mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
c9ac45fd01
DONTBUILD (NPOTB) |
||
---|---|---|
.. | ||
mozbuild | ||
README.rst | ||
setup.py |
======== mozbuild ======== mozbuild is a Python package providing functionality used by Mozilla's build system. Modules Overview ================ * mozbuild.compilation -- Functionality related to compiling. This includes managing compiler warnings. * mozbuild.logging -- Defines mozbuild's logging infrastructure. mozbuild uses a structured logging backend. * mozbuild.testing -- Interfaces for running tests. Structured Logging ================== One of the features of mozbuild is structured logging. Instead of conventional logging where simple strings are logged, the internal logging mechanism logs all events with the following pieces of information: * A string *action* * A dict of log message fields * A formatting string Essentially, instead of assembling a human-readable string at logging-time, you create an object holding all the pieces of data that will constitute your logged event. For each unique type of logged event, you assign an *action* name. Depending on how logging is configured, your logged event could get written a couple of different ways. JSON Logging ------------ Where machines are the intended target of the logging data, a JSON logger is configured. The JSON logger assembles an array consisting of the following elements: * Decimal wall clock time in seconds since UNIX epoch * String *action* of message * Object with structured message data The JSON-serialized array is written to a configured file handle. Consumers of this logging stream can just perform a readline() then feed that into a JSON deserializer to reconstruct the original logged message. They can key off the *action* element to determine how to process individual events. There is no need to invent a parser. Convenient, isn't it? Logging for Humans ------------------ Where humans are the intended consumer of a log message, the structured log message are converted to more human-friendly form. This is done by utilizing the *formatting* string provided at log time. The logger simply calls the *format* method of the formatting string, passing the dict containing the message's fields. When *mach* is used in a terminal that supports it, the logging facility also supports terminal features such as colorization. This is done automatically in the logging layer - there is no need to control this at logging time. In addition, messages intended for humans typically prepends every line with the time passed since the application started. Logging HOWTO ------------- Structured logging piggybacks on top of Python's built-in logging infrastructure provided by the *logging* package. We accomplish this by taking advantage of *logging.Logger.log()*'s *extra* argument. To this argument, we pass a dict with the fields *action* and *params*. These are the string *action* and dict of message fields, respectively. The formatting string is passed as the *msg* argument, like normal. If you were logging to a logger directly, you would do something like: logger.log(logging.INFO, 'My name is {name}', extra={'action': 'my_name', 'params': {'name': 'Gregory'}}) The JSON logging would produce something like: [1339985554.306338, "my_name", {"name": "Gregory"}] Human logging would produce something like: 0.52 My name is Gregory Since there is a lot of complexity using logger.log directly, it is recommended to go through a wrapping layer that hides part of the complexity for you. e.g. def log(self, level, action, params, format_str): self.logger.log(level, format_str, extra={'action': action, 'params': params)