gecko/gfx/2d/FilterNodeD2D1.cpp

1024 lines
33 KiB
C++

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "FilterNodeD2D1.h"
#include "Logging.h"
#include "SourceSurfaceD2D1.h"
#include "SourceSurfaceD2D.h"
#include "SourceSurfaceD2DTarget.h"
#include "DrawTargetD2D.h"
#include "DrawTargetD2D1.h"
namespace mozilla {
namespace gfx {
D2D1_COLORMATRIX_ALPHA_MODE D2DAlphaMode(uint32_t aMode)
{
switch (aMode) {
case ALPHA_MODE_PREMULTIPLIED:
return D2D1_COLORMATRIX_ALPHA_MODE_PREMULTIPLIED;
case ALPHA_MODE_STRAIGHT:
return D2D1_COLORMATRIX_ALPHA_MODE_STRAIGHT;
default:
MOZ_CRASH("Unknown enum value!");
}
return D2D1_COLORMATRIX_ALPHA_MODE_PREMULTIPLIED;
}
D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE D2DAffineTransformInterpolationMode(uint32_t aFilter)
{
switch (aFilter) {
case FILTER_GOOD:
return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_LINEAR;
case FILTER_LINEAR:
return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_LINEAR;
case FILTER_POINT:
return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_NEAREST_NEIGHBOR;
default:
MOZ_CRASH("Unknown enum value!");
}
return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_LINEAR;
}
D2D1_BLEND_MODE D2DBlendMode(uint32_t aMode)
{
switch (aMode) {
case BLEND_MODE_DARKEN:
return D2D1_BLEND_MODE_DARKEN;
case BLEND_MODE_LIGHTEN:
return D2D1_BLEND_MODE_LIGHTEN;
case BLEND_MODE_MULTIPLY:
return D2D1_BLEND_MODE_MULTIPLY;
case BLEND_MODE_SCREEN:
return D2D1_BLEND_MODE_SCREEN;
default:
MOZ_CRASH("Unknown enum value!");
}
return D2D1_BLEND_MODE_DARKEN;
}
D2D1_MORPHOLOGY_MODE D2DMorphologyMode(uint32_t aMode)
{
switch (aMode) {
case MORPHOLOGY_OPERATOR_DILATE:
return D2D1_MORPHOLOGY_MODE_DILATE;
case MORPHOLOGY_OPERATOR_ERODE:
return D2D1_MORPHOLOGY_MODE_ERODE;
}
MOZ_CRASH("Unknown enum value!");
return D2D1_MORPHOLOGY_MODE_DILATE;
}
D2D1_TURBULENCE_NOISE D2DTurbulenceNoise(uint32_t aMode)
{
switch (aMode) {
case TURBULENCE_TYPE_FRACTAL_NOISE:
return D2D1_TURBULENCE_NOISE_FRACTAL_SUM;
case TURBULENCE_TYPE_TURBULENCE:
return D2D1_TURBULENCE_NOISE_TURBULENCE;
}
MOZ_CRASH("Unknown enum value!");
return D2D1_TURBULENCE_NOISE_TURBULENCE;
}
D2D1_COMPOSITE_MODE D2DFilterCompositionMode(uint32_t aMode)
{
switch (aMode) {
case COMPOSITE_OPERATOR_OVER:
return D2D1_COMPOSITE_MODE_SOURCE_OVER;
case COMPOSITE_OPERATOR_IN:
return D2D1_COMPOSITE_MODE_SOURCE_IN;
case COMPOSITE_OPERATOR_OUT:
return D2D1_COMPOSITE_MODE_SOURCE_OUT;
case COMPOSITE_OPERATOR_ATOP:
return D2D1_COMPOSITE_MODE_SOURCE_ATOP;
case COMPOSITE_OPERATOR_XOR:
return D2D1_COMPOSITE_MODE_XOR;
}
MOZ_CRASH("Unknown enum value!");
return D2D1_COMPOSITE_MODE_SOURCE_OVER;
}
D2D1_CHANNEL_SELECTOR D2DChannelSelector(uint32_t aMode)
{
switch (aMode) {
case COLOR_CHANNEL_R:
return D2D1_CHANNEL_SELECTOR_R;
case COLOR_CHANNEL_G:
return D2D1_CHANNEL_SELECTOR_G;
case COLOR_CHANNEL_B:
return D2D1_CHANNEL_SELECTOR_B;
case COLOR_CHANNEL_A:
return D2D1_CHANNEL_SELECTOR_A;
}
MOZ_CRASH("Unknown enum value!");
return D2D1_CHANNEL_SELECTOR_R;
}
TemporaryRef<ID2D1Image> GetImageForSourceSurface(DrawTarget *aDT, SourceSurface *aSurface)
{
if (aDT->GetType() == BACKEND_DIRECT2D1_1) {
return static_cast<DrawTargetD2D1*>(aDT)->GetImageForSurface(aSurface, Matrix(), EXTEND_CLAMP);
}
RefPtr<ID2D1Image> image;
switch (aSurface->GetType()) {
case SURFACE_D2D1_1_IMAGE:
image = static_cast<SourceSurfaceD2D1*>(aSurface)->GetImage();
static_cast<SourceSurfaceD2D1*>(aSurface)->EnsureIndependent();
break;
case SURFACE_D2D1_BITMAP:
image = static_cast<SourceSurfaceD2D*>(aSurface)->GetBitmap();
break;
case SURFACE_D2D1_DRAWTARGET: {
SourceSurfaceD2DTarget *surf = static_cast<SourceSurfaceD2DTarget*>(aSurface);
image = surf->GetBitmap(static_cast<DrawTargetD2D*>(aDT)->GetRT());
}
break;
default:
gfxWarning() << "Unknown input SourceSurface set on effect.";
MOZ_ASSERT(0);
}
return image;
}
uint32_t ConvertValue(uint32_t aType, uint32_t aAttribute, uint32_t aValue)
{
switch (aType) {
case FILTER_COLOR_MATRIX:
if (aAttribute == ATT_COLOR_MATRIX_ALPHA_MODE) {
aValue = D2DAlphaMode(aValue);
}
break;
case FILTER_TRANSFORM:
if (aAttribute == ATT_TRANSFORM_FILTER) {
aValue = D2DAffineTransformInterpolationMode(aValue);
}
break;
case FILTER_BLEND:
if (aAttribute == ATT_BLEND_BLENDMODE) {
aValue = D2DBlendMode(aValue);
}
break;
case FILTER_MORPHOLOGY:
if (aAttribute == ATT_MORPHOLOGY_OPERATOR) {
aValue = D2DMorphologyMode(aValue);
}
break;
case FILTER_DISPLACEMENT_MAP:
if (aAttribute == ATT_DISPLACEMENT_MAP_X_CHANNEL ||
aAttribute == ATT_DISPLACEMENT_MAP_Y_CHANNEL) {
aValue = D2DChannelSelector(aValue);
}
break;
case FILTER_TURBULENCE:
if (aAttribute == ATT_TURBULENCE_TYPE) {
aValue = D2DTurbulenceNoise(aValue);
}
break;
case FILTER_COMPOSITE:
if (aAttribute == ATT_COMPOSITE_OPERATOR) {
aValue = D2DFilterCompositionMode(aValue);
}
break;
}
return aValue;
}
void ConvertValue(uint32_t aType, uint32_t aAttribute, IntSize &aValue)
{
switch (aType) {
case FILTER_MORPHOLOGY:
if (aAttribute == ATT_MORPHOLOGY_RADII) {
aValue.width *= 2;
aValue.width += 1;
aValue.height *= 2;
aValue.height += 1;
}
break;
}
}
UINT32
GetD2D1InputForInput(uint32_t aType, uint32_t aIndex)
{
return aIndex;
}
#define CONVERT_PROP(moz2dname, d2dname) \
case ATT_##moz2dname: \
return D2D1_##d2dname
UINT32
GetD2D1PropForAttribute(uint32_t aType, uint32_t aIndex)
{
switch (aType) {
case FILTER_COLOR_MATRIX:
switch (aIndex) {
CONVERT_PROP(COLOR_MATRIX_MATRIX, COLORMATRIX_PROP_COLOR_MATRIX);
CONVERT_PROP(COLOR_MATRIX_ALPHA_MODE, COLORMATRIX_PROP_ALPHA_MODE);
}
break;
case FILTER_TRANSFORM:
switch (aIndex) {
CONVERT_PROP(TRANSFORM_MATRIX, 2DAFFINETRANSFORM_PROP_TRANSFORM_MATRIX);
CONVERT_PROP(TRANSFORM_FILTER, 2DAFFINETRANSFORM_PROP_INTERPOLATION_MODE);
}
case FILTER_BLEND:
switch (aIndex) {
CONVERT_PROP(BLEND_BLENDMODE, BLEND_PROP_MODE);
}
break;
case FILTER_MORPHOLOGY:
switch (aIndex) {
CONVERT_PROP(MORPHOLOGY_OPERATOR, MORPHOLOGY_PROP_MODE);
}
break;
case FILTER_FLOOD:
switch (aIndex) {
CONVERT_PROP(FLOOD_COLOR, FLOOD_PROP_COLOR);
}
break;
case FILTER_TILE:
switch (aIndex) {
CONVERT_PROP(TILE_SOURCE_RECT, TILE_PROP_RECT);
}
break;
case FILTER_TABLE_TRANSFER:
switch (aIndex) {
CONVERT_PROP(TABLE_TRANSFER_DISABLE_R, TABLETRANSFER_PROP_RED_DISABLE);
CONVERT_PROP(TABLE_TRANSFER_DISABLE_G, TABLETRANSFER_PROP_GREEN_DISABLE);
CONVERT_PROP(TABLE_TRANSFER_DISABLE_B, TABLETRANSFER_PROP_BLUE_DISABLE);
CONVERT_PROP(TABLE_TRANSFER_DISABLE_A, TABLETRANSFER_PROP_ALPHA_DISABLE);
CONVERT_PROP(TABLE_TRANSFER_TABLE_R, TABLETRANSFER_PROP_RED_TABLE);
CONVERT_PROP(TABLE_TRANSFER_TABLE_G, TABLETRANSFER_PROP_GREEN_TABLE);
CONVERT_PROP(TABLE_TRANSFER_TABLE_B, TABLETRANSFER_PROP_BLUE_TABLE);
CONVERT_PROP(TABLE_TRANSFER_TABLE_A, TABLETRANSFER_PROP_ALPHA_TABLE);
}
break;
case FILTER_DISCRETE_TRANSFER:
switch (aIndex) {
CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_R, DISCRETETRANSFER_PROP_RED_DISABLE);
CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_G, DISCRETETRANSFER_PROP_GREEN_DISABLE);
CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_B, DISCRETETRANSFER_PROP_BLUE_DISABLE);
CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_A, DISCRETETRANSFER_PROP_ALPHA_DISABLE);
CONVERT_PROP(DISCRETE_TRANSFER_TABLE_R, DISCRETETRANSFER_PROP_RED_TABLE);
CONVERT_PROP(DISCRETE_TRANSFER_TABLE_G, DISCRETETRANSFER_PROP_GREEN_TABLE);
CONVERT_PROP(DISCRETE_TRANSFER_TABLE_B, DISCRETETRANSFER_PROP_BLUE_TABLE);
CONVERT_PROP(DISCRETE_TRANSFER_TABLE_A, DISCRETETRANSFER_PROP_ALPHA_TABLE);
}
break;
case FILTER_LINEAR_TRANSFER:
switch (aIndex) {
CONVERT_PROP(LINEAR_TRANSFER_DISABLE_R, LINEARTRANSFER_PROP_RED_DISABLE);
CONVERT_PROP(LINEAR_TRANSFER_DISABLE_G, LINEARTRANSFER_PROP_GREEN_DISABLE);
CONVERT_PROP(LINEAR_TRANSFER_DISABLE_B, LINEARTRANSFER_PROP_BLUE_DISABLE);
CONVERT_PROP(LINEAR_TRANSFER_DISABLE_A, LINEARTRANSFER_PROP_ALPHA_DISABLE);
CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_R, LINEARTRANSFER_PROP_RED_Y_INTERCEPT);
CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_G, LINEARTRANSFER_PROP_GREEN_Y_INTERCEPT);
CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_B, LINEARTRANSFER_PROP_BLUE_Y_INTERCEPT);
CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_A, LINEARTRANSFER_PROP_ALPHA_Y_INTERCEPT);
CONVERT_PROP(LINEAR_TRANSFER_SLOPE_R, LINEARTRANSFER_PROP_RED_SLOPE);
CONVERT_PROP(LINEAR_TRANSFER_SLOPE_G, LINEARTRANSFER_PROP_GREEN_SLOPE);
CONVERT_PROP(LINEAR_TRANSFER_SLOPE_B, LINEARTRANSFER_PROP_BLUE_SLOPE);
CONVERT_PROP(LINEAR_TRANSFER_SLOPE_A, LINEARTRANSFER_PROP_ALPHA_SLOPE);
}
break;
case FILTER_GAMMA_TRANSFER:
switch (aIndex) {
CONVERT_PROP(GAMMA_TRANSFER_DISABLE_R, GAMMATRANSFER_PROP_RED_DISABLE);
CONVERT_PROP(GAMMA_TRANSFER_DISABLE_G, GAMMATRANSFER_PROP_GREEN_DISABLE);
CONVERT_PROP(GAMMA_TRANSFER_DISABLE_B, GAMMATRANSFER_PROP_BLUE_DISABLE);
CONVERT_PROP(GAMMA_TRANSFER_DISABLE_A, GAMMATRANSFER_PROP_ALPHA_DISABLE);
CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_R, GAMMATRANSFER_PROP_RED_AMPLITUDE);
CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_G, GAMMATRANSFER_PROP_GREEN_AMPLITUDE);
CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_B, GAMMATRANSFER_PROP_BLUE_AMPLITUDE);
CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_A, GAMMATRANSFER_PROP_ALPHA_AMPLITUDE);
CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_R, GAMMATRANSFER_PROP_RED_EXPONENT);
CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_G, GAMMATRANSFER_PROP_GREEN_EXPONENT);
CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_B, GAMMATRANSFER_PROP_BLUE_EXPONENT);
CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_A, GAMMATRANSFER_PROP_ALPHA_EXPONENT);
CONVERT_PROP(GAMMA_TRANSFER_OFFSET_R, GAMMATRANSFER_PROP_RED_OFFSET);
CONVERT_PROP(GAMMA_TRANSFER_OFFSET_G, GAMMATRANSFER_PROP_GREEN_OFFSET);
CONVERT_PROP(GAMMA_TRANSFER_OFFSET_B, GAMMATRANSFER_PROP_BLUE_OFFSET);
CONVERT_PROP(GAMMA_TRANSFER_OFFSET_A, GAMMATRANSFER_PROP_ALPHA_OFFSET);
}
break;
case FILTER_CONVOLVE_MATRIX:
switch (aIndex) {
CONVERT_PROP(CONVOLVE_MATRIX_BIAS, CONVOLVEMATRIX_PROP_BIAS);
CONVERT_PROP(CONVOLVE_MATRIX_KERNEL_MATRIX, CONVOLVEMATRIX_PROP_KERNEL_MATRIX);
CONVERT_PROP(CONVOLVE_MATRIX_DIVISOR, CONVOLVEMATRIX_PROP_DIVISOR);
CONVERT_PROP(CONVOLVE_MATRIX_KERNEL_UNIT_LENGTH, CONVOLVEMATRIX_PROP_KERNEL_UNIT_LENGTH);
CONVERT_PROP(CONVOLVE_MATRIX_PRESERVE_ALPHA, CONVOLVEMATRIX_PROP_PRESERVE_ALPHA);
}
case FILTER_DISPLACEMENT_MAP:
switch (aIndex) {
CONVERT_PROP(DISPLACEMENT_MAP_SCALE, DISPLACEMENTMAP_PROP_SCALE);
CONVERT_PROP(DISPLACEMENT_MAP_X_CHANNEL, DISPLACEMENTMAP_PROP_X_CHANNEL_SELECT);
CONVERT_PROP(DISPLACEMENT_MAP_Y_CHANNEL, DISPLACEMENTMAP_PROP_Y_CHANNEL_SELECT);
}
break;
case FILTER_TURBULENCE:
switch (aIndex) {
CONVERT_PROP(TURBULENCE_BASE_FREQUENCY, TURBULENCE_PROP_BASE_FREQUENCY);
CONVERT_PROP(TURBULENCE_NUM_OCTAVES, TURBULENCE_PROP_NUM_OCTAVES);
CONVERT_PROP(TURBULENCE_SEED, TURBULENCE_PROP_SEED);
CONVERT_PROP(TURBULENCE_STITCHABLE, TURBULENCE_PROP_STITCHABLE);
CONVERT_PROP(TURBULENCE_TYPE, TURBULENCE_PROP_NOISE);
}
break;
case FILTER_ARITHMETIC_COMBINE:
switch (aIndex) {
CONVERT_PROP(ARITHMETIC_COMBINE_COEFFICIENTS, ARITHMETICCOMPOSITE_PROP_COEFFICIENTS);
}
break;
case FILTER_COMPOSITE:
switch (aIndex) {
CONVERT_PROP(COMPOSITE_OPERATOR, COMPOSITE_PROP_MODE);
}
break;
case FILTER_GAUSSIAN_BLUR:
switch (aIndex) {
CONVERT_PROP(GAUSSIAN_BLUR_STD_DEVIATION, GAUSSIANBLUR_PROP_STANDARD_DEVIATION);
}
break;
case FILTER_DIRECTIONAL_BLUR:
switch (aIndex) {
CONVERT_PROP(DIRECTIONAL_BLUR_STD_DEVIATION, DIRECTIONALBLUR_PROP_STANDARD_DEVIATION);
CONVERT_PROP(DIRECTIONAL_BLUR_DIRECTION, DIRECTIONALBLUR_PROP_ANGLE);
}
break;
case FILTER_POINT_DIFFUSE:
switch (aIndex) {
CONVERT_PROP(POINT_DIFFUSE_DIFFUSE_CONSTANT, POINTDIFFUSE_PROP_DIFFUSE_CONSTANT);
CONVERT_PROP(POINT_DIFFUSE_POSITION, POINTDIFFUSE_PROP_LIGHT_POSITION);
CONVERT_PROP(POINT_DIFFUSE_COLOR, POINTDIFFUSE_PROP_COLOR);
CONVERT_PROP(POINT_DIFFUSE_SURFACE_SCALE, POINTDIFFUSE_PROP_SURFACE_SCALE);
CONVERT_PROP(POINT_DIFFUSE_KERNEL_UNIT_LENGTH, POINTDIFFUSE_PROP_KERNEL_UNIT_LENGTH);
}
break;
case FILTER_SPOT_DIFFUSE:
switch (aIndex) {
CONVERT_PROP(SPOT_DIFFUSE_DIFFUSE_CONSTANT, SPOTDIFFUSE_PROP_DIFFUSE_CONSTANT);
CONVERT_PROP(SPOT_DIFFUSE_POINTS_AT, SPOTDIFFUSE_PROP_POINTS_AT);
CONVERT_PROP(SPOT_DIFFUSE_FOCUS, SPOTDIFFUSE_PROP_FOCUS);
CONVERT_PROP(SPOT_DIFFUSE_LIMITING_CONE_ANGLE, SPOTDIFFUSE_PROP_LIMITING_CONE_ANGLE);
CONVERT_PROP(SPOT_DIFFUSE_POSITION, SPOTDIFFUSE_PROP_LIGHT_POSITION);
CONVERT_PROP(SPOT_DIFFUSE_COLOR, SPOTDIFFUSE_PROP_COLOR);
CONVERT_PROP(SPOT_DIFFUSE_SURFACE_SCALE, SPOTDIFFUSE_PROP_SURFACE_SCALE);
CONVERT_PROP(SPOT_DIFFUSE_KERNEL_UNIT_LENGTH, SPOTDIFFUSE_PROP_KERNEL_UNIT_LENGTH);
}
break;
case FILTER_DISTANT_DIFFUSE:
switch (aIndex) {
CONVERT_PROP(DISTANT_DIFFUSE_DIFFUSE_CONSTANT, DISTANTDIFFUSE_PROP_DIFFUSE_CONSTANT);
CONVERT_PROP(DISTANT_DIFFUSE_AZIMUTH, DISTANTDIFFUSE_PROP_AZIMUTH);
CONVERT_PROP(DISTANT_DIFFUSE_ELEVATION, DISTANTDIFFUSE_PROP_ELEVATION);
CONVERT_PROP(DISTANT_DIFFUSE_COLOR, DISTANTDIFFUSE_PROP_COLOR);
CONVERT_PROP(DISTANT_DIFFUSE_SURFACE_SCALE, DISTANTDIFFUSE_PROP_SURFACE_SCALE);
CONVERT_PROP(DISTANT_DIFFUSE_KERNEL_UNIT_LENGTH, DISTANTDIFFUSE_PROP_KERNEL_UNIT_LENGTH);
}
break;
case FILTER_POINT_SPECULAR:
switch (aIndex) {
CONVERT_PROP(POINT_SPECULAR_SPECULAR_CONSTANT, POINTSPECULAR_PROP_SPECULAR_CONSTANT);
CONVERT_PROP(POINT_SPECULAR_SPECULAR_EXPONENT, POINTSPECULAR_PROP_SPECULAR_EXPONENT);
CONVERT_PROP(POINT_SPECULAR_POSITION, POINTSPECULAR_PROP_LIGHT_POSITION);
CONVERT_PROP(POINT_SPECULAR_COLOR, POINTSPECULAR_PROP_COLOR);
CONVERT_PROP(POINT_SPECULAR_SURFACE_SCALE, POINTSPECULAR_PROP_SURFACE_SCALE);
CONVERT_PROP(POINT_SPECULAR_KERNEL_UNIT_LENGTH, POINTSPECULAR_PROP_KERNEL_UNIT_LENGTH);
}
break;
case FILTER_SPOT_SPECULAR:
switch (aIndex) {
CONVERT_PROP(SPOT_SPECULAR_SPECULAR_CONSTANT, SPOTSPECULAR_PROP_SPECULAR_CONSTANT);
CONVERT_PROP(SPOT_SPECULAR_SPECULAR_EXPONENT, SPOTSPECULAR_PROP_SPECULAR_EXPONENT);
CONVERT_PROP(SPOT_SPECULAR_POINTS_AT, SPOTSPECULAR_PROP_POINTS_AT);
CONVERT_PROP(SPOT_SPECULAR_FOCUS, SPOTSPECULAR_PROP_FOCUS);
CONVERT_PROP(SPOT_SPECULAR_LIMITING_CONE_ANGLE, SPOTSPECULAR_PROP_LIMITING_CONE_ANGLE);
CONVERT_PROP(SPOT_SPECULAR_POSITION, SPOTSPECULAR_PROP_LIGHT_POSITION);
CONVERT_PROP(SPOT_SPECULAR_COLOR, SPOTSPECULAR_PROP_COLOR);
CONVERT_PROP(SPOT_SPECULAR_SURFACE_SCALE, SPOTSPECULAR_PROP_SURFACE_SCALE);
CONVERT_PROP(SPOT_SPECULAR_KERNEL_UNIT_LENGTH, SPOTSPECULAR_PROP_KERNEL_UNIT_LENGTH);
}
break;
case FILTER_DISTANT_SPECULAR:
switch (aIndex) {
CONVERT_PROP(DISTANT_SPECULAR_SPECULAR_CONSTANT, DISTANTSPECULAR_PROP_SPECULAR_CONSTANT);
CONVERT_PROP(DISTANT_SPECULAR_SPECULAR_EXPONENT, DISTANTSPECULAR_PROP_SPECULAR_EXPONENT);
CONVERT_PROP(DISTANT_SPECULAR_AZIMUTH, DISTANTSPECULAR_PROP_AZIMUTH);
CONVERT_PROP(DISTANT_SPECULAR_ELEVATION, DISTANTSPECULAR_PROP_ELEVATION);
CONVERT_PROP(DISTANT_SPECULAR_COLOR, DISTANTSPECULAR_PROP_COLOR);
CONVERT_PROP(DISTANT_SPECULAR_SURFACE_SCALE, DISTANTSPECULAR_PROP_SURFACE_SCALE);
CONVERT_PROP(DISTANT_SPECULAR_KERNEL_UNIT_LENGTH, DISTANTSPECULAR_PROP_KERNEL_UNIT_LENGTH);
}
break;
case FILTER_CROP:
switch (aIndex) {
CONVERT_PROP(CROP_RECT, CROP_PROP_RECT);
}
break;
}
return UINT32_MAX;
}
bool
GetD2D1PropsForIntSize(uint32_t aType, uint32_t aIndex, UINT32 *aPropWidth, UINT32 *aPropHeight)
{
switch (aType) {
case FILTER_MORPHOLOGY:
if (aIndex == ATT_MORPHOLOGY_RADII) {
*aPropWidth = D2D1_MORPHOLOGY_PROP_WIDTH;
*aPropHeight = D2D1_MORPHOLOGY_PROP_HEIGHT;
return true;
}
break;
}
return false;
}
static inline REFCLSID GetCLDIDForFilterType(FilterType aType)
{
switch (aType) {
case FILTER_COLOR_MATRIX:
return CLSID_D2D1ColorMatrix;
case FILTER_TRANSFORM:
return CLSID_D2D12DAffineTransform;
case FILTER_BLEND:
return CLSID_D2D1Blend;
case FILTER_MORPHOLOGY:
return CLSID_D2D1Morphology;
case FILTER_FLOOD:
return CLSID_D2D1Flood;
case FILTER_TILE:
return CLSID_D2D1Tile;
case FILTER_TABLE_TRANSFER:
return CLSID_D2D1TableTransfer;
case FILTER_LINEAR_TRANSFER:
return CLSID_D2D1LinearTransfer;
case FILTER_DISCRETE_TRANSFER:
return CLSID_D2D1DiscreteTransfer;
case FILTER_GAMMA_TRANSFER:
return CLSID_D2D1GammaTransfer;
case FILTER_DISPLACEMENT_MAP:
return CLSID_D2D1DisplacementMap;
case FILTER_TURBULENCE:
return CLSID_D2D1Turbulence;
case FILTER_ARITHMETIC_COMBINE:
return CLSID_D2D1ArithmeticComposite;
case FILTER_COMPOSITE:
return CLSID_D2D1Composite;
case FILTER_GAUSSIAN_BLUR:
return CLSID_D2D1GaussianBlur;
case FILTER_DIRECTIONAL_BLUR:
return CLSID_D2D1DirectionalBlur;
case FILTER_POINT_DIFFUSE:
return CLSID_D2D1PointDiffuse;
case FILTER_POINT_SPECULAR:
return CLSID_D2D1PointSpecular;
case FILTER_SPOT_DIFFUSE:
return CLSID_D2D1SpotDiffuse;
case FILTER_SPOT_SPECULAR:
return CLSID_D2D1SpotSpecular;
case FILTER_DISTANT_DIFFUSE:
return CLSID_D2D1DistantDiffuse;
case FILTER_DISTANT_SPECULAR:
return CLSID_D2D1DistantSpecular;
case FILTER_CROP:
return CLSID_D2D1Crop;
case FILTER_PREMULTIPLY:
return CLSID_D2D1Premultiply;
case FILTER_UNPREMULTIPLY:
return CLSID_D2D1UnPremultiply;
}
return GUID_NULL;
}
/* static */
TemporaryRef<FilterNode>
FilterNodeD2D1::Create(DrawTarget* aDT, ID2D1DeviceContext *aDC, FilterType aType)
{
if (aType == FILTER_CONVOLVE_MATRIX) {
return new FilterNodeConvolveD2D1(aDT, aDC);
}
RefPtr<ID2D1Effect> effect;
HRESULT hr;
hr = aDC->CreateEffect(GetCLDIDForFilterType(aType), byRef(effect));
if (FAILED(hr)) {
gfxWarning() << "Failed to create effect for FilterType: " << hr;
return nullptr;
}
switch (aType) {
case FILTER_LINEAR_TRANSFER:
case FILTER_GAMMA_TRANSFER:
case FILTER_TABLE_TRANSFER:
case FILTER_DISCRETE_TRANSFER:
return new FilterNodeComponentTransferD2D1(aDT, aDC, effect, aType);
default:
return new FilterNodeD2D1(aDT, effect, aType);
}
}
void
FilterNodeD2D1::InitUnmappedProperties()
{
switch (mType) {
case FILTER_TRANSFORM:
mEffect->SetValue(D2D1_2DAFFINETRANSFORM_PROP_BORDER_MODE, D2D1_BORDER_MODE_HARD);
break;
default:
break;
}
}
void
FilterNodeD2D1::SetInput(uint32_t aIndex, SourceSurface *aSurface)
{
UINT32 input = GetD2D1InputForInput(mType, aIndex);
ID2D1Effect* effect = InputEffect();
MOZ_ASSERT(input < effect->GetInputCount());
if (mType == FILTER_COMPOSITE) {
UINT32 inputCount = effect->GetInputCount();
if (aIndex == inputCount - 1 && aSurface == nullptr) {
effect->SetInputCount(inputCount - 1);
} else if (aIndex >= inputCount && aSurface) {
effect->SetInputCount(aIndex + 1);
}
}
RefPtr<ID2D1Image> image = GetImageForSourceSurface(mDT, aSurface);
effect->SetInput(input, image);
}
void
FilterNodeD2D1::SetInput(uint32_t aIndex, FilterNode *aFilter)
{
UINT32 input = GetD2D1InputForInput(mType, aIndex);
ID2D1Effect* effect = InputEffect();
if (mType == FILTER_COMPOSITE) {
UINT32 inputCount = effect->GetInputCount();
if (aIndex == inputCount - 1 && aFilter == nullptr) {
effect->SetInputCount(inputCount - 1);
} else if (aIndex >= inputCount && aFilter) {
effect->SetInputCount(aIndex + 1);
}
}
MOZ_ASSERT(input < effect->GetInputCount());
if (aFilter->GetBackendType() != FILTER_BACKEND_DIRECT2D1_1) {
gfxWarning() << "Unknown input SourceSurface set on effect.";
MOZ_ASSERT(0);
return;
}
effect->SetInputEffect(input, static_cast<FilterNodeD2D1*>(aFilter)->OutputEffect());
}
void
FilterNodeD2D1::SetAttribute(uint32_t aIndex, uint32_t aValue)
{
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
if (mType == FILTER_TURBULENCE && aIndex == ATT_TURBULENCE_BASE_FREQUENCY) {
mEffect->SetValue(input, D2D1::Vector2F(FLOAT(aValue), FLOAT(aValue)));
return;
} else if (mType == FILTER_DIRECTIONAL_BLUR && aIndex == ATT_DIRECTIONAL_BLUR_DIRECTION) {
mEffect->SetValue(input, aValue == BLUR_DIRECTION_X ? 0 : 90.0f);
return;
}
mEffect->SetValue(input, ConvertValue(mType, aIndex, aValue));
}
void
FilterNodeD2D1::SetAttribute(uint32_t aIndex, Float aValue)
{
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, aValue);
}
void
FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Point &aValue)
{
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, D2DPoint(aValue));
}
void
FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Matrix5x4 &aValue)
{
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, D2DMatrix5x4(aValue));
}
void
FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Point3D &aValue)
{
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, D2DVector3D(aValue));
}
void
FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Size &aValue)
{
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, D2D1::Vector2F(aValue.width, aValue.height));
}
void
FilterNodeD2D1::SetAttribute(uint32_t aIndex, const IntSize &aValue)
{
UINT32 widthProp, heightProp;
if (!GetD2D1PropsForIntSize(mType, aIndex, &widthProp, &heightProp)) {
return;
}
IntSize value = aValue;
ConvertValue(mType, aIndex, value);
mEffect->SetValue(widthProp, (UINT)value.width);
mEffect->SetValue(heightProp, (UINT)value.height);
}
void
FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Color &aValue)
{
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
switch (mType) {
case FILTER_POINT_DIFFUSE:
case FILTER_SPOT_DIFFUSE:
case FILTER_DISTANT_DIFFUSE:
case FILTER_POINT_SPECULAR:
case FILTER_SPOT_SPECULAR:
case FILTER_DISTANT_SPECULAR:
mEffect->SetValue(input, D2D1::Vector3F(aValue.r, aValue.g, aValue.b));
break;
default:
mEffect->SetValue(input, D2D1::Vector4F(aValue.r * aValue.a, aValue.g * aValue.a, aValue.b * aValue.a, aValue.a));
}
}
void
FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Rect &aValue)
{
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, D2DRect(aValue));
}
void
FilterNodeD2D1::SetAttribute(uint32_t aIndex, const IntRect &aValue)
{
if (mType == FILTER_TURBULENCE) {
MOZ_ASSERT(aIndex == ATT_TURBULENCE_RECT);
mEffect->SetValue(D2D1_TURBULENCE_PROP_OFFSET, D2D1::Vector2F(Float(aValue.x), Float(aValue.y)));
mEffect->SetValue(D2D1_TURBULENCE_PROP_SIZE, D2D1::Vector2F(Float(aValue.width), Float(aValue.height)));
return;
}
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, D2D1::RectF(Float(aValue.x), Float(aValue.y),
Float(aValue.XMost()), Float(aValue.YMost())));
}
void
FilterNodeD2D1::SetAttribute(uint32_t aIndex, bool aValue)
{
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, (BOOL)aValue);
}
void
FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Float *aValues, uint32_t aSize)
{
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, (BYTE*)aValues, sizeof(Float) * aSize);
}
void
FilterNodeD2D1::SetAttribute(uint32_t aIndex, const IntPoint &aValue)
{
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, D2DPoint(aValue));
}
void
FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Matrix &aMatrix)
{
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, D2DMatrix(aMatrix));
}
FilterNodeConvolveD2D1::FilterNodeConvolveD2D1(DrawTarget *aDT, ID2D1DeviceContext *aDC)
: FilterNodeD2D1(aDT, nullptr, FILTER_CONVOLVE_MATRIX)
, mEdgeMode(EDGE_MODE_DUPLICATE)
{
// Correctly handling the interaction of edge mode and source rect is a bit
// tricky with D2D1 effects. We want the edge mode to only apply outside of
// the source rect (as specified by the ATT_CONVOLVE_MATRIX_SOURCE_RECT
// attribute). So if our input surface or filter is smaller than the source
// rect, we need to add transparency around it until we reach the edges of
// the source rect, and only then do any repeating or edge duplicating.
// Unfortunately, D2D1 does not have any "extend with transparency" effect.
// (The crop effect can only cut off parts, it can't make the output rect
// bigger.) And the border effect does not have a source rect attribute -
// it only looks at the output rect of its input filter or surface.
// So we use the following trick to extend the input size to the source rect:
// Instead of feeding the input directly into the border effect, we first
// composite it with a transparent flood effect (which is infinite-sized) and
// use a crop effect on the result in order to get the right size. Then we
// feed the cropped composition into the border effect, which then finally
// feeds into the convolve matrix effect.
// All of this is only necessary when our edge mode is not EDGE_MODE_NONE, so
// we update the filter chain dynamically in UpdateChain().
HRESULT hr;
hr = aDC->CreateEffect(CLSID_D2D1ConvolveMatrix, byRef(mEffect));
if (FAILED(hr)) {
gfxWarning() << "Failed to create ConvolveMatrix filter!";
return;
}
mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_BORDER_MODE, D2D1_BORDER_MODE_SOFT);
hr = aDC->CreateEffect(CLSID_D2D1Flood, byRef(mFloodEffect));
if (FAILED(hr)) {
gfxWarning() << "Failed to create ConvolveMatrix filter!";
return;
}
mFloodEffect->SetValue(D2D1_FLOOD_PROP_COLOR, D2D1::Vector4F(0.0f, 0.0f, 0.0f, 0.0f));
hr = aDC->CreateEffect(CLSID_D2D1Composite, byRef(mCompositeEffect));
if (FAILED(hr)) {
gfxWarning() << "Failed to create ConvolveMatrix filter!";
return;
}
mCompositeEffect->SetInputEffect(1, mFloodEffect.get());
hr = aDC->CreateEffect(CLSID_D2D1Crop, byRef(mCropEffect));
if (FAILED(hr)) {
gfxWarning() << "Failed to create ConvolveMatrix filter!";
return;
}
mCropEffect->SetInputEffect(0, mCompositeEffect.get());
hr = aDC->CreateEffect(CLSID_D2D1Border, byRef(mBorderEffect));
if (FAILED(hr)) {
gfxWarning() << "Failed to create ConvolveMatrix filter!";
return;
}
mBorderEffect->SetInputEffect(0, mCropEffect.get());
UpdateChain();
UpdateSourceRect();
}
void
FilterNodeConvolveD2D1::SetInput(uint32_t aIndex, SourceSurface *aSurface)
{
MOZ_ASSERT(aIndex == 0);
mInput = GetImageForSourceSurface(mDT, aSurface);
mInputEffect = nullptr;
UpdateChain();
}
void
FilterNodeConvolveD2D1::SetInput(uint32_t aIndex, FilterNode *aFilter)
{
MOZ_ASSERT(aIndex == 0);
if (aFilter->GetBackendType() != FILTER_BACKEND_DIRECT2D1_1) {
gfxWarning() << "Unknown input SourceSurface set on effect.";
MOZ_ASSERT(0);
return;
}
mInput = nullptr;
mInputEffect = static_cast<FilterNodeD2D1*>(aFilter)->mEffect;
UpdateChain();
}
void
FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex, uint32_t aValue)
{
if (aIndex != ATT_CONVOLVE_MATRIX_EDGE_MODE) {
return FilterNodeD2D1::SetAttribute(aIndex, aValue);
}
mEdgeMode = (ConvolveMatrixEdgeMode)aValue;
UpdateChain();
}
void
FilterNodeConvolveD2D1::UpdateChain()
{
// The shape of the filter graph:
//
// EDGE_MODE_NONE:
// input --> convolvematrix
//
// EDGE_MODE_DUPLICATE or EDGE_MODE_WRAP:
// input -------v
// flood --> composite --> crop --> border --> convolvematrix
ID2D1Effect *firstEffect = mCompositeEffect;
if (mEdgeMode == EDGE_MODE_NONE) {
firstEffect = mEffect;
} else {
mEffect->SetInputEffect(0, mBorderEffect.get());
}
if (mInputEffect) {
firstEffect->SetInputEffect(0, mInputEffect);
} else {
firstEffect->SetInput(0, mInput);
}
if (mEdgeMode == EDGE_MODE_DUPLICATE) {
mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_X, D2D1_BORDER_EDGE_MODE_CLAMP);
mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_Y, D2D1_BORDER_EDGE_MODE_CLAMP);
} else if (mEdgeMode == EDGE_MODE_WRAP) {
mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_X, D2D1_BORDER_EDGE_MODE_WRAP);
mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_Y, D2D1_BORDER_EDGE_MODE_WRAP);
}
}
void
FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex, const IntSize &aValue)
{
if (aIndex != ATT_CONVOLVE_MATRIX_KERNEL_SIZE) {
MOZ_ASSERT(false);
return;
}
mKernelSize = aValue;
mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_KERNEL_SIZE_X, aValue.width);
mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_KERNEL_SIZE_Y, aValue.height);
UpdateOffset();
}
void
FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex, const IntPoint &aValue)
{
if (aIndex != ATT_CONVOLVE_MATRIX_TARGET) {
MOZ_ASSERT(false);
return;
}
mTarget = aValue;
UpdateOffset();
}
void
FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex, const IntRect &aValue)
{
if (aIndex != ATT_CONVOLVE_MATRIX_SOURCE_RECT) {
MOZ_ASSERT(false);
return;
}
mSourceRect = aValue;
UpdateSourceRect();
}
void
FilterNodeConvolveD2D1::UpdateOffset()
{
D2D1_VECTOR_2F vector =
D2D1::Vector2F((Float(mKernelSize.width) - 1.0f) / 2.0f - Float(mTarget.x),
(Float(mKernelSize.height) - 1.0f) / 2.0f - Float(mTarget.y));
mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_KERNEL_OFFSET, vector);
}
void
FilterNodeConvolveD2D1::UpdateSourceRect()
{
mCropEffect->SetValue(D2D1_CROP_PROP_RECT,
D2D1::RectF(Float(mSourceRect.x), Float(mSourceRect.y),
Float(mSourceRect.XMost()), Float(mSourceRect.YMost())));
}
FilterNodeComponentTransferD2D1::FilterNodeComponentTransferD2D1(DrawTarget *aDT, ID2D1DeviceContext *aDC,
ID2D1Effect *aEffect, FilterType aType)
: FilterNodeD2D1(aDT, aEffect, aType)
{
// D2D1 component transfer effects do strange things when it comes to
// premultiplication.
// For our purposes we only need the transfer filters to apply straight to
// unpremultiplied source channels and output unpremultiplied results.
// However, the D2D1 effects are designed differently: They can apply to both
// premultiplied and unpremultiplied inputs, and they always premultiply
// their result - at least in those color channels that have not been
// disabled.
// In order to determine whether the input needs to be unpremultiplied as
// part of the transfer, the effect consults the alpha mode metadata of the
// input surface or the input effect. We don't have such a concept in Moz2D,
// and giving Moz2D users different results based on something that cannot be
// influenced through Moz2D APIs seems like a bad idea.
// We solve this by applying a premultiply effect to the input before feeding
// it into the transfer effect. The premultiply effect always premultiplies
// regardless of any alpha mode metadata on inputs, and it always marks its
// output as premultiplied so that the transfer effect will unpremultiply
// consistently. Feeding always-premultiplied input into the transfer effect
// also avoids another problem that would appear when individual color
// channels disable the transfer: In that case, the disabled channels would
// pass through unchanged in their unpremultiplied form and the other
// channels would be premultiplied, giving a mixed result.
// But since we now ensure that the input is premultiplied, disabled channels
// will pass premultiplied values through to the result, which is consistent
// with the enabled channels.
// We also add an unpremultiply effect that postprocesses the result of the
// transfer effect because getting unpremultiplied results from the transfer
// filters is part of the FilterNode API.
HRESULT hr;
hr = aDC->CreateEffect(CLSID_D2D1Premultiply, byRef(mPrePremultiplyEffect));
if (FAILED(hr)) {
gfxWarning() << "Failed to create ComponentTransfer filter!";
return;
}
hr = aDC->CreateEffect(CLSID_D2D1UnPremultiply, byRef(mPostUnpremultiplyEffect));
if (FAILED(hr)) {
gfxWarning() << "Failed to create ComponentTransfer filter!";
return;
}
mEffect->SetInputEffect(0, mPrePremultiplyEffect.get());
mPostUnpremultiplyEffect->SetInputEffect(0, mEffect.get());
}
}
}