}
}
/*static*/ void
ComputeBorderCornerDimensions(const gfxRect& aOuterRect,
const gfxRect& aInnerRect,
const gfxCornerSizes& aRadii,
gfxCornerSizes *aDimsRet)
{
gfxFloat leftWidth = aInnerRect.X() - aOuterRect.X();
gfxFloat topWidth = aInnerRect.Y() - aOuterRect.Y();
gfxFloat rightWidth = aOuterRect.Width() - aInnerRect.Width() - leftWidth;
gfxFloat bottomWidth = aOuterRect.Height() - aInnerRect.Height() - topWidth;
if (AllCornersZeroSize(aRadii)) {
// These will always be in pixel units from CSS
(*aDimsRet)[C_TL] = gfxSize(leftWidth, topWidth);
(*aDimsRet)[C_TR] = gfxSize(rightWidth, topWidth);
(*aDimsRet)[C_BR] = gfxSize(rightWidth, bottomWidth);
(*aDimsRet)[C_BL] = gfxSize(leftWidth, bottomWidth);
} else {
// Always round up to whole pixels for the corners; it's safe to
// make the corners bigger than necessary, and this way we ensure
// that we avoid seams.
(*aDimsRet)[C_TL] = gfxSize(ceil(NS_MAX(leftWidth, aRadii[C_TL].width)),
ceil(NS_MAX(topWidth, aRadii[C_TL].height)));
(*aDimsRet)[C_TR] = gfxSize(ceil(NS_MAX(rightWidth, aRadii[C_TR].width)),
ceil(NS_MAX(topWidth, aRadii[C_TR].height)));
(*aDimsRet)[C_BR] = gfxSize(ceil(NS_MAX(rightWidth, aRadii[C_BR].width)),
ceil(NS_MAX(bottomWidth, aRadii[C_BR].height)));
(*aDimsRet)[C_BL] = gfxSize(ceil(NS_MAX(leftWidth, aRadii[C_BL].width)),
ceil(NS_MAX(bottomWidth, aRadii[C_BL].height)));
}
}
bool
nsCSSBorderRenderer::AreBorderSideFinalStylesSame(uint8_t aSides)
{
NS_ASSERTION(aSides != 0 && (aSides & ~SIDE_BITS_ALL) == 0,
"AreBorderSidesSame: invalid whichSides!");
/* First check if the specified styles and colors are the same for all sides */
int firstStyle = 0;
NS_FOR_CSS_SIDES (i) {
if (firstStyle == i) {
if (((1 << i) & aSides) == 0)
firstStyle++;
continue;
}
if (((1 << i) & aSides) == 0) {
continue;
}
if (mBorderStyles[firstStyle] != mBorderStyles[i] ||
mBorderColors[firstStyle] != mBorderColors[i] ||
!nsBorderColors::Equal(mCompositeColors[firstStyle],
mCompositeColors[i]))
return false;
}
/* Then if it's one of the two-tone styles and we're not
* just comparing the TL or BR sides */
switch (mBorderStyles[firstStyle]) {
case NS_STYLE_BORDER_STYLE_GROOVE:
case NS_STYLE_BORDER_STYLE_RIDGE:
case NS_STYLE_BORDER_STYLE_INSET:
case NS_STYLE_BORDER_STYLE_OUTSET:
return ((aSides & ~(SIDE_BIT_TOP | SIDE_BIT_LEFT)) == 0 ||
(aSides & ~(SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) == 0);
}
return true;
}
bool
nsCSSBorderRenderer::IsSolidCornerStyle(uint8_t aStyle, mozilla::css::Corner aCorner)
{
switch (aStyle) {
case NS_STYLE_BORDER_STYLE_DOTTED:
case NS_STYLE_BORDER_STYLE_DASHED:
case NS_STYLE_BORDER_STYLE_SOLID:
return true;
case NS_STYLE_BORDER_STYLE_INSET:
case NS_STYLE_BORDER_STYLE_OUTSET:
return (aCorner == NS_CORNER_TOP_LEFT || aCorner == NS_CORNER_BOTTOM_RIGHT);
case NS_STYLE_BORDER_STYLE_GROOVE:
case NS_STYLE_BORDER_STYLE_RIDGE:
return mOneUnitBorder && (aCorner == NS_CORNER_TOP_LEFT || aCorner == NS_CORNER_BOTTOM_RIGHT);
case NS_STYLE_BORDER_STYLE_DOUBLE:
return mOneUnitBorder;
default:
return false;
}
}
BorderColorStyle
nsCSSBorderRenderer::BorderColorStyleForSolidCorner(uint8_t aStyle, mozilla::css::Corner aCorner)
{
// note that this function assumes that the corner is already solid,
// as per the earlier function
switch (aStyle) {
case NS_STYLE_BORDER_STYLE_DOTTED:
case NS_STYLE_BORDER_STYLE_DASHED:
case NS_STYLE_BORDER_STYLE_SOLID:
case NS_STYLE_BORDER_STYLE_DOUBLE:
return BorderColorStyleSolid;
case NS_STYLE_BORDER_STYLE_INSET:
case NS_STYLE_BORDER_STYLE_GROOVE:
if (aCorner == NS_CORNER_TOP_LEFT)
return BorderColorStyleDark;
else if (aCorner == NS_CORNER_BOTTOM_RIGHT)
return BorderColorStyleLight;
break;
case NS_STYLE_BORDER_STYLE_OUTSET:
case NS_STYLE_BORDER_STYLE_RIDGE:
if (aCorner == NS_CORNER_TOP_LEFT)
return BorderColorStyleLight;
else if (aCorner == NS_CORNER_BOTTOM_RIGHT)
return BorderColorStyleDark;
break;
}
return BorderColorStyleNone;
}
void
nsCSSBorderRenderer::DoCornerSubPath(mozilla::css::Corner aCorner)
{
gfxPoint offset(0.0, 0.0);
if (aCorner == C_TR || aCorner == C_BR)
offset.x = mOuterRect.Width() - mBorderCornerDimensions[aCorner].width;
if (aCorner == C_BR || aCorner == C_BL)
offset.y = mOuterRect.Height() - mBorderCornerDimensions[aCorner].height;
mContext->Rectangle(gfxRect(mOuterRect.TopLeft() + offset,
mBorderCornerDimensions[aCorner]));
}
void
nsCSSBorderRenderer::DoSideClipWithoutCornersSubPath(mozilla::css::Side aSide)
{
gfxPoint offset(0.0, 0.0);
// The offset from the outside rect to the start of this side's
// box. For the top and bottom sides, the height of the box
// must be the border height; the x start must take into account
// the corner size (which may be bigger than the right or left
// side's width). The same applies to the right and left sides.
if (aSide == NS_SIDE_TOP) {
offset.x = mBorderCornerDimensions[C_TL].width;
} else if (aSide == NS_SIDE_RIGHT) {
offset.x = mOuterRect.Width() - mBorderWidths[NS_SIDE_RIGHT];
offset.y = mBorderCornerDimensions[C_TR].height;
} else if (aSide == NS_SIDE_BOTTOM) {
offset.x = mBorderCornerDimensions[C_BL].width;
offset.y = mOuterRect.Height() - mBorderWidths[NS_SIDE_BOTTOM];
} else if (aSide == NS_SIDE_LEFT) {
offset.y = mBorderCornerDimensions[C_TL].height;
}
// The sum of the width & height of the corners adjacent to the
// side. This relies on the relationship between side indexing and
// corner indexing; that is, 0 == SIDE_TOP and 0 == CORNER_TOP_LEFT,
// with both proceeding clockwise.
gfxSize sideCornerSum = mBorderCornerDimensions[mozilla::css::Corner(aSide)]
+ mBorderCornerDimensions[mozilla::css::Corner(NEXT_SIDE(aSide))];
gfxRect rect(mOuterRect.TopLeft() + offset,
mOuterRect.Size() - sideCornerSum);
if (aSide == NS_SIDE_TOP || aSide == NS_SIDE_BOTTOM)
rect.height = mBorderWidths[aSide];
else
rect.width = mBorderWidths[aSide];
mContext->Rectangle(rect);
}
// The side border type and the adjacent border types are
// examined and one of the different types of clipping (listed
// below) is selected.
typedef enum {
// clip to the trapezoid formed by the corners of the
// inner and outer rectangles for the given side
SIDE_CLIP_TRAPEZOID,
// clip to the trapezoid formed by the outer rectangle
// corners and the center of the region, making sure
// that diagonal lines all go directly from the outside
// corner to the inside corner, but that they then continue on
// to the middle.
//
// This is needed for correctly clipping rounded borders,
// which might extend past the SIDE_CLIP_TRAPEZOID trap.
SIDE_CLIP_TRAPEZOID_FULL,
// clip to the rectangle formed by the given side; a specific
// overlap algorithm is used; see the function for details.
// this is currently used for dashing.
SIDE_CLIP_RECTANGLE
} SideClipType;
// Given three points, p0, p1, and midPoint, move p1 further in to the
// rectangle (of which aMidPoint is the center) so that it reaches the
// closer of the horizontal or vertical lines intersecting the midpoint,
// while maintaing the slope of the line. If p0 and p1 are the same,
// just move p1 to midPoint (since there's no slope to maintain).
// FIXME: Extending only to the midpoint isn't actually sufficient for
// boxes with asymmetric radii.
static void
MaybeMoveToMidPoint(gfxPoint& aP0, gfxPoint& aP1, const gfxPoint& aMidPoint)
{
gfxPoint ps = aP1 - aP0;
if (ps.x == 0.0) {
if (ps.y == 0.0) {
aP1 = aMidPoint;
} else {
aP1.y = aMidPoint.y;
}
} else {
if (ps.y == 0.0) {
aP1.x = aMidPoint.x;
} else {
gfxFloat k = NS_MIN((aMidPoint.x - aP0.x) / ps.x,
(aMidPoint.y - aP0.y) / ps.y);
aP1 = aP0 + ps * k;
}
}
}
void
nsCSSBorderRenderer::DoSideClipSubPath(mozilla::css::Side aSide)
{
// the clip proceeds clockwise from the top left corner;
// so "start" in each case is the start of the region from that side.
//
// the final path will be formed like:
// s0 ------- e0
// | /
// s1 ----- e1
//
// that is, the second point will always be on the inside
gfxPoint start[2];
gfxPoint end[2];
#define IS_DASHED_OR_DOTTED(_s) ((_s) == NS_STYLE_BORDER_STYLE_DASHED || (_s) == NS_STYLE_BORDER_STYLE_DOTTED)
bool isDashed = IS_DASHED_OR_DOTTED(mBorderStyles[aSide]);
bool startIsDashed = IS_DASHED_OR_DOTTED(mBorderStyles[PREV_SIDE(aSide)]);
bool endIsDashed = IS_DASHED_OR_DOTTED(mBorderStyles[NEXT_SIDE(aSide)]);
#undef IS_DASHED_OR_DOTTED
SideClipType startType = SIDE_CLIP_TRAPEZOID;
SideClipType endType = SIDE_CLIP_TRAPEZOID;
if (!IsZeroSize(mBorderRadii[mozilla::css::Corner(aSide)]))
startType = SIDE_CLIP_TRAPEZOID_FULL;
else if (startIsDashed && isDashed)
startType = SIDE_CLIP_RECTANGLE;
if (!IsZeroSize(mBorderRadii[mozilla::css::Corner(NEXT_SIDE(aSide))]))
endType = SIDE_CLIP_TRAPEZOID_FULL;
else if (endIsDashed && isDashed)
endType = SIDE_CLIP_RECTANGLE;
gfxPoint midPoint = mInnerRect.Center();
start[0] = mOuterRect.CCWCorner(aSide);
start[1] = mInnerRect.CCWCorner(aSide);
end[0] = mOuterRect.CWCorner(aSide);
end[1] = mInnerRect.CWCorner(aSide);
if (startType == SIDE_CLIP_TRAPEZOID_FULL) {
MaybeMoveToMidPoint(start[0], start[1], midPoint);
} else if (startType == SIDE_CLIP_RECTANGLE) {
if (aSide == NS_SIDE_TOP || aSide == NS_SIDE_BOTTOM)
start[1] = gfxPoint(mOuterRect.CCWCorner(aSide).x, mInnerRect.CCWCorner(aSide).y);
else
start[1] = gfxPoint(mInnerRect.CCWCorner(aSide).x, mOuterRect.CCWCorner(aSide).y);
}
if (endType == SIDE_CLIP_TRAPEZOID_FULL) {
MaybeMoveToMidPoint(end[0], end[1], midPoint);
} else if (endType == SIDE_CLIP_RECTANGLE) {
if (aSide == NS_SIDE_TOP || aSide == NS_SIDE_BOTTOM)
end[0] = gfxPoint(mInnerRect.CWCorner(aSide).x, mOuterRect.CWCorner(aSide).y);
else
end[0] = gfxPoint(mOuterRect.CWCorner(aSide).x, mInnerRect.CWCorner(aSide).y);
}
mContext->MoveTo(start[0]);
mContext->LineTo(end[0]);
mContext->LineTo(end[1]);
mContext->LineTo(start[1]);
mContext->ClosePath();
}
void
nsCSSBorderRenderer::FillSolidBorder(const gfxRect& aOuterRect,
const gfxRect& aInnerRect,
const gfxCornerSizes& aBorderRadii,
const gfxFloat *aBorderSizes,
int aSides,
const gfxRGBA& aColor)
{
mContext->SetColor(aColor);
// Note that this function is allowed to draw more than just the
// requested sides.
// If we have a border radius, do full rounded rectangles
// and fill, regardless of what sides we're asked to draw.
if (!AllCornersZeroSize(aBorderRadii)) {
gfxCornerSizes innerRadii;
ComputeInnerRadii(aBorderRadii, aBorderSizes, &innerRadii);
mContext->NewPath();
// do the outer border
mContext->RoundedRectangle(aOuterRect, aBorderRadii, true);
// then do the inner border CCW
mContext->RoundedRectangle(aInnerRect, innerRadii, false);
mContext->Fill();
return;
}
// If we're asked to draw all sides of an equal-sized border,
// stroking is fastest. This is a fairly common path, but partial
// sides is probably second in the list -- there are a bunch of
// common border styles, such as inset and outset, that are
// top-left/bottom-right split.
if (aSides == SIDE_BITS_ALL &&
CheckFourFloatsEqual(aBorderSizes, aBorderSizes[0]) &&
!mAvoidStroke)
{
gfxRect r(aOuterRect);
r.Deflate(aBorderSizes[0] / 2.0);
mContext->SetLineWidth(aBorderSizes[0]);
mContext->NewPath();
mContext->Rectangle(r);
mContext->Stroke();
return;
}
// Otherwise, we have unequal sized borders or we're only
// drawing some sides; create rectangles for each side
// and fill them.
gfxRect r[4];
// compute base rects for each side
if (aSides & SIDE_BIT_TOP) {
r[NS_SIDE_TOP] =
gfxRect(aOuterRect.X(), aOuterRect.Y(),
aOuterRect.Width(), aBorderSizes[NS_SIDE_TOP]);
}
if (aSides & SIDE_BIT_BOTTOM) {
r[NS_SIDE_BOTTOM] =
gfxRect(aOuterRect.X(), aOuterRect.YMost() - aBorderSizes[NS_SIDE_BOTTOM],
aOuterRect.Width(), aBorderSizes[NS_SIDE_BOTTOM]);
}
if (aSides & SIDE_BIT_LEFT) {
r[NS_SIDE_LEFT] =
gfxRect(aOuterRect.X(), aOuterRect.Y(),
aBorderSizes[NS_SIDE_LEFT], aOuterRect.Height());
}
if (aSides & SIDE_BIT_RIGHT) {
r[NS_SIDE_RIGHT] =
gfxRect(aOuterRect.XMost() - aBorderSizes[NS_SIDE_RIGHT], aOuterRect.Y(),
aBorderSizes[NS_SIDE_RIGHT], aOuterRect.Height());
}
// If two sides meet at a corner that we're rendering, then
// make sure that we adjust one of the sides to avoid overlap.
// This is especially important in the case of colors with
// an alpha channel.
if ((aSides & (SIDE_BIT_TOP | SIDE_BIT_LEFT)) == (SIDE_BIT_TOP | SIDE_BIT_LEFT)) {
// adjust the left's top down a bit
r[NS_SIDE_LEFT].y += aBorderSizes[NS_SIDE_TOP];
r[NS_SIDE_LEFT].height -= aBorderSizes[NS_SIDE_TOP];
}
if ((aSides & (SIDE_BIT_TOP | SIDE_BIT_RIGHT)) == (SIDE_BIT_TOP | SIDE_BIT_RIGHT)) {
// adjust the top's left a bit
r[NS_SIDE_TOP].width -= aBorderSizes[NS_SIDE_RIGHT];
}
if ((aSides & (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) == (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) {
// adjust the right's bottom a bit
r[NS_SIDE_RIGHT].height -= aBorderSizes[NS_SIDE_BOTTOM];
}
if ((aSides & (SIDE_BIT_BOTTOM | SIDE_BIT_LEFT)) == (SIDE_BIT_BOTTOM | SIDE_BIT_LEFT)) {
// adjust the bottom's left a bit
r[NS_SIDE_BOTTOM].x += aBorderSizes[NS_SIDE_LEFT];
r[NS_SIDE_BOTTOM].width -= aBorderSizes[NS_SIDE_LEFT];
}
// Filling these one by one is faster than filling them all at once.
for (uint32_t i = 0; i < 4; i++) {
if (aSides & (1 << i)) {
mContext->NewPath();
mContext->Rectangle(r[i], true);
mContext->Fill();
}
}
}
gfxRGBA
MakeBorderColor(const gfxRGBA& aColor, const gfxRGBA& aBackgroundColor, BorderColorStyle aBorderColorStyle)
{
nscolor colors[2];
int k = 0;
switch (aBorderColorStyle) {
case BorderColorStyleNone:
return gfxRGBA(0.0, 0.0, 0.0, 0.0);
case BorderColorStyleLight:
k = 1;
/* fall through */
case BorderColorStyleDark:
NS_GetSpecial3DColors(colors, aBackgroundColor.Packed(), aColor.Packed());
return gfxRGBA(colors[k]);
case BorderColorStyleSolid:
default:
return aColor;
}
}
gfxRGBA
ComputeColorForLine(uint32_t aLineIndex,
const BorderColorStyle* aBorderColorStyle,
uint32_t aBorderColorStyleCount,
nscolor aBorderColor,
nscolor aBackgroundColor)
{
NS_ASSERTION(aLineIndex < aBorderColorStyleCount, "Invalid lineIndex given");
return MakeBorderColor(gfxRGBA(aBorderColor), gfxRGBA(aBackgroundColor), aBorderColorStyle[aLineIndex]);
}
gfxRGBA
ComputeCompositeColorForLine(uint32_t aLineIndex,
const nsBorderColors* aBorderColors)
{
while (aLineIndex-- && aBorderColors->mNext)
aBorderColors = aBorderColors->mNext;
return gfxRGBA(aBorderColors->mColor);
}
void
nsCSSBorderRenderer::DrawBorderSidesCompositeColors(int aSides, const nsBorderColors *aCompositeColors)
{
gfxCornerSizes radii = mBorderRadii;
// the generic composite colors path; each border is 1px in size
gfxRect soRect = mOuterRect;
gfxFloat maxBorderWidth = 0;
NS_FOR_CSS_SIDES (i) {
maxBorderWidth = NS_MAX(maxBorderWidth, mBorderWidths[i]);
}
gfxFloat fakeBorderSizes[4];
gfxPoint itl = mInnerRect.TopLeft();
gfxPoint ibr = mInnerRect.BottomRight();
for (uint32_t i = 0; i < uint32_t(maxBorderWidth); i++) {
gfxRGBA lineColor = ComputeCompositeColorForLine(i, aCompositeColors);
gfxRect siRect = soRect;
siRect.Deflate(1.0);
// now cap the rects to the real mInnerRect
gfxPoint tl = siRect.TopLeft();
gfxPoint br = siRect.BottomRight();
tl.x = NS_MIN(tl.x, itl.x);
tl.y = NS_MIN(tl.y, itl.y);
br.x = NS_MAX(br.x, ibr.x);
br.y = NS_MAX(br.y, ibr.y);
siRect = gfxRect(tl.x, tl.y, br.x - tl.x , br.y - tl.y);
fakeBorderSizes[NS_SIDE_TOP] = siRect.TopLeft().y - soRect.TopLeft().y;
fakeBorderSizes[NS_SIDE_RIGHT] = soRect.TopRight().x - siRect.TopRight().x;
fakeBorderSizes[NS_SIDE_BOTTOM] = soRect.BottomRight().y - siRect.BottomRight().y;
fakeBorderSizes[NS_SIDE_LEFT] = siRect.BottomLeft().x - soRect.BottomLeft().x;
FillSolidBorder(soRect, siRect, radii, fakeBorderSizes, aSides, lineColor);
soRect = siRect;
ComputeInnerRadii(radii, fakeBorderSizes, &radii);
}
}
void
nsCSSBorderRenderer::DrawBorderSides(int aSides)
{
if (aSides == 0 || (aSides & ~SIDE_BITS_ALL) != 0) {
NS_WARNING("DrawBorderSides: invalid sides!");
return;
}
uint8_t borderRenderStyle;
nscolor borderRenderColor;
const nsBorderColors *compositeColors = nullptr;
uint32_t borderColorStyleCount = 0;
BorderColorStyle borderColorStyleTopLeft[3], borderColorStyleBottomRight[3];
BorderColorStyle *borderColorStyle = nullptr;
NS_FOR_CSS_SIDES (i) {
if ((aSides & (1 << i)) == 0)
continue;
borderRenderStyle = mBorderStyles[i];
borderRenderColor = mBorderColors[i];
compositeColors = mCompositeColors[i];
break;
}
if (borderRenderStyle == NS_STYLE_BORDER_STYLE_NONE ||
borderRenderStyle == NS_STYLE_BORDER_STYLE_HIDDEN)
return;
// -moz-border-colors is a hack; if we have it for a border, then
// it's always drawn solid, and each color is given 1px. The last
// color is used for the remainder of the border's size. Just
// hand off to another function to do all that.
if (compositeColors) {
DrawBorderSidesCompositeColors(aSides, compositeColors);
return;
}
// We're not doing compositeColors, so we can calculate the
// borderColorStyle based on the specified style. The
// borderColorStyle array goes from the outer to the inner style.
//
// If the border width is 1, we need to change the borderRenderStyle
// a bit to make sure that we get the right colors -- e.g. 'ridge'
// with a 1px border needs to look like solid, not like 'outset'.
if (mOneUnitBorder &&
(borderRenderStyle == NS_STYLE_BORDER_STYLE_RIDGE ||
borderRenderStyle == NS_STYLE_BORDER_STYLE_GROOVE ||
borderRenderStyle == NS_STYLE_BORDER_STYLE_DOUBLE))
borderRenderStyle = NS_STYLE_BORDER_STYLE_SOLID;
switch (borderRenderStyle) {
case NS_STYLE_BORDER_STYLE_SOLID:
case NS_STYLE_BORDER_STYLE_DASHED:
case NS_STYLE_BORDER_STYLE_DOTTED:
borderColorStyleTopLeft[0] = BorderColorStyleSolid;
borderColorStyleBottomRight[0] = BorderColorStyleSolid;
borderColorStyleCount = 1;
break;
case NS_STYLE_BORDER_STYLE_GROOVE:
borderColorStyleTopLeft[0] = BorderColorStyleDark;
borderColorStyleTopLeft[1] = BorderColorStyleLight;
borderColorStyleBottomRight[0] = BorderColorStyleLight;
borderColorStyleBottomRight[1] = BorderColorStyleDark;
borderColorStyleCount = 2;
break;
case NS_STYLE_BORDER_STYLE_RIDGE:
borderColorStyleTopLeft[0] = BorderColorStyleLight;
borderColorStyleTopLeft[1] = BorderColorStyleDark;
borderColorStyleBottomRight[0] = BorderColorStyleDark;
borderColorStyleBottomRight[1] = BorderColorStyleLight;
borderColorStyleCount = 2;
break;
case NS_STYLE_BORDER_STYLE_DOUBLE:
borderColorStyleTopLeft[0] = BorderColorStyleSolid;
borderColorStyleTopLeft[1] = BorderColorStyleNone;
borderColorStyleTopLeft[2] = BorderColorStyleSolid;
borderColorStyleBottomRight[0] = BorderColorStyleSolid;
borderColorStyleBottomRight[1] = BorderColorStyleNone;
borderColorStyleBottomRight[2] = BorderColorStyleSolid;
borderColorStyleCount = 3;
break;
case NS_STYLE_BORDER_STYLE_INSET:
borderColorStyleTopLeft[0] = BorderColorStyleDark;
borderColorStyleBottomRight[0] = BorderColorStyleLight;
borderColorStyleCount = 1;
break;
case NS_STYLE_BORDER_STYLE_OUTSET:
borderColorStyleTopLeft[0] = BorderColorStyleLight;
borderColorStyleBottomRight[0] = BorderColorStyleDark;
borderColorStyleCount = 1;
break;
default:
NS_NOTREACHED("Unhandled border style!!");
break;
}
// The only way to get to here is by having a
// borderColorStyleCount < 1 or > 3; this should never happen,
// since -moz-border-colors doesn't get handled here.
NS_ASSERTION(borderColorStyleCount > 0 && borderColorStyleCount < 4,
"Non-border-colors case with borderColorStyleCount < 1 or > 3; what happened?");
// The caller should never give us anything with a mix
// of TL/BR if the border style would require a
// TL/BR split.
if (aSides & (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT))
borderColorStyle = borderColorStyleBottomRight;
else
borderColorStyle = borderColorStyleTopLeft;
// Distribute the border across the available space.
gfxFloat borderWidths[3][4];
if (borderColorStyleCount == 1) {
NS_FOR_CSS_SIDES (i) {
borderWidths[0][i] = mBorderWidths[i];
}
} else if (borderColorStyleCount == 2) {
// with 2 color styles, any extra pixel goes to the outside
NS_FOR_CSS_SIDES (i) {
borderWidths[0][i] = int32_t(mBorderWidths[i]) / 2 + int32_t(mBorderWidths[i]) % 2;
borderWidths[1][i] = int32_t(mBorderWidths[i]) / 2;
}
} else if (borderColorStyleCount == 3) {
// with 3 color styles, any extra pixel (or lack of extra pixel)
// goes to the middle
NS_FOR_CSS_SIDES (i) {
if (mBorderWidths[i] == 1.0) {
borderWidths[0][i] = 1.0;
borderWidths[1][i] = borderWidths[2][i] = 0.0;
} else {
int32_t rest = int32_t(mBorderWidths[i]) % 3;
borderWidths[0][i] = borderWidths[2][i] = borderWidths[1][i] = (int32_t(mBorderWidths[i]) - rest) / 3;
if (rest == 1) {
borderWidths[1][i] += 1.0;
} else if (rest == 2) {
borderWidths[0][i] += 1.0;
borderWidths[2][i] += 1.0;
}
}
}
}
// make a copy that we can modify
gfxCornerSizes radii = mBorderRadii;
gfxRect soRect(mOuterRect);
gfxRect siRect(mOuterRect);
for (unsigned int i = 0; i < borderColorStyleCount; i++) {
// walk siRect inwards at the start of the loop to get the
// correct inner rect.
siRect.Deflate(gfxMargin(borderWidths[i][3], borderWidths[i][0],
borderWidths[i][1], borderWidths[i][2]));
if (borderColorStyle[i] != BorderColorStyleNone) {
gfxRGBA color = ComputeColorForLine(i,
borderColorStyle, borderColorStyleCount,
borderRenderColor, mBackgroundColor);
FillSolidBorder(soRect, siRect, radii, borderWidths[i], aSides, color);
}
ComputeInnerRadii(radii, borderWidths[i], &radii);
// And now soRect is the same as siRect, for the next line in.
soRect = siRect;
}
}
void
nsCSSBorderRenderer::DrawDashedSide(mozilla::css::Side aSide)
{
gfxFloat dashWidth;
gfxFloat dash[2];
uint8_t style = mBorderStyles[aSide];
gfxFloat borderWidth = mBorderWidths[aSide];
nscolor borderColor = mBorderColors[aSide];
if (borderWidth == 0.0)
return;
if (style == NS_STYLE_BORDER_STYLE_NONE ||
style == NS_STYLE_BORDER_STYLE_HIDDEN)
return;
if (style == NS_STYLE_BORDER_STYLE_DASHED) {
dashWidth = gfxFloat(borderWidth * DOT_LENGTH * DASH_LENGTH);
dash[0] = dashWidth;
dash[1] = dashWidth;
mContext->SetLineCap(gfxContext::LINE_CAP_BUTT);
} else if (style == NS_STYLE_BORDER_STYLE_DOTTED) {
dashWidth = gfxFloat(borderWidth * DOT_LENGTH);
if (borderWidth > 2.0) {
dash[0] = 0.0;
dash[1] = dashWidth * 2.0;
mContext->SetLineCap(gfxContext::LINE_CAP_ROUND);
} else {
dash[0] = dashWidth;
dash[1] = dashWidth;
}
} else {
SF("DrawDashedSide: style: %d!!\n", style);
NS_ERROR("DrawDashedSide called with style other than DASHED or DOTTED; someone's not playing nice");
return;
}
SF("dash: %f %f\n", dash[0], dash[1]);
mContext->SetDash(dash, 2, 0.0);
gfxPoint start = mOuterRect.CCWCorner(aSide);
gfxPoint end = mOuterRect.CWCorner(aSide);
if (aSide == NS_SIDE_TOP) {
start.x += mBorderCornerDimensions[C_TL].width;
end.x -= mBorderCornerDimensions[C_TR].width;
start.y += borderWidth / 2.0;
end.y += borderWidth / 2.0;
} else if (aSide == NS_SIDE_RIGHT) {
start.x -= borderWidth / 2.0;
end.x -= borderWidth / 2.0;
start.y += mBorderCornerDimensions[C_TR].height;
end.y -= mBorderCornerDimensions[C_BR].height;
} else if (aSide == NS_SIDE_BOTTOM) {
start.x -= mBorderCornerDimensions[C_BR].width;
end.x += mBorderCornerDimensions[C_BL].width;
start.y -= borderWidth / 2.0;
end.y -= borderWidth / 2.0;
} else if (aSide == NS_SIDE_LEFT) {
start.x += borderWidth / 2.0;
end.x += borderWidth / 2.0;
start.y -= mBorderCornerDimensions[C_BL].height;
end.y += mBorderCornerDimensions[C_TL].height;
}
mContext->NewPath();
mContext->MoveTo(start);
mContext->LineTo(end);
mContext->SetLineWidth(borderWidth);
mContext->SetColor(gfxRGBA(borderColor));
//mContext->SetColor(gfxRGBA(1.0, 0.0, 0.0, 1.0));
mContext->Stroke();
}
void
nsCSSBorderRenderer::SetupStrokeStyle(mozilla::css::Side aSide)
{
mContext->SetColor(gfxRGBA(mBorderColors[aSide]));
mContext->SetLineWidth(mBorderWidths[aSide]);
}
bool
nsCSSBorderRenderer::AllBordersSameWidth()
{
if (mBorderWidths[0] == mBorderWidths[1] &&
mBorderWidths[0] == mBorderWidths[2] &&
mBorderWidths[0] == mBorderWidths[3])
{
return true;
}
return false;
}
bool
nsCSSBorderRenderer::AllBordersSolid(bool *aHasCompositeColors)
{
*aHasCompositeColors = false;
NS_FOR_CSS_SIDES(i) {
if (mCompositeColors[i] != nullptr) {
*aHasCompositeColors = true;
}
if (mBorderStyles[i] == NS_STYLE_BORDER_STYLE_SOLID ||
mBorderStyles[i] == NS_STYLE_BORDER_STYLE_NONE ||
mBorderStyles[i] == NS_STYLE_BORDER_STYLE_HIDDEN)
{
continue;
}
return false;
}
return true;
}
bool IsVisible(int aStyle)
{
if (aStyle != NS_STYLE_BORDER_STYLE_NONE &&
aStyle != NS_STYLE_BORDER_STYLE_HIDDEN) {
return true;
}
return false;
}
already_AddRefed<gfxPattern>
nsCSSBorderRenderer::CreateCornerGradient(mozilla::css::Corner aCorner,
const gfxRGBA &aFirstColor,
const gfxRGBA &aSecondColor)
{
typedef struct { gfxFloat a, b; } twoFloats;
const twoFloats gradientCoeff[4] = { { -1, +1 },
{ -1, -1 },
{ +1, -1 },
{ +1, +1 } };
// Sides which form the 'width' and 'height' for the calculation of the angle
// for our gradient.
const int cornerWidth[4] = { 3, 1, 1, 3 };
const int cornerHeight[4] = { 0, 0, 2, 2 };
gfxPoint cornerOrigin = mOuterRect.AtCorner(aCorner);
gfxPoint pat1, pat2;
pat1.x = cornerOrigin.x +
mBorderWidths[cornerHeight[aCorner]] * gradientCoeff[aCorner].a;
pat1.y = cornerOrigin.y +
mBorderWidths[cornerWidth[aCorner]] * gradientCoeff[aCorner].b;
pat2.x = cornerOrigin.x -
mBorderWidths[cornerHeight[aCorner]] * gradientCoeff[aCorner].a;
pat2.y = cornerOrigin.y -
mBorderWidths[cornerWidth[aCorner]] * gradientCoeff[aCorner].b;
float gradientOffset;
if (mContext->IsCairo() &&
(mContext->OriginalSurface()->GetType() == gfxASurface::SurfaceTypeD2D ||
mContext->OriginalSurface()->GetType() == gfxASurface::SurfaceTypeQuartz))
{
// On quarz this doesn't do exactly the right thing, but it does do what
// most other browsers do and doing the 'right' thing seems to be
// hard with the quartz cairo backend.
gradientOffset = 0;
} else {
// When cairo/Azure does the gradient drawing this gives us pretty nice behavior!
gradientOffset = 0.25 / sqrt(pow(mBorderWidths[cornerHeight[aCorner]], 2) +
pow(mBorderWidths[cornerHeight[aCorner]], 2));
}
nsRefPtr<gfxPattern> pattern = new gfxPattern(pat1.x, pat1.y, pat2.x, pat2.y);
pattern->AddColorStop(0.5 - gradientOffset, gfxRGBA(aFirstColor));
pattern->AddColorStop(0.5 + gradientOffset, gfxRGBA(aSecondColor));
return pattern.forget();
}
TemporaryRef<GradientStops>
nsCSSBorderRenderer::CreateCornerGradient(mozilla::css::Corner aCorner,
const gfxRGBA &aFirstColor,
const gfxRGBA &aSecondColor,
DrawTarget *aDT,
Point &aPoint1,
Point &aPoint2)
{
typedef struct { gfxFloat a, b; } twoFloats;
const twoFloats gradientCoeff[4] = { { -1, +1 },
{ -1, -1 },
{ +1, -1 },
{ +1, +1 } };
// Sides which form the 'width' and 'height' for the calculation of the angle
// for our gradient.
const int cornerWidth[4] = { 3, 1, 1, 3 };
const int cornerHeight[4] = { 0, 0, 2, 2 };
gfxPoint cornerOrigin = mOuterRect.AtCorner(aCorner);
gfxPoint pat1, pat2;
pat1.x = cornerOrigin.x +
mBorderWidths[cornerHeight[aCorner]] * gradientCoeff[aCorner].a;
pat1.y = cornerOrigin.y +
mBorderWidths[cornerWidth[aCorner]] * gradientCoeff[aCorner].b;
pat2.x = cornerOrigin.x -
mBorderWidths[cornerHeight[aCorner]] * gradientCoeff[aCorner].a;
pat2.y = cornerOrigin.y -
mBorderWidths[cornerWidth[aCorner]] * gradientCoeff[aCorner].b;
aPoint1 = Point(pat1.x, pat1.y);
aPoint2 = Point(pat2.x, pat2.y);
Color firstColor = ToColor(aFirstColor);
Color secondColor = ToColor(aSecondColor);
BorderGradientCacheData *data =
gBorderGradientCache->Lookup(firstColor, secondColor, aDT->GetType());
if (!data) {
// Having two corners, both with reversed color stops is pretty common
// for certain border types. Let's optimize it!
data = gBorderGradientCache->Lookup(secondColor, firstColor, aDT->GetType());
if (data) {
Point tmp = aPoint1;
aPoint1 = aPoint2;
aPoint2 = tmp;
}
}
RefPtr<GradientStops> stops;
if (data) {
stops = data->mStops;
} else {
GradientStop rawStops[2];
// This is only guaranteed to give correct (and in some cases more correct)
// rendering with the Direct2D Azure and Quartz Cairo backends. For other
// cairo backends it could create un-antialiased border corner transitions
// since that at least used to be pixman's behaviour for hard stops.
rawStops[0].color = firstColor;
rawStops[0].offset = 0.5;
rawStops[1].color = secondColor;
rawStops[1].offset = 0.5;
stops = aDT->CreateGradientStops(rawStops, 2);
data = new BorderGradientCacheData(stops, BorderGradientCacheKey(firstColor, secondColor, aDT->GetType()));
if (!gBorderGradientCache->RegisterEntry(data)) {
delete data;
}
}
return stops;
}
typedef struct { gfxFloat a, b; } twoFloats;
void
nsCSSBorderRenderer::DrawSingleWidthSolidBorder()
{
// Easy enough to deal with.
mContext->SetLineWidth(1);
gfxRect rect = mOuterRect;
rect.Deflate(0.5);
const twoFloats cornerAdjusts[4] = { { +0.5, 0 },
{ 0, +0.5 },
{ -0.5, 0 },
{ 0, -0.5 } };
NS_FOR_CSS_SIDES(side) {
gfxPoint firstCorner = rect.CCWCorner(side);
firstCorner.x += cornerAdjusts[side].a;
firstCorner.y += cornerAdjusts[side].b;
gfxPoint secondCorner = rect.CWCorner(side);
secondCorner.x += cornerAdjusts[side].a;
secondCorner.y += cornerAdjusts[side].b;
mContext->SetColor(gfxRGBA(mBorderColors[side]));
mContext->NewPath();
mContext->MoveTo(firstCorner);
mContext->LineTo(secondCorner);
mContext->Stroke();
}
}
void
nsCSSBorderRenderer::DrawNoCompositeColorSolidBorder()
{
const gfxFloat alpha = 0.55191497064665766025;
const twoFloats cornerMults[4] = { { -1, 0 },
{ 0, -1 },
{ +1, 0 },
{ 0, +1 } };
const twoFloats centerAdjusts[4] = { { 0, +0.5 },
{ -0.5, 0 },
{ 0, -0.5 },
{ +0.5, 0 } };
gfxPoint pc, pci, p0, p1, p2, p3, pd, p3i;
gfxCornerSizes innerRadii;
ComputeInnerRadii(mBorderRadii, mBorderWidths, &innerRadii);
gfxRect strokeRect = mOuterRect;
strokeRect.Deflate(gfxMargin(mBorderWidths[3] / 2.0, mBorderWidths[0] / 2.0,
mBorderWidths[1] / 2.0, mBorderWidths[2] / 2.0));
NS_FOR_CSS_CORNERS(i) {
// the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw)
mozilla::css::Corner c = mozilla::css::Corner((i+1) % 4);
mozilla::css::Corner prevCorner = mozilla::css::Corner(i);
// i+2 and i+3 respectively. These are used to index into the corner
// multiplier table, and were deduced by calculating out the long form
// of each corner and finding a pattern in the signs and values.
int i1 = (i+1) % 4;
int i2 = (i+2) % 4;
int i3 = (i+3) % 4;
pc = mOuterRect.AtCorner(c);
pci = mInnerRect.AtCorner(c);
mContext->SetLineWidth(mBorderWidths[i]);
nscolor firstColor, secondColor;
if (IsVisible(mBorderStyles[i]) && IsVisible(mBorderStyles[i1])) {
firstColor = mBorderColors[i];
secondColor = mBorderColors[i1];
} else if (IsVisible(mBorderStyles[i])) {
firstColor = mBorderColors[i];
secondColor = mBorderColors[i];
} else {
firstColor = mBorderColors[i1];
secondColor = mBorderColors[i1];
}
mContext->NewPath();
gfxPoint strokeStart, strokeEnd;
strokeStart.x = mOuterRect.AtCorner(prevCorner).x +
mBorderCornerDimensions[prevCorner].width * cornerMults[i2].a;
strokeStart.y = mOuterRect.AtCorner(prevCorner).y +
mBorderCornerDimensions[prevCorner].height * cornerMults[i2].b;
strokeEnd.x = pc.x + mBorderCornerDimensions[c].width * cornerMults[i].a;
strokeEnd.y = pc.y + mBorderCornerDimensions[c].height * cornerMults[i].b;
strokeStart.x += centerAdjusts[i].a * mBorderWidths[i];
strokeStart.y += centerAdjusts[i].b * mBorderWidths[i];
strokeEnd.x += centerAdjusts[i].a * mBorderWidths[i];
strokeEnd.y += centerAdjusts[i].b * mBorderWidths[i];
mContext->MoveTo(strokeStart);
mContext->LineTo(strokeEnd);
mContext->SetColor(gfxRGBA(mBorderColors[i]));
mContext->Stroke();
if (firstColor != secondColor) {
nsRefPtr<gfxPattern> pattern =
CreateCornerGradient(c, firstColor, secondColor);
mContext->SetPattern(pattern);
} else {
mContext->SetColor(firstColor);
}
if (mBorderRadii[c].width > 0 && mBorderRadii[c].height > 0) {
p0.x = pc.x + cornerMults[i].a * mBorderRadii[c].width;
p0.y = pc.y + cornerMults[i].b * mBorderRadii[c].height;
p3.x = pc.x + cornerMults[i3].a * mBorderRadii[c].width;
p3.y = pc.y + cornerMults[i3].b * mBorderRadii[c].height;
p1.x = p0.x + alpha * cornerMults[i2].a * mBorderRadii[c].width;
p1.y = p0.y + alpha * cornerMults[i2].b * mBorderRadii[c].height;
p2.x = p3.x - alpha * cornerMults[i3].a * mBorderRadii[c].width;
p2.y = p3.y - alpha * cornerMults[i3].b * mBorderRadii[c].height;
mContext->NewPath();
gfxPoint cornerStart;
cornerStart.x = pc.x + cornerMults[i].a * mBorderCornerDimensions[c].width;
cornerStart.y = pc.y + cornerMults[i].b * mBorderCornerDimensions[c].height;
mContext->MoveTo(cornerStart);
mContext->LineTo(p0);
mContext->CurveTo(p1, p2, p3);
gfxPoint outerCornerEnd;
outerCornerEnd.x = pc.x + cornerMults[i3].a * mBorderCornerDimensions[c].width;
outerCornerEnd.y = pc.y + cornerMults[i3].b * mBorderCornerDimensions[c].height;
mContext->LineTo(outerCornerEnd);
p0.x = pci.x + cornerMults[i].a * innerRadii[c].width;
p0.y = pci.y + cornerMults[i].b * innerRadii[c].height;
p3i.x = pci.x + cornerMults[i3].a * innerRadii[c].width;
p3i.y = pci.y + cornerMults[i3].b * innerRadii[c].height;
p1.x = p0.x + alpha * cornerMults[i2].a * innerRadii[c].width;
p1.y = p0.y + alpha * cornerMults[i2].b * innerRadii[c].height;
p2.x = p3i.x - alpha * cornerMults[i3].a * innerRadii[c].width;
p2.y = p3i.y - alpha * cornerMults[i3].b * innerRadii[c].height;
mContext->LineTo(p3i);
mContext->CurveTo(p2, p1, p0);
mContext->ClosePath();
mContext->Fill();
} else {
gfxPoint c1, c2, c3, c4;
c1.x = pc.x + cornerMults[i].a * mBorderCornerDimensions[c].width;
c1.y = pc.y + cornerMults[i].b * mBorderCornerDimensions[c].height;
c2 = pc;
c3.x = pc.x + cornerMults[i3].a * mBorderCornerDimensions[c].width;
c3.y = pc.y + cornerMults[i3].b * mBorderCornerDimensions[c].height;
mContext->NewPath();
mContext->MoveTo(c1);
mContext->LineTo(c2);
mContext->LineTo(c3);
mContext->LineTo(pci);
mContext->ClosePath();
mContext->Fill();
}
}
}
void
nsCSSBorderRenderer::DrawNoCompositeColorSolidBorderAzure()
{
DrawTarget *dt = mContext->GetDrawTarget();
const gfxFloat alpha = 0.55191497064665766025;
const twoFloats cornerMults[4] = { { -1, 0 },
{ 0, -1 },
{ +1, 0 },
{ 0, +1 } };
const twoFloats centerAdjusts[4] = { { 0, +0.5 },
{ -0.5, 0 },
{ 0, -0.5 },
{ +0.5, 0 } };
Point pc, pci, p0, p1, p2, p3, pd, p3i;
gfxCornerSizes innerRadii;
ComputeInnerRadii(mBorderRadii, mBorderWidths, &innerRadii);
gfxRect strokeRect = mOuterRect;
strokeRect.Deflate(gfxMargin(mBorderWidths[3] / 2.0, mBorderWidths[0] / 2.0,
mBorderWidths[1] / 2.0, mBorderWidths[2] / 2.0));
ColorPattern colorPat(Color(0, 0, 0, 0));
LinearGradientPattern gradPat(Point(), Point(), NULL);
NS_FOR_CSS_CORNERS(i) {
// the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw)
mozilla::css::Corner c = mozilla::css::Corner((i+1) % 4);
mozilla::css::Corner prevCorner = mozilla::css::Corner(i);
// i+2 and i+3 respectively. These are used to index into the corner
// multiplier table, and were deduced by calculating out the long form
// of each corner and finding a pattern in the signs and values.
int i1 = (i+1) % 4;
int i2 = (i+2) % 4;
int i3 = (i+3) % 4;
pc = ToPoint(mOuterRect.AtCorner(c));
pci = ToPoint(mInnerRect.AtCorner(c));
nscolor firstColor, secondColor;
if (IsVisible(mBorderStyles[i]) && IsVisible(mBorderStyles[i1])) {
firstColor = mBorderColors[i];
secondColor = mBorderColors[i1];
} else if (IsVisible(mBorderStyles[i])) {
firstColor = mBorderColors[i];
secondColor = mBorderColors[i];
} else {
firstColor = mBorderColors[i1];
secondColor = mBorderColors[i1];
}
RefPtr<PathBuilder> builder = dt->CreatePathBuilder();
Point strokeStart, strokeEnd;
strokeStart.x = mOuterRect.AtCorner(prevCorner).x +
mBorderCornerDimensions[prevCorner].width * cornerMults[i2].a;
strokeStart.y = mOuterRect.AtCorner(prevCorner).y +
mBorderCornerDimensions[prevCorner].height * cornerMults[i2].b;
strokeEnd.x = pc.x + mBorderCornerDimensions[c].width * cornerMults[i].a;
strokeEnd.y = pc.y + mBorderCornerDimensions[c].height * cornerMults[i].b;
strokeStart.x += centerAdjusts[i].a * mBorderWidths[i];
strokeStart.y += centerAdjusts[i].b * mBorderWidths[i];
strokeEnd.x += centerAdjusts[i].a * mBorderWidths[i];
strokeEnd.y += centerAdjusts[i].b * mBorderWidths[i];
builder->MoveTo(strokeStart);
builder->LineTo(strokeEnd);
RefPtr<Path> path = builder->Finish();
dt->Stroke(path, ColorPattern(Color::FromABGR(mBorderColors[i])), StrokeOptions(mBorderWidths[i]));
Pattern *pattern;
if (firstColor != secondColor) {
gradPat.mStops = CreateCornerGradient(c, firstColor, secondColor, dt, gradPat.mBegin, gradPat.mEnd);
pattern = &gradPat;
} else {
colorPat.mColor = Color::FromABGR(firstColor);
pattern = &colorPat;
}
builder = dt->CreatePathBuilder();
if (mBorderRadii[c].width > 0 && mBorderRadii[c].height > 0) {
p0.x = pc.x + cornerMults[i].a * mBorderRadii[c].width;
p0.y = pc.y + cornerMults[i].b * mBorderRadii[c].height;
p3.x = pc.x + cornerMults[i3].a * mBorderRadii[c].width;
p3.y = pc.y + cornerMults[i3].b * mBorderRadii[c].height;
p1.x = p0.x + alpha * cornerMults[i2].a * mBorderRadii[c].width;
p1.y = p0.y + alpha * cornerMults[i2].b * mBorderRadii[c].height;
p2.x = p3.x - alpha * cornerMults[i3].a * mBorderRadii[c].width;
p2.y = p3.y - alpha * cornerMults[i3].b * mBorderRadii[c].height;
Point cornerStart;
cornerStart.x = pc.x + cornerMults[i].a * mBorderCornerDimensions[c].width;
cornerStart.y = pc.y + cornerMults[i].b * mBorderCornerDimensions[c].height;
builder->MoveTo(cornerStart);
builder->LineTo(p0);
builder->BezierTo(p1, p2, p3);
Point outerCornerEnd;
outerCornerEnd.x = pc.x + cornerMults[i3].a * mBorderCornerDimensions[c].width;
outerCornerEnd.y = pc.y + cornerMults[i3].b * mBorderCornerDimensions[c].height;
builder->LineTo(outerCornerEnd);
p0.x = pci.x + cornerMults[i].a * innerRadii[c].width;
p0.y = pci.y + cornerMults[i].b * innerRadii[c].height;
p3i.x = pci.x + cornerMults[i3].a * innerRadii[c].width;
p3i.y = pci.y + cornerMults[i3].b * innerRadii[c].height;
p1.x = p0.x + alpha * cornerMults[i2].a * innerRadii[c].width;
p1.y = p0.y + alpha * cornerMults[i2].b * innerRadii[c].height;
p2.x = p3i.x - alpha * cornerMults[i3].a * innerRadii[c].width;
p2.y = p3i.y - alpha * cornerMults[i3].b * innerRadii[c].height;
builder->LineTo(p3i);
builder->BezierTo(p2, p1, p0);
builder->Close();
path = builder->Finish();
dt->Fill(path, *pattern);
} else {
Point c1, c2, c3, c4;
c1.x = pc.x + cornerMults[i].a * mBorderCornerDimensions[c].width;
c1.y = pc.y + cornerMults[i].b * mBorderCornerDimensions[c].height;
c2 = pc;
c3.x = pc.x + cornerMults[i3].a * mBorderCornerDimensions[c].width;
c3.y = pc.y + cornerMults[i3].b * mBorderCornerDimensions[c].height;
builder->MoveTo(c1);
builder->LineTo(c2);
builder->LineTo(c3);
builder->LineTo(pci);
builder->Close();
path = builder->Finish();
dt->Fill(path, *pattern);
}
}
}
void
nsCSSBorderRenderer::DrawRectangularCompositeColors()
{
nsBorderColors *currentColors[4];
mContext->SetLineWidth(1);
memcpy(currentColors, mCompositeColors, sizeof(nsBorderColors*) * 4);
gfxRect rect = mOuterRect;
rect.Deflate(0.5);
const twoFloats cornerAdjusts[4] = { { +0.5, 0 },
{ 0, +0.5 },
{ -0.5, 0 },
{ 0, -0.5 } };
for (int i = 0; i < mBorderWidths[0]; i++) {
NS_FOR_CSS_SIDES(side) {
int sideNext = (side + 1) % 4;
gfxPoint firstCorner = rect.CCWCorner(side);
firstCorner.x += cornerAdjusts[side].a;
firstCorner.y += cornerAdjusts[side].b;
gfxPoint secondCorner = rect.CWCorner(side);
secondCorner.x -= cornerAdjusts[side].a;
secondCorner.y -= cornerAdjusts[side].b;
gfxRGBA currentColor =
currentColors[side] ? gfxRGBA(currentColors[side]->mColor)
: gfxRGBA(mBorderColors[side]);
mContext->SetColor(currentColor);
mContext->NewPath();
mContext->MoveTo(firstCorner);
mContext->LineTo(secondCorner);
mContext->Stroke();
mContext->NewPath();
gfxPoint cornerTopLeft = rect.CWCorner(side);
cornerTopLeft.x -= 0.5;
cornerTopLeft.y -= 0.5;
mContext->Rectangle(gfxRect(cornerTopLeft, gfxSize(1, 1)));
gfxRGBA nextColor =
currentColors[sideNext] ? gfxRGBA(currentColors[sideNext]->mColor)
: gfxRGBA(mBorderColors[sideNext]);
gfxRGBA cornerColor((currentColor.r + nextColor.r) / 2.0,
(currentColor.g + nextColor.g) / 2.0,
(currentColor.b + nextColor.b) / 2.0,
(currentColor.a + nextColor.a) / 2.0);
mContext->SetColor(cornerColor);
mContext->Fill();
if (side != 0) {
// We'll have to keep side 0 for the color averaging on side 3.
if (currentColors[side] && currentColors[side]->mNext) {
currentColors[side] = currentColors[side]->mNext;
}
}
}
// Now advance the color for side 0.
if (currentColors[0] && currentColors[0]->mNext) {
currentColors[0] = currentColors[0]->mNext;
}
rect.Deflate(1);
}
}
void
nsCSSBorderRenderer::DrawBorders()
{
bool forceSeparateCorners = false;
// Examine the border style to figure out if we can draw it in one
// go or not.
bool tlBordersSame = AreBorderSideFinalStylesSame(SIDE_BIT_TOP | SIDE_BIT_LEFT);
bool brBordersSame = AreBorderSideFinalStylesSame(SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT);
bool allBordersSame = AreBorderSideFinalStylesSame(SIDE_BITS_ALL);
if (allBordersSame &&
((mCompositeColors[0] == NULL &&
(mBorderStyles[0] == NS_STYLE_BORDER_STYLE_NONE ||
mBorderStyles[0] == NS_STYLE_BORDER_STYLE_HIDDEN ||
mBorderColors[0] == NS_RGBA(0,0,0,0))) ||
(mCompositeColors[0] &&
(mCompositeColors[0]->mColor == NS_RGBA(0,0,0,0) &&
!mCompositeColors[0]->mNext))))
{
// All borders are the same style, and the style is either none or hidden, or the color
// is transparent.
// This also checks if the first composite color is transparent, and there are
// no others. It doesn't check if there are subsequent transparent ones, because
// that would be very silly.
return;
}
gfxMatrix mat = mContext->CurrentMatrix();
// Clamp the CTM to be pixel-aligned; we do this only
// for translation-only matrices now, but we could do it
// if the matrix has just a scale as well. We should not
// do it if there's a rotation.
if (mat.HasNonTranslation()) {
if (!mat.HasNonAxisAlignedTransform()) {
// Scale + transform. Avoid stroke fast-paths so that we have a chance
// of snapping to pixel boundaries.
mAvoidStroke = true;
}
} else {
mat.x0 = floor(mat.x0 + 0.5);
mat.y0 = floor(mat.y0 + 0.5);
mContext->SetMatrix(mat);
// round mOuterRect and mInnerRect; they're already an integer
// number of pixels apart and should stay that way after
// rounding. We don't do this if there's a scale in the current transform
// since this loses information that might be relevant when we're scaling.
mOuterRect.Round();
mInnerRect.Round();
}
bool allBordersSameWidth = AllBordersSameWidth();
if (allBordersSameWidth && mBorderWidths[0] == 0.0) {
// Some of the allBordersSameWidth codepaths depend on the border
// width being greater than zero.
return;
}
bool allBordersSolid;
// First there's a couple of 'special cases' that have specifically optimized
// drawing paths, when none of these can be used we move on to the generalized
// border drawing code.
if (allBordersSame &&
mCompositeColors[0] == NULL &&
allBordersSameWidth &&
mBorderStyles[0] == NS_STYLE_BORDER_STYLE_SOLID &&
mNoBorderRadius &&
!mAvoidStroke)
{
// Very simple case.
SetupStrokeStyle(NS_SIDE_TOP);
gfxRect rect = mOuterRect;
rect.Deflate(mBorderWidths[0] / 2.0);
mContext->NewPath();
mContext->Rectangle(rect);
mContext->Stroke();
return;
}
if (allBordersSame &&
mCompositeColors[0] == NULL &&
allBordersSameWidth &&
mBorderStyles[0] == NS_STYLE_BORDER_STYLE_DOTTED &&
mBorderWidths[0] < 3 &&
mNoBorderRadius &&
!mAvoidStroke)
{
// Very simple case. We draw this rectangular dotted borner without
// antialiasing. The dots should be pixel aligned.
SetupStrokeStyle(NS_SIDE_TOP);
gfxFloat dash = mBorderWidths[0];
mContext->SetDash(&dash, 1, 0.5);
mContext->SetAntialiasMode(gfxContext::MODE_ALIASED);
gfxRect rect = mOuterRect;
rect.Deflate(mBorderWidths[0] / 2.0);
mContext->NewPath();
mContext->Rectangle(rect);
mContext->Stroke();
return;
}
if (allBordersSame &&
mCompositeColors[0] == NULL &&
mBorderStyles[0] == NS_STYLE_BORDER_STYLE_SOLID &&
!mAvoidStroke &&
!mNoBorderRadius)
{
// Relatively simple case.
SetupStrokeStyle(NS_SIDE_TOP);
RoundedRect borderInnerRect(mOuterRect, mBorderRadii);
borderInnerRect.Deflate(mBorderWidths[NS_SIDE_TOP],
mBorderWidths[NS_SIDE_BOTTOM],
mBorderWidths[NS_SIDE_LEFT],
mBorderWidths[NS_SIDE_RIGHT]);
// Instead of stroking we just use two paths: an inner and an outer.
// This allows us to draw borders that we couldn't when stroking. For example,
// borders with a border width >= the border radius. (i.e. when there are
// square corners on the inside)
//
// Further, this approach can be more efficient because the backend
// doesn't need to compute an offset curve to stroke the path. We know that
// the rounded parts are elipses we can offset exactly and can just compute
// a new cubic approximation.
mContext->NewPath();
mContext->RoundedRectangle(mOuterRect, mBorderRadii, true);
mContext->RoundedRectangle(borderInnerRect.rect, borderInnerRect.corners, false);
mContext->Fill();
return;
}
bool hasCompositeColors;
allBordersSolid = AllBordersSolid(&hasCompositeColors);
// This leaves the border corners non-interpolated for single width borders.
// Doing this is slightly faster and shouldn't be a problem visually.
if (allBordersSolid &&
allBordersSameWidth &&
mCompositeColors[0] == NULL &&
mBorderWidths[0] == 1 &&
mNoBorderRadius &&
!mAvoidStroke)
{
DrawSingleWidthSolidBorder();
return;
}
if (allBordersSolid && !hasCompositeColors &&
!mAvoidStroke)
{
if (mContext->IsCairo()) {
DrawNoCompositeColorSolidBorder();
} else {
DrawNoCompositeColorSolidBorderAzure();
}
return;
}
if (allBordersSolid &&
allBordersSameWidth &&
mNoBorderRadius &&
!mAvoidStroke)
{
// Easy enough to deal with.
DrawRectangularCompositeColors();
return;
}
// If we have composite colors -and- border radius,
// then use separate corners so we get OPERATOR_ADD for the corners.
// Otherwise, we'll get artifacts as we draw stacked 1px-wide curves.
if (allBordersSame && mCompositeColors[0] != nullptr && !mNoBorderRadius)
forceSeparateCorners = true;
S(" mOuterRect: "), S(mOuterRect), SN();
S(" mInnerRect: "), S(mInnerRect), SN();
SF(" mBorderColors: 0x%08x 0x%08x 0x%08x 0x%08x\n", mBorderColors[0], mBorderColors[1], mBorderColors[2], mBorderColors[3]);
// if conditioning the outside rect failed, then bail -- the outside
// rect is supposed to enclose the entire border
mOuterRect.Condition();
if (mOuterRect.IsEmpty())
return;
mInnerRect.Condition();
int dashedSides = 0;
NS_FOR_CSS_SIDES(i) {
uint8_t style = mBorderStyles[i];
if (style == NS_STYLE_BORDER_STYLE_DASHED ||
style == NS_STYLE_BORDER_STYLE_DOTTED)
{
// pretend that all borders aren't the same; we need to draw
// things separately for dashed/dotting
allBordersSame = false;
dashedSides |= (1 << i);
}
}
SF(" allBordersSame: %d dashedSides: 0x%02x\n", allBordersSame, dashedSides);
if (allBordersSame && !forceSeparateCorners) {
/* Draw everything in one go */
DrawBorderSides(SIDE_BITS_ALL);
SN("---------------- (1)");
} else {
SAMPLE_LABEL("nsCSSBorderRenderer", "DrawBorders::multipass");
/* We have more than one pass to go. Draw the corners separately from the sides. */
/*
* If we have a 1px-wide border, the corners are going to be
* negligible, so don't bother doing anything fancy. Just extend
* the top and bottom borders to the right 1px and the left border
* to the bottom 1px. We do this by twiddling the corner dimensions,
* which causes the right to happen later on. Only do this if we have
* a 1.0 unit border all around and no border radius.
*/
NS_FOR_CSS_CORNERS(corner) {
const mozilla::css::Side sides[2] = { mozilla::css::Side(corner), PREV_SIDE(corner) };
if (!IsZeroSize(mBorderRadii[corner]))
continue;
if (mBorderWidths[sides[0]] == 1.0 && mBorderWidths[sides[1]] == 1.0) {
if (corner == NS_CORNER_TOP_LEFT || corner == NS_CORNER_TOP_RIGHT)
mBorderCornerDimensions[corner].width = 0.0;
else
mBorderCornerDimensions[corner].height = 0.0;
}
}
// First, the corners
NS_FOR_CSS_CORNERS(corner) {
// if there's no corner, don't do all this work for it
if (IsZeroSize(mBorderCornerDimensions[corner]))
continue;
const int sides[2] = { corner, PREV_SIDE(corner) };
int sideBits = (1 << sides[0]) | (1 << sides[1]);
bool simpleCornerStyle = mCompositeColors[sides[0]] == NULL &&
mCompositeColors[sides[1]] == NULL &&
AreBorderSideFinalStylesSame(sideBits);
// If we don't have anything complex going on in this corner,
// then we can just fill the corner with a solid color, and avoid
// the potentially expensive clip.
if (simpleCornerStyle &&
IsZeroSize(mBorderRadii[corner]) &&
IsSolidCornerStyle(mBorderStyles[sides[0]], corner))
{
mContext->NewPath();
DoCornerSubPath(corner);
mContext->SetColor(MakeBorderColor(mBorderColors[sides[0]],
mBackgroundColor,
BorderColorStyleForSolidCorner(mBorderStyles[sides[0]], corner)));
mContext->Fill();
continue;
}
mContext->Save();
// clip to the corner
mContext->NewPath();
DoCornerSubPath(corner);
mContext->Clip();
if (simpleCornerStyle) {
// we don't need a group for this corner, the sides are the same,
// but we weren't able to render just a solid block for the corner.
DrawBorderSides(sideBits);
} else {
// Sides are different. We could draw using OPERATOR_ADD to
// get correct color blending behaviour at the seam. We'd need
// to do it in an offscreen surface to ensure that we're
// always compositing on transparent black. If the colors
// don't have transparency and the current destination surface
// has an alpha channel, we could just clear the region and
// avoid the temporary, but that situation doesn't happen all
// that often in practice (we double buffer to no-alpha
// surfaces). We choose just to seam though, as the performance
// advantages outway the modest easthetic improvement.
for (int cornerSide = 0; cornerSide < 2; cornerSide++) {
mozilla::css::Side side = mozilla::css::Side(sides[cornerSide]);
uint8_t style = mBorderStyles[side];
SF("corner: %d cornerSide: %d side: %d style: %d\n", corner, cornerSide, side, style);
mContext->Save();
mContext->NewPath();
DoSideClipSubPath(side);
mContext->Clip();
DrawBorderSides(1 << side);
mContext->Restore();
}
}
mContext->Restore();
SN();
}
// in the case of a single-unit border, we already munged the
// corners up above; so we can just draw the top left and bottom
// right sides separately, if they're the same.
//
// We need to check for mNoBorderRadius, because when there is
// one, FillSolidBorder always draws the full rounded rectangle
// and expects there to be a clip in place.
int alreadyDrawnSides = 0;
if (mOneUnitBorder &&
mNoBorderRadius &&
(dashedSides & (SIDE_BIT_TOP | SIDE_BIT_LEFT)) == 0)
{
if (tlBordersSame) {
DrawBorderSides(SIDE_BIT_TOP | SIDE_BIT_LEFT);
alreadyDrawnSides |= (SIDE_BIT_TOP | SIDE_BIT_LEFT);
}
if (brBordersSame && (dashedSides & (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) == 0) {
DrawBorderSides(SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT);
alreadyDrawnSides |= (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT);
}
}
// We're done with the corners, now draw the sides.
NS_FOR_CSS_SIDES (side) {
// if we drew it above, skip it
if (alreadyDrawnSides & (1 << side))
continue;
// If there's no border on this side, skip it
if (mBorderWidths[side] == 0.0 ||
mBorderStyles[side] == NS_STYLE_BORDER_STYLE_HIDDEN ||
mBorderStyles[side] == NS_STYLE_BORDER_STYLE_NONE)
continue;
if (dashedSides & (1 << side)) {
// Dashed sides will always draw just the part ignoring the
// corners for the side, so no need to clip.
DrawDashedSide (side);
SN("---------------- (d)");
continue;
}
// Undashed sides will currently draw the entire side,
// including parts that would normally be covered by a corner,
// so we need to clip.
//
// XXX Optimization -- it would be good to make this work like
// DrawDashedSide, and have a DrawOneSide function that just
// draws one side and not the corners, because then we can
// avoid the potentially expensive clip.
mContext->Save();
mContext->NewPath();
DoSideClipWithoutCornersSubPath(side);
mContext->Clip();
DrawBorderSides(1 << side);
mContext->Restore();
SN("---------------- (*)");
}
}
}