gecko/xpcom/ds/TimeStamp_windows.cpp

553 lines
16 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// Implement TimeStamp::Now() with QueryPerformanceCounter() controlled with
// values of GetTickCount().
// XXX Forcing log to be able to catch issues in the field. Should be removed
// before this reaches the Release or even Beta channel.
#define FORCE_PR_LOG
#include "mozilla/TimeStamp.h"
#include "mozilla/Mutex.h"
#include <windows.h>
#include "prlog.h"
#include <stdio.h>
#include <cstdlib> // for std::abs(int/long)
#include <intrin.h>
#if defined(PR_LOGGING)
// Log module for mozilla::TimeStamp for Windows logging...
//
// To enable logging (see prlog.h for full details):
//
// set NSPR_LOG_MODULES=TimeStampWindows:5
// set NSPR_LOG_FILE=nspr.log
//
// this enables PR_LOG_DEBUG level information and places all output in
// the file nspr.log
static PRLogModuleInfo*
GetTimeStampLog()
{
static PRLogModuleInfo *sLog;
if (!sLog)
sLog = PR_NewLogModule("TimeStampWindows");
return sLog;
}
#define LOG(x) PR_LOG(GetTimeStampLog(), PR_LOG_DEBUG, x)
#else
#define LOG(x)
#endif /* PR_LOGGING */
// Estimate of the smallest duration of time we can measure.
static volatile ULONGLONG sResolution;
static volatile ULONGLONG sResolutionSigDigs;
static const double kNsPerSecd = 1000000000.0;
static const LONGLONG kNsPerSec = 1000000000;
static const LONGLONG kNsPerMillisec = 1000000;
// ----------------------------------------------------------------------------
// Global constants
// ----------------------------------------------------------------------------
// If QPC is found faulty for two stamps in this interval, we disable it
// completely.
//
// Values is in [ms].
static const uint32_t kQPCHardFailureDetectionInterval = 2000;
// On every use of QPC values we check the overflow of skew difference of the
// two stamps doesn't go over this number of milliseconds. Both timer
// functions jitter so we have to have some limit. The value is based on tests.
//
// Changing kQPCHardFailureDetectionInterval influences this limit: prolonging
// just kQPCHardFailureDetectionInterval means to be more sensitive to threshold
// overflows.
//
// How this constant is used (see CheckQPC function):
// First, adjust the limit linearly to the check interval:
// LIMIT = (GTC_now - GTC_epoch) / kQPCHardFailureDetectionInterval
// Then, check the skew difference overflow is in this adjusted limit:
// ABS( (QPC_now - GTC_now) - (QPC_epoch - GTC_epoch) ) - THRESHOLD < LIMIT
//
// Thresholds are calculated dynamically, see sUnderrunThreshold and
// sOverrunThreshold below.
//
// Limit is in number of [ms].
static const ULONGLONG kOverflowLimit = 50;
// If we are not able to get the value of GTC time increment, use this value
// which is the most usual increment.
static const DWORD kDefaultTimeIncrement = 156001;
// ----------------------------------------------------------------------------
// Global variables, not changing at runtime
// ----------------------------------------------------------------------------
/**
* The [mt] unit:
*
* Many values are kept in ticks of the Performance Coutner x 1000,
* further just referred as [mt], meaning milli-ticks.
*
* This is needed to preserve maximum precision of the performance frequency
* representation. GetTickCount values in milliseconds are multiplied with
* frequency per second. Therefor we need to multiply QPC value by 1000 to
* have the same units to allow simple arithmentic with both QPC and GTC.
*/
#define ms2mt(x) ((x) * sFrequencyPerSec)
#define mt2ms(x) ((x) / sFrequencyPerSec)
#define mt2ms_f(x) (double(x) / sFrequencyPerSec)
// Result of QueryPerformanceFrequency
static LONGLONG sFrequencyPerSec = 0;
// Lower and upper bound that QueryPerformanceCounter - GetTickCount must not
// go under or over when compared to any older QPC - GTC difference (skew).
// Values are based on the GetTickCount update interval.
//
// Schematically, QPC works correctly if ((QPC_now - GTC_now) -
// (QPC_epoch - GTC_epoch)) is in [sUnderrunThreshold, sOverrunThreshold]
// interval every time we compare two time stamps.
//
// Kept in [mt]
static LONGLONG sUnderrunThreshold;
static LONGLONG sOverrunThreshold;
// Interval to return duration using QPC. When two time stamps
// are within this interval, perform QPC check first.
//
// Kept in [mt]
static LONGLONG sQPCHardFailureDetectionInterval;
// Flag for stable TSC that indicates platform where QPC is stable.
static bool sHasStableTSC = false;
// ----------------------------------------------------------------------------
// Global state variables, changing at runtime
// ----------------------------------------------------------------------------
// Initially true, set to false when QPC is found unstable and never
// returns back to true since that time.
static bool volatile sUseQPC = true;
// ----------------------------------------------------------------------------
// Global lock
// ----------------------------------------------------------------------------
// Thread spin count before entering the full wait state for sTimeStampLock.
// Inspired by Rob Arnold's work on PRMJ_Now().
static const DWORD kLockSpinCount = 4096;
// Common mutex (thanks the relative complexity of the logic, this is better
// then using CMPXCHG8B.)
// It is protecting the globals bellow.
static CRITICAL_SECTION sTimeStampLock;
// Used only when GetTickCount64 is not available on the platform.
// Last result of GetTickCount call.
//
// Kept in [ms]
static DWORD sLastGTCResult = 0;
// Higher part of the 64-bit value of MozGetTickCount64,
// incremented atomically.
static DWORD sLastGTCRollover = 0;
namespace mozilla {
typedef ULONGLONG (WINAPI* GetTickCount64_t)();
static GetTickCount64_t sGetTickCount64 = nullptr;
// ----------------------------------------------------------------------------
// Critical Section helper class
// ----------------------------------------------------------------------------
class AutoCriticalSection
{
public:
AutoCriticalSection(LPCRITICAL_SECTION section)
: mSection(section)
{
::EnterCriticalSection(mSection);
}
~AutoCriticalSection()
{
::LeaveCriticalSection(mSection);
}
private:
LPCRITICAL_SECTION mSection;
};
// Function protecting GetTickCount result from rolling over,
// result is in [ms]
static ULONGLONG WINAPI
MozGetTickCount64()
{
DWORD GTC = ::GetTickCount();
// Cheaper then CMPXCHG8B
AutoCriticalSection lock(&sTimeStampLock);
// Pull the rollover counter forward only if new value of GTC goes way
// down under the last saved result
if ((sLastGTCResult > GTC) && ((sLastGTCResult - GTC) > (1UL << 30)))
++sLastGTCRollover;
sLastGTCResult = GTC;
return ULONGLONG(sLastGTCRollover) << 32 | sLastGTCResult;
}
// Result is in [mt]
static inline ULONGLONG
PerformanceCounter()
{
LARGE_INTEGER pc;
::QueryPerformanceCounter(&pc);
return pc.QuadPart * 1000ULL;
}
static void
InitThresholds()
{
DWORD timeAdjustment = 0, timeIncrement = 0;
BOOL timeAdjustmentDisabled;
GetSystemTimeAdjustment(&timeAdjustment,
&timeIncrement,
&timeAdjustmentDisabled);
LOG(("TimeStamp: timeIncrement=%d [100ns]", timeIncrement));
if (!timeIncrement)
timeIncrement = kDefaultTimeIncrement;
// Ceiling to a millisecond
// Example values: 156001, 210000
DWORD timeIncrementCeil = timeIncrement;
// Don't want to round up if already rounded, values will be: 156000, 209999
timeIncrementCeil -= 1;
// Convert to ms, values will be: 15, 20
timeIncrementCeil /= 10000;
// Round up, values will be: 16, 21
timeIncrementCeil += 1;
// Convert back to 100ns, values will be: 160000, 210000
timeIncrementCeil *= 10000;
// How many milli-ticks has the interval
LONGLONG ticksPerGetTickCountResolution =
(int64_t(timeIncrement) * sFrequencyPerSec) / 10000LL;
// How many milli-ticks has the interval rounded up
LONGLONG ticksPerGetTickCountResolutionCeiling =
(int64_t(timeIncrementCeil) * sFrequencyPerSec) / 10000LL;
// I observed differences about 2 times of the GTC resolution. GTC may
// jump by 32 ms in two steps, therefor use the ceiling value.
// Having 64 (15.6 or 16 * 4 exactly) is used to avoid false negatives
// for very short times where QPC and GTC may jitter even more.
sUnderrunThreshold =
LONGLONG((-4) * ticksPerGetTickCountResolutionCeiling);
// QPC should go no further than 2 * GTC resolution.
sOverrunThreshold =
LONGLONG((+4) * ticksPerGetTickCountResolution);
sQPCHardFailureDetectionInterval =
LONGLONG(kQPCHardFailureDetectionInterval) * sFrequencyPerSec;
}
static void
InitResolution()
{
// 10 total trials is arbitrary: what we're trying to avoid by
// looping is getting unlucky and being interrupted by a context
// switch or signal, or being bitten by paging/cache effects
ULONGLONG minres = ~0ULL;
int loops = 10;
do {
ULONGLONG start = PerformanceCounter();
ULONGLONG end = PerformanceCounter();
ULONGLONG candidate = (end - start);
if (candidate < minres)
minres = candidate;
} while (--loops && minres);
if (0 == minres) {
minres = 1;
}
// Converting minres that is in [mt] to nanosecods, multiplicating
// the argument to preserve resolution.
ULONGLONG result = mt2ms(minres * kNsPerMillisec);
if (0 == result) {
result = 1;
}
sResolution = result;
// find the number of significant digits in mResolution, for the
// sake of ToSecondsSigDigits()
ULONGLONG sigDigs;
for (sigDigs = 1;
!(sigDigs == result
|| 10*sigDigs > result);
sigDigs *= 10);
sResolutionSigDigs = sigDigs;
}
// ----------------------------------------------------------------------------
// TimeStampValue implementation
// ----------------------------------------------------------------------------
TimeStampValue::TimeStampValue(_SomethingVeryRandomHere* nullValue)
: mGTC(0)
, mQPC(0)
, mHasQPC(false)
, mIsNull(true)
{
MOZ_ASSERT(!nullValue);
}
TimeStampValue::TimeStampValue(ULONGLONG aGTC, ULONGLONG aQPC, bool aHasQPC)
: mGTC(aGTC)
, mQPC(aQPC)
, mHasQPC(aHasQPC)
, mIsNull(false)
{
}
TimeStampValue&
TimeStampValue::operator+=(const int64_t aOther)
{
mGTC += aOther;
mQPC += aOther;
return *this;
}
TimeStampValue&
TimeStampValue::operator-=(const int64_t aOther)
{
mGTC -= aOther;
mQPC -= aOther;
return *this;
}
// If the duration is less then one second, perform check of QPC stability
// by comparing both 'epoch' and 'now' skew (=GTC - QPC) values.
bool
TimeStampValue::CheckQPC(int64_t aDuration, const TimeStampValue &aOther) const
{
if (!mHasQPC || !aOther.mHasQPC) // Not both holding QPC
return false;
if (sHasStableTSC) // For stable TSC there is no need to check
return true;
if (!sUseQPC) // QPC globally disabled
return false;
// Treat absolutely for calibration purposes
aDuration = std::abs(aDuration);
// Check QPC is sane before using it.
LONGLONG skew1 = mGTC - mQPC;
LONGLONG skew2 = aOther.mGTC - aOther.mQPC;
LONGLONG diff = skew1 - skew2;
LONGLONG overflow;
if (diff < sUnderrunThreshold)
overflow = sUnderrunThreshold - diff;
else if (diff > sOverrunThreshold)
overflow = diff - sOverrunThreshold;
else
return true;
ULONGLONG trend;
if (aDuration)
trend = LONGLONG(overflow * (double(sQPCHardFailureDetectionInterval) / aDuration));
else
trend = overflow;
LOG(("TimeStamp: QPC check after %llums with overflow %1.4fms"
", adjusted trend per interval is %1.4fms",
mt2ms(aDuration),
mt2ms_f(overflow),
mt2ms_f(trend)));
if (trend <= ms2mt(kOverflowLimit)) {
// We are in the limit, let go.
return true;
}
// QPC deviates, don't use it.
LOG(("TimeStamp: QPC found highly jittering"));
if (aDuration < sQPCHardFailureDetectionInterval) {
// Interval between the two time stamps is very short, consider
// QPC as unstable and disable it completely.
sUseQPC = false;
LOG(("TimeStamp: QPC disabled"));
}
return false;
}
uint64_t
TimeStampValue::operator-(const TimeStampValue &aOther) const
{
if (mIsNull && aOther.mIsNull)
return uint64_t(0);
if (CheckQPC(int64_t(mGTC - aOther.mGTC), aOther))
return mQPC - aOther.mQPC;
return mGTC - aOther.mGTC;
}
// ----------------------------------------------------------------------------
// TimeDuration and TimeStamp implementation
// ----------------------------------------------------------------------------
double
TimeDuration::ToSeconds() const
{
// Converting before arithmetic avoids blocked store forward
return double(mValue) / (double(sFrequencyPerSec) * 1000.0);
}
double
TimeDuration::ToSecondsSigDigits() const
{
// don't report a value < mResolution ...
LONGLONG resolution = sResolution;
LONGLONG resolutionSigDigs = sResolutionSigDigs;
LONGLONG valueSigDigs = resolution * (mValue / resolution);
// and chop off insignificant digits
valueSigDigs = resolutionSigDigs * (valueSigDigs / resolutionSigDigs);
return double(valueSigDigs) / kNsPerSecd;
}
TimeDuration
TimeDuration::FromMilliseconds(double aMilliseconds)
{
return TimeDuration::FromTicks(int64_t(ms2mt(aMilliseconds)));
}
TimeDuration
TimeDuration::Resolution()
{
return TimeDuration::FromTicks(int64_t(sResolution));
}
struct TimeStampInitialization
{
TimeStampInitialization() {
TimeStamp::Startup();
}
~TimeStampInitialization() {
TimeStamp::Shutdown();
}
};
static TimeStampInitialization initOnce;
static bool
HasStableTSC()
{
union {
int regs[4];
struct {
int nIds;
char cpuString[12];
};
} cpuInfo;
__cpuid(cpuInfo.regs, 0);
// Only allow Intel CPUs for now
// The order of the registers is reg[1], reg[3], reg[2]. We just adjust the
// string so that we can compare in one go.
if (_strnicmp(cpuInfo.cpuString, "GenuntelineI", sizeof(cpuInfo.cpuString)))
return false;
int regs[4];
// detect if the Advanced Power Management feature is supported
__cpuid(regs, 0x80000000);
if (regs[0] < 0x80000007)
return false;
__cpuid(regs, 0x80000007);
// if bit 8 is set than TSC will run at a constant rate
// in all ACPI P-state, C-states and T-states
return regs[3] & (1 << 8);
}
nsresult
TimeStamp::Startup()
{
// Decide which implementation to use for the high-performance timer.
HMODULE kernelDLL = GetModuleHandleW(L"kernel32.dll");
sGetTickCount64 = reinterpret_cast<GetTickCount64_t>
(GetProcAddress(kernelDLL, "GetTickCount64"));
if (!sGetTickCount64) {
// If the platform does not support the GetTickCount64 (Windows XP doesn't),
// then use our fallback implementation based on GetTickCount.
sGetTickCount64 = MozGetTickCount64;
}
InitializeCriticalSectionAndSpinCount(&sTimeStampLock, kLockSpinCount);
sHasStableTSC = HasStableTSC();
LOG(("TimeStamp: HasStableTSC=%d", sHasStableTSC));
LARGE_INTEGER freq;
sUseQPC = ::QueryPerformanceFrequency(&freq);
if (!sUseQPC) {
// No Performance Counter. Fall back to use GetTickCount.
InitResolution();
LOG(("TimeStamp: using GetTickCount"));
return NS_OK;
}
sFrequencyPerSec = freq.QuadPart;
LOG(("TimeStamp: QPC frequency=%llu", sFrequencyPerSec));
InitThresholds();
InitResolution();
return NS_OK;
}
void
TimeStamp::Shutdown()
{
DeleteCriticalSection(&sTimeStampLock);
}
TimeStamp
TimeStamp::Now(bool aHighResolution)
{
// sUseQPC is volatile
bool useQPC = (aHighResolution && sUseQPC);
// Both values are in [mt] units.
ULONGLONG QPC = useQPC ? PerformanceCounter() : uint64_t(0);
ULONGLONG GTC = ms2mt(sGetTickCount64());
return TimeStamp(TimeStampValue(GTC, QPC, useQPC));
}
} // namespace mozilla