gecko/xpcom/base/nsMemoryReporterManager.cpp

1710 lines
50 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* vim: set ts=8 sts=4 et sw=4 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsAtomTable.h"
#include "nsAutoPtr.h"
#include "nsCOMPtr.h"
#include "nsCOMArray.h"
#include "nsServiceManagerUtils.h"
#include "nsMemoryReporterManager.h"
#include "nsISimpleEnumerator.h"
#include "nsITimer.h"
#include "nsThreadUtils.h"
#include "nsIDOMWindow.h"
#include "nsPIDOMWindow.h"
#include "nsIObserverService.h"
#include "nsIGlobalObject.h"
#if defined(XP_LINUX)
#include "nsMemoryInfoDumper.h"
#endif
#include "mozilla/Attributes.h"
#include "mozilla/PodOperations.h"
#include "mozilla/Services.h"
#include "mozilla/Telemetry.h"
#include "mozilla/dom/PMemoryReportRequestParent.h" // for dom::MemoryReport
#ifndef XP_WIN
#include <unistd.h>
#endif
using namespace mozilla;
#if defined(MOZ_MEMORY)
# define HAVE_JEMALLOC_STATS 1
# include "mozmemory.h"
#endif // MOZ_MEMORY
#if defined(XP_LINUX)
static nsresult GetProcSelfStatmField(int aField, int64_t* aN)
{
// There are more than two fields, but we're only interested in the first
// two.
static const int MAX_FIELD = 2;
size_t fields[MAX_FIELD];
MOZ_ASSERT(aField < MAX_FIELD, "bad field number");
FILE* f = fopen("/proc/self/statm", "r");
if (f) {
int nread = fscanf(f, "%zu %zu", &fields[0], &fields[1]);
fclose(f);
if (nread == MAX_FIELD) {
*aN = fields[aField] * getpagesize();
return NS_OK;
}
}
return NS_ERROR_FAILURE;
}
#define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1
static nsresult GetVsize(int64_t* aN)
{
return GetProcSelfStatmField(0, aN);
}
static nsresult GetResident(int64_t* aN)
{
return GetProcSelfStatmField(1, aN);
}
static nsresult GetResidentFast(int64_t* aN)
{
return GetResident(aN);
}
#define HAVE_RESIDENT_UNIQUE_REPORTER
class ResidentUniqueReporter MOZ_FINAL : public MemoryUniReporter
{
public:
ResidentUniqueReporter()
: MemoryUniReporter("resident-unique", KIND_OTHER, UNITS_BYTES,
"Memory mapped by the process that is present in physical memory and not "
"shared with any other processes. This is also known as the process's unique "
"set size (USS). This is the amount of RAM we'd expect to be freed if we "
"closed this process.")
{}
private:
NS_IMETHOD GetAmount(int64_t *aAmount)
{
// You might be tempted to calculate USS by subtracting the "shared" value
// from the "resident" value in /proc/<pid>/statm. But at least on Linux,
// statm's "shared" value actually counts pages backed by files, which has
// little to do with whether the pages are actually shared.
// /proc/self/smaps on the other hand appears to give us the correct
// information.
*aAmount = 0;
FILE *f = fopen("/proc/self/smaps", "r");
NS_ENSURE_STATE(f);
int64_t total = 0;
char line[256];
while (fgets(line, sizeof(line), f)) {
long long val = 0;
if (sscanf(line, "Private_Dirty: %lld kB", &val) == 1 ||
sscanf(line, "Private_Clean: %lld kB", &val) == 1) {
total += val * 1024; // convert from kB to bytes
}
}
*aAmount = total;
fclose(f);
return NS_OK;
}
};
#elif defined(__DragonFly__) || defined(__FreeBSD__) \
|| defined(__NetBSD__) || defined(__OpenBSD__)
#include <sys/param.h>
#include <sys/sysctl.h>
#if defined(__DragonFly__) || defined(__FreeBSD__)
#include <sys/user.h>
#endif
#include <unistd.h>
#if defined(__NetBSD__)
#undef KERN_PROC
#define KERN_PROC KERN_PROC2
#define KINFO_PROC struct kinfo_proc2
#else
#define KINFO_PROC struct kinfo_proc
#endif
#if defined(__DragonFly__)
#define KP_SIZE(kp) (kp.kp_vm_map_size)
#define KP_RSS(kp) (kp.kp_vm_rssize * getpagesize())
#elif defined(__FreeBSD__)
#define KP_SIZE(kp) (kp.ki_size)
#define KP_RSS(kp) (kp.ki_rssize * getpagesize())
#elif defined(__NetBSD__)
#define KP_SIZE(kp) (kp.p_vm_msize * getpagesize())
#define KP_RSS(kp) (kp.p_vm_rssize * getpagesize())
#elif defined(__OpenBSD__)
#define KP_SIZE(kp) ((kp.p_vm_dsize + kp.p_vm_ssize \
+ kp.p_vm_tsize) * getpagesize())
#define KP_RSS(kp) (kp.p_vm_rssize * getpagesize())
#endif
static nsresult GetKinfoProcSelf(KINFO_PROC* aProc)
{
int mib[] = {
CTL_KERN,
KERN_PROC,
KERN_PROC_PID,
getpid(),
#if defined(__NetBSD__) || defined(__OpenBSD__)
sizeof(KINFO_PROC),
1,
#endif
};
u_int miblen = sizeof(mib) / sizeof(mib[0]);
size_t size = sizeof(KINFO_PROC);
if (sysctl(mib, miblen, aProc, &size, nullptr, 0))
return NS_ERROR_FAILURE;
return NS_OK;
}
#define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1
static nsresult GetVsize(int64_t* aN)
{
KINFO_PROC proc;
nsresult rv = GetKinfoProcSelf(&proc);
if (NS_SUCCEEDED(rv))
*aN = KP_SIZE(proc);
return rv;
}
static nsresult GetResident(int64_t* aN)
{
KINFO_PROC proc;
nsresult rv = GetKinfoProcSelf(&proc);
if (NS_SUCCEEDED(rv))
*aN = KP_RSS(proc);
return rv;
}
static nsresult GetResidentFast(int64_t* aN)
{
return GetResident(aN);
}
#elif defined(SOLARIS)
#include <procfs.h>
#include <fcntl.h>
#include <unistd.h>
static void XMappingIter(int64_t& vsize, int64_t& resident)
{
vsize = -1;
resident = -1;
int mapfd = open("/proc/self/xmap", O_RDONLY);
struct stat st;
prxmap_t* prmapp = nullptr;
if (mapfd >= 0) {
if (!fstat(mapfd, &st)) {
int nmap = st.st_size / sizeof(prxmap_t);
while (1) {
// stat(2) on /proc/<pid>/xmap returns an incorrect value,
// prior to the release of Solaris 11.
// Here is a workaround for it.
nmap *= 2;
prmapp = (prxmap_t*)malloc((nmap + 1) * sizeof(prxmap_t));
if (!prmapp) {
// out of memory
break;
}
int n = pread(mapfd, prmapp, (nmap + 1) * sizeof(prxmap_t), 0);
if (n < 0) {
break;
}
if (nmap >= n / sizeof (prxmap_t)) {
vsize = 0;
resident = 0;
for (int i = 0; i < n / sizeof (prxmap_t); i++) {
vsize += prmapp[i].pr_size;
resident += prmapp[i].pr_rss * prmapp[i].pr_pagesize;
}
break;
}
free(prmapp);
}
free(prmapp);
}
close(mapfd);
}
}
#define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1
static nsresult GetVsize(int64_t* aN)
{
int64_t vsize, resident;
XMappingIter(vsize, resident);
if (vsize == -1) {
return NS_ERROR_FAILURE;
}
*aN = vsize;
return NS_OK;
}
static nsresult GetResident(int64_t* aN)
{
int64_t vsize, resident;
XMappingIter(vsize, resident);
if (resident == -1) {
return NS_ERROR_FAILURE;
}
*aN = resident;
return NS_OK;
}
static nsresult GetResidentFast(int64_t* aN)
{
return GetResident(aN);
}
#elif defined(XP_MACOSX)
#include <mach/mach_init.h>
#include <mach/task.h>
static bool GetTaskBasicInfo(struct task_basic_info* aTi)
{
mach_msg_type_number_t count = TASK_BASIC_INFO_COUNT;
kern_return_t kr = task_info(mach_task_self(), TASK_BASIC_INFO,
(task_info_t)aTi, &count);
return kr == KERN_SUCCESS;
}
// The VSIZE figure on Mac includes huge amounts of shared memory and is always
// absurdly high, eg. 2GB+ even at start-up. But both 'top' and 'ps' report
// it, so we might as well too.
#define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1
static nsresult GetVsize(int64_t* aN)
{
task_basic_info ti;
if (!GetTaskBasicInfo(&ti))
return NS_ERROR_FAILURE;
*aN = ti.virtual_size;
return NS_OK;
}
// If we're using jemalloc on Mac, we need to instruct jemalloc to purge the
// pages it has madvise(MADV_FREE)'d before we read our RSS in order to get
// an accurate result. The OS will take away MADV_FREE'd pages when there's
// memory pressure, so ideally, they shouldn't count against our RSS.
//
// Purging these pages can take a long time for some users (see bug 789975),
// so we provide the option to get the RSS without purging first.
static nsresult GetResident(int64_t* aN, bool aDoPurge)
{
#ifdef HAVE_JEMALLOC_STATS
if (aDoPurge) {
Telemetry::AutoTimer<Telemetry::MEMORY_FREE_PURGED_PAGES_MS> timer;
jemalloc_purge_freed_pages();
}
#endif
task_basic_info ti;
if (!GetTaskBasicInfo(&ti))
return NS_ERROR_FAILURE;
*aN = ti.resident_size;
return NS_OK;
}
static nsresult GetResidentFast(int64_t* aN)
{
return GetResident(aN, /* doPurge = */ false);
}
static nsresult GetResident(int64_t* aN)
{
return GetResident(aN, /* doPurge = */ true);
}
#elif defined(XP_WIN)
#include <windows.h>
#include <psapi.h>
#include <algorithm>
#define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1
static nsresult GetVsize(int64_t* aN)
{
MEMORYSTATUSEX s;
s.dwLength = sizeof(s);
if (!GlobalMemoryStatusEx(&s)) {
return NS_ERROR_FAILURE;
}
*aN = s.ullTotalVirtual - s.ullAvailVirtual;
return NS_OK;
}
static nsresult GetResident(int64_t* aN)
{
PROCESS_MEMORY_COUNTERS pmc;
pmc.cb = sizeof(PROCESS_MEMORY_COUNTERS);
if (!GetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc))) {
return NS_ERROR_FAILURE;
}
*aN = pmc.WorkingSetSize;
return NS_OK;
}
static nsresult GetResidentFast(int64_t* aN)
{
return GetResident(aN);
}
#define HAVE_LARGEST_CONTIGUOUS_BLOCK_REPORTERS 1
static nsresult LargestContiguousVMBlock(int64_t* aN)
{
SIZE_T biggestRegion = 0;
MEMORY_BASIC_INFORMATION vmemInfo = {0};
for (size_t currentAddress = 0; ; ) {
if (!VirtualQuery((LPCVOID)currentAddress, &vmemInfo, sizeof(vmemInfo))) {
// Something went wrong, just return whatever we've got already.
break;
}
if (vmemInfo.State == MEM_FREE) {
biggestRegion = std::max(biggestRegion, vmemInfo.RegionSize);
}
SIZE_T lastAddress = currentAddress;
currentAddress += vmemInfo.RegionSize;
// If we overflow, we've examined all of the address space.
if (currentAddress < lastAddress) {
break;
}
}
*aN = biggestRegion;
return NS_OK;
}
#define HAVE_PRIVATE_REPORTER
class PrivateReporter MOZ_FINAL : public MemoryUniReporter
{
public:
PrivateReporter()
: MemoryUniReporter("private", KIND_OTHER, UNITS_BYTES,
"Memory that cannot be shared with other processes, including memory that is "
"committed and marked MEM_PRIVATE, data that is not mapped, and executable "
"pages that have been written to.")
{}
NS_IMETHOD GetAmount(int64_t* aAmount)
{
PROCESS_MEMORY_COUNTERS_EX pmcex;
pmcex.cb = sizeof(PROCESS_MEMORY_COUNTERS_EX);
if (!GetProcessMemoryInfo(
GetCurrentProcess(),
(PPROCESS_MEMORY_COUNTERS) &pmcex, sizeof(pmcex))) {
return NS_ERROR_FAILURE;
}
*aAmount = pmcex.PrivateUsage;
return NS_OK;
}
};
#endif // XP_<PLATFORM>
#ifdef HAVE_VSIZE_AND_RESIDENT_REPORTERS
class VsizeReporter MOZ_FINAL : public MemoryUniReporter
{
public:
VsizeReporter()
: MemoryUniReporter("vsize", KIND_OTHER, UNITS_BYTES,
"Memory mapped by the process, including code and data segments, the heap, "
"thread stacks, memory explicitly mapped by the process via mmap and similar "
"operations, and memory shared with other processes. This is the vsize figure "
"as reported by 'top' and 'ps'. This figure is of limited use on Mac, where "
"processes share huge amounts of memory with one another. But even on other "
"operating systems, 'resident' is a much better measure of the memory "
"resources used by the process.")
{}
NS_IMETHOD GetAmount(int64_t* aAmount) { return GetVsize(aAmount); }
};
class ResidentReporter MOZ_FINAL : public MemoryUniReporter
{
public:
ResidentReporter()
: MemoryUniReporter("resident", KIND_OTHER, UNITS_BYTES,
"Memory mapped by the process that is present in physical memory, also known "
"as the resident set size (RSS). This is the best single figure to use when "
"considering the memory resources used by the process, but it depends both on "
"other processes being run and details of the OS kernel and so is best used "
"for comparing the memory usage of a single process at different points in "
"time.")
{}
NS_IMETHOD GetAmount(int64_t* aAmount) { return GetResident(aAmount); }
};
#endif // HAVE_VSIZE_AND_RESIDENT_REPORTERS
#ifdef XP_UNIX
#include <sys/resource.h>
#define HAVE_PAGE_FAULT_REPORTERS 1
class PageFaultsSoftReporter MOZ_FINAL : public MemoryUniReporter
{
public:
PageFaultsSoftReporter()
: MemoryUniReporter("page-faults-soft", KIND_OTHER,
UNITS_COUNT_CUMULATIVE,
"The number of soft page faults (also known as 'minor page faults') that "
"have occurred since the process started. A soft page fault occurs when the "
"process tries to access a page which is present in physical memory but is "
"not mapped into the process's address space. For instance, a process might "
"observe soft page faults when it loads a shared library which is already "
"present in physical memory. A process may experience many thousands of soft "
"page faults even when the machine has plenty of available physical memory, "
"and because the OS services a soft page fault without accessing the disk, "
"they impact performance much less than hard page faults.")
{}
NS_IMETHOD GetAmount(int64_t* aAmount)
{
struct rusage usage;
int err = getrusage(RUSAGE_SELF, &usage);
if (err != 0) {
return NS_ERROR_FAILURE;
}
*aAmount = usage.ru_minflt;
return NS_OK;
}
};
static nsresult
PageFaultsHardDistinguishedAmount(int64_t* aAmount)
{
struct rusage usage;
int err = getrusage(RUSAGE_SELF, &usage);
if (err != 0) {
return NS_ERROR_FAILURE;
}
*aAmount = usage.ru_majflt;
return NS_OK;
}
class PageFaultsHardReporter MOZ_FINAL : public MemoryUniReporter
{
public:
PageFaultsHardReporter()
: MemoryUniReporter("page-faults-hard", KIND_OTHER,
UNITS_COUNT_CUMULATIVE,
"The number of hard page faults (also known as 'major page faults') that have "
"occurred since the process started. A hard page fault occurs when a process "
"tries to access a page which is not present in physical memory. The "
"operating system must access the disk in order to fulfill a hard page fault. "
"When memory is plentiful, you should see very few hard page faults. But if "
"the process tries to use more memory than your machine has available, you "
"may see many thousands of hard page faults. Because accessing the disk is up "
"to a million times slower than accessing RAM, the program may run very "
"slowly when it is experiencing more than 100 or so hard page faults a second.")
{}
NS_IMETHOD GetAmount(int64_t* aAmount)
{
return PageFaultsHardDistinguishedAmount(aAmount);
}
};
#endif // HAVE_PAGE_FAULT_REPORTERS
/**
** memory reporter implementation for jemalloc and OSX malloc,
** to obtain info on total memory in use (that we know about,
** at least -- on OSX, there are sometimes other zones in use).
**/
#ifdef HAVE_JEMALLOC_STATS
static int64_t
HeapAllocated()
{
jemalloc_stats_t stats;
jemalloc_stats(&stats);
return (int64_t) stats.allocated;
}
// This has UNITS_PERCENTAGE, so it is multiplied by 100x.
static int64_t
HeapOverheadRatio()
{
jemalloc_stats_t stats;
jemalloc_stats(&stats);
return (int64_t) 10000 *
(stats.waste + stats.bookkeeping + stats.page_cache) /
((double)stats.allocated);
}
class HeapAllocatedReporter MOZ_FINAL : public MemoryUniReporter
{
public:
HeapAllocatedReporter()
: MemoryUniReporter("heap-allocated", KIND_OTHER, UNITS_BYTES,
"Memory mapped by the heap allocator that is currently allocated to the "
"application. This may exceed the amount of memory requested by the "
"application because the allocator regularly rounds up request sizes. (The "
"exact amount requested is not recorded.)")
{}
private:
int64_t Amount() MOZ_OVERRIDE { return HeapAllocated(); }
};
class HeapOverheadWasteReporter MOZ_FINAL : public MemoryUniReporter
{
public:
// We mark this and the other heap-overhead reporters as KIND_NONHEAP
// because KIND_HEAP memory means "counted in heap-allocated", which this
// is not.
HeapOverheadWasteReporter()
: MemoryUniReporter("explicit/heap-overhead/waste",
KIND_NONHEAP, UNITS_BYTES,
"Committed bytes which do not correspond to an active allocation and which the "
"allocator is not intentionally keeping alive (i.e., not 'heap-bookkeeping' or "
"'heap-page-cache'). Although the allocator will waste some space under any "
"circumstances, a large value here may indicate that the heap is highly "
"fragmented, or that allocator is performing poorly for some other reason.")
{}
private:
int64_t Amount() MOZ_OVERRIDE
{
jemalloc_stats_t stats;
jemalloc_stats(&stats);
return stats.waste;
}
};
class HeapOverheadBookkeepingReporter MOZ_FINAL : public MemoryUniReporter
{
public:
HeapOverheadBookkeepingReporter()
: MemoryUniReporter("explicit/heap-overhead/bookkeeping",
KIND_NONHEAP, UNITS_BYTES,
"Committed bytes which the heap allocator uses for internal data structures.")
{}
private:
int64_t Amount() MOZ_OVERRIDE
{
jemalloc_stats_t stats;
jemalloc_stats(&stats);
return stats.bookkeeping;
}
};
class HeapOverheadPageCacheReporter MOZ_FINAL : public MemoryUniReporter
{
public:
HeapOverheadPageCacheReporter()
: MemoryUniReporter("explicit/heap-overhead/page-cache",
KIND_NONHEAP, UNITS_BYTES,
"Memory which the allocator could return to the operating system, but hasn't. "
"The allocator keeps this memory around as an optimization, so it doesn't "
"have to ask the OS the next time it needs to fulfill a request. This value "
"is typically not larger than a few megabytes.")
{}
private:
int64_t Amount() MOZ_OVERRIDE
{
jemalloc_stats_t stats;
jemalloc_stats(&stats);
return (int64_t) stats.page_cache;
}
};
class HeapCommittedReporter MOZ_FINAL : public MemoryUniReporter
{
public:
HeapCommittedReporter()
: MemoryUniReporter("heap-committed", KIND_OTHER, UNITS_BYTES,
"Memory mapped by the heap allocator that is committed, i.e. in physical "
"memory or paged to disk. This value corresponds to 'heap-allocated' + "
"'heap-waste' + 'heap-bookkeeping' + 'heap-page-cache', but because "
"these values are read at different times, the result probably won't match "
"exactly.")
{}
private:
int64_t Amount() MOZ_OVERRIDE
{
jemalloc_stats_t stats;
jemalloc_stats(&stats);
return (int64_t) (stats.allocated + stats.waste +
stats.bookkeeping + stats.page_cache);
}
};
class HeapOverheadRatioReporter MOZ_FINAL : public MemoryUniReporter
{
public:
HeapOverheadRatioReporter()
: MemoryUniReporter("heap-overhead-ratio", KIND_OTHER,
UNITS_PERCENTAGE,
"Ratio of committed, unused bytes to allocated bytes; i.e., "
"'heap-overhead' / 'heap-allocated'. This measures the overhead of "
"the heap allocator relative to amount of memory allocated.")
{}
private:
int64_t Amount() MOZ_OVERRIDE { return HeapOverheadRatio(); }
};
#endif // HAVE_JEMALLOC_STATS
// Why is this here? At first glance, you'd think it could be defined and
// registered with nsMemoryReporterManager entirely within nsAtomTable.cpp.
// However, the obvious time to register it is when the table is initialized,
// and that happens before XPCOM components are initialized, which means the
// NS_RegisterMemoryReporter call fails. So instead we do it here.
class AtomTablesReporter MOZ_FINAL : public MemoryUniReporter
{
public:
AtomTablesReporter()
: MemoryUniReporter("explicit/atom-tables", KIND_HEAP, UNITS_BYTES,
"Memory used by the dynamic and static atoms tables.")
{}
private:
int64_t Amount() MOZ_OVERRIDE
{
return NS_SizeOfAtomTablesIncludingThis(MallocSizeOf);
}
};
#ifdef MOZ_DMD
namespace mozilla {
namespace dmd {
class DMDReporter MOZ_FINAL : public MemoryMultiReporter
{
public:
DMDReporter()
: MemoryMultiReporter("dmd")
{}
NS_IMETHOD CollectReports(nsIHandleReportCallback* aHandleReport,
nsISupports* aData)
{
dmd::Sizes sizes;
dmd::SizeOf(&sizes);
#define REPORT(_path, _amount, _desc) \
do { \
nsresult rv; \
rv = aHandleReport->Callback(EmptyCString(), NS_LITERAL_CSTRING(_path), \
nsIMemoryReporter::KIND_HEAP, \
nsIMemoryReporter::UNITS_BYTES, _amount, \
NS_LITERAL_CSTRING(_desc), aData); \
NS_ENSURE_SUCCESS(rv, rv); \
} while (0)
REPORT("explicit/dmd/stack-traces/used",
sizes.mStackTracesUsed,
"Memory used by stack traces which correspond to at least "
"one heap block DMD is tracking.");
REPORT("explicit/dmd/stack-traces/unused",
sizes.mStackTracesUnused,
"Memory used by stack traces which don't correspond to any heap "
"blocks DMD is currently tracking.");
REPORT("explicit/dmd/stack-traces/table",
sizes.mStackTraceTable,
"Memory used by DMD's stack trace table.");
REPORT("explicit/dmd/block-table",
sizes.mBlockTable,
"Memory used by DMD's live block table.");
#undef REPORT
return NS_OK;
}
};
} // namespace dmd
} // namespace mozilla
#endif // MOZ_DMD
/**
** nsMemoryReporterManager implementation
**/
NS_IMPL_ISUPPORTS1(nsMemoryReporterManager, nsIMemoryReporterManager)
NS_IMETHODIMP
nsMemoryReporterManager::Init()
{
#if defined(HAVE_JEMALLOC_STATS) && defined(XP_LINUX)
if (!jemalloc_stats)
return NS_ERROR_FAILURE;
#endif
#ifdef HAVE_JEMALLOC_STATS
RegisterReporter(new HeapAllocatedReporter);
RegisterReporter(new HeapOverheadWasteReporter);
RegisterReporter(new HeapOverheadBookkeepingReporter);
RegisterReporter(new HeapOverheadPageCacheReporter);
RegisterReporter(new HeapCommittedReporter);
RegisterReporter(new HeapOverheadRatioReporter);
#endif
#ifdef HAVE_VSIZE_AND_RESIDENT_REPORTERS
RegisterReporter(new VsizeReporter);
RegisterReporter(new ResidentReporter);
#endif
#ifdef HAVE_RESIDENT_UNIQUE_REPORTER
RegisterReporter(new ResidentUniqueReporter);
#endif
#ifdef HAVE_PAGE_FAULT_REPORTERS
RegisterReporter(new PageFaultsSoftReporter);
RegisterReporter(new PageFaultsHardReporter);
#endif
#ifdef HAVE_PRIVATE_REPORTER
RegisterReporter(new PrivateReporter);
#endif
RegisterReporter(new AtomTablesReporter);
#ifdef MOZ_DMD
RegisterReporter(new mozilla::dmd::DMDReporter);
#endif
#if defined(XP_LINUX)
nsMemoryInfoDumper::Initialize();
#endif
return NS_OK;
}
namespace {
/**
* HastableEnumerator takes an nsTHashtable<nsISupportsHashKey>& in its
* constructor and creates an nsISimpleEnumerator from its contents.
*
* The resultant enumerator works over a copy of the hashtable, so it's safe to
* mutate or destroy the hashtable after the enumerator is created.
*/
class HashtableEnumerator MOZ_FINAL : public nsISimpleEnumerator
{
public:
HashtableEnumerator(nsTHashtable<nsISupportsHashKey>& aHashtable)
: mIndex(0)
{
aHashtable.EnumerateEntries(EnumeratorFunc, this);
}
NS_DECL_ISUPPORTS
NS_DECL_NSISIMPLEENUMERATOR
private:
static PLDHashOperator
EnumeratorFunc(nsISupportsHashKey* aEntry, void* aData);
uint32_t mIndex;
nsCOMArray<nsISupports> mArray;
};
NS_IMPL_ISUPPORTS1(HashtableEnumerator, nsISimpleEnumerator)
/* static */ PLDHashOperator
HashtableEnumerator::EnumeratorFunc(nsISupportsHashKey* aElem, void* aData)
{
HashtableEnumerator* enumerator = static_cast<HashtableEnumerator*>(aData);
enumerator->mArray.AppendObject(aElem->GetKey());
return PL_DHASH_NEXT;
}
NS_IMETHODIMP
HashtableEnumerator::HasMoreElements(bool* aResult)
{
*aResult = mIndex < mArray.Length();
return NS_OK;
}
NS_IMETHODIMP
HashtableEnumerator::GetNext(nsISupports** aNext)
{
if (mIndex < mArray.Length()) {
nsCOMPtr<nsISupports> next = mArray.ObjectAt(mIndex);
next.forget(aNext);
mIndex++;
return NS_OK;
}
*aNext = nullptr;
return NS_ERROR_FAILURE;
}
} // anonymous namespace
nsMemoryReporterManager::nsMemoryReporterManager()
: mMutex("nsMemoryReporterManager::mMutex"),
mIsRegistrationBlocked(false),
mNumChildProcesses(0),
mNextGeneration(1),
mGetReportsState(nullptr)
{
}
nsMemoryReporterManager::~nsMemoryReporterManager()
{
}
NS_IMETHODIMP
nsMemoryReporterManager::EnumerateReporters(nsISimpleEnumerator** aResult)
{
// Memory reporters are not necessarily threadsafe, so this function must
// be called from the main thread.
if (!NS_IsMainThread()) {
MOZ_CRASH();
}
mozilla::MutexAutoLock autoLock(mMutex);
nsRefPtr<HashtableEnumerator> enumerator =
new HashtableEnumerator(mReporters);
enumerator.forget(aResult);
return NS_OK;
}
//#define DEBUG_CHILD_PROCESS_MEMORY_REPORTING 1
#ifdef DEBUG_CHILD_PROCESS_MEMORY_REPORTING
#define MEMORY_REPORTING_LOG(format, ...) \
fprintf(stderr, "++++ MEMORY REPORTING: " format, ##__VA_ARGS__);
#else
#define MEMORY_REPORTING_LOG(...)
#endif
void
nsMemoryReporterManager::IncrementNumChildProcesses()
{
if (!NS_IsMainThread()) {
MOZ_CRASH();
}
mNumChildProcesses++;
MEMORY_REPORTING_LOG("IncrementNumChildProcesses --> %d\n",
mNumChildProcesses);
}
void
nsMemoryReporterManager::DecrementNumChildProcesses()
{
if (!NS_IsMainThread()) {
MOZ_CRASH();
}
MOZ_ASSERT(mNumChildProcesses > 0);
mNumChildProcesses--;
MEMORY_REPORTING_LOG("DecrementNumChildProcesses --> %d\n",
mNumChildProcesses);
}
NS_IMETHODIMP
nsMemoryReporterManager::GetReports(
nsIHandleReportCallback* aHandleReport,
nsISupports* aHandleReportData,
nsIFinishReportingCallback* aFinishReporting,
nsISupports* aFinishReportingData)
{
// Memory reporters are not necessarily threadsafe, so this function must
// be called from the main thread.
if (!NS_IsMainThread()) {
MOZ_CRASH();
}
uint32_t generation = mNextGeneration++;
if (mGetReportsState) {
// A request is in flight. Don't start another one. And don't report
// an error; just ignore it, and let the in-flight request finish.
MEMORY_REPORTING_LOG("GetReports (gen=%u, s->gen=%u): abort\n",
generation, mGetReportsState->mGeneration);
return NS_OK;
}
MEMORY_REPORTING_LOG("GetReports (gen=%u, %d child(ren) present)\n",
generation, mNumChildProcesses);
if (mNumChildProcesses > 0) {
// Request memory reports from child processes. We do this *before*
// collecting reports for this process so each process can collect
// reports in parallel.
nsCOMPtr<nsIObserverService> obs =
do_GetService("@mozilla.org/observer-service;1");
NS_ENSURE_STATE(obs);
// Casting the uint32_t generation to |const PRUnichar*| is a hack, but
// simpler than converting the number to an actual string.
obs->NotifyObservers(nullptr, "child-memory-reporter-request",
(const PRUnichar*)(uintptr_t)generation);
nsCOMPtr<nsITimer> timer = do_CreateInstance(NS_TIMER_CONTRACTID);
NS_ENSURE_TRUE(timer, NS_ERROR_FAILURE);
nsresult rv = timer->InitWithFuncCallback(TimeoutCallback,
this, kTimeoutLengthMS,
nsITimer::TYPE_ONE_SHOT);
NS_ENSURE_SUCCESS(rv, rv);
mGetReportsState = new GetReportsState(generation,
timer,
mNumChildProcesses,
aHandleReport,
aHandleReportData,
aFinishReporting,
aFinishReportingData);
}
// Get reports for this process.
nsRefPtr<HashtableEnumerator> e;
{
mozilla::MutexAutoLock autoLock(mMutex);
e = new HashtableEnumerator(mReporters);
}
bool more;
while (NS_SUCCEEDED(e->HasMoreElements(&more)) && more) {
nsCOMPtr<nsIMemoryReporter> r;
e->GetNext(getter_AddRefs(r));
r->CollectReports(aHandleReport, aHandleReportData);
}
// If there are no child processes, we can finish up immediately.
return (mNumChildProcesses == 0)
? aFinishReporting->Callback(aFinishReportingData)
: NS_OK;
}
// This function has no return value. If something goes wrong, there's no
// clear place to report the problem to, but that's ok -- we will end up
// hitting the timeout and executing TimeoutCallback().
void
nsMemoryReporterManager::HandleChildReports(
const uint32_t& aGeneration,
const InfallibleTArray<dom::MemoryReport>& aChildReports)
{
// Memory reporting only happens on the main thread.
if (!NS_IsMainThread()) {
MOZ_CRASH();
}
GetReportsState* s = mGetReportsState;
if (!s) {
// If we reach here, either:
//
// - A child process reported back too late, and no subsequent request
// is in flight.
//
// - (Unlikely) A "child-memory-reporter-request" notification was
// triggered from somewhere other than GetReports(), causing child
// processes to report back when the nsMemoryReporterManager wasn't
// expecting it.
//
// Either way, there's nothing to be done. Just ignore it.
MEMORY_REPORTING_LOG(
"HandleChildReports: no request in flight (aGen=%u)\n",
aGeneration);
return;
}
if (aGeneration != s->mGeneration) {
// If we reach here, a child process must have reported back, too late,
// while a subsequent (higher-numbered) request is in flight. Again,
// ignore it.
MOZ_ASSERT(aGeneration < s->mGeneration);
MEMORY_REPORTING_LOG(
"HandleChildReports: gen mismatch (aGen=%u, s->gen=%u)\n",
aGeneration, s->mGeneration);
return;
}
// Process the reports from the child process.
for (uint32_t i = 0; i < aChildReports.Length(); i++) {
const dom::MemoryReport& r = aChildReports[i];
// Child reports should have a non-empty process.
MOZ_ASSERT(!r.process().IsEmpty());
// If the call fails, ignore and continue.
s->mHandleReport->Callback(r.process(), r.path(), r.kind(),
r.units(), r.amount(), r.desc(),
s->mHandleReportData);
}
// If all the child processes have reported, we can cancel the timer and
// finish up. Otherwise, just return.
s->mNumChildProcessesCompleted++;
MEMORY_REPORTING_LOG("HandleChildReports (aGen=%u): completed child %d\n",
aGeneration, s->mNumChildProcessesCompleted);
if (s->mNumChildProcessesCompleted == s->mNumChildProcesses) {
s->mTimer->Cancel();
FinishReporting();
}
}
/* static */ void
nsMemoryReporterManager::TimeoutCallback(nsITimer* aTimer, void* aData)
{
nsMemoryReporterManager* mgr =
static_cast<nsMemoryReporterManager*>(aData);
MOZ_ASSERT(mgr->mGetReportsState);
MEMORY_REPORTING_LOG("TimeoutCallback (s->gen=%u)\n",
mgr->mGetReportsState->mGeneration);
// We don't bother sending any kind of cancellation message to the child
// processes that haven't reported back.
mgr->FinishReporting();
}
void
nsMemoryReporterManager::FinishReporting()
{
// Memory reporting only happens on the main thread.
if (!NS_IsMainThread()) {
MOZ_CRASH();
}
MOZ_ASSERT(mGetReportsState);
MEMORY_REPORTING_LOG("FinishReporting (s->gen=%u)\n",
mGetReportsState->mGeneration);
// Call this before deleting |mGetReportsState|. That way, if
// |mFinishReportData| calls GetReports(), it will silently abort, as
// required.
(void)mGetReportsState->mFinishReporting->Callback(
mGetReportsState->mFinishReportingData);
delete mGetReportsState;
mGetReportsState = nullptr;
}
static void
DebugAssertRefcountIsNonZero(nsISupports* aObj)
{
#ifdef DEBUG
// This will probably crash if the object's refcount is 0.
uint32_t refcnt = NS_ADDREF(aObj);
MOZ_ASSERT(refcnt >= 2);
NS_RELEASE(aObj);
#endif
}
nsresult
nsMemoryReporterManager::RegisterReporterHelper(
nsIMemoryReporter* aReporter, bool aForce)
{
// This method is thread-safe.
mozilla::MutexAutoLock autoLock(mMutex);
if ((mIsRegistrationBlocked && !aForce) || mReporters.Contains(aReporter)) {
return NS_ERROR_FAILURE;
}
// This method needs to be safe even if |aReporter| has a refcnt of 0, so
// we take a kung fu death grip before calling PutEntry. Otherwise, if
// PutEntry addref'ed and released |aReporter| before finally addref'ing it
// for good, it would free aReporter!
//
// The kung fu death grip could itself be problematic if PutEntry didn't
// addref |aReporter| (because then when the death grip goes out of scope,
// we would delete the reporter). In debug mode, we check that this
// doesn't happen.
{
nsCOMPtr<nsIMemoryReporter> kungFuDeathGrip = aReporter;
mReporters.PutEntry(aReporter);
}
DebugAssertRefcountIsNonZero(aReporter);
return NS_OK;
}
NS_IMETHODIMP
nsMemoryReporterManager::RegisterReporter(nsIMemoryReporter* aReporter)
{
return RegisterReporterHelper(aReporter, /* force = */ false);
}
NS_IMETHODIMP
nsMemoryReporterManager::RegisterReporterEvenIfBlocked(
nsIMemoryReporter* aReporter)
{
return RegisterReporterHelper(aReporter, /* force = */ true);
}
NS_IMETHODIMP
nsMemoryReporterManager::UnregisterReporter(nsIMemoryReporter* aReporter)
{
// This method is thread-safe.
mozilla::MutexAutoLock autoLock(mMutex);
if (!mReporters.Contains(aReporter)) {
return NS_ERROR_FAILURE;
}
mReporters.RemoveEntry(aReporter);
return NS_OK;
}
NS_IMETHODIMP
nsMemoryReporterManager::BlockRegistration()
{
// This method is thread-safe.
mozilla::MutexAutoLock autoLock(mMutex);
if (mIsRegistrationBlocked) {
return NS_ERROR_FAILURE;
}
mIsRegistrationBlocked = true;
return NS_OK;
}
NS_IMETHODIMP
nsMemoryReporterManager::UnblockRegistration()
{
// This method is thread-safe.
mozilla::MutexAutoLock autoLock(mMutex);
if (!mIsRegistrationBlocked) {
return NS_ERROR_FAILURE;
}
mIsRegistrationBlocked = false;
return NS_OK;
}
// This is just a wrapper for int64_t that implements nsISupports, so it can be
// passed to nsIMemoryReporter::CollectReports.
class Int64Wrapper MOZ_FINAL : public nsISupports {
public:
NS_DECL_ISUPPORTS
Int64Wrapper() : mValue(0) { }
int64_t mValue;
};
NS_IMPL_ISUPPORTS0(Int64Wrapper)
class ExplicitCallback MOZ_FINAL : public nsIHandleReportCallback
{
public:
NS_DECL_ISUPPORTS
NS_IMETHOD Callback(const nsACString& aProcess, const nsACString& aPath,
int32_t aKind, int32_t aUnits, int64_t aAmount,
const nsACString& aDescription,
nsISupports* aWrappedExplicit)
{
// Using the "heap-allocated" reporter here instead of
// nsMemoryReporterManager.heapAllocated goes against the usual
// pattern. But it's for a good reason: in tests, we can easily
// create artificial (i.e. deterministic) reporters -- which allows us
// to precisely test nsMemoryReporterManager.explicit -- but we can't
// do that for distinguished amounts.
if (aPath.Equals("heap-allocated") ||
(aKind == nsIMemoryReporter::KIND_NONHEAP &&
PromiseFlatCString(aPath).Find("explicit") == 0))
{
Int64Wrapper* wrappedInt64 =
static_cast<Int64Wrapper*>(aWrappedExplicit);
wrappedInt64->mValue += aAmount;
}
return NS_OK;
}
};
NS_IMPL_ISUPPORTS1(ExplicitCallback, nsIHandleReportCallback)
NS_IMETHODIMP
nsMemoryReporterManager::GetExplicit(int64_t* aAmount)
{
NS_ENSURE_ARG_POINTER(aAmount);
*aAmount = 0;
#ifndef HAVE_JEMALLOC_STATS
return NS_ERROR_NOT_AVAILABLE;
#else
bool more;
// For each reporter we call CollectReports and filter out the
// non-explicit, non-NONHEAP measurements (except for "heap-allocated").
// That's lots of wasted work, and we used to have a GetExplicitNonHeap()
// method which did this more efficiently, but it ended up being more
// trouble than it was worth.
nsRefPtr<ExplicitCallback> handleReport = new ExplicitCallback();
nsRefPtr<Int64Wrapper> wrappedExplicitSize = new Int64Wrapper();
nsCOMPtr<nsISimpleEnumerator> e;
EnumerateReporters(getter_AddRefs(e));
while (NS_SUCCEEDED(e->HasMoreElements(&more)) && more) {
nsCOMPtr<nsIMemoryReporter> r;
e->GetNext(getter_AddRefs(r));
r->CollectReports(handleReport, wrappedExplicitSize);
}
*aAmount = wrappedExplicitSize->mValue;
return NS_OK;
#endif // HAVE_JEMALLOC_STATS
}
NS_IMETHODIMP
nsMemoryReporterManager::GetVsize(int64_t* aVsize)
{
#ifdef HAVE_VSIZE_AND_RESIDENT_REPORTERS
return ::GetVsize(aVsize);
#else
*aResident = 0;
return NS_ERROR_NOT_AVAILABLE;
#endif
}
NS_IMETHODIMP
nsMemoryReporterManager::GetResident(int64_t* aAmount)
{
#ifdef HAVE_VSIZE_AND_RESIDENT_REPORTERS
return ::GetResident(aAmount);
#else
*aAmount = 0;
return NS_ERROR_NOT_AVAILABLE;
#endif
}
NS_IMETHODIMP
nsMemoryReporterManager::GetResidentFast(int64_t* aAmount)
{
#ifdef HAVE_VSIZE_AND_RESIDENT_REPORTERS
return ::GetResidentFast(aAmount);
#else
*aAmount = 0;
return NS_ERROR_NOT_AVAILABLE;
#endif
}
NS_IMETHODIMP
nsMemoryReporterManager::GetHeapAllocated(int64_t* aAmount)
{
#ifdef HAVE_JEMALLOC_STATS
*aAmount = HeapAllocated();
return NS_OK;
#else
*aAmount = 0;
return NS_ERROR_NOT_AVAILABLE;
#endif
}
// This has UNITS_PERCENTAGE, so it is multiplied by 100x.
NS_IMETHODIMP
nsMemoryReporterManager::GetHeapOverheadRatio(int64_t* aAmount)
{
#ifdef HAVE_JEMALLOC_STATS
*aAmount = HeapOverheadRatio();
return NS_OK;
#else
*aAmount = 0;
return NS_ERROR_NOT_AVAILABLE;
#endif
}
static nsresult
GetInfallibleAmount(InfallibleAmountFn aAmountFn, int64_t* aAmount)
{
if (aAmountFn) {
*aAmount = aAmountFn();
return NS_OK;
}
*aAmount = 0;
return NS_ERROR_NOT_AVAILABLE;
}
NS_IMETHODIMP
nsMemoryReporterManager::GetJSMainRuntimeGCHeap(int64_t* aAmount)
{
return GetInfallibleAmount(mAmountFns.mJSMainRuntimeGCHeap, aAmount);
}
NS_IMETHODIMP
nsMemoryReporterManager::GetJSMainRuntimeTemporaryPeak(int64_t* aAmount)
{
return GetInfallibleAmount(mAmountFns.mJSMainRuntimeTemporaryPeak, aAmount);
}
NS_IMETHODIMP
nsMemoryReporterManager::GetJSMainRuntimeCompartmentsSystem(int64_t* aAmount)
{
return GetInfallibleAmount(mAmountFns.mJSMainRuntimeCompartmentsSystem,
aAmount);
}
NS_IMETHODIMP
nsMemoryReporterManager::GetJSMainRuntimeCompartmentsUser(int64_t* aAmount)
{
return GetInfallibleAmount(mAmountFns.mJSMainRuntimeCompartmentsUser,
aAmount);
}
NS_IMETHODIMP
nsMemoryReporterManager::GetImagesContentUsedUncompressed(int64_t* aAmount)
{
return GetInfallibleAmount(mAmountFns.mImagesContentUsedUncompressed,
aAmount);
}
NS_IMETHODIMP
nsMemoryReporterManager::GetStorageSQLite(int64_t* aAmount)
{
return GetInfallibleAmount(mAmountFns.mStorageSQLite, aAmount);
}
NS_IMETHODIMP
nsMemoryReporterManager::GetLowMemoryEventsVirtual(int64_t* aAmount)
{
return GetInfallibleAmount(mAmountFns.mLowMemoryEventsVirtual, aAmount);
}
NS_IMETHODIMP
nsMemoryReporterManager::GetLowMemoryEventsPhysical(int64_t* aAmount)
{
return GetInfallibleAmount(mAmountFns.mLowMemoryEventsPhysical, aAmount);
}
NS_IMETHODIMP
nsMemoryReporterManager::GetGhostWindows(int64_t* aAmount)
{
return GetInfallibleAmount(mAmountFns.mGhostWindows, aAmount);
}
NS_IMETHODIMP
nsMemoryReporterManager::GetPageFaultsHard(int64_t* aAmount)
{
#ifdef HAVE_PAGE_FAULT_REPORTERS
return PageFaultsHardDistinguishedAmount(aAmount);
#else
*aAmount = 0;
return NS_ERROR_NOT_AVAILABLE;
#endif
}
NS_IMETHODIMP
nsMemoryReporterManager::GetLargestContiguousVMBlock(int64_t* aAmount)
{
#ifdef HAVE_LARGEST_CONTIGUOUS_BLOCK_REPORTERS
return LargestContiguousVMBlock(aAmount);
#else
*aAmount = 0;
return NS_ERROR_NOT_AVAILABLE;
#endif
}
NS_IMETHODIMP
nsMemoryReporterManager::GetHasMozMallocUsableSize(bool* aHas)
{
void* p = malloc(16);
if (!p) {
return NS_ERROR_OUT_OF_MEMORY;
}
size_t usable = moz_malloc_usable_size(p);
free(p);
*aHas = !!(usable > 0);
return NS_OK;
}
namespace {
/**
* This runnable lets us implement nsIMemoryReporterManager::MinimizeMemoryUsage().
* We fire a heap-minimize notification, spin the event loop, and repeat this
* process a few times.
*
* When this sequence finishes, we invoke the callback function passed to the
* runnable's constructor.
*/
class MinimizeMemoryUsageRunnable : public nsCancelableRunnable
{
public:
MinimizeMemoryUsageRunnable(nsIRunnable* aCallback)
: mCallback(aCallback)
, mRemainingIters(sNumIters)
, mCanceled(false)
{}
NS_IMETHOD Run()
{
if (mCanceled) {
return NS_OK;
}
nsCOMPtr<nsIObserverService> os = services::GetObserverService();
if (!os) {
return NS_ERROR_FAILURE;
}
if (mRemainingIters == 0) {
os->NotifyObservers(nullptr, "after-minimize-memory-usage",
NS_LITERAL_STRING("MinimizeMemoryUsageRunnable").get());
if (mCallback) {
mCallback->Run();
}
return NS_OK;
}
os->NotifyObservers(nullptr, "memory-pressure",
NS_LITERAL_STRING("heap-minimize").get());
mRemainingIters--;
NS_DispatchToMainThread(this);
return NS_OK;
}
NS_IMETHOD Cancel()
{
if (mCanceled) {
return NS_ERROR_UNEXPECTED;
}
mCanceled = true;
return NS_OK;
}
private:
// Send sNumIters heap-minimize notifications, spinning the event
// loop after each notification (see bug 610166 comment 12 for an
// explanation), because one notification doesn't cut it.
static const uint32_t sNumIters = 3;
nsCOMPtr<nsIRunnable> mCallback;
uint32_t mRemainingIters;
bool mCanceled;
};
} // anonymous namespace
NS_IMETHODIMP
nsMemoryReporterManager::MinimizeMemoryUsage(nsIRunnable* aCallback,
nsICancelableRunnable** aResult)
{
NS_ENSURE_ARG_POINTER(aResult);
nsRefPtr<nsICancelableRunnable> runnable =
new MinimizeMemoryUsageRunnable(aCallback);
NS_ADDREF(*aResult = runnable);
return NS_DispatchToMainThread(runnable);
}
NS_IMETHODIMP
nsMemoryReporterManager::SizeOfTab(nsIDOMWindow* aTopWindow,
int64_t* aJSObjectsSize,
int64_t* aJSStringsSize,
int64_t* aJSOtherSize,
int64_t* aDomSize,
int64_t* aStyleSize,
int64_t* aOtherSize,
int64_t* aTotalSize,
double* aJSMilliseconds,
double* aNonJSMilliseconds)
{
nsCOMPtr<nsIGlobalObject> global = do_QueryInterface(aTopWindow);
nsCOMPtr<nsPIDOMWindow> piWindow = do_QueryInterface(aTopWindow);
NS_ENSURE_TRUE(!!global && !!piWindow, NS_ERROR_FAILURE);
TimeStamp t1 = TimeStamp::Now();
// Measure JS memory consumption (and possibly some non-JS consumption, via
// |jsPrivateSize|).
size_t jsObjectsSize, jsStringsSize, jsPrivateSize, jsOtherSize;
nsresult rv = mSizeOfTabFns.mJS(global->GetGlobalJSObject(),
&jsObjectsSize, &jsStringsSize,
&jsPrivateSize, &jsOtherSize);
NS_ENSURE_SUCCESS(rv, rv);
TimeStamp t2 = TimeStamp::Now();
// Measure non-JS memory consumption.
size_t domSize, styleSize, otherSize;
mSizeOfTabFns.mNonJS(piWindow, &domSize, &styleSize, &otherSize);
TimeStamp t3 = TimeStamp::Now();
*aTotalSize = 0;
#define DO(aN, n) { *aN = (n); *aTotalSize += (n); }
DO(aJSObjectsSize, jsObjectsSize);
DO(aJSStringsSize, jsStringsSize);
DO(aJSOtherSize, jsOtherSize);
DO(aDomSize, jsPrivateSize + domSize);
DO(aStyleSize, styleSize);
DO(aOtherSize, otherSize);
#undef DO
*aJSMilliseconds = (t2 - t1).ToMilliseconds();
*aNonJSMilliseconds = (t3 - t2).ToMilliseconds();
return NS_OK;
}
// Most memory reporters don't need thread safety, but some do. Make them all
// thread-safe just to be safe. Memory reporters are created and destroyed
// infrequently enough that the performance cost should be negligible.
NS_IMPL_ISUPPORTS1(MemoryUniReporter, nsIMemoryReporter)
NS_IMPL_ISUPPORTS1(MemoryMultiReporter, nsIMemoryReporter)
nsresult
NS_RegisterMemoryReporter(nsIMemoryReporter* aReporter)
{
nsCOMPtr<nsIMemoryReporterManager> mgr = do_GetService("@mozilla.org/memory-reporter-manager;1");
if (!mgr) {
return NS_ERROR_FAILURE;
}
return mgr->RegisterReporter(aReporter);
}
nsresult
NS_UnregisterMemoryReporter(nsIMemoryReporter* aReporter)
{
nsCOMPtr<nsIMemoryReporterManager> mgr = do_GetService("@mozilla.org/memory-reporter-manager;1");
if (!mgr) {
return NS_ERROR_FAILURE;
}
return mgr->UnregisterReporter(aReporter);
}
namespace mozilla {
#define GET_MEMORY_REPORTER_MANAGER(mgr) \
nsRefPtr<nsMemoryReporterManager> mgr = \
nsMemoryReporterManager::GetOrCreate(); \
if (!mgr) { \
return NS_ERROR_FAILURE; \
}
// Macro for generating functions that register distinguished amount functions
// with the memory reporter manager.
#define DEFINE_REGISTER_DISTINGUISHED_AMOUNT(kind, name) \
nsresult \
Register##name##DistinguishedAmount(kind##AmountFn aAmountFn) \
{ \
GET_MEMORY_REPORTER_MANAGER(mgr) \
mgr->mAmountFns.m##name = aAmountFn; \
return NS_OK; \
}
#define DEFINE_UNREGISTER_DISTINGUISHED_AMOUNT(name) \
nsresult \
Unregister##name##DistinguishedAmount() \
{ \
GET_MEMORY_REPORTER_MANAGER(mgr) \
mgr->mAmountFns.m##name = nullptr; \
return NS_OK; \
}
DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, JSMainRuntimeGCHeap)
DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, JSMainRuntimeTemporaryPeak)
DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, JSMainRuntimeCompartmentsSystem)
DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, JSMainRuntimeCompartmentsUser)
DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, ImagesContentUsedUncompressed)
DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, StorageSQLite)
DEFINE_UNREGISTER_DISTINGUISHED_AMOUNT(StorageSQLite)
DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, LowMemoryEventsVirtual)
DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, LowMemoryEventsPhysical)
DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, GhostWindows)
#undef DEFINE_REGISTER_DISTINGUISHED_AMOUNT
#undef DEFINE_UNREGISTER_DISTINGUISHED_AMOUNT
#define DEFINE_REGISTER_SIZE_OF_TAB(name) \
nsresult \
Register##name##SizeOfTab(name##SizeOfTabFn aSizeOfTabFn) \
{ \
GET_MEMORY_REPORTER_MANAGER(mgr) \
mgr->mSizeOfTabFns.m##name = aSizeOfTabFn; \
return NS_OK; \
}
DEFINE_REGISTER_SIZE_OF_TAB(JS);
DEFINE_REGISTER_SIZE_OF_TAB(NonJS);
#undef DEFINE_REGISTER_SIZE_OF_TAB
#undef GET_MEMORY_REPORTER_MANAGER
}
#if defined(MOZ_DMD)
namespace mozilla {
namespace dmd {
class DoNothingCallback : public nsIHandleReportCallback
{
public:
NS_DECL_ISUPPORTS
NS_IMETHOD Callback(const nsACString& aProcess, const nsACString& aPath,
int32_t aKind, int32_t aUnits, int64_t aAmount,
const nsACString& aDescription,
nsISupports* aData)
{
// Do nothing; the reporter has already reported to DMD.
return NS_OK;
}
};
NS_IMPL_ISUPPORTS1(
DoNothingCallback
, nsIHandleReportCallback
)
void
RunReporters()
{
nsCOMPtr<nsIMemoryReporterManager> mgr =
do_GetService("@mozilla.org/memory-reporter-manager;1");
nsRefPtr<DoNothingCallback> doNothing = new DoNothingCallback();
bool more;
nsCOMPtr<nsISimpleEnumerator> e;
mgr->EnumerateReporters(getter_AddRefs(e));
while (NS_SUCCEEDED(e->HasMoreElements(&more)) && more) {
nsCOMPtr<nsIMemoryReporter> r;
e->GetNext(getter_AddRefs(r));
r->CollectReports(doNothing, nullptr);
}
}
} // namespace dmd
} // namespace mozilla
#endif // defined(MOZ_DMD)