gecko/js/src/jsarray.cpp

3916 lines
113 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set sw=4 ts=8 et tw=78:
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* JS array class.
*
* Array objects begin as "dense" arrays, optimized for index-only property
* access over a vector of slots with high load factor. Array methods
* optimize for denseness by testing that the object's class is
* &ArrayClass, and can then directly manipulate the slots for efficiency.
*
* We track these pieces of metadata for arrays in dense mode:
* - The array's length property as a uint32, accessible with
* getArrayLength(), setArrayLength().
* - The number of element slots (capacity), gettable with
* getDenseArrayCapacity().
* - The array's initialized length, accessible with
* getDenseArrayInitializedLength().
*
* In dense mode, holes in the array are represented by
* MagicValue(JS_ARRAY_HOLE) invalid values.
*
* NB: the capacity and length of a dense array are entirely unrelated! The
* length may be greater than, less than, or equal to the capacity. The first
* case may occur when the user writes "new Array(100)", in which case the
* length is 100 while the capacity remains 0 (indices below length and above
* capacity must be treated as holes). See array_length_setter for another
* explanation of how the first case may occur.
*
* The initialized length of a dense array specifies the number of elements
* that have been initialized. All elements above the initialized length are
* holes in the array, and the memory for all elements between the initialized
* length and capacity is left uninitialized. When type inference is disabled,
* the initialized length always equals the array's capacity. When inference is
* enabled, the initialized length is some value less than or equal to both the
* array's length and the array's capacity.
*
* With inference enabled, there is flexibility in exactly the value the
* initialized length must hold, e.g. if an array has length 5, capacity 10,
* completely empty, it is valid for the initialized length to be any value
* between zero and 5, as long as the in memory values below the initialized
* length have been initialized with a hole value. However, in such cases we
* want to keep the initialized length as small as possible: if the array is
* known to have no hole values below its initialized length, then it is a
* "packed" array and can be accessed much faster by JIT code.
*
* Arrays are converted to use SlowArrayClass when any of these conditions
* are met:
* - there are more than MIN_SPARSE_INDEX slots total and the load factor
* (COUNT / capacity) is less than 0.25
* - a property is set that is not indexed (and not "length")
* - a property is defined that has non-default property attributes.
*
* Dense arrays do not track property creation order, so unlike other native
* objects and slow arrays, enumerating an array does not necessarily visit the
* properties in the order they were created. We could instead maintain the
* scope to track property enumeration order, but still use the fast slot
* access. That would have the same memory cost as just using a
* SlowArrayClass, but have the same performance characteristics as a dense
* array for slot accesses, at some cost in code complexity.
*/
#include "mozilla/FloatingPoint.h"
#include "mozilla/RangedPtr.h"
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include "jstypes.h"
#include "jsutil.h"
#include "jsapi.h"
#include "jsarray.h"
#include "jsatom.h"
#include "jsbool.h"
#include "jscntxt.h"
#include "jsversion.h"
#include "jsfun.h"
#include "jsgc.h"
#include "jsinterp.h"
#include "jsiter.h"
#include "jslock.h"
#include "jsnum.h"
#include "jsobj.h"
#include "jsscope.h"
#include "jswrapper.h"
#include "methodjit/MethodJIT.h"
#include "methodjit/StubCalls.h"
#include "methodjit/StubCalls-inl.h"
#include "gc/Marking.h"
#include "vm/ArgumentsObject.h"
#include "vm/MethodGuard.h"
#include "vm/NumericConversions.h"
#include "vm/StringBuffer.h"
#include "ds/Sort.h"
#include "jsarrayinlines.h"
#include "jsatominlines.h"
#include "jscntxtinlines.h"
#include "jsobjinlines.h"
#include "jsscopeinlines.h"
#include "jsstrinlines.h"
#include "vm/ArgumentsObject-inl.h"
#include "vm/ObjectImpl-inl.h"
#include "vm/Stack-inl.h"
using namespace mozilla;
using namespace js;
using namespace js::gc;
using namespace js::types;
JSBool
js_GetLengthProperty(JSContext *cx, JSObject *obj, uint32_t *lengthp)
{
if (obj->isArray()) {
*lengthp = obj->getArrayLength();
return true;
}
if (obj->isArguments()) {
ArgumentsObject &argsobj = obj->asArguments();
if (!argsobj.hasOverriddenLength()) {
*lengthp = argsobj.initialLength();
return true;
}
}
RootedValue value(cx);
if (!obj->getProperty(cx, cx->runtime->atomState.lengthAtom, value.address()))
return false;
if (value.reference().isInt32()) {
*lengthp = uint32_t(value.reference().toInt32()); /* uint32_t cast does ToUint32_t */
return true;
}
return ToUint32(cx, value, (uint32_t *)lengthp);
}
namespace js {
/*
* Determine if the id represents an array index or an XML property index.
*
* An id is an array index according to ECMA by (15.4):
*
* "Array objects give special treatment to a certain class of property names.
* A property name P (in the form of a string value) is an array index if and
* only if ToString(ToUint32(P)) is equal to P and ToUint32(P) is not equal
* to 2^32-1."
*
* This means the largest allowed index is actually 2^32-2 (4294967294).
*
* In our implementation, it would be sufficient to check for JSVAL_IS_INT(id)
* except that by using signed 31-bit integers we miss the top half of the
* valid range. This function checks the string representation itself; note
* that calling a standard conversion routine might allow strings such as
* "08" or "4.0" as array indices, which they are not.
*
*/
JS_FRIEND_API(bool)
StringIsArrayIndex(JSLinearString *str, uint32_t *indexp)
{
const jschar *s = str->chars();
uint32_t length = str->length();
const jschar *end = s + length;
if (length == 0 || length > (sizeof("4294967294") - 1) || !JS7_ISDEC(*s))
return false;
uint32_t c = 0, previous = 0;
uint32_t index = JS7_UNDEC(*s++);
/* Don't allow leading zeros. */
if (index == 0 && s != end)
return false;
for (; s < end; s++) {
if (!JS7_ISDEC(*s))
return false;
previous = index;
c = JS7_UNDEC(*s);
index = 10 * index + c;
}
/* Make sure we didn't overflow. */
if (previous < (MAX_ARRAY_INDEX / 10) || (previous == (MAX_ARRAY_INDEX / 10) &&
c <= (MAX_ARRAY_INDEX % 10))) {
JS_ASSERT(index <= MAX_ARRAY_INDEX);
*indexp = index;
return true;
}
return false;
}
}
static JSBool
BigIndexToId(JSContext *cx, JSObject *obj, uint32_t index, JSBool createAtom,
jsid *idp)
{
JS_ASSERT(index > JSID_INT_MAX);
jschar buf[10];
jschar *start = ArrayEnd(buf);
do {
--start;
*start = (jschar)('0' + index % 10);
index /= 10;
} while (index != 0);
/*
* Skip the atomization if the class is known to store atoms corresponding
* to big indexes together with elements. In such case we know that the
* array does not have an element at the given index if its atom does not
* exist. Dense arrays don't use atoms for any indexes, though it would be
* rare to see them have a big index in any case.
*/
JSAtom *atom;
if (!createAtom && (obj->isSlowArray() || obj->isArguments() || obj->isObject())) {
atom = js_GetExistingStringAtom(cx, start, ArrayEnd(buf) - start);
if (!atom) {
*idp = JSID_VOID;
return JS_TRUE;
}
} else {
atom = js_AtomizeChars(cx, start, ArrayEnd(buf) - start);
if (!atom)
return JS_FALSE;
}
*idp = NON_INTEGER_ATOM_TO_JSID(atom);
return JS_TRUE;
}
bool
JSObject::willBeSparseDenseArray(unsigned requiredCapacity, unsigned newElementsHint)
{
JS_ASSERT(isDenseArray());
JS_ASSERT(requiredCapacity > MIN_SPARSE_INDEX);
unsigned cap = getDenseArrayCapacity();
JS_ASSERT(requiredCapacity >= cap);
if (requiredCapacity >= JSObject::NELEMENTS_LIMIT)
return true;
unsigned minimalDenseCount = requiredCapacity / 4;
if (newElementsHint >= minimalDenseCount)
return false;
minimalDenseCount -= newElementsHint;
if (minimalDenseCount > cap)
return true;
unsigned len = getDenseArrayInitializedLength();
const Value *elems = getDenseArrayElements();
for (unsigned i = 0; i < len; i++) {
if (!elems[i].isMagic(JS_ARRAY_HOLE) && !--minimalDenseCount)
return false;
}
return true;
}
static bool
ReallyBigIndexToId(JSContext* cx, double index, jsid* idp)
{
return ValueToId(cx, DoubleValue(index), idp);
}
static bool
IndexToId(JSContext* cx, JSObject* obj, double index, JSBool* hole, jsid* idp,
JSBool createAtom = JS_FALSE)
{
if (index <= JSID_INT_MAX) {
*idp = INT_TO_JSID(int(index));
return JS_TRUE;
}
if (index <= uint32_t(-1)) {
if (!BigIndexToId(cx, obj, uint32_t(index), createAtom, idp))
return JS_FALSE;
if (hole && JSID_IS_VOID(*idp))
*hole = JS_TRUE;
return JS_TRUE;
}
return ReallyBigIndexToId(cx, index, idp);
}
bool
JSObject::arrayGetOwnDataElement(JSContext *cx, size_t i, Value *vp)
{
JS_ASSERT(isArray());
if (isDenseArray()) {
if (i >= getArrayLength())
vp->setMagic(JS_ARRAY_HOLE);
else
*vp = getDenseArrayElement(uint32_t(i));
return true;
}
JSBool hole;
jsid id;
if (!IndexToId(cx, this, i, &hole, &id))
return false;
const Shape *shape = nativeLookup(cx, id);
if (!shape || !shape->isDataDescriptor())
vp->setMagic(JS_ARRAY_HOLE);
else
*vp = getSlot(shape->slot());
return true;
}
/*
* If the property at the given index exists, get its value into location
* pointed by vp and set *hole to false. Otherwise set *hole to true and *vp
* to JSVAL_VOID. This function assumes that the location pointed by vp is
* properly rooted and can be used as GC-protected storage for temporaries.
*/
static inline JSBool
DoGetElement(JSContext *cx, JSObject *obj_, double index, JSBool *hole, Value *vp)
{
RootedObject obj(cx, obj_);
RootedId id(cx);
*hole = JS_FALSE;
if (!IndexToId(cx, obj, index, hole, id.address()))
return JS_FALSE;
if (*hole) {
vp->setUndefined();
return JS_TRUE;
}
JSObject *obj2;
JSProperty *prop;
if (!obj->lookupGeneric(cx, id, &obj2, &prop))
return JS_FALSE;
if (!prop) {
vp->setUndefined();
*hole = JS_TRUE;
} else {
if (!obj->getGeneric(cx, id, vp))
return JS_FALSE;
*hole = JS_FALSE;
}
return JS_TRUE;
}
static inline JSBool
DoGetElement(JSContext *cx, HandleObject obj, uint32_t index, JSBool *hole, Value *vp)
{
bool present;
if (!obj->getElementIfPresent(cx, obj, index, vp, &present))
return false;
*hole = !present;
if (*hole)
vp->setUndefined();
return true;
}
template<typename IndexType>
static void
AssertGreaterThanZero(IndexType index)
{
JS_ASSERT(index >= 0);
}
template<>
void
AssertGreaterThanZero(uint32_t index)
{
}
template<typename IndexType>
static JSBool
GetElement(JSContext *cx, JSObject *obj, IndexType index, JSBool *hole, Value *vp)
{
AssertGreaterThanZero(index);
if (obj->isDenseArray() && index < obj->getDenseArrayInitializedLength() &&
!(*vp = obj->getDenseArrayElement(uint32_t(index))).isMagic(JS_ARRAY_HOLE)) {
*hole = JS_FALSE;
return JS_TRUE;
}
if (obj->isArguments()) {
if (obj->asArguments().maybeGetElement(uint32_t(index), vp)) {
*hole = JS_FALSE;
return true;
}
}
return DoGetElement(cx, obj, index, hole, vp);
}
namespace js {
static bool
GetElementsSlow(JSContext *cx, HandleObject aobj, uint32_t length, Value *vp)
{
for (uint32_t i = 0; i < length; i++) {
if (!aobj->getElement(cx, i, &vp[i]))
return false;
}
return true;
}
bool
GetElements(JSContext *cx, HandleObject aobj, uint32_t length, Value *vp)
{
if (aobj->isDenseArray() && length <= aobj->getDenseArrayInitializedLength() &&
!js_PrototypeHasIndexedProperties(cx, aobj)) {
/* The prototype does not have indexed properties so hole = undefined */
const Value *srcbeg = aobj->getDenseArrayElements();
const Value *srcend = srcbeg + length;
const Value *src = srcbeg;
for (Value *dst = vp; src < srcend; ++dst, ++src)
*dst = src->isMagic(JS_ARRAY_HOLE) ? UndefinedValue() : *src;
return true;
}
if (aobj->isArguments()) {
ArgumentsObject &argsobj = aobj->asArguments();
if (!argsobj.hasOverriddenLength()) {
if (argsobj.maybeGetElements(0, length, vp))
return true;
}
}
return GetElementsSlow(cx, aobj, length, vp);
}
}
/*
* Set the value of the property at the given index to v assuming v is rooted.
*/
static JSBool
SetArrayElement(JSContext *cx, HandleObject obj, double index, const Value &v)
{
JS_ASSERT(index >= 0);
if (obj->isDenseArray()) {
/* Predicted/prefetched code should favor the remains-dense case. */
JSObject::EnsureDenseResult result = JSObject::ED_SPARSE;
do {
if (index > uint32_t(-1))
break;
uint32_t idx = uint32_t(index);
result = obj->ensureDenseArrayElements(cx, idx, 1);
if (result != JSObject::ED_OK)
break;
if (idx >= obj->getArrayLength())
obj->setDenseArrayLength(idx + 1);
obj->setDenseArrayElementWithType(cx, idx, v);
return true;
} while (false);
if (result == JSObject::ED_FAILED)
return false;
JS_ASSERT(result == JSObject::ED_SPARSE);
if (!JSObject::makeDenseArraySlow(cx, obj))
return JS_FALSE;
}
RootedId id(cx);
if (!IndexToId(cx, obj, index, NULL, id.address(), JS_TRUE))
return JS_FALSE;
JS_ASSERT(!JSID_IS_VOID(id));
RootedValue tmp(cx, v);
return obj->setGeneric(cx, obj, id, tmp.address(), true);
}
/*
* Delete the element |index| from |obj|. If |strict|, do a strict
* deletion: throw if the property is not configurable.
*
* - Return 1 if the deletion succeeds (that is, ES5's [[Delete]] would
* return true)
*
* - Return 0 if the deletion fails because the property is not
* configurable (that is, [[Delete]] would return false). Note that if
* |strict| is true we will throw, not return zero.
*
* - Return -1 if an exception occurs (that is, [[Delete]] would throw).
*/
static int
DeleteArrayElement(JSContext *cx, HandleObject obj, double index, bool strict)
{
JS_ASSERT(index >= 0);
JS_ASSERT(floor(index) == index);
if (obj->isDenseArray()) {
if (index <= UINT32_MAX) {
uint32_t idx = uint32_t(index);
if (idx < obj->getDenseArrayInitializedLength()) {
obj->markDenseArrayNotPacked(cx);
obj->setDenseArrayElement(idx, MagicValue(JS_ARRAY_HOLE));
if (!js_SuppressDeletedElement(cx, obj, idx))
return -1;
}
}
return 1;
}
Value v;
if (index <= UINT32_MAX) {
if (!obj->deleteElement(cx, uint32_t(index), &v, strict))
return -1;
} else {
if (!obj->deleteByValue(cx, DoubleValue(index), &v, strict))
return -1;
}
return v.isTrue() ? 1 : 0;
}
/*
* When hole is true, delete the property at the given index. Otherwise set
* its value to v assuming v is rooted.
*/
static JSBool
SetOrDeleteArrayElement(JSContext *cx, HandleObject obj, double index,
JSBool hole, const Value &v)
{
if (hole) {
JS_ASSERT(v.isUndefined());
return DeleteArrayElement(cx, obj, index, true) >= 0;
}
return SetArrayElement(cx, obj, index, v);
}
JSBool
js_SetLengthProperty(JSContext *cx, JSObject *objArg, double length)
{
Value v = NumberValue(length);
/* We don't support read-only array length yet. */
Rooted<JSObject*> obj(cx, objArg);
return obj->setProperty(cx, obj, cx->runtime->atomState.lengthAtom, &v, false);
}
/*
* Since SpiderMonkey supports cross-class prototype-based delegation, we have
* to be careful about the length getter and setter being called on an object
* not of Array class. For the getter, we search obj's prototype chain for the
* array that caused this getter to be invoked. In the setter case to overcome
* the JSPROP_SHARED attribute, we must define a shadowing length property.
*/
static JSBool
array_length_getter(JSContext *cx, HandleObject obj_, HandleId id, Value *vp)
{
JSObject *obj = obj_;
do {
if (obj->isArray()) {
vp->setNumber(obj->getArrayLength());
return JS_TRUE;
}
} while ((obj = obj->getProto()) != NULL);
return JS_TRUE;
}
static JSBool
array_length_setter(JSContext *cx, HandleObject obj, HandleId id, JSBool strict, Value *vp)
{
if (!obj->isArray()) {
return obj->defineProperty(cx, cx->runtime->atomState.lengthAtom, *vp,
NULL, NULL, JSPROP_ENUMERATE);
}
uint32_t newlen;
if (!ToUint32(cx, *vp, &newlen))
return false;
double d;
if (!ToNumber(cx, *vp, &d))
return false;
if (d != newlen) {
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_BAD_ARRAY_LENGTH);
return false;
}
uint32_t oldlen = obj->getArrayLength();
if (oldlen == newlen)
return true;
vp->setNumber(newlen);
if (oldlen < newlen) {
obj->setArrayLength(cx, newlen);
return true;
}
if (obj->isDenseArray()) {
/*
* Don't reallocate if we're not actually shrinking our slots. If we do
* shrink slots here, shrink the initialized length too. This permits us
* us to disregard length when reading from arrays as long we are within
* the initialized capacity.
*/
uint32_t oldcap = obj->getDenseArrayCapacity();
uint32_t oldinit = obj->getDenseArrayInitializedLength();
if (oldinit > newlen)
obj->setDenseArrayInitializedLength(newlen);
if (oldcap > newlen)
obj->shrinkElements(cx, newlen);
} else if (oldlen - newlen < (1 << 24)) {
do {
--oldlen;
if (!JS_CHECK_OPERATION_LIMIT(cx)) {
obj->setArrayLength(cx, oldlen + 1);
return false;
}
int deletion = DeleteArrayElement(cx, obj, oldlen, strict);
if (deletion <= 0) {
obj->setArrayLength(cx, oldlen + 1);
return deletion >= 0;
}
} while (oldlen != newlen);
} else {
/*
* We are going to remove a lot of indexes in a presumably sparse
* array. So instead of looping through indexes between newlen and
* oldlen, we iterate through all properties and remove those that
* correspond to indexes in the half-open range [newlen, oldlen). See
* bug 322135.
*/
JSObject *iter = JS_NewPropertyIterator(cx, obj);
if (!iter)
return false;
uint32_t gap = oldlen - newlen;
for (;;) {
jsid nid;
if (!JS_CHECK_OPERATION_LIMIT(cx) || !JS_NextProperty(cx, iter, &nid))
return false;
if (JSID_IS_VOID(nid))
break;
uint32_t index;
Value junk;
if (js_IdIsIndex(nid, &index) && index - newlen < gap &&
!obj->deleteElement(cx, index, &junk, false)) {
return false;
}
}
}
obj->setArrayLength(cx, newlen);
return true;
}
/* Returns true if the dense array has an own property at the index. */
static inline bool
IsDenseArrayIndex(JSObject *obj, uint32_t index)
{
JS_ASSERT(obj->isDenseArray());
return index < obj->getDenseArrayInitializedLength() &&
!obj->getDenseArrayElement(index).isMagic(JS_ARRAY_HOLE);
}
/*
* We have only indexed properties up to initialized length, plus the
* length property. For all else, we delegate to the prototype.
*/
static inline bool
IsDenseArrayId(JSContext *cx, JSObject *obj, jsid id)
{
JS_ASSERT(obj->isDenseArray());
uint32_t i;
return JSID_IS_ATOM(id, cx->runtime->atomState.lengthAtom) ||
(js_IdIsIndex(id, &i) && IsDenseArrayIndex(obj, i));
}
static JSBool
array_lookupGeneric(JSContext *cx, HandleObject obj, HandleId id, JSObject **objp,
JSProperty **propp)
{
if (!obj->isDenseArray())
return baseops::LookupProperty(cx, obj, id, objp, propp);
if (IsDenseArrayId(cx, obj, id)) {
*propp = (JSProperty *) 1; /* non-null to indicate found */
*objp = obj;
return JS_TRUE;
}
JSObject *proto = obj->getProto();
if (!proto) {
*objp = NULL;
*propp = NULL;
return JS_TRUE;
}
return proto->lookupGeneric(cx, id, objp, propp);
}
static JSBool
array_lookupProperty(JSContext *cx, HandleObject obj, HandlePropertyName name, JSObject **objp,
JSProperty **propp)
{
Rooted<jsid> id(cx, NameToId(name));
return array_lookupGeneric(cx, obj, id, objp, propp);
}
static JSBool
array_lookupElement(JSContext *cx, HandleObject obj, uint32_t index, JSObject **objp,
JSProperty **propp)
{
if (!obj->isDenseArray())
return baseops::LookupElement(cx, obj, index, objp, propp);
if (IsDenseArrayIndex(obj, index)) {
*propp = (JSProperty *) 1; /* non-null to indicate found */
*objp = obj;
return true;
}
if (JSObject *proto = obj->getProto())
return proto->lookupElement(cx, index, objp, propp);
*objp = NULL;
*propp = NULL;
return true;
}
static JSBool
array_lookupSpecial(JSContext *cx, HandleObject obj, HandleSpecialId sid, JSObject **objp,
JSProperty **propp)
{
Rooted<jsid> id(cx, SPECIALID_TO_JSID(sid));
return array_lookupGeneric(cx, obj, id, objp, propp);
}
JSBool
js_GetDenseArrayElementValue(JSContext *cx, JSObject *obj, jsid id, Value *vp)
{
JS_ASSERT(obj->isDenseArray());
uint32_t i;
if (!js_IdIsIndex(id, &i)) {
JS_ASSERT(JSID_IS_ATOM(id, cx->runtime->atomState.lengthAtom));
vp->setNumber(obj->getArrayLength());
return JS_TRUE;
}
*vp = obj->getDenseArrayElement(i);
return JS_TRUE;
}
static JSBool
array_getProperty(JSContext *cx, HandleObject obj, HandleObject receiver, HandlePropertyName name, Value *vp)
{
if (name == cx->runtime->atomState.lengthAtom) {
vp->setNumber(obj->getArrayLength());
return true;
}
if (!obj->isDenseArray()) {
Rooted<jsid> id(cx, NameToId(name));
return baseops::GetProperty(cx, obj, receiver, id, vp);
}
JSObject *proto = obj->getProto();
if (!proto) {
vp->setUndefined();
return true;
}
return proto->getProperty(cx, receiver, name, vp);
}
static JSBool
array_getElement(JSContext *cx, HandleObject obj, HandleObject receiver, uint32_t index, Value *vp)
{
if (!obj->isDenseArray())
return baseops::GetElement(cx, obj, receiver, index, vp);
if (index < obj->getDenseArrayInitializedLength()) {
*vp = obj->getDenseArrayElement(index);
if (!vp->isMagic(JS_ARRAY_HOLE)) {
/* Type information for dense array elements must be correct. */
JS_ASSERT_IF(!obj->hasSingletonType(),
js::types::TypeHasProperty(cx, obj->type(), JSID_VOID, *vp));
return true;
}
}
JSObject *proto = obj->getProto();
if (!proto) {
vp->setUndefined();
return true;
}
return proto->getElement(cx, receiver, index, vp);
}
static JSBool
array_getSpecial(JSContext *cx, HandleObject obj, HandleObject receiver, HandleSpecialId sid, Value *vp)
{
if (obj->isDenseArray() && !obj->getProto()) {
vp->setUndefined();
return true;
}
Rooted<jsid> id(cx, SPECIALID_TO_JSID(sid));
return baseops::GetProperty(cx, obj, receiver, id, vp);
}
static JSBool
array_getGeneric(JSContext *cx, HandleObject obj, HandleObject receiver, HandleId id, Value *vp)
{
Value idval = IdToValue(id);
uint32_t index;
if (IsDefinitelyIndex(idval, &index))
return array_getElement(cx, obj, receiver, index, vp);
Rooted<SpecialId> sid(cx);
if (ValueIsSpecial(obj, &idval, sid.address(), cx))
return array_getSpecial(cx, obj, receiver, sid, vp);
JSAtom *atom = ToAtom(cx, idval);
if (!atom)
return false;
if (atom->isIndex(&index))
return array_getElement(cx, obj, receiver, index, vp);
Rooted<PropertyName*> name(cx, atom->asPropertyName());
return array_getProperty(cx, obj, receiver, name, vp);
}
static JSBool
slowarray_addProperty(JSContext *cx, HandleObject obj, HandleId id, Value *vp)
{
uint32_t index, length;
if (!js_IdIsIndex(id, &index))
return JS_TRUE;
length = obj->getArrayLength();
if (index >= length)
obj->setArrayLength(cx, index + 1);
return JS_TRUE;
}
static JSType
array_typeOf(JSContext *cx, HandleObject obj)
{
return JSTYPE_OBJECT;
}
static JSBool
array_setGeneric(JSContext *cx, HandleObject obj, HandleId id, Value *vp, JSBool strict)
{
if (JSID_IS_ATOM(id, cx->runtime->atomState.lengthAtom))
return array_length_setter(cx, obj, id, strict, vp);
if (!obj->isDenseArray())
return baseops::SetPropertyHelper(cx, obj, obj, id, 0, vp, strict);
do {
uint32_t i;
if (!js_IdIsIndex(id, &i))
break;
if (js_PrototypeHasIndexedProperties(cx, obj))
break;
JSObject::EnsureDenseResult result = obj->ensureDenseArrayElements(cx, i, 1);
if (result != JSObject::ED_OK) {
if (result == JSObject::ED_FAILED)
return false;
JS_ASSERT(result == JSObject::ED_SPARSE);
break;
}
if (i >= obj->getArrayLength())
obj->setDenseArrayLength(i + 1);
obj->setDenseArrayElementWithType(cx, i, *vp);
return true;
} while (false);
if (!JSObject::makeDenseArraySlow(cx, obj))
return false;
return baseops::SetPropertyHelper(cx, obj, obj, id, 0, vp, strict);
}
static JSBool
array_setProperty(JSContext *cx, HandleObject obj, HandlePropertyName name, Value *vp, JSBool strict)
{
Rooted<jsid> id(cx, NameToId(name));
return array_setGeneric(cx, obj, id, vp, strict);
}
static JSBool
array_setElement(JSContext *cx, HandleObject obj, uint32_t index, Value *vp, JSBool strict)
{
RootedId id(cx);
if (!IndexToId(cx, index, id.address()))
return false;
if (!obj->isDenseArray())
return baseops::SetPropertyHelper(cx, obj, obj, id, 0, vp, strict);
do {
/*
* UINT32_MAX is not an array index and must not affect the length
* property, so specifically reject it.
*/
if (index == UINT32_MAX)
break;
if (js_PrototypeHasIndexedProperties(cx, obj))
break;
JSObject::EnsureDenseResult result = obj->ensureDenseArrayElements(cx, index, 1);
if (result != JSObject::ED_OK) {
if (result == JSObject::ED_FAILED)
return false;
JS_ASSERT(result == JSObject::ED_SPARSE);
break;
}
if (index >= obj->getArrayLength())
obj->setDenseArrayLength(index + 1);
obj->setDenseArrayElementWithType(cx, index, *vp);
return true;
} while (false);
if (!JSObject::makeDenseArraySlow(cx, obj))
return false;
return baseops::SetPropertyHelper(cx, obj, obj, id, 0, vp, strict);
}
static JSBool
array_setSpecial(JSContext *cx, HandleObject obj, HandleSpecialId sid, Value *vp, JSBool strict)
{
Rooted<jsid> id(cx, SPECIALID_TO_JSID(sid));
return array_setGeneric(cx, obj, id, vp, strict);
}
JSBool
js_PrototypeHasIndexedProperties(JSContext *cx, JSObject *obj)
{
/*
* Walk up the prototype chain and see if this indexed element already
* exists. If we hit the end of the prototype chain, it's safe to set the
* element on the original object.
*/
while ((obj = obj->getProto()) != NULL) {
/*
* If the prototype is a non-native object (possibly a dense array), or
* a native object (possibly a slow array) that has indexed properties,
* return true.
*/
if (!obj->isNative())
return JS_TRUE;
if (obj->isIndexed())
return JS_TRUE;
}
return JS_FALSE;
}
static JSBool
array_defineGeneric(JSContext *cx, HandleObject obj, HandleId id, const Value *value,
JSPropertyOp getter, StrictPropertyOp setter, unsigned attrs)
{
if (JSID_IS_ATOM(id, cx->runtime->atomState.lengthAtom))
return JS_TRUE;
if (!obj->isDenseArray())
return baseops::DefineGeneric(cx, obj, id, value, getter, setter, attrs);
do {
uint32_t i = 0; // init to shut GCC up
bool isIndex = js_IdIsIndex(id, &i);
if (!isIndex || attrs != JSPROP_ENUMERATE)
break;
JSObject::EnsureDenseResult result = obj->ensureDenseArrayElements(cx, i, 1);
if (result != JSObject::ED_OK) {
if (result == JSObject::ED_FAILED)
return false;
JS_ASSERT(result == JSObject::ED_SPARSE);
break;
}
if (i >= obj->getArrayLength())
obj->setDenseArrayLength(i + 1);
obj->setDenseArrayElementWithType(cx, i, *value);
return true;
} while (false);
AutoRooterGetterSetter gsRoot(cx, attrs, &getter, &setter);
if (!JSObject::makeDenseArraySlow(cx, obj))
return false;
return baseops::DefineGeneric(cx, obj, id, value, getter, setter, attrs);
}
static JSBool
array_defineProperty(JSContext *cx, HandleObject obj, HandlePropertyName name, const Value *value,
JSPropertyOp getter, StrictPropertyOp setter, unsigned attrs)
{
Rooted<jsid> id(cx, NameToId(name));
return array_defineGeneric(cx, obj, id, value, getter, setter, attrs);
}
namespace js {
/* non-static for direct definition of array elements within the engine */
JSBool
array_defineElement(JSContext *cx, HandleObject obj, uint32_t index, const Value *value,
PropertyOp getter, StrictPropertyOp setter, unsigned attrs)
{
if (!obj->isDenseArray())
return baseops::DefineElement(cx, obj, index, value, getter, setter, attrs);
do {
/*
* UINT32_MAX is not an array index and must not affect the length
* property, so specifically reject it.
*/
if (attrs != JSPROP_ENUMERATE || index == UINT32_MAX)
break;
JSObject::EnsureDenseResult result = obj->ensureDenseArrayElements(cx, index, 1);
if (result != JSObject::ED_OK) {
if (result == JSObject::ED_FAILED)
return false;
JS_ASSERT(result == JSObject::ED_SPARSE);
break;
}
if (index >= obj->getArrayLength())
obj->setDenseArrayLength(index + 1);
obj->setDenseArrayElementWithType(cx, index, *value);
return true;
} while (false);
AutoRooterGetterSetter gsRoot(cx, attrs, &getter, &setter);
if (!JSObject::makeDenseArraySlow(cx, obj))
return false;
return baseops::DefineElement(cx, obj, index, value, getter, setter, attrs);
}
} // namespace js
static JSBool
array_defineSpecial(JSContext *cx, HandleObject obj, HandleSpecialId sid, const Value *value,
PropertyOp getter, StrictPropertyOp setter, unsigned attrs)
{
Rooted<jsid> id(cx, SPECIALID_TO_JSID(sid));
return array_defineGeneric(cx, obj, id, value, getter, setter, attrs);
}
static JSBool
array_getGenericAttributes(JSContext *cx, HandleObject obj, HandleId id, unsigned *attrsp)
{
*attrsp = JSID_IS_ATOM(id, cx->runtime->atomState.lengthAtom)
? JSPROP_PERMANENT : JSPROP_ENUMERATE;
return true;
}
static JSBool
array_getPropertyAttributes(JSContext *cx, HandleObject obj, HandlePropertyName name, unsigned *attrsp)
{
*attrsp = (name == cx->runtime->atomState.lengthAtom)
? JSPROP_PERMANENT
: JSPROP_ENUMERATE;
return true;
}
static JSBool
array_getElementAttributes(JSContext *cx, HandleObject obj, uint32_t index, unsigned *attrsp)
{
*attrsp = JSPROP_ENUMERATE;
return true;
}
static JSBool
array_getSpecialAttributes(JSContext *cx, HandleObject obj, HandleSpecialId sid, unsigned *attrsp)
{
*attrsp = JSPROP_ENUMERATE;
return true;
}
static JSBool
array_setGenericAttributes(JSContext *cx, HandleObject obj, HandleId id, unsigned *attrsp)
{
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_CANT_SET_ARRAY_ATTRS);
return false;
}
static JSBool
array_setPropertyAttributes(JSContext *cx, HandleObject obj, HandlePropertyName name, unsigned *attrsp)
{
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_CANT_SET_ARRAY_ATTRS);
return false;
}
static JSBool
array_setElementAttributes(JSContext *cx, HandleObject obj, uint32_t index, unsigned *attrsp)
{
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_CANT_SET_ARRAY_ATTRS);
return false;
}
static JSBool
array_setSpecialAttributes(JSContext *cx, HandleObject obj, HandleSpecialId sid, unsigned *attrsp)
{
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_CANT_SET_ARRAY_ATTRS);
return false;
}
static JSBool
array_deleteProperty(JSContext *cx, HandleObject obj, HandlePropertyName name, Value *rval, JSBool strict)
{
if (!obj->isDenseArray())
return baseops::DeleteProperty(cx, obj, name, rval, strict);
if (name == cx->runtime->atomState.lengthAtom) {
rval->setBoolean(false);
return true;
}
rval->setBoolean(true);
return true;
}
namespace js {
/* non-static for direct deletion of array elements within the engine */
JSBool
array_deleteElement(JSContext *cx, HandleObject obj, uint32_t index, Value *rval, JSBool strict)
{
if (!obj->isDenseArray())
return baseops::DeleteElement(cx, obj, index, rval, strict);
if (index < obj->getDenseArrayInitializedLength()) {
obj->markDenseArrayNotPacked(cx);
obj->setDenseArrayElement(index, MagicValue(JS_ARRAY_HOLE));
}
if (!js_SuppressDeletedElement(cx, obj, index))
return false;
rval->setBoolean(true);
return true;
}
} // namespace js
static JSBool
array_deleteSpecial(JSContext *cx, HandleObject obj, HandleSpecialId sid, Value *rval, JSBool strict)
{
if (!obj->isDenseArray())
return baseops::DeleteSpecial(cx, obj, sid, rval, strict);
rval->setBoolean(true);
return true;
}
static void
array_trace(JSTracer *trc, JSObject *obj)
{
JS_ASSERT(obj->isDenseArray());
uint32_t initLength = obj->getDenseArrayInitializedLength();
MarkArraySlots(trc, initLength, obj->getDenseArrayElements(), "element");
}
Class js::ArrayClass = {
"Array",
Class::NON_NATIVE | JSCLASS_HAS_CACHED_PROTO(JSProto_Array) | JSCLASS_FOR_OF_ITERATION,
JS_PropertyStub, /* addProperty */
JS_PropertyStub, /* delProperty */
JS_PropertyStub, /* getProperty */
JS_StrictPropertyStub, /* setProperty */
JS_EnumerateStub,
JS_ResolveStub,
JS_ConvertStub,
NULL,
NULL, /* checkAccess */
NULL, /* call */
NULL, /* construct */
NULL, /* hasInstance */
array_trace, /* trace */
{
NULL, /* equality */
NULL, /* outerObject */
NULL, /* innerObject */
JS_ElementIteratorStub,
NULL, /* unused */
false, /* isWrappedNative */
},
{
array_lookupGeneric,
array_lookupProperty,
array_lookupElement,
array_lookupSpecial,
array_defineGeneric,
array_defineProperty,
array_defineElement,
array_defineSpecial,
array_getGeneric,
array_getProperty,
array_getElement,
NULL, /* getElementIfPresent, because this is hard for now for
slow arrays */
array_getSpecial,
array_setGeneric,
array_setProperty,
array_setElement,
array_setSpecial,
array_getGenericAttributes,
array_getPropertyAttributes,
array_getElementAttributes,
array_getSpecialAttributes,
array_setGenericAttributes,
array_setPropertyAttributes,
array_setElementAttributes,
array_setSpecialAttributes,
array_deleteProperty,
array_deleteElement,
array_deleteSpecial,
NULL, /* enumerate */
array_typeOf,
NULL, /* thisObject */
NULL, /* clear */
}
};
Class js::SlowArrayClass = {
"Array",
JSCLASS_HAS_CACHED_PROTO(JSProto_Array) | JSCLASS_FOR_OF_ITERATION,
slowarray_addProperty,
JS_PropertyStub, /* delProperty */
JS_PropertyStub, /* getProperty */
JS_StrictPropertyStub, /* setProperty */
JS_EnumerateStub,
JS_ResolveStub,
JS_ConvertStub,
NULL,
NULL, /* checkAccess */
NULL, /* call */
NULL, /* construct */
NULL, /* hasInstance */
NULL, /* trace */
{
NULL, /* equality */
NULL, /* outerObject */
NULL, /* innerObject */
JS_ElementIteratorStub,
NULL, /* unused */
false, /* isWrappedNative */
}
};
bool
JSObject::allocateSlowArrayElements(JSContext *cx)
{
JS_ASSERT(hasClass(&js::SlowArrayClass));
JS_ASSERT(elements == emptyObjectElements);
ObjectElements *header = cx->new_<ObjectElements>(0, 0);
if (!header)
return false;
elements = header->elements();
return true;
}
static bool
AddLengthProperty(JSContext *cx, HandleObject obj)
{
/*
* Add the 'length' property for a newly created or converted slow array,
* and update the elements to be an empty array owned by the object.
* The shared emptyObjectElements singleton cannot be used for slow arrays,
* as accesses to 'length' will use the elements header.
*/
RootedId lengthId(cx, NameToId(cx->runtime->atomState.lengthAtom));
JS_ASSERT(!obj->nativeLookup(cx, lengthId));
if (!obj->allocateSlowArrayElements(cx))
return false;
return obj->addProperty(cx, lengthId, array_length_getter, array_length_setter,
SHAPE_INVALID_SLOT, JSPROP_PERMANENT | JSPROP_SHARED, 0, 0);
}
/*
* Convert an array object from fast-and-dense to slow-and-flexible.
*/
/* static */ bool
JSObject::makeDenseArraySlow(JSContext *cx, HandleObject obj)
{
JS_ASSERT(obj->isDenseArray());
MarkTypeObjectFlags(cx, obj,
OBJECT_FLAG_NON_PACKED_ARRAY |
OBJECT_FLAG_NON_DENSE_ARRAY);
uint32_t arrayCapacity = obj->getDenseArrayCapacity();
uint32_t arrayInitialized = obj->getDenseArrayInitializedLength();
/*
* Get an allocated array of the existing elements, evicting from the fixed
* slots if necessary.
*/
if (!obj->hasDynamicElements()) {
if (!obj->growElements(cx, arrayCapacity))
return false;
JS_ASSERT(obj->hasDynamicElements());
}
/* Take ownership of the dense elements. */
HeapSlot *elems = obj->elements;
/* Root all values in the array during conversion. */
AutoValueArray autoArray(cx, (Value *) elems, arrayInitialized);
/*
* In case an incremental GC is already running, we need to write barrier
* the elements before (temporarily) destroying them.
*/
if (obj->compartment()->needsBarrier())
obj->prepareElementRangeForOverwrite(0, arrayInitialized);
/*
* Save old map now, before calling InitScopeForObject. We'll have to undo
* on error. This is gross, but a better way is not obvious. Note: the
* exact contents of the array are not preserved on error.
*/
js::Shape *oldShape = obj->lastProperty();
/* Create a native scope. */
gc::AllocKind kind = obj->getAllocKind();
Shape *shape = EmptyShape::getInitialShape(cx, &SlowArrayClass, obj->getProto(),
oldShape->getObjectParent(), kind);
if (!shape)
return false;
obj->shape_ = shape;
/* Reset to an empty dense array. */
obj->elements = emptyObjectElements;
/*
* Begin with the length property to share more of the property tree.
* The getter/setter here will directly access the object's private value.
*/
if (!AddLengthProperty(cx, obj)) {
obj->shape_ = oldShape;
if (obj->elements != emptyObjectElements)
cx->free_(obj->getElementsHeader());
obj->elements = elems;
return false;
}
/*
* Create new properties pointing to existing elements. Pack the array to
* remove holes, so that shapes use successive slots (as for other objects).
*/
uint32_t next = 0;
for (uint32_t i = 0; i < arrayInitialized; i++) {
/* Dense array indexes can always fit in a jsid. */
jsid id;
JS_ALWAYS_TRUE(ValueToId(cx, Int32Value(i), &id));
if (elems[i].isMagic(JS_ARRAY_HOLE))
continue;
if (!obj->addDataProperty(cx, id, next, JSPROP_ENUMERATE)) {
obj->shape_ = oldShape;
cx->free_(obj->getElementsHeader());
obj->elements = elems;
return false;
}
obj->initSlot(next, elems[i]);
next++;
}
ObjectElements *oldheader = ObjectElements::fromElements(elems);
obj->getElementsHeader()->length = oldheader->length;
cx->free_(oldheader);
return true;
}
#if JS_HAS_TOSOURCE
class ArraySharpDetector
{
JSContext *cx;
bool success;
bool alreadySeen;
bool sharp;
public:
ArraySharpDetector(JSContext *cx)
: cx(cx),
success(false),
alreadySeen(false),
sharp(false)
{}
bool init(HandleObject obj) {
success = js_EnterSharpObject(cx, obj, NULL, &alreadySeen, &sharp);
if (!success)
return false;
return true;
}
bool initiallySharp() const {
JS_ASSERT_IF(sharp, alreadySeen);
return sharp;
}
~ArraySharpDetector() {
if (success && !sharp)
js_LeaveSharpObject(cx, NULL);
}
};
static JSBool
array_toSource(JSContext *cx, unsigned argc, Value *vp)
{
JS_CHECK_RECURSION(cx, return false);
CallArgs args = CallArgsFromVp(argc, vp);
RootedObject obj(cx, ToObject(cx, &args.thisv()));
if (!obj)
return false;
if (!obj->isArray())
return HandleNonGenericMethodClassMismatch(cx, args, array_toSource, &ArrayClass);
ArraySharpDetector detector(cx);
if (!detector.init(obj))
return false;
StringBuffer sb(cx);
if (detector.initiallySharp()) {
if (!sb.append("[]"))
return false;
goto make_string;
}
if (!sb.append('['))
return false;
uint32_t length;
if (!js_GetLengthProperty(cx, obj, &length))
return false;
for (uint32_t index = 0; index < length; index++) {
JSBool hole;
Value elt;
if (!JS_CHECK_OPERATION_LIMIT(cx) ||
!GetElement(cx, obj, index, &hole, &elt)) {
return false;
}
/* Get element's character string. */
JSString *str;
if (hole) {
str = cx->runtime->emptyString;
} else {
str = js_ValueToSource(cx, elt);
if (!str)
return false;
}
/* Append element to buffer. */
if (!sb.append(str))
return false;
if (index + 1 != length) {
if (!sb.append(", "))
return false;
} else if (hole) {
if (!sb.append(','))
return false;
}
}
/* Finalize the buffer. */
if (!sb.append(']'))
return false;
make_string:
JSString *str = sb.finishString();
if (!str)
return false;
args.rval().setString(str);
return true;
}
#endif
class AutoArrayCycleDetector
{
JSContext *cx;
JSObject *obj;
uint32_t genBefore;
BusyArraysSet::AddPtr hashPointer;
bool cycle;
JS_DECL_USE_GUARD_OBJECT_NOTIFIER
public:
AutoArrayCycleDetector(JSContext *cx, JSObject *obj JS_GUARD_OBJECT_NOTIFIER_PARAM)
: cx(cx),
obj(obj),
cycle(true)
{
JS_GUARD_OBJECT_NOTIFIER_INIT;
}
bool init()
{
BusyArraysSet &set = cx->busyArrays;
hashPointer = set.lookupForAdd(obj);
if (!hashPointer) {
if (!set.add(hashPointer, obj))
return false;
cycle = false;
genBefore = set.generation();
}
return true;
}
~AutoArrayCycleDetector()
{
if (!cycle) {
if (genBefore == cx->busyArrays.generation())
cx->busyArrays.remove(hashPointer);
else
cx->busyArrays.remove(obj);
}
}
bool foundCycle() { return cycle; }
protected:
};
static JSBool
array_toString_sub(JSContext *cx, HandleObject obj, JSBool locale,
HandleString sepstr, CallArgs &args)
{
static const jschar comma = ',';
const jschar *sep;
size_t seplen;
if (sepstr) {
sep = NULL;
seplen = sepstr->length();
} else {
sep = &comma;
seplen = 1;
}
AutoArrayCycleDetector detector(cx, obj);
if (!detector.init())
return false;
if (detector.foundCycle()) {
args.rval().setString(cx->runtime->atomState.emptyAtom);
return true;
}
uint32_t length;
if (!js_GetLengthProperty(cx, obj, &length))
return false;
StringBuffer sb(cx);
if (!locale && !seplen && obj->isDenseArray() && !js_PrototypeHasIndexedProperties(cx, obj)) {
const Value *start = obj->getDenseArrayElements();
const Value *end = start + obj->getDenseArrayInitializedLength();
const Value *elem;
for (elem = start; elem < end; elem++) {
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
/*
* Object stringifying is slow; delegate it to a separate loop to
* keep this one tight.
*/
if (elem->isObject())
break;
if (!elem->isMagic(JS_ARRAY_HOLE) && !elem->isNullOrUndefined()) {
if (!ValueToStringBuffer(cx, *elem, sb))
return false;
}
}
for (uint32_t i = uint32_t(PointerRangeSize(start, elem)); i < length; i++) {
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
JSBool hole;
Value v;
if (!GetElement(cx, obj, i, &hole, &v))
return false;
if (!hole && !v.isNullOrUndefined()) {
if (!ValueToStringBuffer(cx, v, sb))
return false;
}
}
} else {
for (uint32_t index = 0; index < length; index++) {
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
JSBool hole;
Value elt;
if (!GetElement(cx, obj, index, &hole, &elt))
return false;
if (!hole && !elt.isNullOrUndefined()) {
if (locale) {
JSObject *robj = ToObject(cx, &elt);
if (!robj)
return false;
RootedId id(cx, NameToId(cx->runtime->atomState.toLocaleStringAtom));
if (!robj->callMethod(cx, id, 0, NULL, &elt))
return false;
}
if (!ValueToStringBuffer(cx, elt, sb))
return false;
}
if (index + 1 != length) {
const jschar *sepchars = sep ? sep : sepstr->getChars(cx);
if (!sepchars || !sb.append(sepchars, seplen))
return false;
}
}
}
JSString *str = sb.finishString();
if (!str)
return false;
args.rval().setString(str);
return true;
}
/* ES5 15.4.4.2. NB: The algorithm here differs from the one in ES3. */
static JSBool
array_toString(JSContext *cx, unsigned argc, Value *vp)
{
JS_CHECK_RECURSION(cx, return false);
CallArgs args = CallArgsFromVp(argc, vp);
RootedObject obj(cx, ToObject(cx, &args.thisv()));
if (!obj)
return false;
Value join = args.calleev();
if (!obj->getProperty(cx, cx->runtime->atomState.joinAtom, &join))
return false;
if (!js_IsCallable(join)) {
JSString *str = obj_toStringHelper(cx, obj);
if (!str)
return false;
args.rval().setString(str);
return true;
}
InvokeArgsGuard ag;
if (!cx->stack.pushInvokeArgs(cx, 0, &ag))
return false;
ag.calleev() = join;
ag.thisv().setObject(*obj);
/* Do the call. */
if (!Invoke(cx, ag))
return false;
args.rval() = ag.rval();
return true;
}
static JSBool
array_toLocaleString(JSContext *cx, unsigned argc, Value *vp)
{
JS_CHECK_RECURSION(cx, return false);
CallArgs args = CallArgsFromVp(argc, vp);
RootedObject obj(cx, ToObject(cx, &args.thisv()));
if (!obj)
return false;
/*
* Passing comma here as the separator. Need a way to get a
* locale-specific version.
*/
Rooted<JSString*> none(cx, NULL);
return array_toString_sub(cx, obj, JS_TRUE, none, args);
}
static inline bool
InitArrayTypes(JSContext *cx, TypeObject *type, const Value *vector, unsigned count)
{
if (cx->typeInferenceEnabled() && !type->unknownProperties()) {
AutoEnterTypeInference enter(cx);
TypeSet *types = type->getProperty(cx, JSID_VOID, true);
if (!types)
return false;
for (unsigned i = 0; i < count; i++) {
if (vector[i].isMagic(JS_ARRAY_HOLE))
continue;
Type valtype = GetValueType(cx, vector[i]);
types->addType(cx, valtype);
}
}
return true;
}
enum ShouldUpdateTypes
{
UpdateTypes = true,
DontUpdateTypes = false
};
static bool
InitArrayElements(JSContext *cx, HandleObject obj, uint32_t start, uint32_t count, const Value *vector, ShouldUpdateTypes updateTypes)
{
JS_ASSERT(count <= MAX_ARRAY_INDEX);
if (count == 0)
return true;
if (updateTypes && !InitArrayTypes(cx, obj->getType(cx), vector, count))
return false;
/*
* Optimize for dense arrays so long as adding the given set of elements
* wouldn't otherwise make the array slow.
*/
do {
if (!obj->isDenseArray())
break;
if (js_PrototypeHasIndexedProperties(cx, obj))
break;
JSObject::EnsureDenseResult result = obj->ensureDenseArrayElements(cx, start, count);
if (result != JSObject::ED_OK) {
if (result == JSObject::ED_FAILED)
return false;
JS_ASSERT(result == JSObject::ED_SPARSE);
break;
}
uint32_t newlen = start + count;
if (newlen > obj->getArrayLength())
obj->setDenseArrayLength(newlen);
JS_ASSERT(count < UINT32_MAX / sizeof(Value));
obj->copyDenseArrayElements(start, vector, count);
JS_ASSERT_IF(count != 0, !obj->getDenseArrayElement(newlen - 1).isMagic(JS_ARRAY_HOLE));
return true;
} while (false);
const Value* end = vector + count;
while (vector < end && start <= MAX_ARRAY_INDEX) {
if (!JS_CHECK_OPERATION_LIMIT(cx) ||
!SetArrayElement(cx, obj, start++, *vector++)) {
return false;
}
}
if (vector == end)
return true;
/* Finish out any remaining elements past the max array index. */
if (obj->isDenseArray() && !JSObject::makeDenseArraySlow(cx, obj))
return false;
JS_ASSERT(start == MAX_ARRAY_INDEX + 1);
RootedValue value(cx);
RootedId id(cx);
Value idval = DoubleValue(MAX_ARRAY_INDEX + 1);
do {
value = *vector++;
if (!ValueToId(cx, idval, id.address()) ||
!obj->setGeneric(cx, obj, id, value.address(), true)) {
return false;
}
idval.getDoubleRef() += 1;
} while (vector != end);
return true;
}
#if 0
static JSBool
InitArrayObject(JSContext *cx, JSObject *obj, uint32_t length, const Value *vector)
{
JS_ASSERT(obj->isArray());
JS_ASSERT(obj->isDenseArray());
obj->setArrayLength(cx, length);
if (!vector || !length)
return true;
if (!InitArrayTypes(cx, obj->getType(cx), vector, length))
return false;
/* Avoid ensureDenseArrayElements to skip sparse array checks there. */
if (!obj->ensureElements(cx, length))
return false;
obj->setDenseArrayInitializedLength(length);
bool hole = false;
for (uint32_t i = 0; i < length; i++) {
obj->setDenseArrayElement(i, vector[i]);
hole |= vector[i].isMagic(JS_ARRAY_HOLE);
}
if (hole)
obj->markDenseArrayNotPacked(cx);
return true;
}
#endif
/*
* Perl-inspired join, reverse, and sort.
*/
static JSBool
array_join(JSContext *cx, unsigned argc, Value *vp)
{
JS_CHECK_RECURSION(cx, return false);
CallArgs args = CallArgsFromVp(argc, vp);
RootedString str(cx);
if (args.hasDefined(0)) {
str = ToString(cx, args[0]);
if (!str)
return JS_FALSE;
args[0].setString(str);
} else {
str = NULL;
}
RootedObject obj(cx, ToObject(cx, &args.thisv()));
if (!obj)
return false;
return array_toString_sub(cx, obj, JS_FALSE, str, args);
}
static JSBool
array_reverse(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedObject obj(cx, ToObject(cx, &args.thisv()));
if (!obj)
return false;
uint32_t len;
if (!js_GetLengthProperty(cx, obj, &len))
return false;
do {
if (!obj->isDenseArray())
break;
if (js_PrototypeHasIndexedProperties(cx, obj))
break;
/* An empty array or an array with no elements is already reversed. */
if (len == 0 || obj->getDenseArrayCapacity() == 0) {
args.rval().setObject(*obj);
return true;
}
/*
* It's actually surprisingly complicated to reverse an array due to the
* orthogonality of array length and array capacity while handling
* leading and trailing holes correctly. Reversing seems less likely to
* be a common operation than other array mass-mutation methods, so for
* now just take a probably-small memory hit (in the absence of too many
* holes in the array at its start) and ensure that the capacity is
* sufficient to hold all the elements in the array if it were full.
*/
JSObject::EnsureDenseResult result = obj->ensureDenseArrayElements(cx, len, 0);
if (result != JSObject::ED_OK) {
if (result == JSObject::ED_FAILED)
return false;
JS_ASSERT(result == JSObject::ED_SPARSE);
break;
}
/* Fill out the array's initialized length to its proper length. */
obj->ensureDenseArrayInitializedLength(cx, len, 0);
uint32_t lo = 0, hi = len - 1;
for (; lo < hi; lo++, hi--) {
Value origlo = obj->getDenseArrayElement(lo);
Value orighi = obj->getDenseArrayElement(hi);
obj->setDenseArrayElement(lo, orighi);
if (orighi.isMagic(JS_ARRAY_HOLE) &&
!js_SuppressDeletedProperty(cx, obj, INT_TO_JSID(lo))) {
return false;
}
obj->setDenseArrayElement(hi, origlo);
if (origlo.isMagic(JS_ARRAY_HOLE) &&
!js_SuppressDeletedProperty(cx, obj, INT_TO_JSID(hi))) {
return false;
}
}
/*
* Per ECMA-262, don't update the length of the array, even if the new
* array has trailing holes (and thus the original array began with
* holes).
*/
args.rval().setObject(*obj);
return true;
} while (false);
Value lowval, hival;
for (uint32_t i = 0, half = len / 2; i < half; i++) {
JSBool hole, hole2;
if (!JS_CHECK_OPERATION_LIMIT(cx) ||
!GetElement(cx, obj, i, &hole, &lowval) ||
!GetElement(cx, obj, len - i - 1, &hole2, &hival) ||
!SetOrDeleteArrayElement(cx, obj, len - i - 1, hole, lowval) ||
!SetOrDeleteArrayElement(cx, obj, i, hole2, hival)) {
return false;
}
}
args.rval().setObject(*obj);
return true;
}
namespace {
inline bool
CompareStringValues(JSContext *cx, const Value &a, const Value &b, bool *lessOrEqualp)
{
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
JSString *astr = a.toString();
JSString *bstr = b.toString();
int32_t result;
if (!CompareStrings(cx, astr, bstr, &result))
return false;
*lessOrEqualp = (result <= 0);
return true;
}
static uint64_t const powersOf10[] = {
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 1000000000000ULL
};
static inline unsigned
NumDigitsBase10(uint32_t n)
{
/*
* This is just floor_log10(n) + 1
* Algorithm taken from
* http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
*/
uint32_t log2, t;
JS_CEILING_LOG2(log2, n);
t = log2 * 1233 >> 12;
return t - (n < powersOf10[t]) + 1;
}
static JS_ALWAYS_INLINE uint32_t
NegateNegativeInt32(int32_t i)
{
/*
* We cannot simply return '-i' because this is undefined for INT32_MIN.
* 2s complement does actually give us what we want, however. That is,
* ~0x80000000 + 1 = 0x80000000 which is correct when interpreted as a
* uint32_t. To avoid undefined behavior, we write out 2s complement
* explicitly and rely on the peephole optimizer to generate 'neg'.
*/
return ~uint32_t(i) + 1;
}
inline bool
CompareLexicographicInt32(JSContext *cx, const Value &a, const Value &b, bool *lessOrEqualp)
{
int32_t aint = a.toInt32();
int32_t bint = b.toInt32();
/*
* If both numbers are equal ... trivial
* If only one of both is negative --> arithmetic comparison as char code
* of '-' is always less than any other digit
* If both numbers are negative convert them to positive and continue
* handling ...
*/
if (aint == bint) {
*lessOrEqualp = true;
} else if ((aint < 0) && (bint >= 0)) {
*lessOrEqualp = true;
} else if ((aint >= 0) && (bint < 0)) {
*lessOrEqualp = false;
} else {
uint32_t auint, buint;
if (aint >= 0) {
auint = aint;
buint = bint;
} else {
auint = NegateNegativeInt32(aint);
buint = NegateNegativeInt32(bint);
}
/*
* ... get number of digits of both integers.
* If they have the same number of digits --> arithmetic comparison.
* If digits_a > digits_b: a < b*10e(digits_a - digits_b).
* If digits_b > digits_a: a*10e(digits_b - digits_a) <= b.
*/
unsigned digitsa = NumDigitsBase10(auint);
unsigned digitsb = NumDigitsBase10(buint);
if (digitsa == digitsb) {
*lessOrEqualp = (auint <= buint);
} else if (digitsa > digitsb) {
JS_ASSERT((digitsa - digitsb) < ArrayLength(powersOf10));
*lessOrEqualp = (uint64_t(auint) < uint64_t(buint) * powersOf10[digitsa - digitsb]);
} else { /* if (digitsb > digitsa) */
JS_ASSERT((digitsb - digitsa) < ArrayLength(powersOf10));
*lessOrEqualp = (uint64_t(auint) * powersOf10[digitsb - digitsa] <= uint64_t(buint));
}
}
return true;
}
inline bool
CompareSubStringValues(JSContext *cx, const jschar *s1, size_t l1,
const jschar *s2, size_t l2, bool *lessOrEqualp)
{
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
int32_t result;
if (!s1 || !s2 || !CompareChars(s1, l1, s2, l2, &result))
return false;
*lessOrEqualp = (result <= 0);
return true;
}
struct SortComparatorStrings
{
JSContext *const cx;
SortComparatorStrings(JSContext *cx)
: cx(cx) {}
bool operator()(const Value &a, const Value &b, bool *lessOrEqualp) {
return CompareStringValues(cx, a, b, lessOrEqualp);
}
};
struct SortComparatorLexicographicInt32
{
JSContext *const cx;
SortComparatorLexicographicInt32(JSContext *cx)
: cx(cx) {}
bool operator()(const Value &a, const Value &b, bool *lessOrEqualp) {
return CompareLexicographicInt32(cx, a, b, lessOrEqualp);
}
};
struct StringifiedElement
{
size_t charsBegin;
size_t charsEnd;
size_t elementIndex;
};
struct SortComparatorStringifiedElements
{
JSContext *const cx;
const StringBuffer &sb;
SortComparatorStringifiedElements(JSContext *cx, const StringBuffer &sb)
: cx(cx), sb(sb) {}
bool operator()(const StringifiedElement &a, const StringifiedElement &b, bool *lessOrEqualp) {
return CompareSubStringValues(cx, sb.begin() + a.charsBegin, a.charsEnd - a.charsBegin,
sb.begin() + b.charsBegin, b.charsEnd - b.charsBegin,
lessOrEqualp);
}
};
struct SortComparatorFunction
{
JSContext *const cx;
const Value &fval;
InvokeArgsGuard &ag;
SortComparatorFunction(JSContext *cx, const Value &fval, InvokeArgsGuard &ag)
: cx(cx), fval(fval), ag(ag) { }
bool operator()(const Value &a, const Value &b, bool *lessOrEqualp);
};
bool
SortComparatorFunction::operator()(const Value &a, const Value &b, bool *lessOrEqualp)
{
/*
* array_sort deals with holes and undefs on its own and they should not
* come here.
*/
JS_ASSERT(!a.isMagic() && !a.isUndefined());
JS_ASSERT(!a.isMagic() && !b.isUndefined());
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
if (!ag.pushed() && !cx->stack.pushInvokeArgs(cx, 2, &ag))
return false;
ag.setCallee(fval);
ag.thisv() = UndefinedValue();
ag[0] = a;
ag[1] = b;
if (!Invoke(cx, ag))
return false;
double cmp;
if (!ToNumber(cx, ag.rval(), &cmp))
return false;
/*
* XXX eport some kind of error here if cmp is NaN? ECMA talks about
* 'consistent compare functions' that don't return NaN, but is silent
* about what the result should be. So we currently ignore it.
*/
*lessOrEqualp = (MOZ_DOUBLE_IS_NaN(cmp) || cmp <= 0);
return true;
}
} /* namespace anonymous */
JSBool
js::array_sort(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedValue fvalRoot(cx);
Value &fval = fvalRoot.reference();
if (args.hasDefined(0)) {
if (args[0].isPrimitive()) {
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_BAD_SORT_ARG);
return false;
}
fval = args[0]; /* non-default compare function */
} else {
fval.setNull();
}
RootedObject obj(cx, ToObject(cx, &args.thisv()));
if (!obj)
return false;
uint32_t len;
if (!js_GetLengthProperty(cx, obj, &len))
return false;
if (len == 0) {
args.rval().setObject(*obj);
return true;
}
/*
* We need a temporary array of 2 * len Value to hold the array elements
* and the scratch space for merge sort. Check that its size does not
* overflow size_t, which would allow for indexing beyond the end of the
* malloc'd vector.
*/
#if JS_BITS_PER_WORD == 32
if (size_t(len) > size_t(-1) / (2 * sizeof(Value))) {
js_ReportAllocationOverflow(cx);
return false;
}
#endif
/*
* Initialize vec as a root. We will clear elements of vec one by
* one while increasing the rooted amount of vec when we know that the
* property at the corresponding index exists and its value must be rooted.
*
* In this way when sorting a huge mostly sparse array we will not
* access the tail of vec corresponding to properties that do not
* exist, allowing OS to avoiding committing RAM. See bug 330812.
*/
size_t n, undefs;
{
AutoValueVector vec(cx);
if (!vec.reserve(2 * size_t(len)))
return false;
/*
* By ECMA 262, 15.4.4.11, a property that does not exist (which we
* call a "hole") is always greater than an existing property with
* value undefined and that is always greater than any other property.
* Thus to sort holes and undefs we simply count them, sort the rest
* of elements, append undefs after them and then make holes after
* undefs.
*/
undefs = 0;
bool allStrings = true;
bool allInts = true;
for (uint32_t i = 0; i < len; i++) {
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
/* Clear vec[newlen] before including it in the rooted set. */
JSBool hole;
Value v;
if (!GetElement(cx, obj, i, &hole, &v))
return false;
if (hole)
continue;
if (v.isUndefined()) {
++undefs;
continue;
}
vec.infallibleAppend(v);
allStrings = allStrings && v.isString();
allInts = allInts && v.isInt32();
}
n = vec.length();
if (n == 0) {
args.rval().setObject(*obj);
return true; /* The array has only holes and undefs. */
}
JS_ALWAYS_TRUE(vec.resize(n * 2));
/* Here len == n + undefs + number_of_holes. */
Value *result = vec.begin();
if (fval.isNull()) {
/*
* Sort using the default comparator converting all elements to
* strings.
*/
if (allStrings) {
if (!MergeSort(vec.begin(), n, vec.begin() + n, SortComparatorStrings(cx)))
return false;
} else if (allInts) {
if (!MergeSort(vec.begin(), n, vec.begin() + n,
SortComparatorLexicographicInt32(cx))) {
return false;
}
} else {
/*
* Convert all elements to a jschar array in StringBuffer.
* Store the index and length of each stringified element with
* the corresponding index of the element in the array. Sort
* the stringified elements and with this result order the
* original array.
*/
StringBuffer sb(cx);
Vector<StringifiedElement, 0, TempAllocPolicy> strElements(cx);
if (!strElements.reserve(2 * n))
return false;
size_t cursor = 0;
for (size_t i = 0; i < n; i++) {
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
if (!ValueToStringBuffer(cx, vec[i], sb))
return false;
StringifiedElement el = { cursor, sb.length(), i };
strElements.infallibleAppend(el);
cursor = sb.length();
}
/* Resize strElements so we can perform the sorting */
JS_ALWAYS_TRUE(strElements.resize(2 * n));
if (!MergeSort(strElements.begin(), n, strElements.begin() + n,
SortComparatorStringifiedElements(cx, sb))) {
return false;
}
/* Order vec[n:2n-1] using strElements.index */
for (size_t i = 0; i < n; i ++)
vec[n + i] = vec[strElements[i].elementIndex];
result = vec.begin() + n;
}
} else {
InvokeArgsGuard args;
if (!MergeSort(vec.begin(), n, vec.begin() + n,
SortComparatorFunction(cx, fval, args))) {
return false;
}
}
if (!InitArrayElements(cx, obj, 0, uint32_t(n), result, DontUpdateTypes))
return false;
}
/* Set undefs that sorted after the rest of elements. */
while (undefs != 0) {
--undefs;
if (!JS_CHECK_OPERATION_LIMIT(cx) || !SetArrayElement(cx, obj, n++, UndefinedValue()))
return false;
}
/* Re-create any holes that sorted to the end of the array. */
while (len > n) {
if (!JS_CHECK_OPERATION_LIMIT(cx) || DeleteArrayElement(cx, obj, --len, true) < 0)
return false;
}
args.rval().setObject(*obj);
return true;
}
/*
* Perl-inspired push, pop, shift, unshift, and splice methods.
*/
static bool
array_push_slowly(JSContext *cx, HandleObject obj, CallArgs &args)
{
uint32_t length;
if (!js_GetLengthProperty(cx, obj, &length))
return false;
if (!InitArrayElements(cx, obj, length, args.length(), args.array(), UpdateTypes))
return false;
/* Per ECMA-262, return the new array length. */
double newlength = length + double(args.length());
args.rval().setNumber(newlength);
return js_SetLengthProperty(cx, obj, newlength);
}
static bool
array_push1_dense(JSContext* cx, HandleObject obj, CallArgs &args)
{
JS_ASSERT(args.length() == 1);
uint32_t length = obj->getArrayLength();
JSObject::EnsureDenseResult result = obj->ensureDenseArrayElements(cx, length, 1);
if (result != JSObject::ED_OK) {
if (result == JSObject::ED_FAILED)
return false;
JS_ASSERT(result == JSObject::ED_SPARSE);
if (!JSObject::makeDenseArraySlow(cx, obj))
return false;
return array_push_slowly(cx, obj, args);
}
obj->setDenseArrayLength(length + 1);
obj->setDenseArrayElementWithType(cx, length, args[0]);
args.rval().setNumber(obj->getArrayLength());
return true;
}
JS_ALWAYS_INLINE JSBool
NewbornArrayPushImpl(JSContext *cx, HandleObject obj, const Value &v)
{
JS_ASSERT(!v.isMagic());
uint32_t length = obj->getArrayLength();
if (obj->isSlowArray()) {
/* This can happen in one evil case. See bug 630377. */
RootedId id(cx);
return IndexToId(cx, length, id.address()) &&
baseops::DefineGeneric(cx, obj, id, &v, NULL, NULL, JSPROP_ENUMERATE);
}
JS_ASSERT(obj->isDenseArray());
JS_ASSERT(length <= obj->getDenseArrayCapacity());
if (!obj->ensureElements(cx, length + 1))
return false;
obj->setDenseArrayInitializedLength(length + 1);
obj->setDenseArrayLength(length + 1);
obj->initDenseArrayElementWithType(cx, length, v);
return true;
}
JSBool
js_NewbornArrayPush(JSContext *cx, HandleObject obj, const Value &vp)
{
return NewbornArrayPushImpl(cx, obj, vp);
}
JSBool
js::array_push(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedObject obj(cx, ToObject(cx, &args.thisv()));
if (!obj)
return false;
/* Insist on one argument and obj of the expected class. */
if (args.length() != 1 || !obj->isDenseArray())
return array_push_slowly(cx, obj, args);
return array_push1_dense(cx, obj, args);
}
static JSBool
array_pop_slowly(JSContext *cx, HandleObject obj, CallArgs &args)
{
uint32_t index;
if (!js_GetLengthProperty(cx, obj, &index))
return false;
if (index == 0) {
args.rval().setUndefined();
return js_SetLengthProperty(cx, obj, index);
}
index--;
JSBool hole;
RootedValue elt(cx);
if (!GetElement(cx, obj, index, &hole, elt.address()))
return false;
if (!hole && DeleteArrayElement(cx, obj, index, true) < 0)
return false;
args.rval() = elt;
return js_SetLengthProperty(cx, obj, index);
}
static JSBool
array_pop_dense(JSContext *cx, HandleObject obj, CallArgs &args)
{
uint32_t index = obj->getArrayLength();
if (index == 0) {
args.rval().setUndefined();
return true;
}
index--;
JSBool hole;
RootedValue elt(cx);
if (!GetElement(cx, obj, index, &hole, elt.address()))
return false;
if (!hole && DeleteArrayElement(cx, obj, index, true) < 0)
return false;
args.rval() = elt;
// obj may not be a dense array any more, e.g. if the element was a missing
// and a getter supplied by the prototype modified the object.
if (obj->isDenseArray()) {
if (obj->getDenseArrayInitializedLength() > index)
obj->setDenseArrayInitializedLength(index);
obj->setArrayLength(cx, index);
return true;
}
return js_SetLengthProperty(cx, obj, index);
}
JSBool
js::array_pop(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedObject obj(cx, ToObject(cx, &args.thisv()));
if (!obj)
return false;
if (obj->isDenseArray())
return array_pop_dense(cx, obj, args);
return array_pop_slowly(cx, obj, args);
}
#ifdef JS_METHODJIT
void JS_FASTCALL
mjit::stubs::ArrayShift(VMFrame &f)
{
JSObject *obj = &f.regs.sp[-1].toObject();
JS_ASSERT(obj->isDenseArray());
/*
* At this point the length and initialized length have already been
* decremented and the result fetched, so just shift the array elements
* themselves.
*/
uint32_t initlen = obj->getDenseArrayInitializedLength();
obj->moveDenseArrayElementsUnbarriered(0, 1, initlen);
}
#endif /* JS_METHODJIT */
JSBool
js::array_shift(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedObject obj(cx, ToObject(cx, &args.thisv()));
if (!obj)
return JS_FALSE;
uint32_t length;
if (!js_GetLengthProperty(cx, obj, &length))
return JS_FALSE;
if (length == 0) {
args.rval().setUndefined();
} else {
length--;
if (obj->isDenseArray() && !js_PrototypeHasIndexedProperties(cx, obj) &&
length < obj->getDenseArrayCapacity() &&
0 < obj->getDenseArrayInitializedLength()) {
args.rval() = obj->getDenseArrayElement(0);
if (args.rval().isMagic(JS_ARRAY_HOLE))
args.rval().setUndefined();
obj->moveDenseArrayElements(0, 1, obj->getDenseArrayInitializedLength() - 1);
obj->setDenseArrayInitializedLength(obj->getDenseArrayInitializedLength() - 1);
obj->setArrayLength(cx, length);
if (!js_SuppressDeletedProperty(cx, obj, INT_TO_JSID(length)))
return JS_FALSE;
return JS_TRUE;
}
JSBool hole;
if (!GetElement(cx, obj, 0u, &hole, &args.rval()))
return JS_FALSE;
/* Slide down the array above the first element. */
RootedValue value(cx);
for (uint32_t i = 0; i < length; i++) {
if (!JS_CHECK_OPERATION_LIMIT(cx) ||
!GetElement(cx, obj, i + 1, &hole, value.address()) ||
!SetOrDeleteArrayElement(cx, obj, i, hole, value)) {
return JS_FALSE;
}
}
/* Delete the only or last element when it exists. */
if (!hole && DeleteArrayElement(cx, obj, length, true) < 0)
return JS_FALSE;
}
return js_SetLengthProperty(cx, obj, length);
}
static JSBool
array_unshift(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedObject obj(cx, ToObject(cx, &args.thisv()));
if (!obj)
return false;
uint32_t length;
if (!js_GetLengthProperty(cx, obj, &length))
return JS_FALSE;
double newlen = length;
if (args.length() > 0) {
/* Slide up the array to make room for all args at the bottom. */
if (length > 0) {
bool optimized = false;
do {
if (!obj->isDenseArray())
break;
if (js_PrototypeHasIndexedProperties(cx, obj))
break;
JSObject::EnsureDenseResult result = obj->ensureDenseArrayElements(cx, length, args.length());
if (result != JSObject::ED_OK) {
if (result == JSObject::ED_FAILED)
return false;
JS_ASSERT(result == JSObject::ED_SPARSE);
break;
}
obj->moveDenseArrayElements(args.length(), 0, length);
for (uint32_t i = 0; i < args.length(); i++)
obj->setDenseArrayElement(i, MagicValue(JS_ARRAY_HOLE));
optimized = true;
} while (false);
if (!optimized) {
double last = length;
double upperIndex = last + args.length();
RootedValue value(cx);
do {
--last, --upperIndex;
JSBool hole;
if (!JS_CHECK_OPERATION_LIMIT(cx) ||
!GetElement(cx, obj, last, &hole, value.address()) ||
!SetOrDeleteArrayElement(cx, obj, upperIndex, hole, value)) {
return JS_FALSE;
}
} while (last != 0);
}
}
/* Copy from args to the bottom of the array. */
if (!InitArrayElements(cx, obj, 0, args.length(), args.array(), UpdateTypes))
return JS_FALSE;
newlen += args.length();
}
if (!js_SetLengthProperty(cx, obj, newlen))
return JS_FALSE;
/* Follow Perl by returning the new array length. */
args.rval().setNumber(newlen);
return JS_TRUE;
}
static inline void
TryReuseArrayType(JSObject *obj, JSObject *nobj)
{
/*
* Try to change the type of a newly created array nobj to the same type
* as obj. This can only be performed if the original object is an array
* and has the same prototype.
*/
JS_ASSERT(nobj->isDenseArray());
JS_ASSERT(nobj->getProto()->hasNewType(nobj->type()));
if (obj->isArray() && !obj->hasSingletonType() && obj->getProto() == nobj->getProto())
nobj->setType(obj->type());
}
/*
* Returns true if this is a dense array whose |count| properties starting from
* |startingIndex| may be accessed (get, set, delete) directly through its
* contiguous vector of elements without fear of getters, setters, etc. along
* the prototype chain, or of enumerators requiring notification of
* modifications.
*/
static inline bool
CanOptimizeForDenseStorage(JSObject *arr, uint32_t startingIndex, uint32_t count, JSContext *cx)
{
/* If the desired properties overflow dense storage, we can't optimize. */
if (UINT32_MAX - startingIndex < count)
return false;
/* There's no optimizing possible if it's not a dense array. */
if (!arr->isDenseArray())
return false;
/*
* Don't optimize if the array might be in the midst of iteration. We
* rely on this to be able to safely move dense array elements around with
* just a memmove (see JSObject::moveDenseArrayElements), without worrying
* about updating any in-progress enumerators for properties implicitly
* deleted if a hole is moved from one location to another location not yet
* visited. See bug 690622.
*
* Another potential wrinkle: what if the enumeration is happening on an
* object which merely has |arr| on its prototype chain? It turns out this
* case can't happen, because any dense array used as the prototype of
* another object is first slowified, for type inference's sake.
*/
if (JS_UNLIKELY(arr->getType(cx)->hasAllFlags(OBJECT_FLAG_ITERATED)))
return false;
/* Now just watch out for getters and setters along the prototype chain. */
return !js_PrototypeHasIndexedProperties(cx, arr) &&
startingIndex + count <= arr->getDenseArrayInitializedLength();
}
/* ES5 15.4.4.12. */
static JSBool
array_splice(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
/* Step 1. */
RootedObject obj(cx, ToObject(cx, &args.thisv()));
if (!obj)
return false;
/* Steps 3-4. */
uint32_t len;
if (!js_GetLengthProperty(cx, obj, &len))
return false;
/* Step 5. */
double relativeStart;
if (!ToInteger(cx, argc >= 1 ? args[0] : UndefinedValue(), &relativeStart))
return false;
/* Step 6. */
uint32_t actualStart;
if (relativeStart < 0)
actualStart = JS_MAX(len + relativeStart, 0);
else
actualStart = JS_MIN(relativeStart, len);
/* Step 7. */
uint32_t actualDeleteCount;
if (argc != 1) {
double deleteCountDouble;
if (!ToInteger(cx, argc >= 2 ? args[1] : Int32Value(0), &deleteCountDouble))
return false;
actualDeleteCount = JS_MIN(JS_MAX(deleteCountDouble, 0), len - actualStart);
} else {
/*
* Non-standard: if start was specified but deleteCount was omitted,
* delete to the end of the array. See bug 668024 for discussion.
*/
actualDeleteCount = len - actualStart;
}
JS_ASSERT(len - actualStart >= actualDeleteCount);
/* Steps 2, 8-9. */
RootedObject arr(cx);
if (CanOptimizeForDenseStorage(obj, actualStart, actualDeleteCount, cx)) {
arr = NewDenseCopiedArray(cx, actualDeleteCount,
obj->getDenseArrayElements() + actualStart);
if (!arr)
return false;
TryReuseArrayType(obj, arr);
} else {
arr = NewDenseAllocatedArray(cx, actualDeleteCount);
if (!arr)
return false;
TryReuseArrayType(obj, arr);
for (uint32_t k = 0; k < actualDeleteCount; k++) {
JSBool hole;
Value fromValue;
if (!JS_CHECK_OPERATION_LIMIT(cx) ||
!GetElement(cx, obj, actualStart + k, &hole, &fromValue) ||
(!hole && !arr->defineElement(cx, k, fromValue)))
{
return false;
}
}
}
/* Step 11. */
uint32_t itemCount = (argc >= 2) ? (argc - 2) : 0;
if (itemCount < actualDeleteCount) {
/* Step 12: the array is being shrunk. */
uint32_t sourceIndex = actualStart + actualDeleteCount;
uint32_t targetIndex = actualStart + itemCount;
uint32_t finalLength = len - actualDeleteCount + itemCount;
if (CanOptimizeForDenseStorage(obj, 0, len, cx)) {
/* Steps 12(a)-(b). */
obj->moveDenseArrayElements(targetIndex, sourceIndex, len - sourceIndex);
/*
* Update the initialized length. Do so before shrinking so that we
* can apply the write barrier to the old slots.
*/
if (cx->typeInferenceEnabled())
obj->setDenseArrayInitializedLength(finalLength);
/* Steps 12(c)-(d). */
obj->shrinkElements(cx, finalLength);
/* Fix running enumerators for the deleted items. */
if (!js_SuppressDeletedElements(cx, obj, finalLength, len))
return false;
} else {
/*
* This is all very slow if the length is very large. We don't yet
* have the ability to iterate in sorted order, so we just do the
* pessimistic thing and let JS_CHECK_OPERATION_LIMIT handle the
* fallout.
*/
/* Steps 12(a)-(b). */
for (uint32_t from = sourceIndex, to = targetIndex; from < len; from++, to++) {
JSBool hole;
Value fromValue;
if (!JS_CHECK_OPERATION_LIMIT(cx) ||
!GetElement(cx, obj, from, &hole, &fromValue) ||
!SetOrDeleteArrayElement(cx, obj, to, hole, fromValue))
{
return false;
}
}
/* Steps 12(c)-(d). */
for (uint32_t k = len; k > finalLength; k--) {
if (DeleteArrayElement(cx, obj, k - 1, true) < 0)
return false;
}
}
} else if (itemCount > actualDeleteCount) {
/* Step 13. */
/*
* Optimize only if the array is already dense and we can extend it to
* its new length.
*/
if (obj->isDenseArray()) {
JSObject::EnsureDenseResult res =
obj->ensureDenseArrayElements(cx, obj->getArrayLength(),
itemCount - actualDeleteCount);
if (res == JSObject::ED_FAILED)
return false;
if (res == JSObject::ED_SPARSE) {
if (!JSObject::makeDenseArraySlow(cx, obj))
return false;
} else {
JS_ASSERT(res == JSObject::ED_OK);
}
}
if (CanOptimizeForDenseStorage(obj, len, itemCount - actualDeleteCount, cx)) {
obj->moveDenseArrayElements(actualStart + itemCount,
actualStart + actualDeleteCount,
len - (actualStart + actualDeleteCount));
if (cx->typeInferenceEnabled())
obj->setDenseArrayInitializedLength(len + itemCount - actualDeleteCount);
} else {
for (double k = len - actualDeleteCount; k > actualStart; k--) {
double from = k + actualDeleteCount - 1;
double to = k + itemCount - 1;
JSBool hole;
Value fromValue;
if (!JS_CHECK_OPERATION_LIMIT(cx) ||
!GetElement(cx, obj, from, &hole, &fromValue) ||
!SetOrDeleteArrayElement(cx, obj, to, hole, fromValue))
{
return false;
}
}
}
}
/* Step 10. */
Value *items = args.array() + 2;
/* Steps 14-15. */
for (uint32_t k = actualStart, i = 0; i < itemCount; i++, k++) {
if (!SetArrayElement(cx, obj, k, items[i]))
return false;
}
/* Step 16. */
double finalLength = double(len) - actualDeleteCount + itemCount;
if (!js_SetLengthProperty(cx, obj, finalLength))
return false;
/* Step 17. */
args.rval().setObject(*arr);
return true;
}
#ifdef JS_METHODJIT
void JS_FASTCALL
mjit::stubs::ArrayConcatTwoArrays(VMFrame &f)
{
JSObject *result = &f.regs.sp[-3].toObject();
JSObject *obj1 = &f.regs.sp[-2].toObject();
JSObject *obj2 = &f.regs.sp[-1].toObject();
JS_ASSERT(result->isDenseArray() && obj1->isDenseArray() && obj2->isDenseArray());
uint32_t initlen1 = obj1->getDenseArrayInitializedLength();
JS_ASSERT(initlen1 == obj1->getArrayLength());
uint32_t initlen2 = obj2->getDenseArrayInitializedLength();
JS_ASSERT(initlen2 == obj2->getArrayLength());
/* No overflow here due to nslots limit. */
uint32_t len = initlen1 + initlen2;
if (!result->ensureElements(f.cx, len))
THROW();
JS_ASSERT(!result->getDenseArrayInitializedLength());
result->setDenseArrayInitializedLength(len);
result->initDenseArrayElements(0, obj1->getDenseArrayElements(), initlen1);
result->initDenseArrayElements(initlen1, obj2->getDenseArrayElements(), initlen2);
result->setDenseArrayLength(len);
}
#endif /* JS_METHODJIT */
/*
* Python-esque sequence operations.
*/
JSBool
js::array_concat(JSContext *cx, unsigned argc, Value *vp)
{
/* Treat our |this| object as the first argument; see ECMA 15.4.4.4. */
Value *p = JS_ARGV(cx, vp) - 1;
/* Create a new Array object and root it using *vp. */
RootedObject aobj(cx, ToObject(cx, &vp[1]));
if (!aobj)
return false;
RootedObject nobj(cx);
uint32_t length;
if (aobj->isDenseArray()) {
length = aobj->getArrayLength();
const Value *vector = aobj->getDenseArrayElements();
uint32_t initlen = aobj->getDenseArrayInitializedLength();
nobj = NewDenseCopiedArray(cx, initlen, vector);
if (!nobj)
return JS_FALSE;
TryReuseArrayType(aobj, nobj);
nobj->setArrayLength(cx, length);
vp->setObject(*nobj);
if (argc == 0)
return JS_TRUE;
argc--;
p++;
} else {
nobj = NewDenseEmptyArray(cx);
if (!nobj)
return JS_FALSE;
vp->setObject(*nobj);
length = 0;
}
/* Loop over [0, argc] to concat args into nobj, expanding all Arrays. */
for (unsigned i = 0; i <= argc; i++) {
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
const Value &v = p[i];
if (v.isObject()) {
RootedObject obj(cx, &v.toObject());
if (ObjectClassIs(*obj, ESClass_Array, cx)) {
uint32_t alength;
if (!js_GetLengthProperty(cx, obj, &alength))
return false;
for (uint32_t slot = 0; slot < alength; slot++) {
JSBool hole;
Value tmp;
if (!JS_CHECK_OPERATION_LIMIT(cx) || !GetElement(cx, obj, slot, &hole, &tmp))
return false;
/*
* Per ECMA 262, 15.4.4.4, step 9, ignore nonexistent
* properties.
*/
if (!hole && !SetArrayElement(cx, nobj, length + slot, tmp))
return false;
}
length += alength;
continue;
}
}
if (!SetArrayElement(cx, nobj, length, v))
return false;
length++;
}
return js_SetLengthProperty(cx, nobj, length);
}
static JSBool
array_slice(JSContext *cx, unsigned argc, Value *vp)
{
uint32_t length, begin, end, slot;
JSBool hole;
CallArgs args = CallArgsFromVp(argc, vp);
RootedObject obj(cx, ToObject(cx, &args.thisv()));
if (!obj)
return false;
if (!js_GetLengthProperty(cx, obj, &length))
return JS_FALSE;
begin = 0;
end = length;
if (args.length() > 0) {
double d;
if (!ToInteger(cx, args[0], &d))
return false;
if (d < 0) {
d += length;
if (d < 0)
d = 0;
} else if (d > length) {
d = length;
}
begin = (uint32_t)d;
if (args.hasDefined(1)) {
if (!ToInteger(cx, args[1], &d))
return false;
if (d < 0) {
d += length;
if (d < 0)
d = 0;
} else if (d > length) {
d = length;
}
end = (uint32_t)d;
}
}
if (begin > end)
begin = end;
RootedObject nobj(cx);
if (obj->isDenseArray() && end <= obj->getDenseArrayInitializedLength() &&
!js_PrototypeHasIndexedProperties(cx, obj)) {
nobj = NewDenseCopiedArray(cx, end - begin, obj->getDenseArrayElements() + begin);
if (!nobj)
return JS_FALSE;
TryReuseArrayType(obj, nobj);
args.rval().setObject(*nobj);
return JS_TRUE;
}
nobj = NewDenseAllocatedArray(cx, end - begin);
if (!nobj)
return JS_FALSE;
TryReuseArrayType(obj, nobj);
RootedValue value(cx);
for (slot = begin; slot < end; slot++) {
if (!JS_CHECK_OPERATION_LIMIT(cx) ||
!GetElement(cx, obj, slot, &hole, value.address())) {
return JS_FALSE;
}
if (!hole && !SetArrayElement(cx, nobj, slot - begin, value))
return JS_FALSE;
}
args.rval().setObject(*nobj);
return JS_TRUE;
}
enum IndexOfKind {
IndexOf,
LastIndexOf
};
static JSBool
array_indexOfHelper(JSContext *cx, IndexOfKind mode, CallArgs &args)
{
uint32_t length, i, stop;
Value tosearch;
int direction;
JSBool hole;
JSObject *obj = ToObject(cx, &args.thisv());
if (!obj)
return false;
if (!js_GetLengthProperty(cx, obj, &length))
return JS_FALSE;
if (length == 0)
goto not_found;
if (args.length() <= 1) {
i = (mode == LastIndexOf) ? length - 1 : 0;
tosearch = (args.length() != 0) ? args[0] : UndefinedValue();
} else {
double start;
tosearch = args[0];
if (!ToInteger(cx, args[1], &start))
return false;
if (start < 0) {
start += length;
if (start < 0) {
if (mode == LastIndexOf)
goto not_found;
i = 0;
} else {
i = (uint32_t)start;
}
} else if (start >= length) {
if (mode == IndexOf)
goto not_found;
i = length - 1;
} else {
i = (uint32_t)start;
}
}
if (mode == LastIndexOf) {
stop = 0;
direction = -1;
} else {
stop = length - 1;
direction = 1;
}
for (;;) {
Value elt;
if (!JS_CHECK_OPERATION_LIMIT(cx) ||
!GetElement(cx, obj, (uint32_t)i, &hole, &elt)) {
return JS_FALSE;
}
if (!hole) {
bool equal;
if (!StrictlyEqual(cx, elt, tosearch, &equal))
return false;
if (equal) {
args.rval().setNumber(i);
return true;
}
}
if (i == stop)
goto not_found;
i += direction;
}
not_found:
args.rval().setInt32(-1);
return JS_TRUE;
}
static JSBool
array_indexOf(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
return array_indexOfHelper(cx, IndexOf, args);
}
static JSBool
array_lastIndexOf(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
return array_indexOfHelper(cx, LastIndexOf, args);
}
/* ECMA 15.4.4.16-15.4.4.18. */
class ArrayForEachBehavior
{
public:
static bool shouldExit(Value &callval, Value *rval) { return false; }
static Value lateExitValue() { return UndefinedValue(); }
};
class ArrayEveryBehavior
{
public:
static bool shouldExit(Value &callval, Value *rval)
{
if (!js_ValueToBoolean(callval)) {
*rval = BooleanValue(false);
return true;
}
return false;
}
static Value lateExitValue() { return BooleanValue(true); }
};
class ArraySomeBehavior
{
public:
static bool shouldExit(Value &callval, Value *rval)
{
if (js_ValueToBoolean(callval)) {
*rval = BooleanValue(true);
return true;
}
return false;
}
static Value lateExitValue() { return BooleanValue(false); }
};
template <class Behavior>
static inline bool
array_readonlyCommon(JSContext *cx, CallArgs &args)
{
/* Step 1. */
RootedObject obj(cx, ToObject(cx, &args.thisv()));
if (!obj)
return false;
/* Step 2-3. */
uint32_t len;
if (!js_GetLengthProperty(cx, obj, &len))
return false;
/* Step 4. */
if (args.length() == 0) {
js_ReportMissingArg(cx, args.calleev(), 0);
return false;
}
RootedObject callable(cx, ValueToCallable(cx, &args[0]));
if (!callable)
return false;
/* Step 5. */
Value thisv = args.length() >= 2 ? args[1] : UndefinedValue();
/* Step 6. */
uint32_t k = 0;
/* Step 7. */
InvokeArgsGuard ag;
while (k < len) {
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
/* Step a, b, and c.i. */
Value kValue;
JSBool kNotPresent;
if (!GetElement(cx, obj, k, &kNotPresent, &kValue))
return false;
/* Step c.ii-iii. */
if (!kNotPresent) {
if (!ag.pushed() && !cx->stack.pushInvokeArgs(cx, 3, &ag))
return false;
ag.setCallee(ObjectValue(*callable));
ag.thisv() = thisv;
ag[0] = kValue;
ag[1] = NumberValue(k);
ag[2] = ObjectValue(*obj);
if (!Invoke(cx, ag))
return false;
if (Behavior::shouldExit(ag.rval(), &args.rval()))
return true;
}
/* Step d. */
k++;
}
/* Step 8. */
args.rval() = Behavior::lateExitValue();
return true;
}
/* ES5 15.4.4.16. */
static JSBool
array_every(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
return array_readonlyCommon<ArrayEveryBehavior>(cx, args);
}
/* ES5 15.4.4.17. */
static JSBool
array_some(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
return array_readonlyCommon<ArraySomeBehavior>(cx, args);
}
/* ES5 15.4.4.18. */
static JSBool
array_forEach(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
return array_readonlyCommon<ArrayForEachBehavior>(cx, args);
}
/* ES5 15.4.4.19. */
static JSBool
array_map(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
/* Step 1. */
RootedObject obj(cx, ToObject(cx, &args.thisv()));
if (!obj)
return false;
/* Step 2-3. */
uint32_t len;
if (!js_GetLengthProperty(cx, obj, &len))
return false;
/* Step 4. */
if (args.length() == 0) {
js_ReportMissingArg(cx, args.calleev(), 0);
return false;
}
RootedObject callable(cx, ValueToCallable(cx, &args[0]));
if (!callable)
return false;
/* Step 5. */
Value thisv = args.length() >= 2 ? args[1] : UndefinedValue();
/* Step 6. */
RootedObject arr(cx, NewDenseAllocatedArray(cx, len));
if (!arr)
return false;
TypeObject *newtype = GetTypeCallerInitObject(cx, JSProto_Array);
if (!newtype)
return false;
arr->setType(newtype);
/* Step 7. */
uint32_t k = 0;
/* Step 8. */
InvokeArgsGuard ag;
while (k < len) {
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
/* Step a, b, and c.i. */
JSBool kNotPresent;
Value kValue;
if (!GetElement(cx, obj, k, &kNotPresent, &kValue))
return false;
/* Step c.ii-iii. */
if (!kNotPresent) {
if (!ag.pushed() && !cx->stack.pushInvokeArgs(cx, 3, &ag))
return false;
ag.setCallee(ObjectValue(*callable));
ag.thisv() = thisv;
ag[0] = kValue;
ag[1] = NumberValue(k);
ag[2] = ObjectValue(*obj);
if (!Invoke(cx, ag))
return false;
if(!SetArrayElement(cx, arr, k, ag.rval()))
return false;
}
/* Step d. */
k++;
}
/* Step 9. */
args.rval().setObject(*arr);
return true;
}
/* ES5 15.4.4.20. */
static JSBool
array_filter(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
/* Step 1. */
RootedObject obj(cx, ToObject(cx, &args.thisv()));
if (!obj)
return false;
/* Step 2-3. */
uint32_t len;
if (!js_GetLengthProperty(cx, obj, &len))
return false;
/* Step 4. */
if (args.length() == 0) {
js_ReportMissingArg(cx, args.calleev(), 0);
return false;
}
RootedObject callable(cx, ValueToCallable(cx, &args[0]));
if (!callable)
return false;
/* Step 5. */
Value thisv = args.length() >= 2 ? args[1] : UndefinedValue();
/* Step 6. */
RootedObject arr(cx, NewDenseAllocatedArray(cx, 0));
if (!arr)
return false;
TypeObject *newtype = GetTypeCallerInitObject(cx, JSProto_Array);
if (!newtype)
return false;
arr->setType(newtype);
/* Step 7. */
uint32_t k = 0;
/* Step 8. */
uint32_t to = 0;
/* Step 9. */
InvokeArgsGuard ag;
while (k < len) {
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
/* Step a, b, and c.i. */
JSBool kNotPresent;
Value kValue;
if (!GetElement(cx, obj, k, &kNotPresent, &kValue))
return false;
/* Step c.ii-iii. */
if (!kNotPresent) {
if (!ag.pushed() && !cx->stack.pushInvokeArgs(cx, 3, &ag))
return false;
ag.setCallee(ObjectValue(*callable));
ag.thisv() = thisv;
ag[0] = kValue;
ag[1] = NumberValue(k);
ag[2] = ObjectValue(*obj);
if (!Invoke(cx, ag))
return false;
if (js_ValueToBoolean(ag.rval())) {
if(!SetArrayElement(cx, arr, to, kValue))
return false;
to++;
}
}
/* Step d. */
k++;
}
/* Step 10. */
args.rval().setObject(*arr);
return true;
}
/* ES5 15.4.4.21-15.4.4.22. */
class ArrayReduceBehavior
{
public:
static void initialize(uint32_t len, uint32_t *start, uint32_t *end, int32_t *step)
{
*start = 0;
*step = 1;
*end = len;
}
};
class ArrayReduceRightBehavior
{
public:
static void initialize(uint32_t len, uint32_t *start, uint32_t *end, int32_t *step)
{
*start = len - 1;
*step = -1;
/*
* We rely on (well defined) unsigned integer underflow to check our
* end condition after visiting the full range (including 0).
*/
*end = UINT32_MAX;
}
};
template<class Behavior>
static inline bool
array_reduceCommon(JSContext *cx, CallArgs &args)
{
/* Step 1. */
JSObject *obj = ToObject(cx, &args.thisv());
if (!obj)
return false;
/* Step 2-3. */
uint32_t len;
if (!js_GetLengthProperty(cx, obj, &len))
return false;
/* Step 4. */
if (args.length() == 0) {
js_ReportMissingArg(cx, args.calleev(), 0);
return false;
}
JSObject *callable = ValueToCallable(cx, &args[0]);
if (!callable)
return false;
/* Step 5. */
if (len == 0 && args.length() < 2) {
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_EMPTY_ARRAY_REDUCE);
return false;
}
/* Step 6. */
uint32_t k, end;
int32_t step;
Behavior::initialize(len, &k, &end, &step);
/* Step 7-8. */
Value accumulator;
if (args.length() >= 2) {
accumulator = args[1];
} else {
JSBool kNotPresent = true;
while (kNotPresent && k != end) {
if (!GetElement(cx, obj, k, &kNotPresent, &accumulator))
return false;
k += step;
}
if (kNotPresent) {
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_EMPTY_ARRAY_REDUCE);
return false;
}
}
/* Step 9. */
InvokeArgsGuard ag;
while (k != end) {
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
/* Step a, b, and c.i. */
JSBool kNotPresent;
Value kValue;
if (!GetElement(cx, obj, k, &kNotPresent, &kValue))
return false;
/* Step c.ii. */
if (!kNotPresent) {
if (!ag.pushed() && !cx->stack.pushInvokeArgs(cx, 4, &ag))
return false;
ag.setCallee(ObjectValue(*callable));
ag.thisv() = UndefinedValue();
ag[0] = accumulator;
ag[1] = kValue;
ag[2] = NumberValue(k);
ag[3] = ObjectValue(*obj);
if (!Invoke(cx, ag))
return false;
accumulator = ag.rval();
}
/* Step d. */
k += step;
}
/* Step 10. */
args.rval() = accumulator;
return true;
}
/* ES5 15.4.4.21. */
static JSBool
array_reduce(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
return array_reduceCommon<ArrayReduceBehavior>(cx, args);
}
/* ES5 15.4.4.22. */
static JSBool
array_reduceRight(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
return array_reduceCommon<ArrayReduceRightBehavior>(cx, args);
}
static JSBool
array_isArray(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
bool isArray = args.length() > 0 && IsObjectWithClass(args[0], ESClass_Array, cx);
args.rval().setBoolean(isArray);
return true;
}
#define GENERIC JSFUN_GENERIC_NATIVE
static JSFunctionSpec array_methods[] = {
#if JS_HAS_TOSOURCE
JS_FN(js_toSource_str, array_toSource, 0,0),
#endif
JS_FN(js_toString_str, array_toString, 0,0),
JS_FN(js_toLocaleString_str,array_toLocaleString,0,0),
/* Perl-ish methods. */
JS_FN("join", array_join, 1,JSFUN_GENERIC_NATIVE),
JS_FN("reverse", array_reverse, 0,JSFUN_GENERIC_NATIVE),
JS_FN("sort", array_sort, 1,JSFUN_GENERIC_NATIVE),
JS_FN("push", array_push, 1,JSFUN_GENERIC_NATIVE),
JS_FN("pop", array_pop, 0,JSFUN_GENERIC_NATIVE),
JS_FN("shift", array_shift, 0,JSFUN_GENERIC_NATIVE),
JS_FN("unshift", array_unshift, 1,JSFUN_GENERIC_NATIVE),
JS_FN("splice", array_splice, 2,JSFUN_GENERIC_NATIVE),
/* Pythonic sequence methods. */
JS_FN("concat", array_concat, 1,JSFUN_GENERIC_NATIVE),
JS_FN("slice", array_slice, 2,JSFUN_GENERIC_NATIVE),
JS_FN("indexOf", array_indexOf, 1,JSFUN_GENERIC_NATIVE),
JS_FN("lastIndexOf", array_lastIndexOf, 1,JSFUN_GENERIC_NATIVE),
JS_FN("forEach", array_forEach, 1,JSFUN_GENERIC_NATIVE),
JS_FN("map", array_map, 1,JSFUN_GENERIC_NATIVE),
JS_FN("reduce", array_reduce, 1,JSFUN_GENERIC_NATIVE),
JS_FN("reduceRight", array_reduceRight, 1,JSFUN_GENERIC_NATIVE),
JS_FN("filter", array_filter, 1,JSFUN_GENERIC_NATIVE),
JS_FN("some", array_some, 1,JSFUN_GENERIC_NATIVE),
JS_FN("every", array_every, 1,JSFUN_GENERIC_NATIVE),
JS_FS_END
};
static JSFunctionSpec array_static_methods[] = {
JS_FN("isArray", array_isArray, 1,0),
JS_FS_END
};
/* ES5 15.4.2 */
JSBool
js_Array(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedTypeObject type(cx, GetTypeCallerInitObject(cx, JSProto_Array));
if (!type)
return JS_FALSE;
if (args.length() != 1 || !args[0].isNumber()) {
if (!InitArrayTypes(cx, type, args.array(), args.length()))
return false;
JSObject *obj = (args.length() == 0)
? NewDenseEmptyArray(cx)
: NewDenseCopiedArray(cx, args.length(), args.array());
if (!obj)
return false;
obj->setType(type);
args.rval().setObject(*obj);
return true;
}
uint32_t length;
if (args[0].isInt32()) {
int32_t i = args[0].toInt32();
if (i < 0) {
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_BAD_ARRAY_LENGTH);
return false;
}
length = uint32_t(i);
} else {
double d = args[0].toDouble();
length = ToUint32(d);
if (d != double(length)) {
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_BAD_ARRAY_LENGTH);
return false;
}
}
JSObject *obj = NewDenseUnallocatedArray(cx, length);
if (!obj)
return false;
obj->setType(type);
/* If the length calculation overflowed, make sure that is marked for the new type. */
if (obj->getArrayLength() > INT32_MAX)
obj->setArrayLength(cx, obj->getArrayLength());
args.rval().setObject(*obj);
return true;
}
JSObject *
js_InitArrayClass(JSContext *cx, JSObject *obj)
{
JS_ASSERT(obj->isNative());
Rooted<GlobalObject*> global(cx);
global = &obj->asGlobal();
RootedObject arrayProto(cx);
arrayProto = global->createBlankPrototype(cx, &SlowArrayClass);
if (!arrayProto || !AddLengthProperty(cx, arrayProto))
return NULL;
arrayProto->setArrayLength(cx, 0);
RootedFunction ctor(cx);
ctor = global->createConstructor(cx, js_Array, CLASS_NAME(cx, Array), 1);
if (!ctor)
return NULL;
/*
* The default 'new' type of Array.prototype is required by type inference
* to have unknown properties, to simplify handling of e.g. heterogenous
* arrays in JSON and script literals and allows setDenseArrayElement to
* be used without updating the indexed type set for such default arrays.
*/
if (!arrayProto->setNewTypeUnknown(cx))
return NULL;
if (!LinkConstructorAndPrototype(cx, ctor, arrayProto))
return NULL;
if (!DefinePropertiesAndBrand(cx, arrayProto, NULL, array_methods) ||
!DefinePropertiesAndBrand(cx, ctor, NULL, array_static_methods))
{
return NULL;
}
if (!DefineConstructorAndPrototype(cx, global, JSProto_Array, ctor, arrayProto))
return NULL;
return arrayProto;
}
/*
* Array allocation functions.
*/
namespace js {
static inline bool
EnsureNewArrayElements(JSContext *cx, JSObject *obj, uint32_t length)
{
/*
* If ensureElements creates dynamically allocated slots, then having
* fixedSlots is a waste.
*/
DebugOnly<uint32_t> cap = obj->getDenseArrayCapacity();
if (!obj->ensureElements(cx, length))
return false;
JS_ASSERT_IF(cap, !obj->hasDynamicElements());
return true;
}
template<bool allocateCapacity>
static JS_ALWAYS_INLINE JSObject *
NewArray(JSContext *cx, uint32_t length, JSObject *proto_)
{
gc::AllocKind kind = GuessArrayGCKind(length);
JS_ASSERT(CanBeFinalizedInBackground(kind, &ArrayClass));
kind = GetBackgroundAllocKind(kind);
GlobalObject *parent_ = GetCurrentGlobal(cx);
NewObjectCache &cache = cx->runtime->newObjectCache;
NewObjectCache::EntryIndex entry = -1;
if (cache.lookupGlobal(&ArrayClass, parent_, kind, &entry)) {
JSObject *obj = cache.newObjectFromHit(cx, entry);
if (!obj)
return NULL;
/* Fixup the elements pointer and length, which may be incorrect. */
obj->setFixedElements();
obj->setArrayLength(cx, length);
if (allocateCapacity && !EnsureNewArrayElements(cx, obj, length))
return NULL;
return obj;
}
Rooted<GlobalObject*> parent(cx, parent_);
if (!proto_ && !FindProto(cx, &ArrayClass, parent, &proto_))
return NULL;
RootedObject proto(cx, proto_);
RootedTypeObject type(cx);
type = proto->getNewType(cx);
if (!type)
return NULL;
/*
* Get a shape with zero fixed slots, regardless of the size class.
* See JSObject::createDenseArray.
*/
RootedShape shape(cx);
shape = EmptyShape::getInitialShape(cx, &ArrayClass, proto,
parent, gc::FINALIZE_OBJECT0);
if (!shape)
return NULL;
JSObject* obj = JSObject::createDenseArray(cx, kind, shape, type, length);
if (!obj)
return NULL;
if (entry != -1)
cache.fillGlobal(entry, &ArrayClass, parent, kind, obj);
if (allocateCapacity && !EnsureNewArrayElements(cx, obj, length))
return NULL;
Probes::createObject(cx, obj);
return obj;
}
JSObject * JS_FASTCALL
NewDenseEmptyArray(JSContext *cx, JSObject *proto)
{
return NewArray<false>(cx, 0, proto);
}
JSObject * JS_FASTCALL
NewDenseAllocatedArray(JSContext *cx, uint32_t length, JSObject *proto)
{
return NewArray<true>(cx, length, proto);
}
JSObject * JS_FASTCALL
NewDenseAllocatedEmptyArray(JSContext *cx, uint32_t length, JSObject *proto)
{
return NewArray<true>(cx, length, proto);
}
JSObject * JS_FASTCALL
NewDenseUnallocatedArray(JSContext *cx, uint32_t length, JSObject *proto)
{
return NewArray<false>(cx, length, proto);
}
#ifdef JS_METHODJIT
JSObject * JS_FASTCALL
mjit::stubs::NewDenseUnallocatedArray(VMFrame &f, uint32_t length)
{
JSObject *proto = (JSObject *) f.scratch;
JSObject *obj = NewArray<false>(f.cx, length, proto);
if (!obj)
THROWV(NULL);
return obj;
}
#endif
JSObject *
NewDenseCopiedArray(JSContext *cx, uint32_t length, const Value *vp, JSObject *proto /* = NULL */)
{
// XXX vp may be an internal pointer to an object's dense array elements.
SkipRoot skip(cx, &vp);
JSObject* obj = NewArray<true>(cx, length, proto);
if (!obj)
return NULL;
JS_ASSERT(obj->getDenseArrayCapacity() >= length);
obj->setDenseArrayInitializedLength(vp ? length : 0);
if (vp)
obj->initDenseArrayElements(0, vp, length);
return obj;
}
JSObject *
NewSlowEmptyArray(JSContext *cx)
{
RootedObject obj(cx, NewBuiltinClassInstance(cx, &SlowArrayClass));
if (!obj || !AddLengthProperty(cx, obj))
return NULL;
obj->setArrayLength(cx, 0);
return obj;
}
}
#ifdef DEBUG
JSBool
js_ArrayInfo(JSContext *cx, unsigned argc, jsval *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
JSObject *array;
for (unsigned i = 0; i < args.length(); i++) {
Value arg = args[i];
char *bytes = DecompileValueGenerator(cx, JSDVG_SEARCH_STACK, arg, NULL);
if (!bytes)
return JS_FALSE;
if (arg.isPrimitive() ||
!(array = arg.toObjectOrNull())->isArray()) {
fprintf(stderr, "%s: not array\n", bytes);
cx->free_(bytes);
continue;
}
fprintf(stderr, "%s: %s (len %u", bytes,
array->isDenseArray() ? "dense" : "sparse",
array->getArrayLength());
if (array->isDenseArray()) {
fprintf(stderr, ", capacity %u",
array->getDenseArrayCapacity());
}
fputs(")\n", stderr);
cx->free_(bytes);
}
args.rval().setUndefined();
return true;
}
#endif