gecko/xpcom/threads/nsTimerImpl.cpp
Birunthan Mohanathas 47ed3a3675 Bug 1182996 - Fix and add missing namespace comments. rs=ehsan
The bulk of this commit was generated by running:

  run-clang-tidy.py \
    -checks='-*,llvm-namespace-comment' \
    -header-filter=^/.../mozilla-central/.* \
    -fix
2015-07-13 08:25:42 -07:00

818 lines
21 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsTimerImpl.h"
#include "TimerThread.h"
#include "nsAutoPtr.h"
#include "nsThreadManager.h"
#include "nsThreadUtils.h"
#include "plarena.h"
#include "pratom.h"
#include "GeckoProfiler.h"
#include "mozilla/Atomics.h"
#include "mozilla/Logging.h"
#ifdef MOZ_NUWA_PROCESS
#include "ipc/Nuwa.h"
#endif
#ifdef MOZ_TASK_TRACER
#include "GeckoTaskTracerImpl.h"
using namespace mozilla::tasktracer;
#endif
using mozilla::Atomic;
using mozilla::LogLevel;
using mozilla::TimeDuration;
using mozilla::TimeStamp;
static Atomic<int32_t> gGenerator;
static TimerThread* gThread = nullptr;
PRLogModuleInfo*
GetTimerLog()
{
static PRLogModuleInfo* sLog;
if (!sLog) {
sLog = PR_NewLogModule("nsTimerImpl");
}
return sLog;
}
#include <math.h>
double nsTimerImpl::sDeltaSumSquared = 0;
double nsTimerImpl::sDeltaSum = 0;
double nsTimerImpl::sDeltaNum = 0;
static void
myNS_MeanAndStdDev(double n, double sumOfValues, double sumOfSquaredValues,
double* meanResult, double* stdDevResult)
{
double mean = 0.0, var = 0.0, stdDev = 0.0;
if (n > 0.0 && sumOfValues >= 0) {
mean = sumOfValues / n;
double temp = (n * sumOfSquaredValues) - (sumOfValues * sumOfValues);
if (temp < 0.0 || n <= 1) {
var = 0.0;
} else {
var = temp / (n * (n - 1));
}
// for some reason, Windows says sqrt(0.0) is "-1.#J" (?!) so do this:
stdDev = var != 0.0 ? sqrt(var) : 0.0;
}
*meanResult = mean;
*stdDevResult = stdDev;
}
namespace {
// TimerEventAllocator is a thread-safe allocator used only for nsTimerEvents.
// It's needed to avoid contention over the default allocator lock when
// firing timer events (see bug 733277). The thread-safety is required because
// nsTimerEvent objects are allocated on the timer thread, and freed on another
// thread. Because TimerEventAllocator has its own lock, contention over that
// lock is limited to the allocation and deallocation of nsTimerEvent objects.
//
// Because this allocator is layered over PLArenaPool, it never shrinks -- even
// "freed" nsTimerEvents aren't truly freed, they're just put onto a free-list
// for later recycling. So the amount of memory consumed will always be equal
// to the high-water mark consumption. But nsTimerEvents are small and it's
// unusual to have more than a few hundred of them, so this shouldn't be a
// problem in practice.
class TimerEventAllocator
{
private:
struct FreeEntry
{
FreeEntry* mNext;
};
PLArenaPool mPool;
FreeEntry* mFirstFree;
mozilla::Monitor mMonitor;
public:
TimerEventAllocator()
: mFirstFree(nullptr)
, mMonitor("TimerEventAllocator")
{
PL_InitArenaPool(&mPool, "TimerEventPool", 4096, /* align = */ 0);
}
~TimerEventAllocator()
{
PL_FinishArenaPool(&mPool);
}
void* Alloc(size_t aSize);
void Free(void* aPtr);
};
} // namespace
class nsTimerEvent : public nsRunnable
{
public:
NS_IMETHOD Run();
nsTimerEvent()
: mTimer()
, mGeneration(0)
{
MOZ_COUNT_CTOR(nsTimerEvent);
MOZ_ASSERT(gThread->IsOnTimerThread(),
"nsTimer must always be allocated on the timer thread");
sAllocatorUsers++;
}
TimeStamp mInitTime;
static void Init();
static void Shutdown();
static void DeleteAllocatorIfNeeded();
static void* operator new(size_t aSize) CPP_THROW_NEW
{
return sAllocator->Alloc(aSize);
}
void operator delete(void* aPtr)
{
sAllocator->Free(aPtr);
DeleteAllocatorIfNeeded();
}
already_AddRefed<nsTimerImpl> ForgetTimer()
{
return mTimer.forget();
}
void SetTimer(already_AddRefed<nsTimerImpl> aTimer)
{
mTimer = aTimer;
mGeneration = mTimer->GetGeneration();
}
private:
~nsTimerEvent()
{
MOZ_COUNT_DTOR(nsTimerEvent);
MOZ_ASSERT(!sCanDeleteAllocator || sAllocatorUsers > 0,
"This will result in us attempting to deallocate the nsTimerEvent allocator twice");
sAllocatorUsers--;
}
nsRefPtr<nsTimerImpl> mTimer;
int32_t mGeneration;
static TimerEventAllocator* sAllocator;
static Atomic<int32_t> sAllocatorUsers;
static bool sCanDeleteAllocator;
};
TimerEventAllocator* nsTimerEvent::sAllocator = nullptr;
Atomic<int32_t> nsTimerEvent::sAllocatorUsers;
bool nsTimerEvent::sCanDeleteAllocator = false;
namespace {
void*
TimerEventAllocator::Alloc(size_t aSize)
{
MOZ_ASSERT(aSize == sizeof(nsTimerEvent));
mozilla::MonitorAutoLock lock(mMonitor);
void* p;
if (mFirstFree) {
p = mFirstFree;
mFirstFree = mFirstFree->mNext;
} else {
PL_ARENA_ALLOCATE(p, &mPool, aSize);
if (!p) {
return nullptr;
}
}
return p;
}
void
TimerEventAllocator::Free(void* aPtr)
{
mozilla::MonitorAutoLock lock(mMonitor);
FreeEntry* entry = reinterpret_cast<FreeEntry*>(aPtr);
entry->mNext = mFirstFree;
mFirstFree = entry;
}
} // namespace
NS_IMPL_QUERY_INTERFACE(nsTimerImpl, nsITimer)
NS_IMPL_ADDREF(nsTimerImpl)
NS_IMETHODIMP_(MozExternalRefCountType)
nsTimerImpl::Release(void)
{
nsrefcnt count;
MOZ_ASSERT(int32_t(mRefCnt) > 0, "dup release");
count = --mRefCnt;
NS_LOG_RELEASE(this, count, "nsTimerImpl");
if (count == 0) {
mRefCnt = 1; /* stabilize */
/* enable this to find non-threadsafe destructors: */
/* NS_ASSERT_OWNINGTHREAD(nsTimerImpl); */
delete this;
return 0;
}
// If only one reference remains, and mArmed is set, then the ref must be
// from the TimerThread::mTimers array, so we Cancel this timer to remove
// the mTimers element, and return 0 if Cancel in fact disarmed the timer.
//
// We use an inlined version of nsTimerImpl::Cancel here to check for the
// NS_ERROR_NOT_AVAILABLE code returned by gThread->RemoveTimer when this
// timer is not found in the mTimers array -- i.e., when the timer was not
// in fact armed once we acquired TimerThread::mLock, in spite of mArmed
// being true here. That can happen if the armed timer is being fired by
// TimerThread::Run as we race and test mArmed just before it is cleared by
// the timer thread. If the RemoveTimer call below doesn't find this timer
// in the mTimers array, then the last ref to this timer is held manually
// and temporarily by the TimerThread, so we should fall through to the
// final return and return 1, not 0.
//
// The original version of this thread-based timer code kept weak refs from
// TimerThread::mTimers, removing this timer's weak ref in the destructor,
// but that leads to double-destructions in the race described above, and
// adding mArmed doesn't help, because destructors can't be deferred, once
// begun. But by combining reference-counting and a specialized Release
// method with "is this timer still in the mTimers array once we acquire
// the TimerThread's lock" testing, we defer destruction until we're sure
// that only one thread has its hot little hands on this timer.
//
// Note that both approaches preclude a timer creator, and everyone else
// except the TimerThread who might have a strong ref, from dropping all
// their strong refs without implicitly canceling the timer. Timers need
// non-mTimers-element strong refs to stay alive.
if (count == 1 && mArmed) {
mCanceled = true;
MOZ_ASSERT(gThread, "Armed timer exists after the thread timer stopped.");
if (NS_SUCCEEDED(gThread->RemoveTimer(this))) {
return 0;
}
}
return count;
}
nsTimerImpl::nsTimerImpl() :
mClosure(nullptr),
mCallbackType(CallbackType::Unknown),
mFiring(false),
mArmed(false),
mCanceled(false),
mGeneration(0),
mDelay(0)
{
// XXXbsmedberg: shouldn't this be in Init()?
mEventTarget = static_cast<nsIEventTarget*>(NS_GetCurrentThread());
mCallback.c = nullptr;
}
nsTimerImpl::~nsTimerImpl()
{
ReleaseCallback();
}
//static
nsresult
nsTimerImpl::Startup()
{
nsresult rv;
nsTimerEvent::Init();
gThread = new TimerThread();
NS_ADDREF(gThread);
rv = gThread->InitLocks();
if (NS_FAILED(rv)) {
NS_RELEASE(gThread);
}
return rv;
}
void
nsTimerImpl::Shutdown()
{
if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
double mean = 0, stddev = 0;
myNS_MeanAndStdDev(sDeltaNum, sDeltaSum, sDeltaSumSquared, &mean, &stddev);
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
("sDeltaNum = %f, sDeltaSum = %f, sDeltaSumSquared = %f\n",
sDeltaNum, sDeltaSum, sDeltaSumSquared));
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
("mean: %fms, stddev: %fms\n", mean, stddev));
}
if (!gThread) {
return;
}
gThread->Shutdown();
NS_RELEASE(gThread);
nsTimerEvent::Shutdown();
}
nsresult
nsTimerImpl::InitCommon(uint32_t aType, uint32_t aDelay)
{
nsresult rv;
if (NS_WARN_IF(!gThread)) {
return NS_ERROR_NOT_INITIALIZED;
}
if (!mEventTarget) {
NS_ERROR("mEventTarget is NULL");
return NS_ERROR_NOT_INITIALIZED;
}
rv = gThread->Init();
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
/**
* In case of re-Init, both with and without a preceding Cancel, clear the
* mCanceled flag and assign a new mGeneration. But first, remove any armed
* timer from the timer thread's list.
*
* If we are racing with the timer thread to remove this timer and we lose,
* the RemoveTimer call made here will fail to find this timer in the timer
* thread's list, and will return false harmlessly. We test mArmed here to
* avoid the small overhead in RemoveTimer of locking the timer thread and
* checking its list for this timer. It's safe to test mArmed even though
* it might be cleared on another thread in the next cycle (or even already
* be cleared by another CPU whose store hasn't reached our CPU's cache),
* because RemoveTimer is idempotent.
*/
if (mArmed) {
gThread->RemoveTimer(this);
}
mCanceled = false;
mTimeout = TimeStamp();
mGeneration = gGenerator++;
mType = (uint8_t)aType;
SetDelayInternal(aDelay);
return gThread->AddTimer(this);
}
NS_IMETHODIMP
nsTimerImpl::InitWithFuncCallback(nsTimerCallbackFunc aFunc,
void* aClosure,
uint32_t aDelay,
uint32_t aType)
{
if (NS_WARN_IF(!aFunc)) {
return NS_ERROR_INVALID_ARG;
}
ReleaseCallback();
mCallbackType = CallbackType::Function;
mCallback.c = aFunc;
mClosure = aClosure;
return InitCommon(aType, aDelay);
}
NS_IMETHODIMP
nsTimerImpl::InitWithCallback(nsITimerCallback* aCallback,
uint32_t aDelay,
uint32_t aType)
{
if (NS_WARN_IF(!aCallback)) {
return NS_ERROR_INVALID_ARG;
}
ReleaseCallback();
mCallbackType = CallbackType::Interface;
mCallback.i = aCallback;
NS_ADDREF(mCallback.i);
return InitCommon(aType, aDelay);
}
NS_IMETHODIMP
nsTimerImpl::Init(nsIObserver* aObserver, uint32_t aDelay, uint32_t aType)
{
if (NS_WARN_IF(!aObserver)) {
return NS_ERROR_INVALID_ARG;
}
ReleaseCallback();
mCallbackType = CallbackType::Observer;
mCallback.o = aObserver;
NS_ADDREF(mCallback.o);
return InitCommon(aType, aDelay);
}
NS_IMETHODIMP
nsTimerImpl::Cancel()
{
mCanceled = true;
if (gThread) {
gThread->RemoveTimer(this);
}
ReleaseCallback();
return NS_OK;
}
NS_IMETHODIMP
nsTimerImpl::SetDelay(uint32_t aDelay)
{
if (mCallbackType == CallbackType::Unknown && mType == TYPE_ONE_SHOT) {
// This may happen if someone tries to re-use a one-shot timer
// by re-setting delay instead of reinitializing the timer.
NS_ERROR("nsITimer->SetDelay() called when the "
"one-shot timer is not set up.");
return NS_ERROR_NOT_INITIALIZED;
}
// If we're already repeating precisely, update mTimeout now so that the
// new delay takes effect in the future.
if (!mTimeout.IsNull() && mType == TYPE_REPEATING_PRECISE) {
mTimeout = TimeStamp::Now();
}
SetDelayInternal(aDelay);
if (!mFiring && gThread) {
gThread->TimerDelayChanged(this);
}
return NS_OK;
}
NS_IMETHODIMP
nsTimerImpl::GetDelay(uint32_t* aDelay)
{
*aDelay = mDelay;
return NS_OK;
}
NS_IMETHODIMP
nsTimerImpl::SetType(uint32_t aType)
{
mType = (uint8_t)aType;
// XXX if this is called, we should change the actual type.. this could effect
// repeating timers. we need to ensure in Fire() that if mType has changed
// during the callback that we don't end up with the timer in the queue twice.
return NS_OK;
}
NS_IMETHODIMP
nsTimerImpl::GetType(uint32_t* aType)
{
*aType = mType;
return NS_OK;
}
NS_IMETHODIMP
nsTimerImpl::GetClosure(void** aClosure)
{
*aClosure = mClosure;
return NS_OK;
}
NS_IMETHODIMP
nsTimerImpl::GetCallback(nsITimerCallback** aCallback)
{
if (mCallbackType == CallbackType::Interface) {
NS_IF_ADDREF(*aCallback = mCallback.i);
} else if (mTimerCallbackWhileFiring) {
NS_ADDREF(*aCallback = mTimerCallbackWhileFiring);
} else {
*aCallback = nullptr;
}
return NS_OK;
}
NS_IMETHODIMP
nsTimerImpl::GetTarget(nsIEventTarget** aTarget)
{
NS_IF_ADDREF(*aTarget = mEventTarget);
return NS_OK;
}
NS_IMETHODIMP
nsTimerImpl::SetTarget(nsIEventTarget* aTarget)
{
if (NS_WARN_IF(mCallbackType != CallbackType::Unknown)) {
return NS_ERROR_ALREADY_INITIALIZED;
}
if (aTarget) {
mEventTarget = aTarget;
} else {
mEventTarget = static_cast<nsIEventTarget*>(NS_GetCurrentThread());
}
return NS_OK;
}
void
nsTimerImpl::Fire()
{
if (mCanceled) {
return;
}
#if !defined(MOZILLA_XPCOMRT_API)
PROFILER_LABEL("Timer", "Fire",
js::ProfileEntry::Category::OTHER);
#endif
TimeStamp now = TimeStamp::Now();
if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
TimeDuration a = now - mStart; // actual delay in intervals
TimeDuration b = TimeDuration::FromMilliseconds(mDelay); // expected delay in intervals
TimeDuration delta = (a > b) ? a - b : b - a;
uint32_t d = delta.ToMilliseconds(); // delta in ms
sDeltaSum += d;
sDeltaSumSquared += double(d) * double(d);
sDeltaNum++;
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
("[this=%p] expected delay time %4ums\n", this, mDelay));
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
("[this=%p] actual delay time %fms\n", this,
a.ToMilliseconds()));
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
("[this=%p] (mType is %d) -------\n", this, mType));
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
("[this=%p] delta %4dms\n",
this, (a > b) ? (int32_t)d : -(int32_t)d));
mStart = mStart2;
mStart2 = TimeStamp();
}
TimeStamp timeout = mTimeout;
if (IsRepeatingPrecisely()) {
// Precise repeating timers advance mTimeout by mDelay without fail before
// calling Fire().
timeout -= TimeDuration::FromMilliseconds(mDelay);
}
if (mCallbackType == CallbackType::Interface) {
mTimerCallbackWhileFiring = mCallback.i;
}
mFiring = true;
// Handle callbacks that re-init the timer, but avoid leaking.
// See bug 330128.
CallbackUnion callback = mCallback;
CallbackType callbackType = mCallbackType;
if (callbackType == CallbackType::Interface) {
NS_ADDREF(callback.i);
} else if (callbackType == CallbackType::Observer) {
NS_ADDREF(callback.o);
}
ReleaseCallback();
switch (callbackType) {
case CallbackType::Function:
callback.c(this, mClosure);
break;
case CallbackType::Interface:
callback.i->Notify(this);
break;
case CallbackType::Observer:
callback.o->Observe(static_cast<nsITimer*>(this),
NS_TIMER_CALLBACK_TOPIC,
nullptr);
break;
default:
;
}
// If the callback didn't re-init the timer, and it's not a one-shot timer,
// restore the callback state.
if (mCallbackType == CallbackType::Unknown &&
mType != TYPE_ONE_SHOT && !mCanceled) {
mCallback = callback;
mCallbackType = callbackType;
} else {
// The timer was a one-shot, or the callback was reinitialized.
if (callbackType == CallbackType::Interface) {
NS_RELEASE(callback.i);
} else if (callbackType == CallbackType::Observer) {
NS_RELEASE(callback.o);
}
}
mFiring = false;
mTimerCallbackWhileFiring = nullptr;
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
("[this=%p] Took %fms to fire timer callback\n",
this, (TimeStamp::Now() - now).ToMilliseconds()));
// Reschedule repeating timers, except REPEATING_PRECISE which already did
// that in PostTimerEvent, but make sure that we aren't armed already (which
// can happen if the callback reinitialized the timer).
if (IsRepeating() && mType != TYPE_REPEATING_PRECISE && !mArmed) {
if (mType == TYPE_REPEATING_SLACK) {
SetDelayInternal(mDelay); // force mTimeout to be recomputed. For
}
// REPEATING_PRECISE_CAN_SKIP timers this has
// already happened.
if (gThread) {
gThread->AddTimer(this);
}
}
}
void
nsTimerEvent::Init()
{
sAllocator = new TimerEventAllocator();
}
void
nsTimerEvent::Shutdown()
{
sCanDeleteAllocator = true;
DeleteAllocatorIfNeeded();
}
void
nsTimerEvent::DeleteAllocatorIfNeeded()
{
if (sCanDeleteAllocator && sAllocatorUsers == 0) {
delete sAllocator;
sAllocator = nullptr;
}
}
NS_IMETHODIMP
nsTimerEvent::Run()
{
if (mGeneration != mTimer->GetGeneration()) {
return NS_OK;
}
if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
TimeStamp now = TimeStamp::Now();
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
("[this=%p] time between PostTimerEvent() and Fire(): %fms\n",
this, (now - mInitTime).ToMilliseconds()));
}
mTimer->Fire();
// Since nsTimerImpl is not thread-safe, we should release |mTimer|
// here in the target thread to avoid race condition. Otherwise,
// ~nsTimerEvent() which calls nsTimerImpl::Release() could run in the
// timer thread and result in race condition.
mTimer = nullptr;
return NS_OK;
}
already_AddRefed<nsTimerImpl>
nsTimerImpl::PostTimerEvent(already_AddRefed<nsTimerImpl> aTimerRef)
{
nsRefPtr<nsTimerImpl> timer(aTimerRef);
if (!timer->mEventTarget) {
NS_ERROR("Attempt to post timer event to NULL event target");
return timer.forget();
}
// XXX we may want to reuse this nsTimerEvent in the case of repeating timers.
// Since TimerThread addref'd 'timer' for us, we don't need to addref here.
// We will release either in ~nsTimerEvent(), or pass the reference back to
// the caller. We need to copy the generation number from this timer into the
// event, so we can avoid firing a timer that was re-initialized after being
// canceled.
// Note: We override operator new for this class, and the override is
// fallible!
nsRefPtr<nsTimerEvent> event = new nsTimerEvent;
if (!event) {
return timer.forget();
}
if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
event->mInitTime = TimeStamp::Now();
}
// If this is a repeating precise timer, we need to calculate the time for
// the next timer to fire before we make the callback.
if (timer->IsRepeatingPrecisely()) {
timer->SetDelayInternal(timer->mDelay);
// But only re-arm REPEATING_PRECISE timers.
if (gThread && timer->mType == TYPE_REPEATING_PRECISE) {
nsresult rv = gThread->AddTimer(timer);
if (NS_FAILED(rv)) {
return timer.forget();
}
}
}
#ifdef MOZ_TASK_TRACER
// During the dispatch of TimerEvent, we overwrite the current TraceInfo
// partially with the info saved in timer earlier, and restore it back by
// AutoSaveCurTraceInfo.
AutoSaveCurTraceInfo saveCurTraceInfo;
(timer->GetTracedTask()).SetTLSTraceInfo();
#endif
nsIEventTarget* target = timer->mEventTarget;
event->SetTimer(timer.forget());
nsresult rv = target->Dispatch(event, NS_DISPATCH_NORMAL);
if (NS_FAILED(rv)) {
timer = event->ForgetTimer();
if (gThread) {
gThread->RemoveTimer(timer);
}
return timer.forget();
}
return nullptr;
}
void
nsTimerImpl::SetDelayInternal(uint32_t aDelay)
{
TimeDuration delayInterval = TimeDuration::FromMilliseconds(aDelay);
mDelay = aDelay;
TimeStamp now = TimeStamp::Now();
if (mTimeout.IsNull() || mType != TYPE_REPEATING_PRECISE) {
mTimeout = now;
}
mTimeout += delayInterval;
if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
if (mStart.IsNull()) {
mStart = now;
} else {
mStart2 = now;
}
}
}
size_t
nsTimerImpl::SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
{
return aMallocSizeOf(this);
}
#ifdef MOZ_TASK_TRACER
void
nsTimerImpl::GetTLSTraceInfo()
{
mTracedTask.GetTLSTraceInfo();
}
TracedTaskCommon
nsTimerImpl::GetTracedTask()
{
return mTracedTask;
}
#endif