gecko/content/media/nsAudioStream.cpp

1278 lines
31 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/dom/ContentChild.h"
#include "mozilla/dom/PAudioChild.h"
#include "mozilla/dom/AudioChild.h"
#include "nsXULAppAPI.h"
using namespace mozilla::dom;
#include <stdio.h>
#include <math.h>
#include "prlog.h"
#include "prmem.h"
#include "prdtoa.h"
#include "nsAutoPtr.h"
#include "nsAudioStream.h"
#include "nsAlgorithm.h"
#include "VideoUtils.h"
#include "mozilla/Mutex.h"
extern "C" {
#include "sydneyaudio/sydney_audio.h"
}
#include "nsThreadUtils.h"
#include "mozilla/Preferences.h"
#if defined(MOZ_CUBEB)
#include "nsAutoRef.h"
#include "cubeb/cubeb.h"
#endif
using namespace mozilla;
#if defined(XP_MACOSX)
#define SA_PER_STREAM_VOLUME 1
#endif
// Android's audio backend is not available in content processes, so audio must
// be remoted to the parent chrome process.
#if defined(ANDROID)
#define REMOTE_AUDIO 1
#endif
#ifdef PR_LOGGING
PRLogModuleInfo* gAudioStreamLog = nsnull;
#endif
static const PRUint32 FAKE_BUFFER_SIZE = 176400;
// Number of milliseconds per second.
static const PRInt64 MS_PER_S = 1000;
class nsNativeAudioStream : public nsAudioStream
{
public:
NS_DECL_ISUPPORTS
~nsNativeAudioStream();
nsNativeAudioStream();
nsresult Init(PRInt32 aNumChannels, PRInt32 aRate, SampleFormat aFormat);
void Shutdown();
nsresult Write(const void* aBuf, PRUint32 aFrames);
PRUint32 Available();
void SetVolume(double aVolume);
void Drain();
void Pause();
void Resume();
PRInt64 GetPosition();
PRInt64 GetPositionInFrames();
bool IsPaused();
PRInt32 GetMinWriteSize();
private:
double mVolume;
void* mAudioHandle;
// True if this audio stream is paused.
bool mPaused;
// True if this stream has encountered an error.
bool mInError;
};
#if defined(REMOTE_AUDIO)
class nsRemotedAudioStream : public nsAudioStream
{
public:
NS_DECL_ISUPPORTS
nsRemotedAudioStream();
~nsRemotedAudioStream();
nsresult Init(PRInt32 aNumChannels, PRInt32 aRate, SampleFormat aFormat);
void Shutdown();
nsresult Write(const void* aBuf, PRUint32 aFrames);
PRUint32 Available();
void SetVolume(double aVolume);
void Drain();
void Pause();
void Resume();
PRInt64 GetPosition();
PRInt64 GetPositionInFrames();
bool IsPaused();
PRInt32 GetMinWriteSize();
private:
nsRefPtr<AudioChild> mAudioChild;
PRInt32 mBytesPerFrame;
// True if this audio stream is paused.
bool mPaused;
friend class AudioInitEvent;
};
class AudioInitEvent : public nsRunnable
{
public:
AudioInitEvent(nsRemotedAudioStream* owner)
{
mOwner = owner;
}
NS_IMETHOD Run()
{
ContentChild * cpc = ContentChild::GetSingleton();
NS_ASSERTION(cpc, "Content Protocol is NULL!");
mOwner->mAudioChild = static_cast<AudioChild*>(cpc->SendPAudioConstructor(mOwner->mChannels,
mOwner->mRate,
mOwner->mFormat));
return NS_OK;
}
nsRefPtr<nsRemotedAudioStream> mOwner;
};
class AudioWriteEvent : public nsRunnable
{
public:
AudioWriteEvent(AudioChild* aChild,
const void* aBuf,
PRUint32 aNumberOfFrames,
PRUint32 aBytesPerFrame)
{
mAudioChild = aChild;
mBytesPerFrame = aBytesPerFrame;
mBuffer.Assign((const char*)aBuf, aNumberOfFrames * aBytesPerFrame);
}
NS_IMETHOD Run()
{
if (!mAudioChild->IsIPCOpen())
return NS_OK;
mAudioChild->SendWrite(mBuffer, mBuffer.Length() / mBytesPerFrame);
return NS_OK;
}
nsRefPtr<AudioChild> mAudioChild;
nsCString mBuffer;
PRUint32 mBytesPerFrame;
};
class AudioSetVolumeEvent : public nsRunnable
{
public:
AudioSetVolumeEvent(AudioChild* aChild, double aVolume)
{
mAudioChild = aChild;
mVolume = aVolume;
}
NS_IMETHOD Run()
{
if (!mAudioChild->IsIPCOpen())
return NS_OK;
mAudioChild->SendSetVolume(mVolume);
return NS_OK;
}
nsRefPtr<AudioChild> mAudioChild;
double mVolume;
};
class AudioMinWriteSizeEvent : public nsRunnable
{
public:
AudioMinWriteSizeEvent(AudioChild* aChild)
{
mAudioChild = aChild;
}
NS_IMETHOD Run()
{
if (!mAudioChild->IsIPCOpen())
return NS_OK;
mAudioChild->SendMinWriteSize();
return NS_OK;
}
nsRefPtr<AudioChild> mAudioChild;
};
class AudioDrainEvent : public nsRunnable
{
public:
AudioDrainEvent(AudioChild* aChild)
{
mAudioChild = aChild;
}
NS_IMETHOD Run()
{
if (!mAudioChild->IsIPCOpen())
return NS_OK;
mAudioChild->SendDrain();
return NS_OK;
}
nsRefPtr<AudioChild> mAudioChild;
};
class AudioPauseEvent : public nsRunnable
{
public:
AudioPauseEvent(AudioChild* aChild, bool pause)
{
mAudioChild = aChild;
mPause = pause;
}
NS_IMETHOD Run()
{
if (!mAudioChild->IsIPCOpen())
return NS_OK;
if (mPause)
mAudioChild->SendPause();
else
mAudioChild->SendResume();
return NS_OK;
}
nsRefPtr<AudioChild> mAudioChild;
bool mPause;
};
class AudioShutdownEvent : public nsRunnable
{
public:
AudioShutdownEvent(AudioChild* aChild)
{
mAudioChild = aChild;
}
NS_IMETHOD Run()
{
if (mAudioChild->IsIPCOpen())
mAudioChild->SendShutdown();
return NS_OK;
}
nsRefPtr<AudioChild> mAudioChild;
};
#endif
#define PREF_VOLUME_SCALE "media.volume_scale"
#define PREF_USE_CUBEB "media.use_cubeb"
#define PREF_CUBEB_LATENCY "media.cubeb_latency_ms"
static mozilla::Mutex* gAudioPrefsLock = nsnull;
static double gVolumeScale;
static bool gUseCubeb;
static PRUint32 gCubebLatency;
static int PrefChanged(const char* aPref, void* aClosure)
{
if (strcmp(aPref, PREF_VOLUME_SCALE) == 0) {
nsAdoptingString value = Preferences::GetString(aPref);
mozilla::MutexAutoLock lock(*gAudioPrefsLock);
if (value.IsEmpty()) {
gVolumeScale = 1.0;
} else {
NS_ConvertUTF16toUTF8 utf8(value);
gVolumeScale = NS_MAX<double>(0, PR_strtod(utf8.get(), nsnull));
}
} else if (strcmp(aPref, PREF_USE_CUBEB) == 0) {
bool value = Preferences::GetBool(aPref, true);
mozilla::MutexAutoLock lock(*gAudioPrefsLock);
gUseCubeb = value;
} else if (strcmp(aPref, PREF_CUBEB_LATENCY) == 0) {
// Arbitrary default stream latency of 100ms. The higher this
// value, the longer stream volume changes will take to become
// audible.
PRUint32 value = Preferences::GetUint(aPref, 100);
mozilla::MutexAutoLock lock(*gAudioPrefsLock);
gCubebLatency = NS_MIN<PRUint32>(NS_MAX<PRUint32>(value, 20), 1000);
}
return 0;
}
static double GetVolumeScale()
{
mozilla::MutexAutoLock lock(*gAudioPrefsLock);
return gVolumeScale;
}
#if defined(MOZ_CUBEB)
static bool GetUseCubeb()
{
mozilla::MutexAutoLock lock(*gAudioPrefsLock);
return gUseCubeb;
}
static cubeb* gCubebContext;
static cubeb* GetCubebContext()
{
mozilla::MutexAutoLock lock(*gAudioPrefsLock);
if (gCubebContext ||
cubeb_init(&gCubebContext, "nsAudioStream") == CUBEB_OK) {
return gCubebContext;
}
NS_WARNING("cubeb_init failed");
return nsnull;
}
static PRUint32 GetCubebLatency()
{
mozilla::MutexAutoLock lock(*gAudioPrefsLock);
return gCubebLatency;
}
#endif
void nsAudioStream::InitLibrary()
{
#ifdef PR_LOGGING
gAudioStreamLog = PR_NewLogModule("nsAudioStream");
#endif
gAudioPrefsLock = new mozilla::Mutex("nsAudioStream::gAudioPrefsLock");
PrefChanged(PREF_VOLUME_SCALE, nsnull);
Preferences::RegisterCallback(PrefChanged, PREF_VOLUME_SCALE);
#if defined(MOZ_CUBEB)
PrefChanged(PREF_USE_CUBEB, nsnull);
Preferences::RegisterCallback(PrefChanged, PREF_USE_CUBEB);
PrefChanged(PREF_CUBEB_LATENCY, nsnull);
Preferences::RegisterCallback(PrefChanged, PREF_CUBEB_LATENCY);
#endif
}
void nsAudioStream::ShutdownLibrary()
{
Preferences::UnregisterCallback(PrefChanged, PREF_VOLUME_SCALE);
#if defined(MOZ_CUBEB)
Preferences::UnregisterCallback(PrefChanged, PREF_USE_CUBEB);
#endif
delete gAudioPrefsLock;
gAudioPrefsLock = nsnull;
#if defined(MOZ_CUBEB)
if (gCubebContext) {
cubeb_destroy(gCubebContext);
gCubebContext = nsnull;
}
#endif
}
nsIThread *
nsAudioStream::GetThread()
{
if (!mAudioPlaybackThread) {
NS_NewNamedThread("Audio Stream",
getter_AddRefs(mAudioPlaybackThread),
nsnull,
MEDIA_THREAD_STACK_SIZE);
}
return mAudioPlaybackThread;
}
class AsyncShutdownPlaybackThread : public nsRunnable
{
public:
AsyncShutdownPlaybackThread(nsIThread* aThread) : mThread(aThread) {}
NS_IMETHODIMP Run() { return mThread->Shutdown(); }
private:
nsCOMPtr<nsIThread> mThread;
};
nsAudioStream::~nsAudioStream()
{
if (mAudioPlaybackThread) {
nsCOMPtr<nsIRunnable> event = new AsyncShutdownPlaybackThread(mAudioPlaybackThread);
NS_DispatchToMainThread(event);
}
}
nsNativeAudioStream::nsNativeAudioStream() :
mVolume(1.0),
mAudioHandle(0),
mPaused(false),
mInError(false)
{
}
nsNativeAudioStream::~nsNativeAudioStream()
{
Shutdown();
}
NS_IMPL_THREADSAFE_ISUPPORTS0(nsNativeAudioStream)
nsresult nsNativeAudioStream::Init(PRInt32 aNumChannels, PRInt32 aRate, SampleFormat aFormat)
{
mRate = aRate;
mChannels = aNumChannels;
mFormat = aFormat;
if (sa_stream_create_pcm(reinterpret_cast<sa_stream_t**>(&mAudioHandle),
NULL,
SA_MODE_WRONLY,
SA_PCM_FORMAT_S16_NE,
aRate,
aNumChannels) != SA_SUCCESS) {
mAudioHandle = nsnull;
mInError = true;
PR_LOG(gAudioStreamLog, PR_LOG_ERROR, ("nsNativeAudioStream: sa_stream_create_pcm error"));
return NS_ERROR_FAILURE;
}
if (sa_stream_open(static_cast<sa_stream_t*>(mAudioHandle)) != SA_SUCCESS) {
sa_stream_destroy(static_cast<sa_stream_t*>(mAudioHandle));
mAudioHandle = nsnull;
mInError = true;
PR_LOG(gAudioStreamLog, PR_LOG_ERROR, ("nsNativeAudioStream: sa_stream_open error"));
return NS_ERROR_FAILURE;
}
mInError = false;
return NS_OK;
}
void nsNativeAudioStream::Shutdown()
{
if (!mAudioHandle)
return;
sa_stream_destroy(static_cast<sa_stream_t*>(mAudioHandle));
mAudioHandle = nsnull;
mInError = true;
}
nsresult nsNativeAudioStream::Write(const void* aBuf, PRUint32 aFrames)
{
NS_ASSERTION(!mPaused, "Don't write audio when paused, you'll block");
if (mInError)
return NS_ERROR_FAILURE;
PRUint32 samples = aFrames * mChannels;
nsAutoArrayPtr<short> s_data(new short[samples]);
if (s_data) {
double scaled_volume = GetVolumeScale() * mVolume;
switch (mFormat) {
case FORMAT_U8: {
const PRUint8* buf = static_cast<const PRUint8*>(aBuf);
PRInt32 volume = PRInt32((1 << 16) * scaled_volume);
for (PRUint32 i = 0; i < samples; ++i) {
s_data[i] = short(((PRInt32(buf[i]) - 128) * volume) >> 8);
}
break;
}
case FORMAT_S16_LE: {
const short* buf = static_cast<const short*>(aBuf);
PRInt32 volume = PRInt32((1 << 16) * scaled_volume);
for (PRUint32 i = 0; i < samples; ++i) {
short s = buf[i];
#if defined(IS_BIG_ENDIAN)
s = ((s & 0x00ff) << 8) | ((s & 0xff00) >> 8);
#endif
s_data[i] = short((PRInt32(s) * volume) >> 16);
}
break;
}
case FORMAT_FLOAT32: {
const float* buf = static_cast<const float*>(aBuf);
for (PRUint32 i = 0; i < samples; ++i) {
float scaled_value = floorf(0.5 + 32768 * buf[i] * scaled_volume);
if (buf[i] < 0.0) {
s_data[i] = (scaled_value < -32768.0) ?
-32768 :
short(scaled_value);
} else {
s_data[i] = (scaled_value > 32767.0) ?
32767 :
short(scaled_value);
}
}
break;
}
}
if (sa_stream_write(static_cast<sa_stream_t*>(mAudioHandle),
s_data.get(),
samples * sizeof(short)) != SA_SUCCESS)
{
PR_LOG(gAudioStreamLog, PR_LOG_ERROR, ("nsNativeAudioStream: sa_stream_write error"));
mInError = true;
return NS_ERROR_FAILURE;
}
}
return NS_OK;
}
PRUint32 nsNativeAudioStream::Available()
{
// If the audio backend failed to open, lie and say we'll accept some
// data.
if (mInError)
return FAKE_BUFFER_SIZE;
size_t s = 0;
if (sa_stream_get_write_size(static_cast<sa_stream_t*>(mAudioHandle), &s) != SA_SUCCESS)
return 0;
return s / mChannels / sizeof(short);
}
void nsNativeAudioStream::SetVolume(double aVolume)
{
NS_ASSERTION(aVolume >= 0.0 && aVolume <= 1.0, "Invalid volume");
#if defined(SA_PER_STREAM_VOLUME)
if (sa_stream_set_volume_abs(static_cast<sa_stream_t*>(mAudioHandle), aVolume) != SA_SUCCESS) {
PR_LOG(gAudioStreamLog, PR_LOG_ERROR, ("nsNativeAudioStream: sa_stream_set_volume_abs error"));
mInError = true;
}
#else
mVolume = aVolume;
#endif
}
void nsNativeAudioStream::Drain()
{
NS_ASSERTION(!mPaused, "Don't drain audio when paused, it won't finish!");
if (mInError)
return;
int r = sa_stream_drain(static_cast<sa_stream_t*>(mAudioHandle));
if (r != SA_SUCCESS && r != SA_ERROR_INVALID) {
PR_LOG(gAudioStreamLog, PR_LOG_ERROR, ("nsNativeAudioStream: sa_stream_drain error"));
mInError = true;
}
}
void nsNativeAudioStream::Pause()
{
if (mInError)
return;
mPaused = true;
sa_stream_pause(static_cast<sa_stream_t*>(mAudioHandle));
}
void nsNativeAudioStream::Resume()
{
if (mInError)
return;
mPaused = false;
sa_stream_resume(static_cast<sa_stream_t*>(mAudioHandle));
}
PRInt64 nsNativeAudioStream::GetPosition()
{
PRInt64 position = GetPositionInFrames();
if (position >= 0) {
return ((USECS_PER_S * position) / mRate);
}
return -1;
}
PRInt64 nsNativeAudioStream::GetPositionInFrames()
{
if (mInError) {
return -1;
}
sa_position_t positionType = SA_POSITION_WRITE_SOFTWARE;
#if defined(XP_WIN)
positionType = SA_POSITION_WRITE_HARDWARE;
#endif
int64_t position = 0;
if (sa_stream_get_position(static_cast<sa_stream_t*>(mAudioHandle),
positionType, &position) == SA_SUCCESS) {
return position / mChannels / sizeof(short);
}
return -1;
}
bool nsNativeAudioStream::IsPaused()
{
return mPaused;
}
PRInt32 nsNativeAudioStream::GetMinWriteSize()
{
size_t size;
int r = sa_stream_get_min_write(static_cast<sa_stream_t*>(mAudioHandle),
&size);
if (r == SA_ERROR_NOT_SUPPORTED)
return 1;
else if (r != SA_SUCCESS || size > PR_INT32_MAX)
return -1;
return static_cast<PRInt32>(size / mChannels / sizeof(short));
}
#if defined(REMOTE_AUDIO)
nsRemotedAudioStream::nsRemotedAudioStream()
: mAudioChild(nsnull),
mBytesPerFrame(0),
mPaused(false)
{}
nsRemotedAudioStream::~nsRemotedAudioStream()
{
Shutdown();
}
NS_IMPL_THREADSAFE_ISUPPORTS0(nsRemotedAudioStream)
nsresult
nsRemotedAudioStream::Init(PRInt32 aNumChannels,
PRInt32 aRate,
SampleFormat aFormat)
{
mRate = aRate;
mChannels = aNumChannels;
mFormat = aFormat;
switch (mFormat) {
case FORMAT_U8: {
mBytesPerFrame = sizeof(PRUint8) * mChannels;
break;
}
case FORMAT_S16_LE: {
mBytesPerFrame = sizeof(short) * mChannels;
break;
}
case FORMAT_FLOAT32: {
mBytesPerFrame = sizeof(float) * mChannels;
}
}
nsCOMPtr<nsIRunnable> event = new AudioInitEvent(this);
NS_DispatchToMainThread(event, NS_DISPATCH_SYNC);
return NS_OK;
}
void
nsRemotedAudioStream::Shutdown()
{
if (!mAudioChild)
return;
nsCOMPtr<nsIRunnable> event = new AudioShutdownEvent(mAudioChild);
NS_DispatchToMainThread(event);
mAudioChild = nsnull;
}
nsresult
nsRemotedAudioStream::Write(const void* aBuf, PRUint32 aFrames)
{
if (!mAudioChild)
return NS_ERROR_FAILURE;
nsCOMPtr<nsIRunnable> event = new AudioWriteEvent(mAudioChild,
aBuf,
aFrames,
mBytesPerFrame);
NS_DispatchToMainThread(event);
mAudioChild->WaitForWrite();
return NS_OK;
}
PRUint32
nsRemotedAudioStream::Available()
{
return FAKE_BUFFER_SIZE;
}
PRInt32 nsRemotedAudioStream::GetMinWriteSize()
{
if (!mAudioChild)
return -1;
nsCOMPtr<nsIRunnable> event = new AudioMinWriteSizeEvent(mAudioChild);
NS_DispatchToMainThread(event);
return mAudioChild->WaitForMinWriteSize();
}
void
nsRemotedAudioStream::SetVolume(double aVolume)
{
if (!mAudioChild)
return;
nsCOMPtr<nsIRunnable> event = new AudioSetVolumeEvent(mAudioChild, aVolume);
NS_DispatchToMainThread(event);
}
void
nsRemotedAudioStream::Drain()
{
if (!mAudioChild)
return;
nsCOMPtr<nsIRunnable> event = new AudioDrainEvent(mAudioChild);
NS_DispatchToMainThread(event);
mAudioChild->WaitForDrain();
}
void
nsRemotedAudioStream::Pause()
{
mPaused = true;
if (!mAudioChild)
return;
nsCOMPtr<nsIRunnable> event = new AudioPauseEvent(mAudioChild, true);
NS_DispatchToMainThread(event);
}
void
nsRemotedAudioStream::Resume()
{
mPaused = false;
if (!mAudioChild)
return;
nsCOMPtr<nsIRunnable> event = new AudioPauseEvent(mAudioChild, false);
NS_DispatchToMainThread(event);
}
PRInt64 nsRemotedAudioStream::GetPosition()
{
PRInt64 position = GetPositionInFrames();
if (position >= 0) {
return ((USECS_PER_S * position) / mRate);
}
return 0;
}
PRInt64
nsRemotedAudioStream::GetPositionInFrames()
{
if(!mAudioChild)
return 0;
PRInt64 position = mAudioChild->GetLastKnownPosition();
if (position == -1)
return 0;
PRInt64 time = mAudioChild->GetLastKnownPositionTimestamp();
PRInt64 dt = PR_IntervalToMilliseconds(PR_IntervalNow() - time);
return position + (mRate * dt / MS_PER_S);
}
bool
nsRemotedAudioStream::IsPaused()
{
return mPaused;
}
#endif
#if defined(MOZ_CUBEB)
template <>
class nsAutoRefTraits<cubeb_stream> : public nsPointerRefTraits<cubeb_stream>
{
public:
static void Release(cubeb_stream* aStream) { cubeb_stream_destroy(aStream); }
};
class nsCircularByteBuffer
{
public:
nsCircularByteBuffer()
: mBuffer(nsnull), mCapacity(0), mStart(0), mCount(0)
{}
// Set the capacity of the buffer in bytes. Must be called before any
// call to append or pop elements.
void SetCapacity(PRUint32 aCapacity) {
NS_ABORT_IF_FALSE(!mBuffer, "Buffer allocated.");
mCapacity = aCapacity;
mBuffer = new PRUint8[mCapacity];
}
PRUint32 Length() {
return mCount;
}
PRUint32 Capacity() {
return mCapacity;
}
PRUint32 Available() {
return Capacity() - Length();
}
// Append aLength bytes from aSrc to the buffer. Caller must check that
// sufficient space is available.
void AppendElements(const PRUint8* aSrc, PRUint32 aLength) {
NS_ABORT_IF_FALSE(mBuffer && mCapacity, "Buffer not initialized.");
NS_ABORT_IF_FALSE(aLength <= Available(), "Buffer full.");
PRUint32 end = (mStart + mCount) % mCapacity;
PRUint32 toCopy = NS_MIN(mCapacity - end, aLength);
memcpy(&mBuffer[end], aSrc, toCopy);
memcpy(&mBuffer[0], aSrc + toCopy, aLength - toCopy);
mCount += aLength;
}
// Remove aSize bytes from the buffer. Caller must check returned size in
// aSize{1,2} before using the pointer returned in aData{1,2}. Caller
// must not specify an aSize larger than Length().
void PopElements(PRUint32 aSize, void** aData1, PRUint32* aSize1,
void** aData2, PRUint32* aSize2) {
NS_ABORT_IF_FALSE(mBuffer && mCapacity, "Buffer not initialized.");
NS_ABORT_IF_FALSE(aSize <= Length(), "Request too large.");
*aData1 = &mBuffer[mStart];
*aSize1 = NS_MIN(mCapacity - mStart, aSize);
*aData2 = &mBuffer[0];
*aSize2 = aSize - *aSize1;
mCount -= *aSize1 + *aSize2;
mStart += *aSize1 + *aSize2;
mStart %= mCapacity;
}
private:
nsAutoArrayPtr<PRUint8> mBuffer;
PRUint32 mCapacity;
PRUint32 mStart;
PRUint32 mCount;
};
class nsBufferedAudioStream : public nsAudioStream
{
public:
NS_DECL_ISUPPORTS
nsBufferedAudioStream();
~nsBufferedAudioStream();
nsresult Init(PRInt32 aNumChannels, PRInt32 aRate, SampleFormat aFormat);
void Shutdown();
nsresult Write(const void* aBuf, PRUint32 aFrames);
PRUint32 Available();
void SetVolume(double aVolume);
void Drain();
void Pause();
void Resume();
PRInt64 GetPosition();
PRInt64 GetPositionInFrames();
bool IsPaused();
PRInt32 GetMinWriteSize();
private:
static long DataCallback_S(cubeb_stream*, void* aThis, void* aBuffer, long aFrames)
{
return static_cast<nsBufferedAudioStream*>(aThis)->DataCallback(aBuffer, aFrames);
}
static int StateCallback_S(cubeb_stream*, void* aThis, cubeb_state aState)
{
return static_cast<nsBufferedAudioStream*>(aThis)->StateCallback(aState);
}
long DataCallback(void* aBuffer, long aFrames);
int StateCallback(cubeb_state aState);
// Shared implementation of underflow adjusted position calculation.
// Caller must own the monitor.
PRInt64 GetPositionInFramesUnlocked();
// The monitor is held to protect all access to member variables. Write()
// waits while mBuffer is full; DataCallback() notifies as it consumes
// data from mBuffer. Drain() waits while mState is DRAINING;
// StateCallback() notifies when mState is DRAINED.
Monitor mMonitor;
// Sum of silent frames written when DataCallback requests more frames
// than are available in mBuffer.
PRUint64 mLostFrames;
// Temporary audio buffer. Filled by Write() and consumed by
// DataCallback(). Once mBuffer is full, Write() blocks until sufficient
// space becomes available in mBuffer. mBuffer is sized in bytes, not
// frames.
nsCircularByteBuffer mBuffer;
// Software volume level. Applied during the servicing of DataCallback().
double mVolume;
// Owning reference to a cubeb_stream. cubeb_stream_destroy is called by
// nsAutoRef's destructor.
nsAutoRef<cubeb_stream> mCubebStream;
PRUint32 mBytesPerFrame;
enum StreamState {
INITIALIZED, // Initialized, playback has not begun.
STARTED, // Started by a call to Write() (iff INITIALIZED) or Resume().
STOPPED, // Stopped by a call to Pause().
DRAINING, // Drain requested. DataCallback will indicate end of stream
// once the remaining contents of mBuffer are requested by
// cubeb, after which StateCallback will indicate drain
// completion.
DRAINED, // StateCallback has indicated that the drain is complete.
ERRORED // Stream disabled due to an internal error.
};
StreamState mState;
};
#endif
nsAudioStream* nsAudioStream::AllocateStream()
{
#if defined(REMOTE_AUDIO)
if (XRE_GetProcessType() == GeckoProcessType_Content) {
return new nsRemotedAudioStream();
}
#endif
#if defined(MOZ_CUBEB)
if (GetUseCubeb()) {
return new nsBufferedAudioStream();
}
#endif
return new nsNativeAudioStream();
}
#if defined(MOZ_CUBEB)
nsBufferedAudioStream::nsBufferedAudioStream()
: mMonitor("nsBufferedAudioStream"), mLostFrames(0), mVolume(1.0),
mBytesPerFrame(0), mState(INITIALIZED)
{
}
nsBufferedAudioStream::~nsBufferedAudioStream()
{
Shutdown();
}
NS_IMPL_THREADSAFE_ISUPPORTS0(nsBufferedAudioStream)
nsresult
nsBufferedAudioStream::Init(PRInt32 aNumChannels, PRInt32 aRate, SampleFormat aFormat)
{
cubeb* cubebContext = GetCubebContext();
if (!cubebContext || aNumChannels < 0 || aRate < 0) {
return NS_ERROR_FAILURE;
}
mRate = aRate;
mChannels = aNumChannels;
mFormat = aFormat;
cubeb_stream_params params;
params.rate = aRate;
params.channels = aNumChannels;
switch (aFormat) {
case FORMAT_S16_LE:
params.format = CUBEB_SAMPLE_S16LE;
mBytesPerFrame = sizeof(short) * aNumChannels;
break;
case FORMAT_FLOAT32:
params.format = CUBEB_SAMPLE_FLOAT32LE;
mBytesPerFrame = sizeof(float) * aNumChannels;
break;
default:
return NS_ERROR_FAILURE;
}
{
cubeb_stream* stream;
if (cubeb_stream_init(cubebContext, &stream, "nsBufferedAudioStream", params,
GetCubebLatency(), DataCallback_S, StateCallback_S, this) == CUBEB_OK) {
mCubebStream.own(stream);
}
}
if (!mCubebStream) {
return NS_ERROR_FAILURE;
}
// Size mBuffer for one second of audio. This value is arbitrary, and was
// selected based on the observed behaviour of the existing nsAudioStream
// implementations.
PRUint32 bufferLimit = aRate * mBytesPerFrame;
NS_ABORT_IF_FALSE(bufferLimit % mBytesPerFrame == 0, "Must buffer complete frames");
mBuffer.SetCapacity(bufferLimit);
return NS_OK;
}
void
nsBufferedAudioStream::Shutdown()
{
if (mState == STARTED) {
Pause();
}
if (mCubebStream) {
mCubebStream.reset();
}
}
nsresult
nsBufferedAudioStream::Write(const void* aBuf, PRUint32 aFrames)
{
MonitorAutoLock mon(mMonitor);
if (!mCubebStream || mState == ERRORED) {
return NS_ERROR_FAILURE;
}
NS_ASSERTION(mState == INITIALIZED || mState == STARTED, "Stream write in unexpected state.");
const PRUint8* src = static_cast<const PRUint8*>(aBuf);
PRUint32 bytesToCopy = aFrames * mBytesPerFrame;
while (bytesToCopy > 0) {
PRUint32 available = NS_MIN(bytesToCopy, mBuffer.Available());
NS_ABORT_IF_FALSE(available % mBytesPerFrame == 0, "Must copy complete frames.");
mBuffer.AppendElements(src, available);
src += available;
bytesToCopy -= available;
if (mState != STARTED) {
int r;
{
MonitorAutoUnlock mon(mMonitor);
r = cubeb_stream_start(mCubebStream);
}
mState = r == CUBEB_OK ? STARTED : ERRORED;
}
if (mState != STARTED) {
return NS_ERROR_FAILURE;
}
if (bytesToCopy > 0) {
mon.Wait();
}
}
return NS_OK;
}
PRUint32
nsBufferedAudioStream::Available()
{
MonitorAutoLock mon(mMonitor);
NS_ABORT_IF_FALSE(mBuffer.Length() % mBytesPerFrame == 0, "Buffer invariant violated.");
return mBuffer.Available() / mBytesPerFrame;
}
PRInt32
nsBufferedAudioStream::GetMinWriteSize()
{
return 1;
}
void
nsBufferedAudioStream::SetVolume(double aVolume)
{
MonitorAutoLock mon(mMonitor);
NS_ABORT_IF_FALSE(aVolume >= 0.0 && aVolume <= 1.0, "Invalid volume");
mVolume = aVolume;
}
void
nsBufferedAudioStream::Drain()
{
MonitorAutoLock mon(mMonitor);
if (mState != STARTED) {
return;
}
mState = DRAINING;
while (mState == DRAINING) {
mon.Wait();
}
}
void
nsBufferedAudioStream::Pause()
{
MonitorAutoLock mon(mMonitor);
if (!mCubebStream || mState != STARTED) {
return;
}
int r;
{
MonitorAutoUnlock mon(mMonitor);
r = cubeb_stream_stop(mCubebStream);
}
if (mState != ERRORED && r == CUBEB_OK) {
mState = STOPPED;
}
}
void
nsBufferedAudioStream::Resume()
{
MonitorAutoLock mon(mMonitor);
if (!mCubebStream || mState != STOPPED) {
return;
}
int r;
{
MonitorAutoUnlock mon(mMonitor);
r = cubeb_stream_start(mCubebStream);
}
if (mState != ERRORED && r == CUBEB_OK) {
mState = STARTED;
}
}
PRInt64
nsBufferedAudioStream::GetPosition()
{
MonitorAutoLock mon(mMonitor);
PRInt64 frames = GetPositionInFramesUnlocked();
if (frames >= 0) {
return USECS_PER_S * frames / mRate;
}
return -1;
}
PRInt64
nsBufferedAudioStream::GetPositionInFrames()
{
MonitorAutoLock mon(mMonitor);
return GetPositionInFramesUnlocked();
}
PRInt64
nsBufferedAudioStream::GetPositionInFramesUnlocked()
{
mMonitor.AssertCurrentThreadOwns();
if (!mCubebStream || mState == ERRORED) {
return -1;
}
uint64_t position = 0;
{
MonitorAutoUnlock mon(mMonitor);
if (cubeb_stream_get_position(mCubebStream, &position) != CUBEB_OK) {
return -1;
}
}
// Adjust the reported position by the number of silent frames written
// during stream underruns.
PRInt64 adjustedPosition = 0;
if (position >= mLostFrames) {
adjustedPosition = position - mLostFrames;
}
return adjustedPosition;
}
bool
nsBufferedAudioStream::IsPaused()
{
MonitorAutoLock mon(mMonitor);
return mState == STOPPED;
}
long
nsBufferedAudioStream::DataCallback(void* aBuffer, long aFrames)
{
MonitorAutoLock mon(mMonitor);
PRUint32 bytesWanted = aFrames * mBytesPerFrame;
// Adjust bytesWanted to fit what is available in mBuffer.
PRUint32 available = NS_MIN(bytesWanted, mBuffer.Length());
NS_ABORT_IF_FALSE(available % mBytesPerFrame == 0, "Must copy complete frames");
if (available > 0) {
// Copy each sample from mBuffer to aBuffer, adjusting the volume during the copy.
double scaled_volume = GetVolumeScale() * mVolume;
// Fetch input pointers from the ring buffer.
void* input[2];
PRUint32 input_size[2];
mBuffer.PopElements(available, &input[0], &input_size[0], &input[1], &input_size[1]);
PRUint8* output = reinterpret_cast<PRUint8*>(aBuffer);
for (int i = 0; i < 2; ++i) {
// Fast path for unity volume case.
if (scaled_volume == 1.0) {
memcpy(output, input[i], input_size[i]);
output += input_size[i];
} else {
// Adjust volume as each sample is copied out.
switch (mFormat) {
case FORMAT_S16_LE: {
PRInt32 volume = PRInt32(1 << 16) * scaled_volume;
const short* src = static_cast<const short*>(input[i]);
short* dst = reinterpret_cast<short*>(output);
for (PRUint32 j = 0; j < input_size[i] / (mBytesPerFrame / mChannels); ++j) {
dst[j] = short((PRInt32(src[j]) * volume) >> 16);
}
output += input_size[i];
break;
}
case FORMAT_FLOAT32: {
const float* src = static_cast<const float*>(input[i]);
float* dst = reinterpret_cast<float*>(output);
for (PRUint32 j = 0; j < input_size[i] / (mBytesPerFrame / mChannels); ++j) {
dst[j] = src[j] * scaled_volume;
}
output += input_size[i];
break;
}
default:
return -1;
}
}
}
NS_ABORT_IF_FALSE(mBuffer.Length() % mBytesPerFrame == 0, "Must copy complete frames");
// Notify any blocked Write() call that more space is available in mBuffer.
mon.NotifyAll();
// Calculate remaining bytes requested by caller. If the stream is not
// draining an underrun has occurred, so fill the remaining buffer with
// silence.
bytesWanted -= available;
}
if (mState != DRAINING) {
memset(static_cast<PRUint8*>(aBuffer) + available, 0, bytesWanted);
mLostFrames += bytesWanted / mBytesPerFrame;
bytesWanted = 0;
}
return aFrames - (bytesWanted / mBytesPerFrame);
}
int
nsBufferedAudioStream::StateCallback(cubeb_state aState)
{
MonitorAutoLock mon(mMonitor);
if (aState == CUBEB_STATE_DRAINED) {
mState = DRAINED;
} else if (aState == CUBEB_STATE_ERROR) {
mState = ERRORED;
}
mon.NotifyAll();
return CUBEB_OK;
}
#endif