gecko/dom/system/gonk/ril_worker.js

5010 lines
154 KiB
JavaScript

/* Copyright 2012 Mozilla Foundation and Mozilla contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* This file implements the RIL worker thread. It communicates with
* the main thread to provide a high-level API to the phone's RIL
* stack, and with the RIL IPC thread to communicate with the RIL
* device itself. These communication channels use message events as
* known from Web Workers:
*
* - postMessage()/"message" events for main thread communication
*
* - postRILMessage()/"RILMessageEvent" events for RIL IPC thread
* communication.
*
* The two main objects in this file represent individual parts of this
* communication chain:
*
* - RILMessageEvent -> Buf -> RIL -> postMessage() -> nsIRadioInterfaceLayer
* - nsIRadioInterfaceLayer -> postMessage() -> RIL -> Buf -> postRILMessage()
*
* Note: The code below is purposely lean on abstractions to be as lean in
* terms of object allocations. As a result, it may look more like C than
* JavaScript, and that's intended.
*/
"use strict";
importScripts("ril_consts.js", "systemlibs.js");
// set to true in ril_consts.js to see debug messages
let DEBUG = DEBUG_WORKER;
const INT32_MAX = 2147483647;
const UINT8_SIZE = 1;
const UINT16_SIZE = 2;
const UINT32_SIZE = 4;
const PARCEL_SIZE_SIZE = UINT32_SIZE;
const PDU_HEX_OCTET_SIZE = 4;
const DEFAULT_EMERGENCY_NUMBERS = ["112", "911"];
let RILQUIRKS_CALLSTATE_EXTRA_UINT32 = false;
let RILQUIRKS_DATACALLSTATE_DOWN_IS_UP = false;
// This flag defaults to true since on RIL v6 and later, we get the
// version number via the UNSOLICITED_RIL_CONNECTED parcel.
let RILQUIRKS_V5_LEGACY = true;
let RILQUIRKS_REQUEST_USE_DIAL_EMERGENCY_CALL = false;
let RILQUIRKS_MODEM_DEFAULTS_TO_EMERGENCY_MODE = false;
let RILQUIRKS_SIM_APP_STATE_EXTRA_FIELDS = false;
/**
* This object contains helpers buffering incoming data & deconstructing it
* into parcels as well as buffering outgoing data & constructing parcels.
* For that it maintains two buffers and corresponding uint8 views, indexes.
*
* The incoming buffer is a circular buffer where we store incoming data.
* As soon as a complete parcel is received, it is processed right away, so
* the buffer only needs to be large enough to hold one parcel.
*
* The outgoing buffer is to prepare outgoing parcels. The index is reset
* every time a parcel is sent.
*/
let Buf = {
INCOMING_BUFFER_LENGTH: 1024,
OUTGOING_BUFFER_LENGTH: 1024,
init: function init() {
this.incomingBuffer = new ArrayBuffer(this.INCOMING_BUFFER_LENGTH);
this.outgoingBuffer = new ArrayBuffer(this.OUTGOING_BUFFER_LENGTH);
this.incomingBytes = new Uint8Array(this.incomingBuffer);
this.outgoingBytes = new Uint8Array(this.outgoingBuffer);
// Track where incoming data is read from and written to.
this.incomingWriteIndex = 0;
this.incomingReadIndex = 0;
// Leave room for the parcel size for outgoing parcels.
this.outgoingIndex = PARCEL_SIZE_SIZE;
// How many bytes we've read for this parcel so far.
this.readIncoming = 0;
// How many bytes available as parcel data.
this.readAvailable = 0;
// Size of the incoming parcel. If this is zero, we're expecting a new
// parcel.
this.currentParcelSize = 0;
// This gets incremented each time we send out a parcel.
this.token = 1;
// Maps tokens we send out with requests to the request type, so that
// when we get a response parcel back, we know what request it was for.
this.tokenRequestMap = {};
// This is the token of last solicited response.
this.lastSolicitedToken = 0;
},
/**
* Grow the incoming buffer.
*
* @param min_size
* Minimum new size. The actual new size will be the the smallest
* power of 2 that's larger than this number.
*/
growIncomingBuffer: function growIncomingBuffer(min_size) {
if (DEBUG) {
debug("Current buffer of " + this.INCOMING_BUFFER_LENGTH +
" can't handle incoming " + min_size + " bytes.");
}
let oldBytes = this.incomingBytes;
this.INCOMING_BUFFER_LENGTH =
2 << Math.floor(Math.log(min_size)/Math.log(2));
if (DEBUG) debug("New incoming buffer size: " + this.INCOMING_BUFFER_LENGTH);
this.incomingBuffer = new ArrayBuffer(this.INCOMING_BUFFER_LENGTH);
this.incomingBytes = new Uint8Array(this.incomingBuffer);
if (this.incomingReadIndex <= this.incomingWriteIndex) {
// Read and write index are in natural order, so we can just copy
// the old buffer over to the bigger one without having to worry
// about the indexes.
this.incomingBytes.set(oldBytes, 0);
} else {
// The write index has wrapped around but the read index hasn't yet.
// Write whatever the read index has left to read until it would
// circle around to the beginning of the new buffer, and the rest
// behind that.
let head = oldBytes.subarray(this.incomingReadIndex);
let tail = oldBytes.subarray(0, this.incomingReadIndex);
this.incomingBytes.set(head, 0);
this.incomingBytes.set(tail, head.length);
this.incomingReadIndex = 0;
this.incomingWriteIndex += head.length;
}
if (DEBUG) {
debug("New incoming buffer size is " + this.INCOMING_BUFFER_LENGTH);
}
},
/**
* Grow the outgoing buffer.
*
* @param min_size
* Minimum new size. The actual new size will be the the smallest
* power of 2 that's larger than this number.
*/
growOutgoingBuffer: function growOutgoingBuffer(min_size) {
if (DEBUG) {
debug("Current buffer of " + this.OUTGOING_BUFFER_LENGTH +
" is too small.");
}
let oldBytes = this.outgoingBytes;
this.OUTGOING_BUFFER_LENGTH =
2 << Math.floor(Math.log(min_size)/Math.log(2));
this.outgoingBuffer = new ArrayBuffer(this.OUTGOING_BUFFER_LENGTH);
this.outgoingBytes = new Uint8Array(this.outgoingBuffer);
this.outgoingBytes.set(oldBytes, 0);
if (DEBUG) {
debug("New outgoing buffer size is " + this.OUTGOING_BUFFER_LENGTH);
}
},
/**
* Functions for reading data from the incoming buffer.
*
* These are all little endian, apart from readParcelSize();
*/
/**
* Ensure position specified is readable.
*
* @param index
* Data position in incoming parcel, valid from 0 to
* this.currentParcelSize.
*/
ensureIncomingAvailable: function ensureIncomingAvailable(index) {
if (index >= this.currentParcelSize) {
throw new Error("Trying to read data beyond the parcel end!");
} else if (index < 0) {
throw new Error("Trying to read data before the parcel begin!");
}
},
/**
* Seek in current incoming parcel.
*
* @param offset
* Seek offset in relative to current position.
*/
seekIncoming: function seekIncoming(offset) {
// Translate to 0..currentParcelSize
let cur = this.currentParcelSize - this.readAvailable;
let newIndex = cur + offset;
this.ensureIncomingAvailable(newIndex);
// ... incomingReadIndex -->|
// 0 new cur currentParcelSize
// |================|=======|===================|
// |<-- cur -->|<- readAvailable ->|
// |<-- newIndex -->|<-- new readAvailable -->|
this.readAvailable = this.currentParcelSize - newIndex;
// Translate back:
if (this.incomingReadIndex < cur) {
// The incomingReadIndex is wrapped.
newIndex += this.INCOMING_BUFFER_LENGTH;
}
newIndex += (this.incomingReadIndex - cur);
newIndex %= this.INCOMING_BUFFER_LENGTH;
this.incomingReadIndex = newIndex;
},
readUint8Unchecked: function readUint8Unchecked() {
let value = this.incomingBytes[this.incomingReadIndex];
this.incomingReadIndex = (this.incomingReadIndex + 1) %
this.INCOMING_BUFFER_LENGTH;
return value;
},
readUint8: function readUint8() {
// Translate to 0..currentParcelSize
let cur = this.currentParcelSize - this.readAvailable;
this.ensureIncomingAvailable(cur);
this.readAvailable--;
return this.readUint8Unchecked();
},
readUint16: function readUint16() {
return this.readUint8() | this.readUint8() << 8;
},
readUint32: function readUint32() {
return this.readUint8() | this.readUint8() << 8 |
this.readUint8() << 16 | this.readUint8() << 24;
},
readUint32List: function readUint32List() {
let length = this.readUint32();
let ints = [];
for (let i = 0; i < length; i++) {
ints.push(this.readUint32());
}
return ints;
},
readString: function readString() {
let string_len = this.readUint32();
if (string_len < 0 || string_len >= INT32_MAX) {
return null;
}
let s = "";
for (let i = 0; i < string_len; i++) {
s += String.fromCharCode(this.readUint16());
}
// Strings are \0\0 delimited, but that isn't part of the length. And
// if the string length is even, the delimiter is two characters wide.
// It's insane, I know.
this.readStringDelimiter(string_len);
return s;
},
readStringList: function readStringList() {
let num_strings = this.readUint32();
let strings = [];
for (let i = 0; i < num_strings; i++) {
strings.push(this.readString());
}
return strings;
},
readStringDelimiter: function readStringDelimiter(length) {
let delimiter = this.readUint16();
if (!(length & 1)) {
delimiter |= this.readUint16();
}
if (DEBUG) {
if (delimiter != 0) {
debug("Something's wrong, found string delimiter: " + delimiter);
}
}
},
readParcelSize: function readParcelSize() {
return this.readUint8Unchecked() << 24 |
this.readUint8Unchecked() << 16 |
this.readUint8Unchecked() << 8 |
this.readUint8Unchecked();
},
/**
* Functions for writing data to the outgoing buffer.
*/
writeUint8: function writeUint8(value) {
if (this.outgoingIndex >= this.OUTGOING_BUFFER_LENGTH) {
this.growOutgoingBuffer(this.outgoingIndex + 1);
}
this.outgoingBytes[this.outgoingIndex] = value;
this.outgoingIndex++;
},
writeUint16: function writeUint16(value) {
this.writeUint8(value & 0xff);
this.writeUint8((value >> 8) & 0xff);
},
writeUint32: function writeUint32(value) {
this.writeUint8(value & 0xff);
this.writeUint8((value >> 8) & 0xff);
this.writeUint8((value >> 16) & 0xff);
this.writeUint8((value >> 24) & 0xff);
},
writeString: function writeString(value) {
if (value == null) {
this.writeUint32(-1);
return;
}
this.writeUint32(value.length);
for (let i = 0; i < value.length; i++) {
this.writeUint16(value.charCodeAt(i));
}
// Strings are \0\0 delimited, but that isn't part of the length. And
// if the string length is even, the delimiter is two characters wide.
// It's insane, I know.
this.writeStringDelimiter(value.length);
},
writeStringList: function writeStringList(strings) {
this.writeUint32(strings.length);
for (let i = 0; i < strings.length; i++) {
this.writeString(strings[i]);
}
},
writeStringDelimiter: function writeStringDelimiter(length) {
this.writeUint16(0);
if (!(length & 1)) {
this.writeUint16(0);
}
},
writeParcelSize: function writeParcelSize(value) {
/**
* Parcel size will always be the first thing in the parcel byte
* array, but the last thing written. Store the current index off
* to a temporary to be reset after we write the size.
*/
let currentIndex = this.outgoingIndex;
this.outgoingIndex = 0;
this.writeUint8((value >> 24) & 0xff);
this.writeUint8((value >> 16) & 0xff);
this.writeUint8((value >> 8) & 0xff);
this.writeUint8(value & 0xff);
this.outgoingIndex = currentIndex;
},
/**
* Parcel management
*/
/**
* Write incoming data to the circular buffer.
*
* @param incoming
* Uint8Array containing the incoming data.
*/
writeToIncoming: function writeToIncoming(incoming) {
// We don't have to worry about the head catching the tail since
// we process any backlog in parcels immediately, before writing
// new data to the buffer. So the only edge case we need to handle
// is when the incoming data is larger than the buffer size.
if (incoming.length > this.INCOMING_BUFFER_LENGTH) {
this.growIncomingBuffer(incoming.length);
}
// We can let the typed arrays do the copying if the incoming data won't
// wrap around the edges of the circular buffer.
let remaining = this.INCOMING_BUFFER_LENGTH - this.incomingWriteIndex;
if (remaining >= incoming.length) {
this.incomingBytes.set(incoming, this.incomingWriteIndex);
} else {
// The incoming data would wrap around it.
let head = incoming.subarray(0, remaining);
let tail = incoming.subarray(remaining);
this.incomingBytes.set(head, this.incomingWriteIndex);
this.incomingBytes.set(tail, 0);
}
this.incomingWriteIndex = (this.incomingWriteIndex + incoming.length) %
this.INCOMING_BUFFER_LENGTH;
},
/**
* Process incoming data.
*
* @param incoming
* Uint8Array containing the incoming data.
*/
processIncoming: function processIncoming(incoming) {
if (DEBUG) {
debug("Received " + incoming.length + " bytes.");
debug("Already read " + this.readIncoming);
}
this.writeToIncoming(incoming);
this.readIncoming += incoming.length;
while (true) {
if (!this.currentParcelSize) {
// We're expecting a new parcel.
if (this.readIncoming < PARCEL_SIZE_SIZE) {
// We don't know how big the next parcel is going to be, need more
// data.
if (DEBUG) debug("Next parcel size unknown, going to sleep.");
return;
}
this.currentParcelSize = this.readParcelSize();
if (DEBUG) debug("New incoming parcel of size " +
this.currentParcelSize);
// The size itself is not included in the size.
this.readIncoming -= PARCEL_SIZE_SIZE;
}
if (this.readIncoming < this.currentParcelSize) {
// We haven't read enough yet in order to be able to process a parcel.
if (DEBUG) debug("Read " + this.readIncoming + ", but parcel size is "
+ this.currentParcelSize + ". Going to sleep.");
return;
}
// Alright, we have enough data to process at least one whole parcel.
// Let's do that.
let expectedAfterIndex = (this.incomingReadIndex + this.currentParcelSize)
% this.INCOMING_BUFFER_LENGTH;
if (DEBUG) {
let parcel;
if (expectedAfterIndex < this.incomingReadIndex) {
let head = this.incomingBytes.subarray(this.incomingReadIndex);
let tail = this.incomingBytes.subarray(0, expectedAfterIndex);
parcel = Array.slice(head).concat(Array.slice(tail));
} else {
parcel = Array.slice(this.incomingBytes.subarray(
this.incomingReadIndex, expectedAfterIndex));
}
debug("Parcel (size " + this.currentParcelSize + "): " + parcel);
}
if (DEBUG) debug("We have at least one complete parcel.");
try {
this.readAvailable = this.currentParcelSize;
this.processParcel();
} catch (ex) {
if (DEBUG) debug("Parcel handling threw " + ex + "\n" + ex.stack);
}
// Ensure that the whole parcel was consumed.
if (this.incomingReadIndex != expectedAfterIndex) {
if (DEBUG) {
debug("Parcel handler didn't consume whole parcel, " +
Math.abs(expectedAfterIndex - this.incomingReadIndex) +
" bytes left over");
}
this.incomingReadIndex = expectedAfterIndex;
}
this.readIncoming -= this.currentParcelSize;
this.readAvailable = 0;
this.currentParcelSize = 0;
}
},
/**
* Process one parcel.
*/
processParcel: function processParcel() {
let response_type = this.readUint32();
let request_type, options;
if (response_type == RESPONSE_TYPE_SOLICITED) {
let token = this.readUint32();
let error = this.readUint32();
options = this.tokenRequestMap[token];
delete this.tokenRequestMap[token];
request_type = options.rilRequestType;
options.rilRequestError = error;
if (DEBUG) {
debug("Solicited response for request type " + request_type +
", token " + token + ", error " + error);
}
} else if (response_type == RESPONSE_TYPE_UNSOLICITED) {
request_type = this.readUint32();
if (DEBUG) debug("Unsolicited response for request type " + request_type);
} else {
if (DEBUG) debug("Unknown response type: " + response_type);
return;
}
RIL.handleParcel(request_type, this.readAvailable, options);
},
/**
* Start a new outgoing parcel.
*
* @param type
* Integer specifying the request type.
* @param options [optional]
* Object containing information about the request, e.g. the
* original main thread message object that led to the RIL request.
*/
newParcel: function newParcel(type, options) {
if (DEBUG) debug("New outgoing parcel of type " + type);
// We're going to leave room for the parcel size at the beginning.
this.outgoingIndex = PARCEL_SIZE_SIZE;
this.writeUint32(type);
let token = this.token;
this.writeUint32(token);
if (!options) {
options = {};
}
options.rilRequestType = type;
options.rilRequestError = null;
this.tokenRequestMap[token] = options;
this.token++;
return token;
},
/**
* Communicate with the RIL IPC thread.
*/
sendParcel: function sendParcel() {
// Compute the size of the parcel and write it to the front of the parcel
// where we left room for it. Note that he parcel size does not include
// the size itself.
let parcelSize = this.outgoingIndex - PARCEL_SIZE_SIZE;
this.writeParcelSize(parcelSize);
// This assumes that postRILMessage will make a copy of the ArrayBufferView
// right away!
let parcel = this.outgoingBytes.subarray(0, this.outgoingIndex);
if (DEBUG) debug("Outgoing parcel: " + Array.slice(parcel));
postRILMessage(parcel);
this.outgoingIndex = PARCEL_SIZE_SIZE;
},
simpleRequest: function simpleRequest(type, options) {
this.newParcel(type, options);
this.sendParcel();
}
};
/**
* The RIL state machine.
*
* This object communicates with rild via parcels and with the main thread
* via post messages. It maintains state about the radio, ICC, calls, etc.
* and acts upon state changes accordingly.
*/
let RIL = {
/**
* One of the RADIO_STATE_* constants.
*/
radioState: GECKO_RADIOSTATE_UNAVAILABLE,
_isInitialRadioState: true,
/**
* ICC status. Keeps a reference of the data response to the
* getICCStatus request.
*/
iccStatus: null,
/**
* Card state
*/
cardState: null,
/**
* Strings
*/
IMEI: null,
IMEISV: null,
SMSC: null,
/**
* ICC information, such as MSISDN, IMSI, ...etc.
*/
iccInfo: {},
/**
* Application identification for apps in ICC.
*/
aid: null,
voiceRegistrationState: {},
dataRegistrationState: {},
/**
* The cell location on a phone, such as LAC, CID.
*/
cellLocation: {},
/**
* List of strings identifying the network operator.
*/
operator: null,
/**
* String containing the baseband version.
*/
basebandVersion: null,
/**
* Valid calls.
*/
currentCalls: {},
/**
* Current calls length.
*/
currentCallsLength: null,
/**
* Existing data calls.
*/
currentDataCalls: {},
/**
* Hash map for received multipart sms fragments. Messages are hashed with
* its sender address and concatenation reference number. Three additional
* attributes `segmentMaxSeq`, `receivedSegments`, `segments` are inserted.
*/
_receivedSmsSegmentsMap: {},
/**
* Outgoing messages waiting for SMS-STATUS-REPORT.
*/
_pendingSentSmsMap: {},
/**
* Whether or not the multiple requests in requestNetworkInfo() are currently
* being processed
*/
_processingNetworkInfo: false,
/**
* Pending messages to be send in batch from requestNetworkInfo()
*/
_pendingNetworkInfo: {rilMessageType: "networkinfochanged"},
/**
* Mute or unmute the radio.
*/
_muted: true,
get muted() {
return this._muted;
},
set muted(val) {
val = Boolean(val);
if (this._muted != val) {
this.setMute(val);
this._muted = val;
}
},
/**
* Set quirk flags based on the RIL model detected. Note that this
* requires the RIL being "warmed up" first, which happens when on
* an incoming or outgoing voice call or data call.
*/
rilQuirksInitialized: false,
initRILQuirks: function initRILQuirks() {
if (this.rilQuirksInitialized) {
return;
}
let ril_impl = libcutils.property_get("gsm.version.ril-impl");
if (DEBUG) debug("Detected RIL implementation " + ril_impl);
switch (ril_impl) {
case "Samsung RIL(IPC) v2.0":
// The Samsung Galaxy S2 I-9100 radio sends an extra Uint32 in the
// call state.
let model_id = libcutils.property_get("ril.model_id");
if (DEBUG) debug("Detected RIL model " + model_id);
if (!model_id) {
// On some RIL models, the RIL has to be "warmed up" for us to read this property.
// It apparently isn't warmed up yet, going to try again later.
if (DEBUG) debug("Could not detect correct model_id. Going to try later.");
return;
}
if (model_id == "I9100") {
if (DEBUG) {
debug("Detected I9100, enabling " +
"RILQUIRKS_CALLSTATE_EXTRA_UINT32, " +
"RILQUIRKS_DATACALLSTATE_DOWN_IS_UP, " +
"RILQUIRKS_REQUEST_USE_DIAL_EMERGENCY_CALL.");
}
RILQUIRKS_CALLSTATE_EXTRA_UINT32 = true;
RILQUIRKS_DATACALLSTATE_DOWN_IS_UP = true;
RILQUIRKS_REQUEST_USE_DIAL_EMERGENCY_CALL = true;
}
if (model_id == "I9023" || model_id == "I9020") {
if (DEBUG) {
debug("Detected I9020/I9023, enabling " +
"RILQUIRKS_DATACALLSTATE_DOWN_IS_UP");
}
RILQUIRKS_DATACALLSTATE_DOWN_IS_UP = true;
}
break;
case "Qualcomm RIL 1.0":
let product_model = libcutils.property_get("ro.product.model");
if (DEBUG) debug("Detected product model " + product_model);
if (product_model == "otoro1") {
if (DEBUG) debug("Enabling RILQUIRKS_SIM_APP_STATE_EXTRA_FIELDS.");
RILQUIRKS_SIM_APP_STATE_EXTRA_FIELDS = true;
}
if (DEBUG) {
debug("Detected Qualcomm RIL 1.0, " +
"disabling RILQUIRKS_V5_LEGACY and " +
"enabling RILQUIRKS_MODEM_DEFAULTS_TO_EMERGENCY_MODE.");
}
RILQUIRKS_V5_LEGACY = false;
RILQUIRKS_MODEM_DEFAULTS_TO_EMERGENCY_MODE = true;
break;
}
this.rilQuirksInitialized = true;
},
/**
* Parse an integer from a string, falling back to a default value
* if the the provided value is not a string or does not contain a valid
* number.
*
* @param string
* String to be parsed.
* @param defaultValue
* Default value to be used.
*/
parseInt: function RIL_parseInt(string, defaultValue) {
let number = parseInt(string, 10);
if (!isNaN(number)) {
return number;
}
if (defaultValue === undefined) {
defaultValue = null;
}
return defaultValue;
},
/**
* Outgoing requests to the RIL. These can be triggered from the
* main thread via messages that look like this:
*
* {rilMessageType: "methodName",
* extra: "parameters",
* go: "here"}
*
* So if one of the following methods takes arguments, it takes only one,
* an object, which then contains all of the parameters as attributes.
* The "@param" documentation is to be interpreted accordingly.
*/
/**
* Retrieve the ICC's status.
*/
getICCStatus: function getICCStatus() {
Buf.simpleRequest(REQUEST_GET_SIM_STATUS);
},
/**
* Enter a PIN to unlock the ICC.
*
* @param pin
* String containing the PIN.
* @param [optional] aid
* AID value.
*/
enterICCPIN: function enterICCPIN(options) {
Buf.newParcel(REQUEST_ENTER_SIM_PIN, options);
Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 1 : 2);
Buf.writeString(options.pin);
if (!RILQUIRKS_V5_LEGACY) {
Buf.writeString(options.aid ? options.aid : this.aid);
}
Buf.sendParcel();
},
/**
* Enter a PIN2 to unlock the ICC.
*
* @param pin
* String containing the PIN2.
* @param [optional] aid
* AID value.
*/
enterICCPIN2: function enterICCPIN2(options) {
Buf.newParcel(REQUEST_ENTER_SIM_PIN2, options);
Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 1 : 2);
Buf.writeString(options.pin);
if (!RILQUIRKS_V5_LEGACY) {
Buf.writeString(options.aid ? options.aid : this.aid);
}
Buf.sendParcel();
},
/**
* Change the current ICC PIN number.
*
* @param pin
* String containing the old PIN value
* @param newPin
* String containing the new PIN value
* @param [optional] aid
* AID value.
*/
changeICCPIN: function changeICCPIN(options) {
Buf.newParcel(REQUEST_CHANGE_SIM_PIN, options);
Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 2 : 3);
Buf.writeString(options.pin);
Buf.writeString(options.newPin);
if (!RILQUIRKS_V5_LEGACY) {
Buf.writeString(options.aid ? options.aid : this.aid);
}
Buf.sendParcel();
},
/**
* Change the current ICC PIN2 number.
*
* @param pin
* String containing the old PIN2 value
* @param newPin
* String containing the new PIN2 value
* @param [optional] aid
* AID value.
*/
changeICCPIN2: function changeICCPIN2(options) {
Buf.newParcel(REQUEST_CHANGE_SIM_PIN2, options);
Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 2 : 3);
Buf.writeString(options.pin);
Buf.writeString(options.newPin);
if (!RILQUIRKS_V5_LEGACY) {
Buf.writeString(options.aid ? options.aid : this.aid);
}
Buf.sendParcel();
},
/**
* Supplies ICC PUK and a new PIN to unlock the ICC.
*
* @param puk
* String containing the PUK value.
* @param newPin
* String containing the new PIN value.
* @param [optional] aid
* AID value.
*/
enterICCPUK: function enterICCPUK(options) {
Buf.newParcel(REQUEST_ENTER_SIM_PUK, options);
Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 2 : 3);
Buf.writeString(options.puk);
Buf.writeString(options.newPin);
if (!RILQUIRKS_V5_LEGACY) {
Buf.writeString(options.aid ? options.aid : this.aid);
}
Buf.sendParcel();
},
/**
* Supplies ICC PUK2 and a new PIN2 to unlock the ICC.
*
* @param puk
* String containing the PUK2 value.
* @param newPin
* String containing the new PIN2 value.
* @param [optional] aid
* AID value.
*/
enterICCPUK2: function enterICCPUK2(options) {
Buf.newParcel(REQUEST_ENTER_SIM_PUK2, options);
Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 2 : 3);
Buf.writeString(options.puk);
Buf.writeString(options.newPin);
if (!RILQUIRKS_V5_LEGACY) {
Buf.writeString(options.aid ? options.aid : this.aid);
}
Buf.sendParcel();
},
/**
* Get ICC Pin lock. A wrapper call to queryICCFacilityLock.
*
* @param requestId
* Request Id from RadioInterfaceLayer.
*/
getICCPinLock: function getICCPinLock(options) {
options.facility = ICC_CB_FACILITY_SIM;
options.password = ""; // For query no need to provide pin.
options.serviceClass = ICC_SERVICE_CLASS_VOICE |
ICC_SERVICE_CLASS_DATA |
ICC_SERVICE_CLASS_FAX,
this.queryICCFacilityLock(options);
},
/**
* Query ICC facility lock.
*
* @param facility
* One of ICC_CB_FACILITY_*.
* @param password
* Password for the facility, or "" if not required.
* @param serviceClass
* One of ICC_SERVICE_CLASS_*.
* @param [optional] aid
* AID value.
*/
queryICCFacilityLock: function queryICCFacilityLock(options) {
Buf.newParcel(REQUEST_QUERY_FACILITY_LOCK, options);
Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 3 : 4);
Buf.writeString(options.facility);
Buf.writeString(options.password);
Buf.writeString(options.serviceClass.toString());
if (!RILQUIRKS_V5_LEGACY) {
Buf.writeString(options.aid ? options.aid : this.aid);
}
Buf.sendParcel();
},
/**
* Set ICC Pin lock. A wrapper call to setICCFacilityLock.
*
* @param enabled
* true to enable, false to disable.
* @param pin
* Pin code.
* @param requestId
* Request Id from RadioInterfaceLayer.
*/
setICCPinLock: function setICCPinLock(options) {
options.facility = ICC_CB_FACILITY_SIM;
options.enabled = options.enabled;
options.password = options.pin;
options.serviceClass = ICC_SERVICE_CLASS_VOICE |
ICC_SERVICE_CLASS_DATA |
ICC_SERVICE_CLASS_FAX,
this.setICCFacilityLock(options);
},
/**
* Set ICC facility lock.
*
* @param facility
* One of ICC_CB_FACILITY_*.
* @param enabled
* true to enable, false to disable.
* @param password
* Password for the facility, or "" if not required.
* @param serviceClass
* One of ICC_SERVICE_CLASS_*.
* @param [optional] aid
* AID value.
*/
setICCFacilityLock: function setICCFacilityLock(options) {
Buf.newParcel(REQUEST_SET_FACILITY_LOCK, options);
Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 3 : 4);
Buf.writeString(options.facility);
Buf.writeString(options.enabled ? "1" : "0");
Buf.writeString(options.password);
Buf.writeString(options.serviceClass.toString());
if (!RILQUIRKS_V5_LEGACY) {
Buf.writeString(options.aid ? options.aid : this.aid);
}
Buf.sendParcel();
},
/**
* Request an ICC I/O operation.
*
* See TS 27.007 "restricted SIM" operation, "AT Command +CRSM".
* The sequence is in the same order as how libril reads this parcel,
* see the struct RIL_SIM_IO_v5 or RIL_SIM_IO_v6 defined in ril.h
*
* @param command
* The I/O command, one of the ICC_COMMAND_* constants.
* @param fileId
* The file to operate on, one of the ICC_EF_* constants.
* @param pathId
* String type, check the 'pathid' parameter from TS 27.007 +CRSM.
* @param p1, p2, p3
* Arbitrary integer parameters for the command.
* @param data
* String parameter for the command.
* @param pin2
* String containing the PIN2.
* @param [optional] aid
* AID value.
*/
iccIO: function iccIO(options) {
let token = Buf.newParcel(REQUEST_SIM_IO, options);
Buf.writeUint32(options.command);
Buf.writeUint32(options.fileId);
Buf.writeString(options.pathId);
Buf.writeUint32(options.p1);
Buf.writeUint32(options.p2);
Buf.writeUint32(options.p3);
Buf.writeString(options.data);
Buf.writeString(options.pin2 ? options.pin2 : null);
if (!RILQUIRKS_V5_LEGACY) {
Buf.writeString(options.aid ? options.aid : this.aid);
}
Buf.sendParcel();
},
/**
* Fetch ICC records.
*/
fetchICCRecords: function fetchICCRecords() {
this.getIMSI();
this.getMSISDN();
this.getAD();
this.getUST();
this.getMBDN();
},
/**
* Update the ICC information to RadioInterfaceLayer.
*/
_handleICCInfoChange: function _handleICCInfoChange() {
this.iccInfo.rilMessageType = "iccinfochange";
this.sendDOMMessage(this.iccInfo);
},
/**
* Get IMSI.
*
* @param [optional] aid
* AID value.
*/
getIMSI: function getIMSI(aid) {
if (RILQUIRKS_V5_LEGACY) {
Buf.simpleRequest(REQUEST_GET_IMSI);
return;
}
let token = Buf.newParcel(REQUEST_GET_IMSI);
Buf.writeUint32(1);
Buf.writeString(aid ? aid : this.aid);
Buf.sendParcel();
},
/**
* Read the MSISDN from the ICC.
*/
getMSISDN: function getMSISDN() {
function callback() {
let length = Buf.readUint32();
// Each octet is encoded into two chars.
let recordLength = length / 2;
// Skip prefixed alpha identifier
Buf.seekIncoming((recordLength - MSISDN_FOOTER_SIZE_BYTES) *
PDU_HEX_OCTET_SIZE);
// Dialling Number/SSC String
let len = GsmPDUHelper.readHexOctet();
if (len > MSISDN_MAX_NUMBER_SIZE_BYTES) {
debug("ICC_EF_MSISDN: invalid length of BCD number/SSC contents - " + len);
return;
}
this.iccInfo.msisdn = GsmPDUHelper.readDiallingNumber(len);
Buf.readStringDelimiter(length);
if (DEBUG) debug("MSISDN: " + this.iccInfo.msisdn);
if (this.iccInfo.msisdn) {
this._handleICCInfoChange();
}
}
this.iccIO({
command: ICC_COMMAND_GET_RESPONSE,
fileId: ICC_EF_MSISDN,
pathId: EF_PATH_MF_SIM + EF_PATH_ADF_USIM,
p1: 0, // For GET_RESPONSE, p1 = 0
p2: 0, // For GET_RESPONSE, p2 = 0
p3: GET_RESPONSE_EF_SIZE_BYTES,
data: null,
pin2: null,
type: EF_TYPE_LINEAR_FIXED,
callback: callback,
});
},
/**
* Read the AD (Administrative Data) from the ICC.
*/
getAD: function getAD() {
function callback() {
let length = Buf.readUint32();
// Each octet is encoded into two chars.
let len = length / 2;
this.iccInfo.ad = GsmPDUHelper.readHexOctetArray(len);
Buf.readStringDelimiter(length);
if (DEBUG) {
let str = "";
for (let i = 0; i < this.iccInfo.ad.length; i++) {
str += this.iccInfo.ad[i] + ", ";
}
debug("AD: " + str);
}
if (this.iccInfo.imsi) {
// MCC is the first 3 digits of IMSI
this.iccInfo.mcc = parseInt(this.iccInfo.imsi.substr(0,3));
// The 4th byte of the response is the length of MNC
this.iccInfo.mnc = parseInt(this.iccInfo.imsi.substr(3, this.iccInfo.ad[3]));
if (DEBUG) debug("MCC: " + this.iccInfo.mcc + " MNC: " + this.iccInfo.mnc);
this._handleICCInfoChange();
}
}
this.iccIO({
command: ICC_COMMAND_GET_RESPONSE,
fileId: ICC_EF_AD,
pathId: EF_PATH_MF_SIM + EF_PATH_ADF_USIM,
p1: 0, // For GET_RESPONSE, p1 = 0
p2: 0, // For GET_RESPONSE, p2 = 0
p3: GET_RESPONSE_EF_SIZE_BYTES,
data: null,
pin2: null,
type: EF_TYPE_TRANSPARENT,
callback: callback,
});
},
/**
* Get whether specificed USIM service is available.
*
* @param service
* Service id, valid in 1..N. See 3GPP TS 31.102 4.2.8.
* @return
* true if the service is enabled,
* false otherwise.
*/
isUSTServiceAvailable: function isUSTServiceAvailable(service) {
service -= 1;
let index = service / 8;
let bitmask = 1 << (service % 8);
return this.iccInfo.ust &&
(index < this.iccInfo.ust.length) &&
(this.iccInfo.ust[index] & bitmask);
},
/**
* Read the UST from the ICC.
*/
getUST: function getUST() {
function callback() {
let length = Buf.readUint32();
// Each octet is encoded into two chars.
let len = length / 2;
this.iccInfo.ust = GsmPDUHelper.readHexOctetArray(len);
Buf.readStringDelimiter(length);
if (DEBUG) {
let str = "";
for (let i = 0; i < this.iccInfo.ust.length; i++) {
str += this.iccInfo.ust[i] + ", ";
}
debug("UST: " + str);
}
}
this.iccIO({
command: ICC_COMMAND_GET_RESPONSE,
fileId: ICC_EF_UST,
pathId: EF_PATH_MF_SIM + EF_PATH_ADF_USIM,
p1: 0, // For GET_RESPONSE, p1 = 0
p2: 0, // For GET_RESPONSE, p2 = 0
p3: GET_RESPONSE_EF_SIZE_BYTES,
data: null,
pin2: null,
type: EF_TYPE_TRANSPARENT,
callback: callback,
});
},
/**
* Helper to parse Dialling number from TS 131.102
*
* @param options
* The 'options' object passed from RIL.iccIO
* @param addCallback
* The function should be invoked when the ICC record is processed
* succesfully.
* @param finishCallback
* The function should be invoked when the final ICC record is
* processed.
*
*/
parseDiallingNumber: function parseDiallingNumber(options,
addCallback,
finishCallback) {
let ffLen; // The length of trailing 0xff to be read.
let length = Buf.readUint32();
let alphaLen = options.recordSize - MSISDN_FOOTER_SIZE_BYTES;
let alphaId = GsmPDUHelper.readAlphaIdentifier(alphaLen);
let numLen = GsmPDUHelper.readHexOctet();
if (numLen != 0xff) {
if (numLen > MSISDN_MAX_NUMBER_SIZE_BYTES) {
debug("invalid length of BCD number/SSC contents - " + numLen);
return;
}
if (addCallback) {
addCallback.call(this, {alphaId: alphaId,
number: GsmPDUHelper.readDiallingNumber(numLen)});
}
ffLen = length / 2 - alphaLen - numLen - 1; // Minus 1 for the numLen field.
} else {
ffLen = MSISDN_FOOTER_SIZE_BYTES - 1; // Minus 1 for the numLen field.
}
// Consumes the remaining 0xff
for (let i = 0; i < ffLen; i++) {
GsmPDUHelper.readHexOctet();
}
Buf.readStringDelimiter(length);
if (options.loadAll &&
options.p1 < options.totalRecords) {
options.p1++;
this.iccIO(options);
} else {
if (finishCallback) {
finishCallback.call(this);
}
}
},
/**
* Get ICC FDN.
*
* @paran requestId
* Request id from RadioInterfaceLayer.
*/
getFDN: function getFDN(options) {
function callback(options) {
function add(contact) {
this.iccInfo.fdn.push(contact);
};
function finish() {
if (DEBUG) {
for (let i = 0; i < this.iccInfo.fdn.length; i++) {
debug("FDN[" + i + "] alphaId = " + this.iccInfo.fdn[i].alphaId +
" number = " + this.iccInfo.fdn[i].number);
}
}
this.sendDOMMessage({rilMessageType: "icccontacts",
contactType: "FDN",
contacts: this.iccInfo.fdn,
requestId: options.requestId});
};
this.parseDiallingNumber(options, add, finish);
}
this.iccInfo.fdn = [];
this.iccIO({
command: ICC_COMMAND_GET_RESPONSE,
fileId: ICC_EF_FDN,
pathId: EF_PATH_MF_SIM + EF_PATH_DF_TELECOM,
p1: 0, // For GET_RESPONSE, p1 = 0
p2: 0, // For GET_RESPONSE, p2 = 0
p3: GET_RESPONSE_EF_SIZE_BYTES,
data: null,
pin2: null,
type: EF_TYPE_LINEAR_FIXED,
callback: callback,
loadAll: true,
requestId: options.requestId
});
},
/**
* Get ICC ADN.
*
* @param fileId
* EF id of the ADN.
* @paran requestId
* Request id from RadioInterfaceLayer.
*/
getADN: function getADN(options) {
function callback(options) {
function add(contact) {
this.iccInfo.adn.push(contact);
};
function finish() {
if (DEBUG) {
for (let i = 0; i < this.iccInfo.adn.length; i++) {
debug("ADN[" + i + "] alphaId = " + this.iccInfo.adn[i].alphaId +
" number = " + this.iccInfo.adn[i].number);
}
}
this.sendDOMMessage({rilMessageType: "icccontacts",
contactType: "ADN",
contacts: this.iccInfo.adn,
requestId: options.requestId});
};
this.parseDiallingNumber(options, add, finish);
}
this.iccInfo.adn = [];
this.iccIO({
command: ICC_COMMAND_GET_RESPONSE,
fileId: options.fileId,
pathId: EF_PATH_MF_SIM + EF_PATH_DF_TELECOM + EF_PATH_DF_PHONEBOOK,
p1: 0, // For GET_RESPONSE, p1 = 0
p2: 0, // For GET_RESPONSE, p2 = 0
p3: GET_RESPONSE_EF_SIZE_BYTES,
data: null,
pin2: null,
type: EF_TYPE_LINEAR_FIXED,
callback: callback,
loadAll: true,
requestId: options.requestId
});
},
/**
* Get ICC MBDN. (Mailbox Dialling Number)
*
* @see TS 131.102, clause 4.2.60
*/
getMBDN: function getMBDN() {
function callback(options) {
let parseCallback = function parseCallback(contact) {
if (DEBUG) {
debug("MBDN, alphaId="+contact.alphaId+" number="+contact.number);
}
if (this.iccInfo.mbdn != contact.number) {
this.iccInfo.mbdn = contact.number;
contact.rilMessageType = "iccmbdn";
this.sendDOMMessage(contact);
}
};
this.parseDiallingNumber(options, parseCallback);
}
this.iccIO({
command: ICC_COMMAND_GET_RESPONSE,
fileId: ICC_EF_MBDN,
pathId: EF_PATH_MF_SIM + EF_PATH_ADF_USIM,
p1: 0, // For GET_RESPONSE, p1 = 0
p2: 0, // For GET_RESPONSE, p2 = 0
p3: GET_RESPONSE_EF_SIZE_BYTES,
data: null,
pin2: null,
type: EF_TYPE_LINEAR_FIXED,
callback: callback,
});
},
decodeSimTlvs: function decodeSimTlvs(tlvsLen) {
let index = 0;
let tlvs = [];
while (index < tlvsLen) {
let simTlv = {
tag : GsmPDUHelper.readHexOctet(),
length : GsmPDUHelper.readHexOctet(),
};
simTlv.value = GsmPDUHelper.readHexOctetArray(simTlv.length)
tlvs.push(simTlv);
index += simTlv.length + 2 /* The length of 'tag' and 'length' field */;
}
return tlvs;
},
_searchForIccUsimTag: function _searchForIccUsimTag(tlvs, tag) {
for (let i = 0; i < tlvs.length; i++) {
if (tlvs[i].tag == tag) {
return tlvs[i];
}
}
return null;
},
/**
* Get ICC Phonebook.
*
* @params requestId
* Request id from RadioInterfaceLayer.
*/
getPBR: function getPBR(options) {
function callback(options) {
let bufLen = Buf.readUint32();
let tag = GsmPDUHelper.readHexOctet();
let length = GsmPDUHelper.readHexOctet();
let value = this.decodeSimTlvs(length);
let adn = this._searchForIccUsimTag(value, ICC_USIM_EFADN_TAG);
let adnEfid = (adn.value[0] << 8) | adn.value[1];
this.getADN({fileId: adnEfid,
requestId: options.requestId});
Buf.readStringDelimiter(bufLen);
}
this.iccIO({
command: ICC_COMMAND_GET_RESPONSE,
fileId: ICC_EF_PBR,
pathId: EF_PATH_MF_SIM + EF_PATH_DF_TELECOM + EF_PATH_DF_PHONEBOOK,
p1: 0, // For GET_RESPONSE, p1 = 0
p2: 0, // For GET_RESPONSE, p2 = 0
p3: GET_RESPONSE_EF_SIZE_BYTES,
data: null,
pin2: null,
type: EF_TYPE_LINEAR_FIXED,
callback: callback,
requestId: options.requestId,
});
},
/**
* Request the phone's radio power to be switched on or off.
*
* @param on
* Boolean indicating the desired power state.
*/
setRadioPower: function setRadioPower(options) {
Buf.newParcel(REQUEST_RADIO_POWER);
Buf.writeUint32(1);
Buf.writeUint32(options.on ? 1 : 0);
Buf.sendParcel();
},
/**
* Set screen state.
*
* @param on
* Boolean indicating whether the screen should be on or off.
*/
setScreenState: function setScreenState(on) {
Buf.newParcel(REQUEST_SCREEN_STATE);
Buf.writeUint32(1);
Buf.writeUint32(on ? 1 : 0);
Buf.sendParcel();
},
getVoiceRegistrationState: function getVoiceRegistrationState() {
Buf.simpleRequest(REQUEST_VOICE_REGISTRATION_STATE);
},
getDataRegistrationState: function getDataRegistrationState() {
Buf.simpleRequest(REQUEST_DATA_REGISTRATION_STATE);
},
getOperator: function getOperator() {
Buf.simpleRequest(REQUEST_OPERATOR);
},
/**
* Set the preferred network type.
*
* @param network_type
* The network type. One of the PREFERRED_NETWORK_TYPE_* constants.
*/
setPreferredNetworkType: function setPreferredNetworkType(network_type) {
Buf.newParcel(REQUEST_SET_PREFERRED_NETWORK_TYPE);
Buf.writeUint32(network_type);
Buf.sendParcel();
},
/**
* Request various states about the network.
*/
requestNetworkInfo: function requestNetworkInfo() {
if (this._processingNetworkInfo) {
if (DEBUG) {
debug("Already requesting network info: " +
JSON.stringify(this._pendingNetworkInfo));
}
return;
}
if (DEBUG) debug("Requesting network info");
this._processingNetworkInfo = true;
this.getVoiceRegistrationState();
this.getDataRegistrationState(); //TODO only GSM
this.getOperator();
this.getNetworkSelectionMode();
},
/**
* Get the available networks
*/
getAvailableNetworks: function getAvailableNetworks(options) {
if (DEBUG) debug("Getting available networks");
Buf.newParcel(REQUEST_QUERY_AVAILABLE_NETWORKS, options);
Buf.sendParcel();
},
/**
* Request the radio's network selection mode
*/
getNetworkSelectionMode: function getNetworkSelectionMode(options) {
if (DEBUG) debug("Getting network selection mode");
Buf.simpleRequest(REQUEST_QUERY_NETWORK_SELECTION_MODE, options);
},
/**
* Tell the radio to automatically choose a voice/data network
*/
selectNetworkAuto: function selectNetworkAuto(options) {
if (DEBUG) debug("Setting automatic network selection");
Buf.simpleRequest(REQUEST_SET_NETWORK_SELECTION_AUTOMATIC, options);
},
/**
* Tell the radio to choose a specific voice/data network
*/
selectNetwork: function selectNetwork(options) {
if (DEBUG) {
debug("Setting manual network selection: " + options.mcc + options.mnc);
}
let numeric = String(options.mcc) + options.mnc;
Buf.newParcel(REQUEST_SET_NETWORK_SELECTION_MANUAL, options);
Buf.writeString(numeric);
Buf.sendParcel();
},
/**
* Get current calls.
*/
getCurrentCalls: function getCurrentCalls() {
Buf.simpleRequest(REQUEST_GET_CURRENT_CALLS);
},
/**
* Get the signal strength.
*/
getSignalStrength: function getSignalStrength() {
Buf.simpleRequest(REQUEST_SIGNAL_STRENGTH);
},
getIMEI: function getIMEI() {
Buf.simpleRequest(REQUEST_GET_IMEI);
},
getIMEISV: function getIMEISV() {
Buf.simpleRequest(REQUEST_GET_IMEISV);
},
getDeviceIdentity: function getDeviceIdentity() {
Buf.simpleRequest(REQUEST_GET_DEVICE_IDENTITY);
},
getBasebandVersion: function getBasebandVersion() {
Buf.simpleRequest(REQUEST_BASEBAND_VERSION);
},
/**
* Dial the phone.
*
* @param number
* String containing the number to dial.
* @param clirMode
* Integer doing something XXX TODO
* @param uusInfo
* Integer doing something XXX TODO
*/
dial: function dial(options) {
let dial_request_type = REQUEST_DIAL;
if (this.voiceRegistrationState.emergencyCallsOnly ||
options.isDialEmergency) {
if (!this._isEmergencyNumber(options.number)) {
// Notify error in establishing the call with an invalid number.
options.callIndex = -1;
options.rilMessageType = "callError";
options.error =
RIL_CALL_FAILCAUSE_TO_GECKO_CALL_ERROR[CALL_FAIL_UNOBTAINABLE_NUMBER];
this.sendDOMMessage(options);
return;
}
if (RILQUIRKS_REQUEST_USE_DIAL_EMERGENCY_CALL) {
dial_request_type = REQUEST_DIAL_EMERGENCY_CALL;
}
} else {
if (this._isEmergencyNumber(options.number) &&
RILQUIRKS_REQUEST_USE_DIAL_EMERGENCY_CALL) {
dial_request_type = REQUEST_DIAL_EMERGENCY_CALL;
}
}
let token = Buf.newParcel(dial_request_type);
Buf.writeString(options.number);
Buf.writeUint32(options.clirMode || 0);
Buf.writeUint32(options.uusInfo || 0);
// TODO Why do we need this extra 0? It was put it in to make this
// match the format of the binary message.
Buf.writeUint32(0);
Buf.sendParcel();
},
/**
* Hang up the phone.
*
* @param callIndex
* Call index (1-based) as reported by REQUEST_GET_CURRENT_CALLS.
*/
hangUp: function hangUp(options) {
let call = this.currentCalls[options.callIndex];
if (!call) {
return;
}
switch (call.state) {
case CALL_STATE_ACTIVE:
case CALL_STATE_DIALING:
case CALL_STATE_ALERTING:
Buf.newParcel(REQUEST_HANGUP);
Buf.writeUint32(1);
Buf.writeUint32(options.callIndex);
Buf.sendParcel();
break;
case CALL_STATE_HOLDING:
Buf.simpleRequest(REQUEST_HANGUP_WAITING_OR_BACKGROUND);
break;
}
},
/**
* Mute or unmute the radio.
*
* @param mute
* Boolean to indicate whether to mute or unmute the radio.
*/
setMute: function setMute(mute) {
Buf.newParcel(REQUEST_SET_MUTE);
Buf.writeUint32(1);
Buf.writeUint32(mute ? 1 : 0);
Buf.sendParcel();
},
/**
* Answer an incoming/waiting call.
*
* @param callIndex
* Call index of the call to answer.
*/
answerCall: function answerCall(options) {
// Check for races. Since we dispatched the incoming/waiting call
// notification the incoming/waiting call may have changed. The main
// thread thinks that it is answering the call with the given index,
// so only answer if that is still incoming/waiting.
let call = this.currentCalls[options.callIndex];
if (!call) {
return;
}
switch (call.state) {
case CALL_STATE_INCOMING:
Buf.simpleRequest(REQUEST_ANSWER);
break;
case CALL_STATE_WAITING:
// Answer the waiting (second) call, and hold the first call.
Buf.simpleRequest(REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE);
break;
}
},
/**
* Reject an incoming/waiting call.
*
* @param callIndex
* Call index of the call to reject.
*/
rejectCall: function rejectCall(options) {
// Check for races. Since we dispatched the incoming/waiting call
// notification the incoming/waiting call may have changed. The main
// thread thinks that it is rejecting the call with the given index,
// so only reject if that is still incoming/waiting.
let call = this.currentCalls[options.callIndex];
if (!call) {
return;
}
switch (call.state) {
case CALL_STATE_INCOMING:
Buf.simpleRequest(REQUEST_UDUB);
break;
case CALL_STATE_WAITING:
// Reject the waiting (second) call, and remain the first call.
Buf.simpleRequest(REQUEST_HANGUP_WAITING_OR_BACKGROUND);
break;
}
},
holdCall: function holdCall(options) {
let call = this.currentCalls[options.callIndex];
if (call && call.state == CALL_STATE_ACTIVE) {
Buf.simpleRequest(REQUEST_SWITCH_HOLDING_AND_ACTIVE);
}
},
resumeCall: function resumeCall(options) {
let call = this.currentCalls[options.callIndex];
if (call && call.state == CALL_STATE_HOLDING) {
Buf.simpleRequest(REQUEST_SWITCH_HOLDING_AND_ACTIVE);
}
},
/**
* Send an SMS.
*
* The `options` parameter object should contain the following attributes:
*
* @param number
* String containing the recipient number.
* @param body
* String containing the message text.
* @param requestId
* String identifying the sms request used by the SmsRequestManager.
* @param processId
* String containing the processId for the SmsRequestManager.
*/
sendSMS: function sendSMS(options) {
//TODO: verify values on 'options'
if (!options.retryCount) {
options.retryCount = 0;
}
if (options.segmentMaxSeq > 1) {
if (!options.segmentSeq) {
// Fist segment to send
options.segmentSeq = 1;
options.body = options.segments[0].body;
options.encodedBodyLength = options.segments[0].encodedBodyLength;
}
} else {
options.body = options.fullBody;
options.encodedBodyLength = options.encodedFullBodyLength;
}
Buf.newParcel(REQUEST_SEND_SMS, options);
Buf.writeUint32(2);
Buf.writeString(options.SMSC);
GsmPDUHelper.writeMessage(options);
Buf.sendParcel();
},
/**
* Acknowledge the receipt and handling of an SMS.
*
* @param success
* Boolean indicating whether the message was successfuly handled.
* @param cause
* SMS_* constant indicating the reason for unsuccessful handling.
*/
acknowledgeSMS: function acknowledgeSMS(success, cause) {
let token = Buf.newParcel(REQUEST_SMS_ACKNOWLEDGE);
Buf.writeUint32(2);
Buf.writeUint32(success ? 1 : 0);
Buf.writeUint32(cause);
Buf.sendParcel();
},
/**
* Start a DTMF Tone.
*
* @param dtmfChar
* DTMF signal to send, 0-9, *, +
*/
startTone: function startTone(options) {
Buf.newParcel(REQUEST_DTMF_START);
Buf.writeString(options.dtmfChar);
Buf.sendParcel();
},
stopTone: function stopTone() {
Buf.simpleRequest(REQUEST_DTMF_STOP);
},
/**
* Send a DTMF tone.
*
* @param dtmfChar
* DTMF signal to send, 0-9, *, +
*/
sendTone: function sendTone(options) {
Buf.newParcel(REQUEST_DTMF);
Buf.writeString(options.dtmfChar);
Buf.sendParcel();
},
/**
* Get the Short Message Service Center address.
*/
getSMSCAddress: function getSMSCAddress() {
Buf.simpleRequest(REQUEST_GET_SMSC_ADDRESS);
},
/**
* Set the Short Message Service Center address.
*
* @param SMSC
* Short Message Service Center address in PDU format.
*/
setSMSCAddress: function setSMSCAddress(options) {
Buf.newParcel(REQUEST_SET_SMSC_ADDRESS);
Buf.writeString(options.SMSC);
Buf.sendParcel();
},
/**
* Setup a data call.
*
* @param radioTech
* Integer to indicate radio technology.
* DATACALL_RADIOTECHNOLOGY_CDMA => CDMA.
* DATACALL_RADIOTECHNOLOGY_GSM => GSM.
* @param apn
* String containing the name of the APN to connect to.
* @param user
* String containing the username for the APN.
* @param passwd
* String containing the password for the APN.
* @param chappap
* Integer containing CHAP/PAP auth type.
* DATACALL_AUTH_NONE => PAP and CHAP is never performed.
* DATACALL_AUTH_PAP => PAP may be performed.
* DATACALL_AUTH_CHAP => CHAP may be performed.
* DATACALL_AUTH_PAP_OR_CHAP => PAP / CHAP may be performed.
* @param pdptype
* String containing PDP type to request. ("IP", "IPV6", ...)
*/
setupDataCall: function setupDataCall(options) {
let token = Buf.newParcel(REQUEST_SETUP_DATA_CALL, options);
Buf.writeUint32(7);
Buf.writeString(options.radioTech.toString());
Buf.writeString(DATACALL_PROFILE_DEFAULT.toString());
Buf.writeString(options.apn);
Buf.writeString(options.user);
Buf.writeString(options.passwd);
Buf.writeString(options.chappap.toString());
Buf.writeString(options.pdptype);
Buf.sendParcel();
return token;
},
/**
* Deactivate a data call.
*
* @param cid
* String containing CID.
* @param reason
* One of DATACALL_DEACTIVATE_* constants.
*/
deactivateDataCall: function deactivateDataCall(options) {
let datacall = this.currentDataCalls[options.cid];
if (!datacall) {
return;
}
let token = Buf.newParcel(REQUEST_DEACTIVATE_DATA_CALL, options);
Buf.writeUint32(2);
Buf.writeString(options.cid);
Buf.writeString(options.reason || DATACALL_DEACTIVATE_NO_REASON);
Buf.sendParcel();
datacall.state = GECKO_NETWORK_STATE_DISCONNECTING;
this.sendDOMMessage(datacall);
},
/**
* Get a list of data calls.
*/
getDataCallList: function getDataCallList() {
Buf.simpleRequest(REQUEST_DATA_CALL_LIST);
},
/**
* Get failure casue code for the most recently failed PDP context.
*/
getFailCauseCode: function getFailCauseCode(options) {
Buf.simpleRequest(REQUEST_LAST_CALL_FAIL_CAUSE, options);
},
/**
* Send USSD.
*
* @param ussd
* String containing the USSD code.
*
*/
sendUSSD: function sendUSSD(options) {
Buf.newParcel(REQUEST_SEND_USSD, options);
Buf.writeString(options.ussd);
Buf.sendParcel();
},
/**
* Cancel pending USSD.
*/
cancelUSSD: function cancelUSSD(options) {
Buf.simpleRequest(REQUEST_CANCEL_USSD, options);
},
/**
* Check a given number against the list of emergency numbers provided by the RIL.
*
* @param number
* The number to look up.
*/
_isEmergencyNumber: function _isEmergencyNumber(number) {
// Check read-write ecclist property first.
let numbers = libcutils.property_get("ril.ecclist");
if (!numbers) {
// Then read-only ecclist property since others RIL only uses this.
numbers = libcutils.property_get("ro.ril.ecclist");
}
if (numbers) {
numbers = numbers.split(",");
} else {
// No ecclist system property, so use our own list.
numbers = DEFAULT_EMERGENCY_NUMBERS;
}
return numbers.indexOf(number) != -1;
},
/**
* Process ICC status.
*/
_processICCStatus: function _processICCStatus(iccStatus) {
this.iccStatus = iccStatus;
if ((!iccStatus) || (iccStatus.cardState == CARD_STATE_ABSENT)) {
if (DEBUG) debug("ICC absent");
if (this.cardState == GECKO_CARDSTATE_ABSENT) {
this.operator = null;
return;
}
this.cardState = GECKO_CARDSTATE_ABSENT;
this.sendDOMMessage({rilMessageType: "cardstatechange",
cardState: this.cardState});
return;
}
let app = iccStatus.apps[iccStatus.gsmUmtsSubscriptionAppIndex];
if (!app) {
if (DEBUG) {
debug("Subscription application is not present in iccStatus.");
}
if (this.cardState == GECKO_CARDSTATE_ABSENT) {
return;
}
this.cardState = GECKO_CARDSTATE_ABSENT;
this.operator = null;
this.sendDOMMessage({rilMessageType: "cardstatechange",
cardState: this.cardState});
return;
}
let newCardState;
switch (app.app_state) {
case CARD_APPSTATE_PIN:
newCardState = GECKO_CARDSTATE_PIN_REQUIRED;
break;
case CARD_APPSTATE_PUK:
newCardState = GECKO_CARDSTATE_PUK_REQUIRED;
break;
case CARD_APPSTATE_SUBSCRIPTION_PERSO:
newCardState = GECKO_CARDSTATE_NETWORK_LOCKED;
break;
case CARD_APPSTATE_READY:
newCardState = GECKO_CARDSTATE_READY;
break;
case CARD_APPSTATE_UNKNOWN:
case CARD_APPSTATE_DETECTED:
default:
newCardState = GECKO_CARDSTATE_NOT_READY;
}
if (this.cardState == newCardState) {
return;
}
// TODO: Bug 726098, change to use cdmaSubscriptionAppIndex when in CDMA.
// fetchICCRecords will need to read aid, so read aid here.
let index = iccStatus.gsmUmtsSubscriptionAppIndex;
this.aid = iccStatus.apps[index].aid;
// This was moved down from CARD_APPSTATE_READY
this.requestNetworkInfo();
this.getSignalStrength();
this.fetchICCRecords();
this.cardState = newCardState;
this.sendDOMMessage({rilMessageType: "cardstatechange",
cardState: this.cardState});
},
/**
* Process a ICC_COMMAND_GET_RESPONSE type command for REQUEST_SIM_IO.
*/
_processICCIOGetResponse: function _processICCIOGetResponse(options) {
let length = Buf.readUint32();
// The format is from TS 51.011, clause 9.2.1
// Skip RFU, data[0] data[1]
Buf.seekIncoming(2 * PDU_HEX_OCTET_SIZE);
// File size, data[2], data[3]
let fileSize = (GsmPDUHelper.readHexOctet() << 8) |
GsmPDUHelper.readHexOctet();
// 2 bytes File id. data[4], data[5]
let fileId = (GsmPDUHelper.readHexOctet() << 8) |
GsmPDUHelper.readHexOctet();
if (fileId != options.fileId) {
if (DEBUG) {
debug("Expected file ID " + options.fileId + " but read " + fileId);
}
return;
}
// Type of file, data[6]
let fileType = GsmPDUHelper.readHexOctet();
if (fileType != TYPE_EF) {
if (DEBUG) {
debug("Unexpected file type " + fileType);
}
return;
}
// Skip 1 byte RFU, data[7],
// 3 bytes Access conditions, data[8] data[9] data[10],
// 1 byte File status, data[11],
// 1 byte Length of the following data, data[12].
Buf.seekIncoming(((RESPONSE_DATA_STRUCTURE - RESPONSE_DATA_FILE_TYPE - 1) *
PDU_HEX_OCTET_SIZE));
// Read Structure of EF, data[13]
let efType = GsmPDUHelper.readHexOctet();
if (efType != options.type) {
if (DEBUG) {
debug("Expected EF type " + options.type + " but read " + efType);
}
return;
}
// Length of a record, data[14]
options.recordSize = GsmPDUHelper.readHexOctet();
options.totalRecords = fileSize / options.recordSize;
Buf.readStringDelimiter(length);
switch (options.type) {
case EF_TYPE_LINEAR_FIXED:
// Reuse the options object and update some properties.
options.command = ICC_COMMAND_READ_RECORD;
options.p1 = 1; // Record number, always use the 1st record
options.p2 = READ_RECORD_ABSOLUTE_MODE;
options.p3 = options.recordSize;
this.iccIO(options);
break;
case EF_TYPE_TRANSPARENT:
// Reuse the options object and update some properties.
options.command = ICC_COMMAND_READ_BINARY;
options.p3 = fileSize;
this.iccIO(options);
break;
}
},
/**
* Process a ICC_COMMAND_READ_RECORD type command for REQUEST_SIM_IO.
*/
_processICCIOReadRecord: function _processICCIOReadRecord(options) {
if (options.callback) {
options.callback.call(this, options);
}
},
/**
* Process a ICC_COMMAND_READ_BINARY type command for REQUEST_SIM_IO.
*/
_processICCIOReadBinary: function _processICCIOReadBinary(options) {
if (options.callback) {
options.callback.call(this);
}
},
/**
* Process ICC I/O response.
*/
_processICCIO: function _processICCIO(options) {
switch (options.command) {
case ICC_COMMAND_GET_RESPONSE:
this._processICCIOGetResponse(options);
break;
case ICC_COMMAND_READ_RECORD:
this._processICCIOReadRecord(options);
break;
case ICC_COMMAND_READ_BINARY:
this._processICCIOReadBinary(options);
break;
}
},
// We combine all of the NETWORK_INFO_MESSAGE_TYPES into one "networkinfochange"
// message to the RadioInterfaceLayer, so we can avoid sending multiple
// VoiceInfoChanged events for both operator / voice_data_registration
//
// State management here is a little tricky. We need to know both:
// 1. Whether or not a response was received for each of the
// NETWORK_INFO_MESSAGE_TYPES
// 2. The outbound message that corresponds with that response -- but this
// only happens when internal state changes (i.e. it isn't guaranteed)
//
// To collect this state, each message response function first calls
// _receivedNetworkInfo, to mark the response as received. When the
// final response is received, a call to _sendPendingNetworkInfo is placed
// on the next tick of the worker thread.
//
// Since the original call to _receivedNetworkInfo happens at the top
// of the response handler, this gives the final handler a chance to
// queue up it's "changed" message by calling _sendNetworkInfoMessage if/when
// the internal state has actually changed.
_sendNetworkInfoMessage: function _sendNetworkInfoMessage(type, message) {
if (!this._processingNetworkInfo) {
// We only combine these messages in the case of the combined request
// in requestNetworkInfo()
this.sendDOMMessage(message);
return;
}
this._pendingNetworkInfo[type] = message;
},
_receivedNetworkInfo: function _receivedNetworkInfo(type) {
if (!this._processingNetworkInfo) {
return;
}
let pending = this._pendingNetworkInfo;
// We still need to track states for events that aren't fired
if (!(type in pending)) {
pending[type] = true;
}
// Pending network info is ready to be sent when no more messages
// are waiting for responses, but the combined payload hasn't been sent.
for (let i = 0; i < NETWORK_INFO_MESSAGE_TYPES.length; i++) {
let type = NETWORK_INFO_MESSAGE_TYPES[i];
if (!(type in pending)) {
return;
}
}
// Do a pass to clean up the processed messages that didn't create
// a response message, so we don't have unused keys in the outbound
// networkinfochanged message
let keys = Object.keys(pending);
for (let i = 0; i < keys.length; i++) {
let key = keys[i];
if (pending[key] === true) {
delete pending[key];
}
}
// Send the message on the next tick of the worker's loop, so we give the
// last message a chance to call _sendNetworkInfoMessage first.
setTimeout(this._sendPendingNetworkInfo.bind(this), 0);
},
_sendPendingNetworkInfo: function _sendPendingNetworkInfo() {
this.sendDOMMessage(this._pendingNetworkInfo);
this._processingNetworkInfo = false;
for (let i = 0; i < NETWORK_INFO_MESSAGE_TYPES.length; i++) {
delete this._pendingNetworkInfo[NETWORK_INFO_MESSAGE_TYPES[i]];
}
},
_processVoiceRegistrationState: function _processVoiceRegistrationState(state) {
this.initRILQuirks();
let rs = this.voiceRegistrationState;
let stateChanged = false;
let regState = RIL.parseInt(state[0], NETWORK_CREG_STATE_UNKNOWN);
if (rs.regState != regState) {
rs.regState = regState;
if (RILQUIRKS_MODEM_DEFAULTS_TO_EMERGENCY_MODE) {
rs.emergencyCallsOnly =
(regState != NETWORK_CREG_STATE_REGISTERED_HOME) &&
(regState != NETWORK_CREG_STATE_REGISTERED_ROAMING);
} else {
rs.emergencyCallsOnly =
(regState >= NETWORK_CREG_STATE_NOT_SEARCHING_EMERGENCY_CALLS) &&
(regState <= NETWORK_CREG_STATE_UNKNOWN_EMERGENCY_CALLS);
}
stateChanged = true;
if (regState == NETWORK_CREG_STATE_REGISTERED_HOME ||
regState == NETWORK_CREG_STATE_REGISTERED_ROAMING) {
RIL.getSMSCAddress();
}
}
let cell = this.cellLocation;
let cellChanged = false;
// From TS 23.003, 0000 and 0xfffe are indicated that no valid LAI exists
// in MS. So we still need to report the '0000' as well.
let lac = parseInt(state[1], 16);
if (cell.lac !== lac) {
cell.lac = lac;
cellChanged = true;
}
let cid = parseInt(state[2], 16);
if (cell.cid !== cid) {
cell.cid = cid;
cellChanged = true;
}
if (cellChanged) {
cell.rilMessageType = "celllocationchanged";
this.sendDOMMessage(cell);
}
let radioTech = RIL.parseInt(state[3], NETWORK_CREG_TECH_UNKNOWN);
if (rs.radioTech != radioTech) {
rs.radioTech = radioTech;
stateChanged = true;
}
// TODO: This zombie code branch that will be raised from the dead once
// we add explicit CDMA support everywhere (bug 726098).
let cdma = false;
if (cdma) {
let baseStationId = RIL.parseInt(state[4]);
let baseStationLatitude = RIL.parseInt(state[5]);
let baseStationLongitude = RIL.parseInt(state[6]);
if (!baseStationLatitude && !baseStationLongitude) {
baseStationLatitude = baseStationLongitude = null;
}
let cssIndicator = RIL.parseInt(state[7]);
let systemId = RIL.parseInt(state[8]);
let networkId = RIL.parseInt(state[9]);
let roamingIndicator = RIL.parseInt(state[10]);
let systemIsInPRL = RIL.parseInt(state[11]);
let defaultRoamingIndicator = RIL.parseInt(state[12]);
let reasonForDenial = RIL.parseInt(state[13]);
}
if (stateChanged) {
rs.rilMessageType = "voiceregistrationstatechange";
this._sendNetworkInfoMessage(NETWORK_INFO_VOICE_REGISTRATION_STATE, rs);
}
},
_processDataRegistrationState: function _processDataRegistrationState(state) {
let rs = this.dataRegistrationState;
let stateChanged = false;
let regState = RIL.parseInt(state[0], NETWORK_CREG_STATE_UNKNOWN);
if (rs.regState != regState) {
rs.regState = regState;
stateChanged = true;
}
let radioTech = RIL.parseInt(state[3], NETWORK_CREG_TECH_UNKNOWN);
if (rs.radioTech != radioTech) {
rs.radioTech = radioTech;
stateChanged = true;
}
if (stateChanged) {
rs.rilMessageType = "dataregistrationstatechange";
this._sendNetworkInfoMessage(NETWORK_INFO_DATA_REGISTRATION_STATE, rs);
}
},
_processOperator: function _processOperator(operatorData) {
if (operatorData.length < 3) {
if (DEBUG) {
debug("Expected at least 3 strings for operator.");
}
}
if (!this.operator) {
this.operator = {rilMessageType: "operatorchange"};
}
let [longName, shortName, networkTuple] = operatorData;
let thisTuple = String(this.operator.mcc) + this.operator.mnc;
if (this.operator.longName !== longName ||
this.operator.shortName !== shortName ||
thisTuple !== networkTuple) {
this.operator.longName = longName;
this.operator.shortName = shortName;
this.operator.mcc = 0;
this.operator.mnc = 0;
// According to ril.h, the operator fields will be NULL when the operator
// is not currently registered. We can avoid trying to parse the numeric
// tuple in that case.
if (DEBUG && !longName) {
debug("Operator is currently unregistered");
}
if (longName && shortName && networkTuple) {
try {
this._processNetworkTuple(networkTuple, this.operator);
} catch (e) {
debug("Error processing operator tuple: " + e);
}
}
this._sendNetworkInfoMessage(NETWORK_INFO_OPERATOR, this.operator);
}
},
/**
* Helpers for processing call state and handle the active call.
*/
_processCalls: function _processCalls(newCalls) {
// Go through the calls we currently have on file and see if any of them
// changed state. Remove them from the newCalls map as we deal with them
// so that only new calls remain in the map after we're done.
let lastCallsLength = this.currentCallsLength;
if (newCalls) {
this.currentCallsLength = newCalls.length;
} else {
this.currentCallsLength = 0;
}
for each (let currentCall in this.currentCalls) {
let newCall;
if (newCalls) {
newCall = newCalls[currentCall.callIndex];
delete newCalls[currentCall.callIndex];
}
if (newCall) {
// Call is still valid.
if (newCall.state != currentCall.state ||
this.currentCallsLength != lastCallsLength) {
// State has changed. Active call may have changed as valid
// calls change.
currentCall.state = newCall.state;
currentCall.isActive = this._isActiveCall(currentCall.state);
this._handleChangedCallState(currentCall);
}
} else {
// Call is no longer reported by the radio. Remove from our map and
// send disconnected state change.
delete this.currentCalls[currentCall.callIndex];
this.getFailCauseCode(currentCall);
}
}
// Go through any remaining calls that are new to us.
for each (let newCall in newCalls) {
if (newCall.isVoice) {
// Format international numbers appropriately.
if (newCall.number &&
newCall.toa == TOA_INTERNATIONAL &&
newCall.number[0] != "+") {
newCall.number = "+" + newCall.number;
}
// Add to our map.
this.currentCalls[newCall.callIndex] = newCall;
newCall.isActive = this._isActiveCall(newCall.state);
this._handleChangedCallState(newCall);
}
}
// Update our mute status. If there is anything in our currentCalls map then
// we know it's a voice call and we should leave audio on.
this.muted = Object.getOwnPropertyNames(this.currentCalls).length == 0;
},
_handleChangedCallState: function _handleChangedCallState(changedCall) {
let message = {rilMessageType: "callStateChange",
call: changedCall};
this.sendDOMMessage(message);
},
_handleDisconnectedCall: function _handleDisconnectedCall(disconnectedCall) {
let message = {rilMessageType: "callDisconnected",
call: disconnectedCall};
this.sendDOMMessage(message);
},
_isActiveCall: function _isActiveCall(callState) {
switch (callState) {
case CALL_STATE_INCOMING:
case CALL_STATE_DIALING:
case CALL_STATE_ALERTING:
case CALL_STATE_ACTIVE:
return true;
case CALL_STATE_HOLDING:
return false;
case CALL_STATE_WAITING:
if (this.currentCallsLength == 1) {
return true;
} else {
return false;
}
}
},
_processDataCallList: function _processDataCallList(datacalls, newDataCallOptions) {
for each (let currentDataCall in this.currentDataCalls) {
let updatedDataCall;
if (datacalls) {
updatedDataCall = datacalls[currentDataCall.cid];
delete datacalls[currentDataCall.cid];
}
if (!updatedDataCall) {
delete this.currentDataCalls[currentDataCall.callIndex];
currentDataCall.state = GECKO_NETWORK_STATE_DISCONNECTED;
currentDataCall.rilMessageType = "datacallstatechange";
this.sendDOMMessage(currentDataCall);
continue;
}
this._setDataCallGeckoState(updatedDataCall);
if (updatedDataCall.state != currentDataCall.state) {
currentDataCall.status = updatedDataCall.status;
currentDataCall.active = updatedDataCall.active;
currentDataCall.state = updatedDataCall.state;
currentDataCall.rilMessageType = "datacallstatechange";
this.sendDOMMessage(currentDataCall);
}
}
for each (let newDataCall in datacalls) {
this.currentDataCalls[newDataCall.cid] = newDataCall;
this._setDataCallGeckoState(newDataCall);
if (newDataCallOptions) {
newDataCall.radioTech = newDataCallOptions.radioTech;
newDataCall.apn = newDataCallOptions.apn;
newDataCall.user = newDataCallOptions.user;
newDataCall.passwd = newDataCallOptions.passwd;
newDataCall.chappap = newDataCallOptions.chappap;
newDataCall.pdptype = newDataCallOptions.pdptype;
newDataCallOptions = null;
} else if (DEBUG) {
debug("Unexpected new data call: " + JSON.stringify(newDataCall));
}
newDataCall.rilMessageType = "datacallstatechange";
this.sendDOMMessage(newDataCall);
}
},
_setDataCallGeckoState: function _setDataCallGeckoState(datacall) {
switch (datacall.active) {
case DATACALL_INACTIVE:
datacall.state = GECKO_NETWORK_STATE_DISCONNECTED;
break;
case DATACALL_ACTIVE_DOWN:
datacall.state = GECKO_NETWORK_STATE_SUSPENDED;
if (RILQUIRKS_DATACALLSTATE_DOWN_IS_UP) {
datacall.state = GECKO_NETWORK_STATE_CONNECTED;
}
break;
case DATACALL_ACTIVE_UP:
datacall.state = GECKO_NETWORK_STATE_CONNECTED;
break;
}
},
_processNetworks: function _processNetworks() {
let strings = Buf.readStringList();
let networks = [];
for (let i = 0; i < strings.length; i += 4) {
let network = {
longName: strings[i],
shortName: strings[i + 1],
mcc: 0, mnc: 0,
state: null
};
let networkTuple = strings[i + 2];
try {
this._processNetworkTuple(networkTuple, network);
} catch (e) {
debug("Error processing operator tuple: " + e);
}
let state = strings[i + 3];
if (state === NETWORK_STATE_UNKNOWN) {
// TODO: looks like this might conflict in style with
// GECKO_NETWORK_STYLE_UNKNOWN / nsINetworkManager
state = GECKO_QAN_STATE_UNKNOWN;
}
network.state = state;
networks.push(network);
}
return networks;
},
/**
* The "numeric" portion of the operator info is a tuple
* containing MCC (country code) and MNC (network code).
* AFAICT, MCC should always be 3 digits, making the remaining
* portion the MNC.
*/
_processNetworkTuple: function _processNetworkTuple(networkTuple, network) {
let tupleLen = networkTuple.length;
let mcc = 0, mnc = 0;
if (tupleLen == 5 || tupleLen == 6) {
mcc = parseInt(networkTuple.substr(0, 3), 10);
if (isNaN(mcc)) {
throw new Error("MCC could not be parsed from network tuple: " + networkTuple );
}
mnc = parseInt(networkTuple.substr(3), 10);
if (isNaN(mnc)) {
throw new Error("MNC could not be parsed from network tuple: " + networkTuple);
}
} else {
throw new Error("Invalid network tuple (should be 5 or 6 digits): " + networkTuple);
}
network.mcc = mcc;
network.mnc = mnc;
},
/**
* Helper for processing received SMS parcel data.
*
* @param length
* Length of SMS string in the incoming parcel.
*
* @return Message parsed or null for invalid message.
*/
_processReceivedSms: function _processReceivedSms(length) {
if (!length) {
if (DEBUG) debug("Received empty SMS!");
return null;
}
// An SMS is a string, but we won't read it as such, so let's read the
// string length and then defer to PDU parsing helper.
let messageStringLength = Buf.readUint32();
if (DEBUG) debug("Got new SMS, length " + messageStringLength);
let message = GsmPDUHelper.readMessage();
if (DEBUG) debug(message);
// Read string delimiters. See Buf.readString().
Buf.readStringDelimiter(length);
return message;
},
/**
* Helper for processing SMS-DELIVER PDUs.
*
* @param length
* Length of SMS string in the incoming parcel.
*
* @return A failure cause defined in 3GPP 23.040 clause 9.2.3.22.
*/
_processSmsDeliver: function _processSmsDeliver(length) {
let message = this._processReceivedSms(length);
if (!message) {
return PDU_FCS_UNSPECIFIED;
}
if (message.epid == PDU_PID_SHORT_MESSAGE_TYPE_0) {
// `A short message type 0 indicates that the ME must acknowledge receipt
// of the short message but shall discard its contents.` ~ 3GPP TS 23.040
// 9.2.3.9
return PDU_FCS_OK;
}
if (message.header && (message.header.segmentMaxSeq > 1)) {
message = this._processReceivedSmsSegment(message);
} else {
if (message.encoding == PDU_DCS_MSG_CODING_8BITS_ALPHABET) {
message.fullData = message.data;
delete message.data;
} else {
message.fullBody = message.body;
delete message.body;
}
}
if (message) {
message.rilMessageType = "sms-received";
this.sendDOMMessage(message);
}
return PDU_FCS_OK;
},
/**
* Helper for processing SMS-STATUS-REPORT PDUs.
*
* @param length
* Length of SMS string in the incoming parcel.
*
* @return A failure cause defined in 3GPP 23.040 clause 9.2.3.22.
*/
_processSmsStatusReport: function _processSmsStatusReport(length) {
let message = this._processReceivedSms(length);
if (!message) {
return PDU_FCS_UNSPECIFIED;
}
let options = this._pendingSentSmsMap[message.messageRef];
if (!options) {
return PDU_FCS_OK;
}
let status = message.status;
// 3GPP TS 23.040 9.2.3.15 `The MS shall interpret any reserved values as
// "Service Rejected"(01100011) but shall store them exactly as received.`
if ((status >= 0x80)
|| ((status >= PDU_ST_0_RESERVED_BEGIN)
&& (status < PDU_ST_0_SC_SPECIFIC_BEGIN))
|| ((status >= PDU_ST_1_RESERVED_BEGIN)
&& (status < PDU_ST_1_SC_SPECIFIC_BEGIN))
|| ((status >= PDU_ST_2_RESERVED_BEGIN)
&& (status < PDU_ST_2_SC_SPECIFIC_BEGIN))
|| ((status >= PDU_ST_3_RESERVED_BEGIN)
&& (status < PDU_ST_3_SC_SPECIFIC_BEGIN))
) {
status = PDU_ST_3_SERVICE_REJECTED;
}
// Pending. Waiting for next status report.
if ((status >>> 5) == 0x01) {
return PDU_FCS_OK;
}
delete this._pendingSentSmsMap[message.messageRef];
if ((status >>> 5) != 0x00) {
// It seems unlikely to get a result code for a failure to deliver.
// Even if, we don't want to do anything with this.
return PDU_FCS_OK;
}
if ((options.segmentMaxSeq > 1)
&& (options.segmentSeq < options.segmentMaxSeq)) {
// Not last segment. Send next segment here.
this._processSentSmsSegment(options);
} else {
// Last segment delivered with success. Report it.
this.sendDOMMessage({
rilMessageType: "sms-delivered",
envelopeId: options.envelopeId,
});
}
return PDU_FCS_OK;
},
/**
* Helper for processing received multipart SMS.
*
* @return null for handled segments, and an object containing full message
* body/data once all segments are received.
*/
_processReceivedSmsSegment: function _processReceivedSmsSegment(original) {
let hash = original.sender + ":" + original.header.segmentRef;
let seq = original.header.segmentSeq;
let options = this._receivedSmsSegmentsMap[hash];
if (!options) {
options = original;
this._receivedSmsSegmentsMap[hash] = options;
options.segmentMaxSeq = original.header.segmentMaxSeq;
options.receivedSegments = 0;
options.segments = [];
} else if (options.segments[seq]) {
// Duplicated segment?
if (DEBUG) {
debug("Got duplicated segment no." + seq + " of a multipart SMS: "
+ JSON.stringify(original));
}
return null;
}
if (options.encoding == PDU_DCS_MSG_CODING_8BITS_ALPHABET) {
options.segments[seq] = original.data;
delete original.data;
} else {
options.segments[seq] = original.body;
delete original.body;
}
options.receivedSegments++;
if (options.receivedSegments < options.segmentMaxSeq) {
if (DEBUG) {
debug("Got segment no." + seq + " of a multipart SMS: "
+ JSON.stringify(options));
}
return null;
}
// Remove from map
delete this._receivedSmsSegmentsMap[hash];
// Rebuild full body
if (options.encoding == PDU_DCS_MSG_CODING_8BITS_ALPHABET) {
// Uint8Array doesn't have `concat`, so we have to merge all segements
// by hand.
let fullDataLen = 0;
for (let i = 1; i <= options.segmentMaxSeq; i++) {
fullDataLen += options.segments[i].length;
}
options.fullData = new Uint8Array(fullDataLen);
for (let d= 0, i = 1; i <= options.segmentMaxSeq; i++) {
let data = options.segments[i];
for (let j = 0; j < data.length; j++) {
options.fullData[d++] = data[j];
}
}
} else {
options.fullBody = options.segments.join("");
}
if (DEBUG) {
debug("Got full multipart SMS: " + JSON.stringify(options));
}
return options;
},
/**
* Helper for processing sent multipart SMS.
*/
_processSentSmsSegment: function _processSentSmsSegment(options) {
// Setup attributes for sending next segment
let next = options.segmentSeq;
options.body = options.segments[next].body;
options.encodedBodyLength = options.segments[next].encodedBodyLength;
options.segmentSeq = next + 1;
this.sendSMS(options);
},
/**
* Handle incoming messages from the main UI thread.
*
* @param message
* Object containing the message. Messages are supposed
*/
handleDOMMessage: function handleMessage(message) {
if (DEBUG) debug("Received DOM message " + JSON.stringify(message));
let method = this[message.rilMessageType];
if (typeof method != "function") {
if (DEBUG) {
debug("Don't know what to do with message " + JSON.stringify(message));
}
return;
}
method.call(this, message);
},
/**
* Get a list of current voice calls.
*/
enumerateCalls: function enumerateCalls() {
if (DEBUG) debug("Sending all current calls");
let calls = [];
for each (let call in this.currentCalls) {
calls.push(call);
}
this.sendDOMMessage({rilMessageType: "enumerateCalls", calls: calls});
},
/**
* Get a list of current data calls.
*/
enumerateDataCalls: function enumerateDataCalls() {
let datacall_list = [];
for each (let datacall in this.currentDataCalls) {
datacall_list.push(datacall);
}
this.sendDOMMessage({rilMessageType: "datacalllist",
datacalls: datacall_list});
},
/**
* Send messages to the main thread.
*/
sendDOMMessage: function sendDOMMessage(message) {
postMessage(message, "*");
},
/**
* Handle incoming requests from the RIL. We find the method that
* corresponds to the request type. Incidentally, the request type
* _is_ the method name, so that's easy.
*/
handleParcel: function handleParcel(request_type, length, options) {
let method = this[request_type];
if (typeof method == "function") {
if (DEBUG) debug("Handling parcel as " + method.name);
method.call(this, length, options);
}
}
};
RIL[REQUEST_GET_SIM_STATUS] = function REQUEST_GET_SIM_STATUS(length, options) {
if (options.rilRequestError) {
return;
}
let iccStatus = {};
iccStatus.cardState = Buf.readUint32(); // CARD_STATE_*
iccStatus.universalPINState = Buf.readUint32(); // CARD_PINSTATE_*
iccStatus.gsmUmtsSubscriptionAppIndex = Buf.readUint32();
iccStatus.cdmaSubscriptionAppIndex = Buf.readUint32();
if (!RILQUIRKS_V5_LEGACY) {
iccStatus.imsSubscriptionAppIndex = Buf.readUint32();
}
let apps_length = Buf.readUint32();
if (apps_length > CARD_MAX_APPS) {
apps_length = CARD_MAX_APPS;
}
iccStatus.apps = [];
for (let i = 0 ; i < apps_length ; i++) {
iccStatus.apps.push({
app_type: Buf.readUint32(), // CARD_APPTYPE_*
app_state: Buf.readUint32(), // CARD_APPSTATE_*
perso_substate: Buf.readUint32(), // CARD_PERSOSUBSTATE_*
aid: Buf.readString(),
app_label: Buf.readString(),
pin1_replaced: Buf.readUint32(),
pin1: Buf.readUint32(),
pin2: Buf.readUint32()
});
if (RILQUIRKS_SIM_APP_STATE_EXTRA_FIELDS) {
Buf.readUint32();
Buf.readUint32();
Buf.readUint32();
Buf.readUint32();
}
}
if (DEBUG) debug("iccStatus: " + JSON.stringify(iccStatus));
this._processICCStatus(iccStatus);
};
RIL[REQUEST_ENTER_SIM_PIN] = function REQUEST_ENTER_SIM_PIN(length, options) {
this.sendDOMMessage({rilMessageType: "iccunlockcardlock",
lockType: "pin",
result: options.rilRequestError == 0 ? true : false,
retryCount: length ? Buf.readUint32List()[0] : -1,
requestId: options.requestId});
};
RIL[REQUEST_ENTER_SIM_PUK] = function REQUEST_ENTER_SIM_PUK(length, options) {
this.sendDOMMessage({rilMessageType: "iccunlockcardlock",
lockType: "puk",
result: options.rilRequestError == 0 ? true : false,
retryCount: length ? Buf.readUint32List()[0] : -1,
requestId: options.requestId});
};
RIL[REQUEST_ENTER_SIM_PIN2] = function REQUEST_ENTER_SIM_PIN2(length, options) {
this.sendDOMMessage({rilMessageType: "iccunlockcardlock",
lockType: "pin2",
result: options.rilRequestError == 0 ? true : false,
retryCount: length ? Buf.readUint32List()[0] : -1,
requestId: options.requestId});
};
RIL[REQUEST_ENTER_SIM_PUK2] = function REQUEST_ENTER_SIM_PUK(length, options) {
this.sendDOMMessage({rilMessageType: "iccunlockcardlock",
lockType: "puk2",
result: options.rilRequestError == 0 ? true : false,
retryCount: length ? Buf.readUint32List()[0] : -1,
requestId: options.requestId});
};
RIL[REQUEST_CHANGE_SIM_PIN] = function REQUEST_CHANGE_SIM_PIN(length, options) {
this.sendDOMMessage({rilMessageType: "iccsetcardlock",
lockType: "pin",
result: options.rilRequestError == 0 ? true : false,
retryCount: length ? Buf.readUint32List()[0] : -1,
requestId: options.requestId});
};
RIL[REQUEST_CHANGE_SIM_PIN2] = function REQUEST_CHANGE_SIM_PIN2(length, options) {
this.sendDOMMessage({rilMessageType: "iccsetcardlock",
lockType: "pin2",
result: options.rilRequestError == 0 ? true : false,
retryCount: length ? Buf.readUint32List()[0] : -1,
requestId: options.requestId});
};
RIL[REQUEST_ENTER_NETWORK_DEPERSONALIZATION] = null;
RIL[REQUEST_GET_CURRENT_CALLS] = function REQUEST_GET_CURRENT_CALLS(length, options) {
if (options.rilRequestError) {
return;
}
this.initRILQuirks();
let calls_length = 0;
// The RIL won't even send us the length integer if there are no active calls.
// So only read this integer if the parcel actually has it.
if (length) {
calls_length = Buf.readUint32();
}
if (!calls_length) {
this._processCalls(null);
return;
}
let calls = {};
for (let i = 0; i < calls_length; i++) {
let call = {};
call.state = Buf.readUint32(); // CALL_STATE_*
call.callIndex = Buf.readUint32(); // GSM index (1-based)
call.toa = Buf.readUint32();
call.isMpty = Boolean(Buf.readUint32());
call.isMT = Boolean(Buf.readUint32());
call.als = Buf.readUint32();
call.isVoice = Boolean(Buf.readUint32());
call.isVoicePrivacy = Boolean(Buf.readUint32());
if (RILQUIRKS_CALLSTATE_EXTRA_UINT32) {
Buf.readUint32();
}
call.number = Buf.readString(); //TODO munge with TOA
call.numberPresentation = Buf.readUint32(); // CALL_PRESENTATION_*
call.name = Buf.readString();
call.namePresentation = Buf.readUint32();
call.uusInfo = null;
let uusInfoPresent = Buf.readUint32();
if (uusInfoPresent == 1) {
call.uusInfo = {
type: Buf.readUint32(),
dcs: Buf.readUint32(),
userData: null //XXX TODO byte array?!?
};
}
call.isActive = false;
calls[call.callIndex] = call;
}
calls.length = calls_length;
this._processCalls(calls);
};
RIL[REQUEST_DIAL] = function REQUEST_DIAL(length, options) {
if (options.rilRequestError) {
// The connection is not established yet.
options.callIndex = -1;
this.getFailCauseCode(options);
return;
}
};
RIL[REQUEST_GET_IMSI] = function REQUEST_GET_IMSI(length, options) {
if (options.rilRequestError) {
return;
}
this.iccInfo.imsi = Buf.readString();
};
RIL[REQUEST_HANGUP] = function REQUEST_HANGUP(length, options) {
if (options.rilRequestError) {
return;
}
this.getCurrentCalls();
};
RIL[REQUEST_HANGUP_WAITING_OR_BACKGROUND] = function REQUEST_HANGUP_WAITING_OR_BACKGROUND(length, options) {
if (options.rilRequestError) {
return;
}
this.getCurrentCalls();
};
RIL[REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND] = function REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND(length, options) {
if (options.rilRequestError) {
return;
}
this.getCurrentCalls();
};
RIL[REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE] = function REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE(length, options) {
if (options.rilRequestError) {
return;
}
this.getCurrentCalls();
};
RIL[REQUEST_SWITCH_HOLDING_AND_ACTIVE] = function REQUEST_SWITCH_HOLDING_AND_ACTIVE(length, options) {
if (options.rilRequestError) {
return;
}
// XXX Normally we should get a UNSOLICITED_RESPONSE_CALL_STATE_CHANGED parcel
// notifying us of call state changes, but sometimes we don't (have no idea why).
// this.getCurrentCalls() helps update the call state actively.
this.getCurrentCalls();
};
RIL[REQUEST_CONFERENCE] = null;
RIL[REQUEST_UDUB] = null;
RIL[REQUEST_LAST_CALL_FAIL_CAUSE] = function REQUEST_LAST_CALL_FAIL_CAUSE(length, options) {
let num = 0;
if (length) {
num = Buf.readUint32();
}
if (!num) {
// No response of REQUEST_LAST_CALL_FAIL_CAUSE. Change the call state into
// 'disconnected' directly.
this._handleDisconnectedCall(options);
return;
}
let failCause = Buf.readUint32();
switch (failCause) {
case CALL_FAIL_NORMAL:
this._handleDisconnectedCall(options);
break;
case CALL_FAIL_BUSY:
options.state = CALL_STATE_BUSY;
this._handleChangedCallState(options);
this._handleDisconnectedCall(options);
break;
case CALL_FAIL_UNOBTAINABLE_NUMBER:
case CALL_FAIL_CONGESTION:
case CALL_FAIL_ACM_LIMIT_EXCEEDED:
case CALL_FAIL_CALL_BARRED:
case CALL_FAIL_FDN_BLOCKED:
case CALL_FAIL_IMSI_UNKNOWN_IN_VLR:
case CALL_FAIL_IMEI_NOT_ACCEPTED:
case CALL_FAIL_ERROR_UNSPECIFIED:
options.rilMessageType = "callError";
options.error = RIL_CALL_FAILCAUSE_TO_GECKO_CALL_ERROR[failCause];
this.sendDOMMessage(options);
break;
}
};
RIL[REQUEST_SIGNAL_STRENGTH] = function REQUEST_SIGNAL_STRENGTH(length, options) {
if (options.rilRequestError) {
return;
}
let obj = {};
// GSM
// Valid values are (0-31, 99) as defined in TS 27.007 8.5.
let gsmSignalStrength = Buf.readUint32();
obj.gsmSignalStrength = gsmSignalStrength & 0xff;
// GSM bit error rate (0-7, 99) as defined in TS 27.007 8.5.
obj.gsmBitErrorRate = Buf.readUint32();
obj.gsmDBM = null;
obj.gsmRelative = null;
if (obj.gsmSignalStrength >= 0 && obj.gsmSignalStrength <= 31) {
obj.gsmDBM = -113 + obj.gsmSignalStrength * 2;
obj.gsmRelative = Math.floor(obj.gsmSignalStrength * 100 / 31);
}
// The SGS2 seems to compute the number of bars (0-4) for us and
// expose those instead of the actual signal strength. Since the RIL
// needs to be "warmed up" first for the quirk detection to work,
// we're detecting this ad-hoc and not upfront.
if (obj.gsmSignalStrength == 99) {
obj.gsmRelative = (gsmSignalStrength >> 8) * 25;
}
// CDMA
obj.cdmaDBM = Buf.readUint32();
// The CDMA EC/IO.
obj.cdmaECIO = Buf.readUint32();
// The EVDO RSSI value.
// EVDO
obj.evdoDBM = Buf.readUint32();
// The EVDO EC/IO.
obj.evdoECIO = Buf.readUint32();
// Signal-to-noise ratio. Valid values are 0 to 8.
obj.evdoSNR = Buf.readUint32();
// LTE
if (!RILQUIRKS_V5_LEGACY) {
// Valid values are (0-31, 99) as defined in TS 27.007 8.5.
obj.lteSignalStrength = Buf.readUint32();
// Reference signal receive power in dBm, multiplied by -1.
// Valid values are 44 to 140.
obj.lteRSRP = Buf.readUint32();
// Reference signal receive quality in dB, multiplied by -1.
// Valid values are 3 to 20.
obj.lteRSRQ = Buf.readUint32();
// Signal-to-noise ratio for the reference signal.
// Valid values are -200 (20.0 dB) to +300 (30 dB).
obj.lteRSSNR = Buf.readUint32();
// Channel Quality Indicator, valid values are 0 to 15.
obj.lteCQI = Buf.readUint32();
}
if (DEBUG) debug("Signal strength " + JSON.stringify(obj));
obj.rilMessageType = "signalstrengthchange";
this.sendDOMMessage(obj);
};
RIL[REQUEST_VOICE_REGISTRATION_STATE] = function REQUEST_VOICE_REGISTRATION_STATE(length, options) {
this._receivedNetworkInfo(NETWORK_INFO_VOICE_REGISTRATION_STATE);
if (options.rilRequestError) {
return;
}
let state = Buf.readStringList();
if (DEBUG) debug("voice registration state: " + state);
this._processVoiceRegistrationState(state);
};
RIL[REQUEST_DATA_REGISTRATION_STATE] = function REQUEST_DATA_REGISTRATION_STATE(length, options) {
this._receivedNetworkInfo(NETWORK_INFO_DATA_REGISTRATION_STATE);
if (options.rilRequestError) {
return;
}
let state = Buf.readStringList();
this._processDataRegistrationState(state);
};
RIL[REQUEST_OPERATOR] = function REQUEST_OPERATOR(length, options) {
this._receivedNetworkInfo(NETWORK_INFO_OPERATOR);
if (options.rilRequestError) {
return;
}
let operatorData = Buf.readStringList();
if (DEBUG) debug("operator: " + operatorData);
this._processOperator(operatorData);
};
RIL[REQUEST_RADIO_POWER] = null;
RIL[REQUEST_DTMF] = null;
RIL[REQUEST_SEND_SMS] = function REQUEST_SEND_SMS(length, options) {
if (options.rilRequestError) {
switch (options.rilRequestError) {
case ERROR_SMS_SEND_FAIL_RETRY:
if (options.retryCount < SMS_RETRY_MAX) {
options.retryCount++;
// TODO: bug 736702 TP-MR, retry interval, retry timeout
this.sendSMS(options);
break;
}
// Fallback to default error handling if it meets max retry count.
default:
this.sendDOMMessage({
rilMessageType: "sms-send-failed",
envelopeId: options.envelopeId,
error: options.rilRequestError,
});
break;
}
return;
}
options.messageRef = Buf.readUint32();
options.ackPDU = Buf.readString();
options.errorCode = Buf.readUint32();
if (options.requestStatusReport) {
this._pendingSentSmsMap[options.messageRef] = options;
}
if ((options.segmentMaxSeq > 1)
&& (options.segmentSeq < options.segmentMaxSeq)) {
// Not last segment
if (!options.requestStatusReport) {
// Status-Report not requested, send next segment here.
this._processSentSmsSegment(options);
}
} else {
// Last segment sent with success. Report it.
this.sendDOMMessage({
rilMessageType: "sms-sent",
envelopeId: options.envelopeId,
});
}
};
RIL[REQUEST_SEND_SMS_EXPECT_MORE] = null;
RIL.readSetupDataCall_v5 = function readSetupDataCall_v5(options) {
if (!options) {
options = {};
}
let [cid, ifname, ipaddr, dns, gw] = Buf.readStringList();
options.cid = cid;
options.ifname = ifname;
options.ipaddr = ipaddr;
options.dns = dns;
options.gw = gw;
options.active = DATACALL_ACTIVE_UNKNOWN;
options.state = GECKO_NETWORK_STATE_CONNECTING;
return options;
};
RIL[REQUEST_SETUP_DATA_CALL] = function REQUEST_SETUP_DATA_CALL(length, options) {
if (options.rilRequestError) {
options.rilMessageType = "datacallerror";
this.sendDOMMessage(options);
return;
}
if (RILQUIRKS_V5_LEGACY) {
// Populate the `options` object with the data call information. That way
// we retain the APN and other info about how the data call was set up.
this.readSetupDataCall_v5(options);
this.currentDataCalls[options.cid] = options;
options.rilMessageType = "datacallstatechange";
this.sendDOMMessage(options);
// Let's get the list of data calls to ensure we know whether it's active
// or not.
this.getDataCallList();
return;
}
// Pass `options` along. That way we retain the APN and other info about
// how the data call was set up.
this[REQUEST_DATA_CALL_LIST](length, options);
};
RIL[REQUEST_SIM_IO] = function REQUEST_SIM_IO(length, options) {
// Don't need to read rilRequestError since we can know error status from
// sw1 and sw2.
let sw1 = Buf.readUint32();
let sw2 = Buf.readUint32();
if (sw1 != ICC_STATUS_NORMAL_ENDING) {
// See GSM11.11, TS 51.011 clause 9.4, and ISO 7816-4 for the error
// description.
if (DEBUG) {
debug("ICC I/O Error EF id = " + options.fileId.toString(16) +
" command = " + options.command.toString(16) +
"(" + sw1.toString(16) + "/" + sw2.toString(16) + ")");
}
return;
}
this._processICCIO(options);
};
RIL[REQUEST_SEND_USSD] = function REQUEST_SEND_USSD(length, options) {
if (DEBUG) {
debug("REQUEST_SEND_USSD " + JSON.stringify(options));
}
options.rilMessageType = "sendussd";
options.success = options.rilRequestError == 0 ? true : false;
this.sendDOMMessage(options);
};
RIL[REQUEST_CANCEL_USSD] = function REQUEST_CANCEL_USSD(length, options) {
if (DEBUG) {
debug("REQUEST_CANCEL_USSD" + JSON.stringify(options));
}
options.rilMessageType = "cancelussd";
options.success = options.rilRequestError == 0 ? true : false;
this.sendDOMMessage(options);
};
RIL[REQUEST_GET_CLIR] = null;
RIL[REQUEST_SET_CLIR] = null;
RIL[REQUEST_QUERY_CALL_FORWARD_STATUS] = null;
RIL[REQUEST_SET_CALL_FORWARD] = null;
RIL[REQUEST_QUERY_CALL_WAITING] = null;
RIL[REQUEST_SET_CALL_WAITING] = null;
RIL[REQUEST_SMS_ACKNOWLEDGE] = null;
RIL[REQUEST_GET_IMEI] = function REQUEST_GET_IMEI(length, options) {
if (options.rilRequestError) {
return;
}
this.IMEI = Buf.readString();
};
RIL[REQUEST_GET_IMEISV] = function REQUEST_GET_IMEISV(length, options) {
if (options.rilRequestError) {
return;
}
this.IMEISV = Buf.readString();
};
RIL[REQUEST_ANSWER] = null;
RIL[REQUEST_DEACTIVATE_DATA_CALL] = function REQUEST_DEACTIVATE_DATA_CALL(length, options) {
if (options.rilRequestError) {
return;
}
let datacall = this.currentDataCalls[options.cid];
delete this.currentDataCalls[options.cid];
datacall.state = GECKO_NETWORK_STATE_DISCONNECTED;
datacall.rilMessageType = "datacallstatechange";
this.sendDOMMessage(datacall);
};
RIL[REQUEST_QUERY_FACILITY_LOCK] = function REQUEST_QUERY_FACILITY_LOCK(length, options) {
if (options.rilRequestError) {
return;
}
let response = Buf.readUint32List()[0];
this.sendDOMMessage({rilMessageType: "iccgetcardlock",
lockType: "pin",
enabled: response == 0 ? false : true,
requestId: options.requestId});
};
RIL[REQUEST_SET_FACILITY_LOCK] = function REQUEST_SET_FACILITY_LOCK(length, options) {
this.sendDOMMessage({rilMessageType: "iccsetcardlock",
lockType: "pin",
result: options.rilRequestError == 0 ? true : false,
retryCount: length ? Buf.readUint32List()[0] : -1,
requestId: options.requestId});
};
RIL[REQUEST_CHANGE_BARRING_PASSWORD] = null;
RIL[REQUEST_QUERY_NETWORK_SELECTION_MODE] = function REQUEST_QUERY_NETWORK_SELECTION_MODE(length, options) {
this._receivedNetworkInfo(NETWORK_INFO_NETWORK_SELECTION_MODE);
if (options.rilRequestError) {
options.error = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError];
this.sendDOMMessage(options);
return;
}
let mode = Buf.readUint32List();
let selectionMode;
switch (mode[0]) {
case NETWORK_SELECTION_MODE_AUTOMATIC:
selectionMode = GECKO_NETWORK_SELECTION_AUTOMATIC;
break;
case NETWORK_SELECTION_MODE_MANUAL:
selectionMode = GECKO_NETWORK_SELECTION_MANUAL;
break;
default:
selectionMode = GECKO_NETWORK_SELECTION_UNKNOWN;
break;
}
if (this.mode != selectionMode) {
this.mode = options.mode = selectionMode;
options.rilMessageType = "networkselectionmodechange";
this._sendNetworkInfoMessage(NETWORK_INFO_NETWORK_SELECTION_MODE, options);
}
};
RIL[REQUEST_SET_NETWORK_SELECTION_AUTOMATIC] = function REQUEST_SET_NETWORK_SELECTION_AUTOMATIC(length, options) {
if (options.rilRequestError) {
options.error = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError];
this.sendDOMMessage(options);
return;
}
this.sendDOMMessage(options);
};
RIL[REQUEST_SET_NETWORK_SELECTION_MANUAL] = function REQUEST_SET_NETWORK_SELECTION_MANUAL(length, options) {
if (options.rilRequestError) {
options.error = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError];
this.sendDOMMessage(options);
return;
}
this.sendDOMMessage(options);
};
RIL[REQUEST_QUERY_AVAILABLE_NETWORKS] = function REQUEST_QUERY_AVAILABLE_NETWORKS(length, options) {
if (options.rilRequestError) {
options.error = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError];
this.sendDOMMessage(options);
return;
}
options.networks = this._processNetworks();
this.sendDOMMessage(options);
};
RIL[REQUEST_DTMF_START] = null;
RIL[REQUEST_DTMF_STOP] = null;
RIL[REQUEST_BASEBAND_VERSION] = function REQUEST_BASEBAND_VERSION(length, options) {
if (options.rilRequestError) {
return;
}
this.basebandVersion = Buf.readString();
if (DEBUG) debug("Baseband version: " + this.basebandVersion);
};
RIL[REQUEST_SEPARATE_CONNECTION] = null;
RIL[REQUEST_SET_MUTE] = null;
RIL[REQUEST_GET_MUTE] = null;
RIL[REQUEST_QUERY_CLIP] = null;
RIL[REQUEST_LAST_DATA_CALL_FAIL_CAUSE] = null;
RIL.readDataCall_v5 = function readDataCall_v5(options) {
if (!options) {
options = {};
}
options.cid = Buf.readUint32().toString();
options.active = Buf.readUint32(); // DATACALL_ACTIVE_*
options.type = Buf.readString();
options.apn = Buf.readString();
options.address = Buf.readString();
return options;
};
RIL.readDataCall_v6 = function readDataCall_v6(options) {
if (!options) {
options = {};
}
options.status = Buf.readUint32(); // DATACALL_FAIL_*
options.suggestedRetryTime = Buf.readUint32();
options.cid = Buf.readUint32().toString();
options.active = Buf.readUint32(); // DATACALL_ACTIVE_*
options.type = Buf.readString();
options.ifname = Buf.readString();
options.ipaddr = Buf.readString();
options.dns = Buf.readString();
options.gw = Buf.readString();
if (options.dns) {
options.dns = options.dns.split(" ");
}
//TODO for now we only support one address and gateway
if (options.ipaddr) {
options.ipaddr = options.ipaddr.split(" ")[0];
}
if (options.gw) {
options.gw = options.gw.split(" ")[0];
}
return options;
};
RIL[REQUEST_DATA_CALL_LIST] = function REQUEST_DATA_CALL_LIST(length, options) {
if (options.rilRequestError) {
return;
}
this.initRILQuirks();
if (!length) {
this._processDataCallList(null);
return;
}
let version = 0;
if (!RILQUIRKS_V5_LEGACY) {
version = Buf.readUint32();
}
let num = num = Buf.readUint32();
let datacalls = {};
for (let i = 0; i < num; i++) {
let datacall;
if (version < 6) {
datacall = this.readDataCall_v5();
} else {
datacall = this.readDataCall_v6();
}
datacalls[datacall.cid] = datacall;
}
let newDataCallOptions = null;
if (options.rilRequestType == REQUEST_SETUP_DATA_CALL) {
newDataCallOptions = options;
}
this._processDataCallList(datacalls, newDataCallOptions);
};
RIL[REQUEST_RESET_RADIO] = null;
RIL[REQUEST_OEM_HOOK_RAW] = null;
RIL[REQUEST_OEM_HOOK_STRINGS] = null;
RIL[REQUEST_SCREEN_STATE] = null;
RIL[REQUEST_SET_SUPP_SVC_NOTIFICATION] = null;
RIL[REQUEST_WRITE_SMS_TO_SIM] = null;
RIL[REQUEST_DELETE_SMS_ON_SIM] = null;
RIL[REQUEST_SET_BAND_MODE] = null;
RIL[REQUEST_QUERY_AVAILABLE_BAND_MODE] = null;
RIL[REQUEST_STK_GET_PROFILE] = null;
RIL[REQUEST_STK_SET_PROFILE] = null;
RIL[REQUEST_STK_SEND_ENVELOPE_COMMAND] = null;
RIL[REQUEST_STK_SEND_TERMINAL_RESPONSE] = null;
RIL[REQUEST_STK_HANDLE_CALL_SETUP_REQUESTED_FROM_SIM] = null;
RIL[REQUEST_EXPLICIT_CALL_TRANSFER] = null;
RIL[REQUEST_SET_PREFERRED_NETWORK_TYPE] = null;
RIL[REQUEST_GET_PREFERRED_NETWORK_TYPE] = null;
RIL[REQUEST_GET_NEIGHBORING_CELL_IDS] = null;
RIL[REQUEST_SET_LOCATION_UPDATES] = null;
RIL[REQUEST_CDMA_SET_SUBSCRIPTION_SOURCE] = null;
RIL[REQUEST_CDMA_SET_ROAMING_PREFERENCE] = null;
RIL[REQUEST_CDMA_QUERY_ROAMING_PREFERENCE] = null;
RIL[REQUEST_SET_TTY_MODE] = null;
RIL[REQUEST_QUERY_TTY_MODE] = null;
RIL[REQUEST_CDMA_SET_PREFERRED_VOICE_PRIVACY_MODE] = null;
RIL[REQUEST_CDMA_QUERY_PREFERRED_VOICE_PRIVACY_MODE] = null;
RIL[REQUEST_CDMA_FLASH] = null;
RIL[REQUEST_CDMA_BURST_DTMF] = null;
RIL[REQUEST_CDMA_VALIDATE_AND_WRITE_AKEY] = null;
RIL[REQUEST_CDMA_SEND_SMS] = null;
RIL[REQUEST_CDMA_SMS_ACKNOWLEDGE] = null;
RIL[REQUEST_GSM_GET_BROADCAST_SMS_CONFIG] = null;
RIL[REQUEST_GSM_SET_BROADCAST_SMS_CONFIG] = null;
RIL[REQUEST_GSM_SMS_BROADCAST_ACTIVATION] = null;
RIL[REQUEST_CDMA_GET_BROADCAST_SMS_CONFIG] = null;
RIL[REQUEST_CDMA_SET_BROADCAST_SMS_CONFIG] = null;
RIL[REQUEST_CDMA_SMS_BROADCAST_ACTIVATION] = null;
RIL[REQUEST_CDMA_SUBSCRIPTION] = null;
RIL[REQUEST_CDMA_WRITE_SMS_TO_RUIM] = null;
RIL[REQUEST_CDMA_DELETE_SMS_ON_RUIM] = null;
RIL[REQUEST_DEVICE_IDENTITY] = null;
RIL[REQUEST_EXIT_EMERGENCY_CALLBACK_MODE] = null;
RIL[REQUEST_GET_SMSC_ADDRESS] = function REQUEST_GET_SMSC_ADDRESS(length, options) {
if (options.rilRequestError) {
return;
}
this.SMSC = Buf.readString();
};
RIL[REQUEST_SET_SMSC_ADDRESS] = null;
RIL[REQUEST_REPORT_SMS_MEMORY_STATUS] = null;
RIL[REQUEST_REPORT_STK_SERVICE_IS_RUNNING] = null;
RIL[UNSOLICITED_RESPONSE_RADIO_STATE_CHANGED] = function UNSOLICITED_RESPONSE_RADIO_STATE_CHANGED() {
let radioState = Buf.readUint32();
// Ensure radio state at boot time.
if (this._isInitialRadioState) {
this._isInitialRadioState = false;
if (radioState != RADIO_STATE_OFF) {
this.setRadioPower({on: false});
return;
}
}
let newState;
if (radioState == RADIO_STATE_UNAVAILABLE) {
newState = GECKO_RADIOSTATE_UNAVAILABLE;
} else if (radioState == RADIO_STATE_OFF) {
newState = GECKO_RADIOSTATE_OFF;
} else {
newState = GECKO_RADIOSTATE_READY;
}
if (DEBUG) {
debug("Radio state changed from '" + this.radioState +
"' to '" + newState + "'");
}
if (this.radioState == newState) {
return;
}
// TODO hardcoded for now (see bug 726098)
let cdma = false;
if ((this.radioState == GECKO_RADIOSTATE_UNAVAILABLE ||
this.radioState == GECKO_RADIOSTATE_OFF) &&
newState == GECKO_RADIOSTATE_READY) {
// The radio became available, let's get its info.
if (cdma) {
this.getDeviceIdentity();
} else {
this.getIMEI();
this.getIMEISV();
}
this.getBasebandVersion();
}
this.radioState = newState;
this.sendDOMMessage({
rilMessageType: "radiostatechange",
radioState: newState
});
// If the radio is up and on, so let's query the card state.
// On older RILs only if the card is actually ready, though.
if (radioState == RADIO_STATE_UNAVAILABLE ||
radioState == RADIO_STATE_OFF) {
return;
}
this.getICCStatus();
};
RIL[UNSOLICITED_RESPONSE_CALL_STATE_CHANGED] = function UNSOLICITED_RESPONSE_CALL_STATE_CHANGED() {
this.getCurrentCalls();
};
RIL[UNSOLICITED_RESPONSE_VOICE_NETWORK_STATE_CHANGED] = function UNSOLICITED_RESPONSE_VOICE_NETWORK_STATE_CHANGED() {
if (DEBUG) debug("Network state changed, re-requesting phone state and ICC status");
this.getICCStatus();
this.requestNetworkInfo();
};
RIL[UNSOLICITED_RESPONSE_NEW_SMS] = function UNSOLICITED_RESPONSE_NEW_SMS(length) {
let result = this._processSmsDeliver(length);
this.acknowledgeSMS(result == PDU_FCS_OK, result);
};
RIL[UNSOLICITED_RESPONSE_NEW_SMS_STATUS_REPORT] = function UNSOLICITED_RESPONSE_NEW_SMS_STATUS_REPORT(length) {
let result = this._processSmsStatusReport(length);
this.acknowledgeSMS(result == PDU_FCS_OK, result);
};
RIL[UNSOLICITED_RESPONSE_NEW_SMS_ON_SIM] = function UNSOLICITED_RESPONSE_NEW_SMS_ON_SIM(length) {
let info = Buf.readUint32List();
//TODO
};
RIL[UNSOLICITED_ON_USSD] = function UNSOLICITED_ON_USSD() {
let [typeCode, message] = Buf.readStringList();
if (DEBUG) {
debug("On USSD. Type Code: " + typeCode + " Message: " + message);
}
// Empty message should not be progressed to the DOM.
if (!message || message == "") {
return;
}
this.sendDOMMessage({rilMessageType: "ussdreceived",
message: message});
};
RIL[UNSOLICITED_NITZ_TIME_RECEIVED] = function UNSOLICITED_NITZ_TIME_RECEIVED() {
let dateString = Buf.readString();
// The data contained in the NITZ message is
// in the form "yy/mm/dd,hh:mm:ss(+/-)tz,dt"
// for example: 12/02/16,03:36:08-20,00,310410
// Always print the NITZ info so we can collection what different providers
// send down the pipe (see bug XXX).
// TODO once data is collected, add in |if (DEBUG)|
debug("DateTimeZone string " + dateString);
let now = Date.now();
let year = parseInt(dateString.substr(0, 2), 10);
let month = parseInt(dateString.substr(3, 2), 10);
let day = parseInt(dateString.substr(6, 2), 10);
let hours = parseInt(dateString.substr(9, 2), 10);
let minutes = parseInt(dateString.substr(12, 2), 10);
let seconds = parseInt(dateString.substr(15, 2), 10);
let tz = parseInt(dateString.substr(17, 3), 10); // TZ is in 15 min. units
let dst = parseInt(dateString.substr(21, 2), 10); // DST already is in local time
let timeInSeconds = Date.UTC(year + PDU_TIMESTAMP_YEAR_OFFSET, month - 1, day,
hours, minutes, seconds) / 1000;
if (isNaN(timeInSeconds)) {
if (DEBUG) debug("NITZ failed to convert date");
return;
}
this.sendDOMMessage({rilMessageType: "nitzTime",
networkTimeInSeconds: timeInSeconds,
networkTimeZoneInMinutes: tz * 15,
dstFlag: dst,
localTimeStampInMS: now});
};
RIL[UNSOLICITED_SIGNAL_STRENGTH] = function UNSOLICITED_SIGNAL_STRENGTH(length) {
this[REQUEST_SIGNAL_STRENGTH](length, {rilRequestError: ERROR_SUCCESS});
};
RIL[UNSOLICITED_DATA_CALL_LIST_CHANGED] = function UNSOLICITED_DATA_CALL_LIST_CHANGED(length) {
if (RILQUIRKS_V5_LEGACY) {
this.getDataCallList();
return;
}
this[REQUEST_DATA_CALL_LIST](length, {rilRequestError: ERROR_SUCCESS});
};
RIL[UNSOLICITED_SUPP_SVC_NOTIFICATION] = null;
RIL[UNSOLICITED_STK_SESSION_END] = null;
RIL[UNSOLICITED_STK_PROACTIVE_COMMAND] = null;
RIL[UNSOLICITED_STK_EVENT_NOTIFY] = null;
RIL[UNSOLICITED_STK_CALL_SETUP] = null;
RIL[UNSOLICITED_SIM_SMS_STORAGE_FULL] = null;
RIL[UNSOLICITED_SIM_REFRESH] = null;
RIL[UNSOLICITED_CALL_RING] = function UNSOLICITED_CALL_RING() {
let info;
let isCDMA = false; //XXX TODO hard-code this for now
if (isCDMA) {
info = {
isPresent: Buf.readUint32(),
signalType: Buf.readUint32(),
alertPitch: Buf.readUint32(),
signal: Buf.readUint32()
};
}
// For now we don't need to do anything here because we'll also get a
// call state changed notification.
};
RIL[UNSOLICITED_RESPONSE_SIM_STATUS_CHANGED] = function UNSOLICITED_RESPONSE_SIM_STATUS_CHANGED() {
this.getICCStatus();
};
RIL[UNSOLICITED_RESPONSE_CDMA_NEW_SMS] = null;
RIL[UNSOLICITED_RESPONSE_NEW_BROADCAST_SMS] = null;
RIL[UNSOLICITED_CDMA_RUIM_SMS_STORAGE_FULL] = null;
RIL[UNSOLICITED_RESTRICTED_STATE_CHANGED] = null;
RIL[UNSOLICITED_ENTER_EMERGENCY_CALLBACK_MODE] = null;
RIL[UNSOLICITED_CDMA_CALL_WAITING] = null;
RIL[UNSOLICITED_CDMA_OTA_PROVISION_STATUS] = null;
RIL[UNSOLICITED_CDMA_INFO_REC] = null;
RIL[UNSOLICITED_OEM_HOOK_RAW] = null;
RIL[UNSOLICITED_RINGBACK_TONE] = null;
RIL[UNSOLICITED_RESEND_INCALL_MUTE] = null;
RIL[UNSOLICITED_RIL_CONNECTED] = function UNSOLICITED_RIL_CONNECTED(length) {
// Prevent response id collision between UNSOLICITED_RIL_CONNECTED and
// UNSOLICITED_VOICE_RADIO_TECH_CHANGED for Akami on gingerbread branch.
if (!length) {
this.initRILQuirks();
return;
}
let version = Buf.readUint32List()[0];
RILQUIRKS_V5_LEGACY = (version < 5);
if (DEBUG) {
debug("Detected RIL version " + version);
debug("RILQUIRKS_V5_LEGACY is " + RILQUIRKS_V5_LEGACY);
}
};
/**
* This object exposes the functionality to parse and serialize PDU strings
*
* A PDU is a string containing a series of hexadecimally encoded octets
* or nibble-swapped binary-coded decimals (BCDs). It contains not only the
* message text but information about the sender, the SMS service center,
* timestamp, etc.
*/
let GsmPDUHelper = {
/**
* Read one character (2 bytes) from a RIL string and decode as hex.
*
* @return the nibble as a number.
*/
readHexNibble: function readHexNibble() {
let nibble = Buf.readUint16();
if (nibble >= 48 && nibble <= 57) {
nibble -= 48; // ASCII '0'..'9'
} else if (nibble >= 65 && nibble <= 70) {
nibble -= 55; // ASCII 'A'..'F'
} else if (nibble >= 97 && nibble <= 102) {
nibble -= 87; // ASCII 'a'..'f'
} else {
throw "Found invalid nibble during PDU parsing: " +
String.fromCharCode(nibble);
}
return nibble;
},
/**
* Encode a nibble as one hex character in a RIL string (2 bytes).
*
* @param nibble
* The nibble to encode (represented as a number)
*/
writeHexNibble: function writeHexNibble(nibble) {
nibble &= 0x0f;
if (nibble < 10) {
nibble += 48; // ASCII '0'
} else {
nibble += 55; // ASCII 'A'
}
Buf.writeUint16(nibble);
},
/**
* Read a hex-encoded octet (two nibbles).
*
* @return the octet as a number.
*/
readHexOctet: function readHexOctet() {
return (this.readHexNibble() << 4) | this.readHexNibble();
},
/**
* Write an octet as two hex-encoded nibbles.
*
* @param octet
* The octet (represented as a number) to encode.
*/
writeHexOctet: function writeHexOctet(octet) {
this.writeHexNibble(octet >> 4);
this.writeHexNibble(octet);
},
/**
* Read an array of hex-encoded octets.
*/
readHexOctetArray: function readHexOctetArray(length) {
let array = new Uint8Array(length);
for (let i = 0; i < length; i++) {
array[i] = this.readHexOctet();
}
return array;
},
/**
* Convert an octet (number) to a BCD number.
*
* Any nibbles that are not in the BCD range count as 0.
*
* @param octet
* The octet (a number, as returned by getOctet())
*
* @return the corresponding BCD number.
*/
octetToBCD: function octetToBCD(octet) {
return ((octet & 0xf0) <= 0x90) * ((octet >> 4) & 0x0f) +
((octet & 0x0f) <= 0x09) * (octet & 0x0f) * 10;
},
/**
* Convert a semi-octet (number) to a GSM BCD char.
*/
bcdChars: "0123456789*#,;",
semiOctetToBcdChar: function semiOctetToBcdChar(semiOctet) {
if (semiOctet >= 14) {
throw new RangeError();
}
return this.bcdChars.charAt(semiOctet);
},
/**
* Read a *swapped nibble* binary coded decimal (BCD)
*
* @param pairs
* Number of nibble *pairs* to read.
*
* @return the decimal as a number.
*/
readSwappedNibbleBcdNum: function readSwappedNibbleBcdNum(pairs) {
let number = 0;
for (let i = 0; i < pairs; i++) {
let octet = this.readHexOctet();
// Ignore 'ff' octets as they're often used as filler.
if (octet == 0xff) {
continue;
}
// If the first nibble is an "F" , only the second nibble is to be taken
// into account.
if ((octet & 0xf0) == 0xf0) {
number *= 10;
number += octet & 0x0f;
continue;
}
number *= 100;
number += this.octetToBCD(octet);
}
return number;
},
/**
* Read a *swapped nibble* binary coded string (BCD)
*
* @param pairs
* Number of nibble *pairs* to read.
*
* @return The BCD string.
*/
readSwappedNibbleBcdString: function readSwappedNibbleBcdString(pairs) {
let str = "";
for (let i = 0; i < pairs; i++) {
let nibbleH = this.readHexNibble();
let nibbleL = this.readHexNibble();
if (nibbleL == 0x0F) {
break;
}
str += this.semiOctetToBcdChar(nibbleL);
if (nibbleH != 0x0F) {
str += this.semiOctetToBcdChar(nibbleH);
}
}
return str;
},
/**
* Write numerical data as swapped nibble BCD.
*
* @param data
* Data to write (as a string or a number)
*/
writeSwappedNibbleBCD: function writeSwappedNibbleBCD(data) {
data = data.toString();
if (data.length % 2) {
data += "F";
}
for (let i = 0; i < data.length; i += 2) {
Buf.writeUint16(data.charCodeAt(i + 1));
Buf.writeUint16(data.charCodeAt(i));
}
},
/**
* Read user data, convert to septets, look up relevant characters in a
* 7-bit alphabet, and construct string.
*
* @param length
* Number of septets to read (*not* octets)
* @param paddingBits
* Number of padding bits in the first byte of user data.
* @param langIndex
* Table index used for normal 7-bit encoded character lookup.
* @param langShiftIndex
* Table index used for escaped 7-bit encoded character lookup.
*
* @return a string.
*/
readSeptetsToString: function readSeptetsToString(length, paddingBits, langIndex, langShiftIndex) {
let ret = "";
let byteLength = Math.ceil((length * 7 + paddingBits) / 8);
/**
* |<- last byte in header ->|
* |<- incompleteBits ->|<- last header septet->|
* +===7===|===6===|===5===|===4===|===3===|===2===|===1===|===0===|
*
* |<- 1st byte in user data ->|
* |<- data septet 1 ->|<-paddingBits->|
* +===7===|===6===|===5===|===4===|===3===|===2===|===1===|===0===|
*
* |<- 2nd byte in user data ->|
* |<- data spetet 2 ->|<-ds1->|
* +===7===|===6===|===5===|===4===|===3===|===2===|===1===|===0===|
*/
let data = 0;
let dataBits = 0;
if (paddingBits) {
data = this.readHexOctet() >> paddingBits;
dataBits = 8 - paddingBits;
--byteLength;
}
let escapeFound = false;
const langTable = PDU_NL_LOCKING_SHIFT_TABLES[langIndex];
const langShiftTable = PDU_NL_SINGLE_SHIFT_TABLES[langShiftIndex];
do {
// Read as much as fits in 32bit word
let bytesToRead = Math.min(byteLength, dataBits ? 3 : 4);
for (let i = 0; i < bytesToRead; i++) {
data |= this.readHexOctet() << dataBits;
dataBits += 8;
--byteLength;
}
// Consume available full septets
for (; dataBits >= 7; dataBits -= 7) {
let septet = data & 0x7F;
data >>>= 7;
if (escapeFound) {
escapeFound = false;
if (septet == PDU_NL_EXTENDED_ESCAPE) {
// According to 3GPP TS 23.038, section 6.2.1.1, NOTE 1, "On
// receipt of this code, a receiving entity shall display a space
// until another extensiion table is defined."
ret += " ";
} else if (septet == PDU_NL_RESERVED_CONTROL) {
// According to 3GPP TS 23.038 B.2, "This code represents a control
// character and therefore must not be used for language specific
// characters."
ret += " ";
} else {
ret += langShiftTable[septet];
}
} else if (septet == PDU_NL_EXTENDED_ESCAPE) {
escapeFound = true;
// <escape> is not an effective character
--length;
} else {
ret += langTable[septet];
}
}
} while (byteLength);
if (ret.length != length) {
/**
* If num of effective characters does not equal to the length of read
* string, cut the tail off. This happens when the last octet of user
* data has following layout:
*
* |<- penultimate octet in user data ->|
* |<- data septet N ->|<- dsN-1 ->|
* +===7===|===6===|===5===|===4===|===3===|===2===|===1===|===0===|
*
* |<- last octet in user data ->|
* |<- fill bits ->|<-dsN->|
* +===7===|===6===|===5===|===4===|===3===|===2===|===1===|===0===|
*
* The fill bits in the last octet may happen to form a full septet and
* be appended at the end of result string.
*/
ret = ret.slice(0, length);
}
return ret;
},
writeStringAsSeptets: function writeStringAsSeptets(message, paddingBits, langIndex, langShiftIndex) {
const langTable = PDU_NL_LOCKING_SHIFT_TABLES[langIndex];
const langShiftTable = PDU_NL_SINGLE_SHIFT_TABLES[langShiftIndex];
let dataBits = paddingBits;
let data = 0;
for (let i = 0; i < message.length; i++) {
let septet = langTable.indexOf(message[i]);
if (septet == PDU_NL_EXTENDED_ESCAPE) {
continue;
}
if (septet >= 0) {
data |= septet << dataBits;
dataBits += 7;
} else {
septet = langShiftTable.indexOf(message[i]);
if (septet == -1) {
throw new Error(message[i] + " not in 7 bit alphabet "
+ langIndex + ":" + langShiftIndex + "!");
}
if (septet == PDU_NL_RESERVED_CONTROL) {
continue;
}
data |= PDU_NL_EXTENDED_ESCAPE << dataBits;
dataBits += 7;
data |= septet << dataBits;
dataBits += 7;
}
for (; dataBits >= 8; dataBits -= 8) {
this.writeHexOctet(data & 0xFF);
data >>>= 8;
}
}
if (dataBits != 0) {
this.writeHexOctet(data & 0xFF);
}
},
/**
* Read user data and decode as a UCS2 string.
*
* @param numOctets
* num of octets to read as UCS2 string.
*
* @return a string.
*/
readUCS2String: function readUCS2String(numOctets) {
let str = "";
let length = numOctets / 2;
for (let i = 0; i < length; ++i) {
let code = (this.readHexOctet() << 8) | this.readHexOctet();
str += String.fromCharCode(code);
}
if (DEBUG) debug("Read UCS2 string: " + str);
return str;
},
/**
* Write user data as a UCS2 string.
*
* @param message
* Message string to encode as UCS2 in hex-encoded octets.
*/
writeUCS2String: function writeUCS2String(message) {
for (let i = 0; i < message.length; ++i) {
let code = message.charCodeAt(i);
this.writeHexOctet((code >> 8) & 0xFF);
this.writeHexOctet(code & 0xFF);
}
},
/**
* Read 1 + UDHL octets and construct user data header.
*
* @param msg
* message object for output.
*
* @see 3GPP TS 23.040 9.2.3.24
*/
readUserDataHeader: function readUserDataHeader(msg) {
/**
* A header object with properties contained in received message.
* The properties set include:
*
* length: totoal length of the header, default 0.
* langIndex: used locking shift table index, default
* PDU_NL_IDENTIFIER_DEFAULT.
* langShiftIndex: used locking shift table index, default
* PDU_NL_IDENTIFIER_DEFAULT.
*
*/
let header = {
length: 0,
langIndex: PDU_NL_IDENTIFIER_DEFAULT,
langShiftIndex: PDU_NL_IDENTIFIER_DEFAULT
};
header.length = this.readHexOctet();
if (DEBUG) debug("Read UDH length: " + header.length);
let dataAvailable = header.length;
while (dataAvailable >= 2) {
let id = this.readHexOctet();
let length = this.readHexOctet();
if (DEBUG) debug("Read UDH id: " + id + ", length: " + length);
dataAvailable -= 2;
switch (id) {
case PDU_IEI_CONCATENATED_SHORT_MESSAGES_8BIT: {
let ref = this.readHexOctet();
let max = this.readHexOctet();
let seq = this.readHexOctet();
dataAvailable -= 3;
if (max && seq && (seq <= max)) {
header.segmentRef = ref;
header.segmentMaxSeq = max;
header.segmentSeq = seq;
}
break;
}
case PDU_IEI_APPLICATION_PORT_ADDRESSING_SCHEME_8BIT: {
let dstp = this.readHexOctet();
let orip = this.readHexOctet();
dataAvailable -= 2;
if ((dstp < PDU_APA_RESERVED_8BIT_PORTS)
|| (orip < PDU_APA_RESERVED_8BIT_PORTS)) {
// 3GPP TS 23.040 clause 9.2.3.24.3: "A receiving entity shall
// ignore any information element where the value of the
// Information-Element-Data is Reserved or not supported"
break;
}
header.destinationPort = dstp;
header.originatorPort = orip;
break;
}
case PDU_IEI_APPLICATION_PORT_ADDRESSING_SCHEME_16BIT: {
let dstp = (this.readHexOctet() << 8) | this.readHexOctet();
let orip = (this.readHexOctet() << 8) | this.readHexOctet();
dataAvailable -= 4;
// 3GPP TS 23.040 clause 9.2.3.24.4: "A receiving entity shall
// ignore any information element where the value of the
// Information-Element-Data is Reserved or not supported"
if ((dstp < PDU_APA_VALID_16BIT_PORTS)
&& (orip < PDU_APA_VALID_16BIT_PORTS)) {
header.destinationPort = dstp;
header.originatorPort = orip;
}
break;
}
case PDU_IEI_CONCATENATED_SHORT_MESSAGES_16BIT: {
let ref = (this.readHexOctet() << 8) | this.readHexOctet();
let max = this.readHexOctet();
let seq = this.readHexOctet();
dataAvailable -= 4;
if (max && seq && (seq <= max)) {
header.segmentRef = ref;
header.segmentMaxSeq = max;
header.segmentSeq = seq;
}
break;
}
case PDU_IEI_NATIONAL_LANGUAGE_SINGLE_SHIFT:
let langShiftIndex = this.readHexOctet();
--dataAvailable;
if (langShiftIndex < PDU_NL_SINGLE_SHIFT_TABLES.length) {
header.langShiftIndex = langShiftIndex;
}
break;
case PDU_IEI_NATIONAL_LANGUAGE_LOCKING_SHIFT:
let langIndex = this.readHexOctet();
--dataAvailable;
if (langIndex < PDU_NL_LOCKING_SHIFT_TABLES.length) {
header.langIndex = langIndex;
}
break;
case PDU_IEI_SPECIAL_SMS_MESSAGE_INDICATION:
let msgInd = this.readHexOctet() & 0xFF;
let msgCount = this.readHexOctet();
dataAvailable -= 2;
/*
* TS 23.040 V6.8.1 Sec 9.2.3.24.2
* bits 1 0 : basic message indication type
* bits 4 3 2 : extended message indication type
* bits 6 5 : Profile id
* bit 7 : storage type
*/
let storeType = msgInd & PDU_MWI_STORE_TYPE_BIT;
let mwi = msg.mwi;
if (!mwi) {
mwi = msg.mwi = {};
}
if (storeType == PDU_MWI_STORE_TYPE_STORE) {
// Store message because TP_UDH indicates so, note this may override
// the setting in DCS, but that is expected
mwi.discard = false;
} else if (mwi.discard === undefined) {
// storeType == PDU_MWI_STORE_TYPE_DISCARD
// only override mwi.discard here if it hasn't already been set
mwi.discard = true;
}
mwi.msgCount = msgCount & 0xFF;
mwi.active = mwi.msgCount > 0;
if (DEBUG) debug("MWI in TP_UDH received: " + JSON.stringify(mwi));
break;
default:
if (DEBUG) {
debug("readUserDataHeader: unsupported IEI(" + id
+ "), " + length + " bytes.");
}
// Read out unsupported data
if (length) {
let octets;
if (DEBUG) octets = new Uint8Array(length);
for (let i = 0; i < length; i++) {
let octet = this.readHexOctet();
if (DEBUG) octets[i] = octet;
}
dataAvailable -= length;
if (DEBUG) debug("readUserDataHeader: " + Array.slice(octets));
}
break;
}
}
if (dataAvailable != 0) {
throw new Error("Illegal user data header found!");
}
msg.header = header;
},
/**
* Write out user data header.
*
* @param options
* Options containing information for user data header write-out. The
* `userDataHeaderLength` property must be correctly pre-calculated.
*/
writeUserDataHeader: function writeUserDataHeader(options) {
this.writeHexOctet(options.userDataHeaderLength);
if (options.segmentMaxSeq > 1) {
if (options.segmentRef16Bit) {
this.writeHexOctet(PDU_IEI_CONCATENATED_SHORT_MESSAGES_16BIT);
this.writeHexOctet(4);
this.writeHexOctet((options.segmentRef >> 8) & 0xFF);
} else {
this.writeHexOctet(PDU_IEI_CONCATENATED_SHORT_MESSAGES_8BIT);
this.writeHexOctet(3);
}
this.writeHexOctet(options.segmentRef & 0xFF);
this.writeHexOctet(options.segmentMaxSeq & 0xFF);
this.writeHexOctet(options.segmentSeq & 0xFF);
}
if (options.langIndex != PDU_NL_IDENTIFIER_DEFAULT) {
this.writeHexOctet(PDU_IEI_NATIONAL_LANGUAGE_LOCKING_SHIFT);
this.writeHexOctet(1);
this.writeHexOctet(options.langIndex);
}
if (options.langShiftIndex != PDU_NL_IDENTIFIER_DEFAULT) {
this.writeHexOctet(PDU_IEI_NATIONAL_LANGUAGE_SINGLE_SHIFT);
this.writeHexOctet(1);
this.writeHexOctet(options.langShiftIndex);
}
},
/**
* Read SM-TL Address.
*
* @param len
* Length of useful semi-octets within the Address-Value field. For
* example, the lenth of "12345" should be 5, and 4 for "1234".
*
* @see 3GPP TS 23.040 9.1.2.5
*/
readAddress: function readAddress(len) {
// Address Length
if (!len || (len < 0)) {
if (DEBUG) debug("PDU error: invalid sender address length: " + len);
return null;
}
if (len % 2 == 1) {
len += 1;
}
if (DEBUG) debug("PDU: Going to read address: " + len);
// Type-of-Address
let toa = this.readHexOctet();
// Address-Value
let addr = this.readSwappedNibbleBcdString(len / 2);
if (addr.length <= 0) {
if (DEBUG) debug("PDU error: no number provided");
return null;
}
if ((toa >> 4) == (PDU_TOA_INTERNATIONAL >> 4)) {
addr = '+' + addr;
}
return addr;
},
/**
* Read Alpha Identifier.
*
* @see TS 131.102
*
* @param len
* The length of Alpha Identifier in bytes.
*
* it uses either
* 1. SMS default 7-bit alphabet with bit 8 set to 0.
* 2. UCS2 string.
*
* Unused bytes should be set to 0xff.
*/
readAlphaIdentifier: function readAlphaIdentifier(len) {
let temp, isUCS2 = false;
let alphaId = "";
// Read the 1st byte to determine the encoding.
if ((temp = GsmPDUHelper.readHexOctet()) == 0x80) {
isUCS2 = true;
} else if (temp != 0xff) {
alphaId += String.fromCharCode(temp);
}
len--;
while (len) {
if ((temp = GsmPDUHelper.readHexOctet()) != 0xff) {
if (isUCS2) {
let temp2 = GsmPDUHelper.readHexOctet();
len--;
alphaId += String.fromCharCode((temp << 8) | temp2);
} else {
alphaId += String.fromCharCode(temp);
}
}
len--;
}
return alphaId;
},
/**
* Read Dialling number.
*
* @see TS 131.102
*
* @param len
* The Length of BCD number.
*
* From TS 131.102, in EF_ADN, EF_FDN, the field 'Length of BCD number'
* means the total bytes should be allocated to store the TON/NPI and
* the dialing number.
* For example, if the dialing number is 1234567890,
* and the TON/NPI is 0x81,
* The field 'Length of BCD number' should be 06, which is
* 1 byte to store the TON/NPI, 0x81
* 5 bytes to store the BCD number 2143658709.
*
* Here the definition of the length is different from SMS spec,
* TS 23.040 9.1.2.5, which the length means
* "number of useful semi-octets within the Address-Value field".
*/
readDiallingNumber: function readDiallingNumber(len) {
if (DEBUG) debug("PDU: Going to read Dialling number: " + len);
// TOA = TON + NPI
let toa = this.readHexOctet();
let number = this.readSwappedNibbleBcdString(len - 1).toString();
if (number.length <= 0) {
if (DEBUG) debug("PDU error: no number provided");
return null;
}
if ((toa >> 4) == (PDU_TOA_INTERNATIONAL >> 4)) {
number = '+' + number;
}
return number;
},
/**
* Read TP-Protocol-Indicator(TP-PID).
*
* @param msg
* message object for output.
*
* @see 3GPP TS 23.040 9.2.3.9
*/
readProtocolIndicator: function readProtocolIndicator(msg) {
// `The MS shall interpret reserved, obsolete, or unsupported values as the
// value 00000000 but shall store them exactly as received.`
msg.pid = this.readHexOctet();
msg.epid = msg.pid;
switch (msg.epid & 0xC0) {
case 0x40:
// Bit 7..0 = 01xxxxxx
switch (msg.epid) {
case PDU_PID_SHORT_MESSAGE_TYPE_0:
return;
case PDU_PID_RETURN_CALL_MESSAGE:
// Level 1 of message waiting indication:
// Only a return call message is provided
let mwi = msg.mwi = {};
// TODO: When should we de-activate the level 1 indicator?
mwi.active = true;
mwi.discard = false;
mwi.msgCount = GECKO_VOICEMAIL_MESSAGE_COUNT_UNKNOWN;
if (DEBUG) debug("TP-PID got return call message: " + msg.sender);
return;
}
break;
}
msg.epid = PDU_PID_DEFAULT;
},
/**
* Read TP-Data-Coding-Scheme(TP-DCS)
*
* @param msg
* message object for output.
*
* @see 3GPP TS 23.040 9.2.3.10, 3GPP TS 23.038 4.
*/
readDataCodingScheme: function readDataCodingScheme(msg) {
let dcs = this.readHexOctet();
if (DEBUG) debug("PDU: read dcs: " + dcs);
// Level 2 of message waiting indication
this.readMessageWaitingFromDCS(msg, dcs);
// 7 bit is the default fallback encoding.
let encoding = PDU_DCS_MSG_CODING_7BITS_ALPHABET;
switch (dcs & 0xC0) {
case 0x0:
// bits 7..4 = 00xx
switch (dcs & 0x0C) {
case 0x4:
encoding = PDU_DCS_MSG_CODING_8BITS_ALPHABET;
break;
case 0x8:
encoding = PDU_DCS_MSG_CODING_16BITS_ALPHABET;
break;
}
break;
case 0xC0:
// bits 7..4 = 11xx
switch (dcs & 0x30) {
case 0x20:
encoding = PDU_DCS_MSG_CODING_16BITS_ALPHABET;
break;
case 0x30:
if (dcs & 0x04) {
encoding = PDU_DCS_MSG_CODING_8BITS_ALPHABET;
}
break;
}
break;
default:
// Falling back to default encoding.
break;
}
msg.dcs = dcs;
msg.encoding = encoding;
if (DEBUG) debug("PDU: message encoding is " + encoding + " bit.");
},
readMessageWaitingFromDCS: function readMessageWaitingFromDCS(msg, dcs) {
// 0xC0 == 7 bit, don't store
// 0xD0 == 7 bit, store
// 0xE0 == UCS-2, store
let codingGroup = dcs & PDU_DCS_CODING_GROUP_BITS;
if (codingGroup == PDU_DCS_CODING_GROUP_7BITS_DISCARD ||
codingGroup == PDU_DCS_CODING_GROUP_7BITS_STORE ||
codingGroup == PDU_DCS_CODING_GROUP_16BITS_STORE) {
// Indiciates voicemail indicator set or clear
let active = (dcs & PDU_DCS_MWI_ACTIVE_BITS) == PDU_DCS_MWI_ACTIVE_VALUE;
// If TP-UDH is present, these values will be overwritten
switch (dcs & PDU_DCS_MWI_TYPE_BITS) {
case PDU_DCS_MWI_TYPE_VOICEMAIL:
let mwi = msg.mwi;
if (!mwi) {
mwi = msg.mwi = {};
}
mwi.active = active;
mwi.discard = codingGroup == PDU_DCS_CODING_GROUP_7BITS_DISCARD;
mwi.msgCount = active ? GECKO_VOICEMAIL_MESSAGE_COUNT_UNKNOWN : 0;
if (DEBUG) {
debug("MWI in DCS received for voicemail: " + JSON.stringify(mwi));
}
break;
case PDU_DCS_MWI_TYPE_FAX:
if (DEBUG) debug("MWI in DCS received for fax");
break;
case PDU_DCS_MWI_TYPE_EMAIL:
if (DEBUG) debug("MWI in DCS received for email");
break;
default:
if (DEBUG) debug("MWI in DCS received for \"other\"");
break;
}
}
},
/**
* Read GSM TP-Service-Centre-Time-Stamp(TP-SCTS).
*
* @see 3GPP TS 23.040 9.2.3.11
*/
readTimestamp: function readTimestamp() {
let year = this.readSwappedNibbleBcdNum(1) + PDU_TIMESTAMP_YEAR_OFFSET;
let month = this.readSwappedNibbleBcdNum(1) - 1;
let day = this.readSwappedNibbleBcdNum(1);
let hour = this.readSwappedNibbleBcdNum(1);
let minute = this.readSwappedNibbleBcdNum(1);
let second = this.readSwappedNibbleBcdNum(1);
let timestamp = Date.UTC(year, month, day, hour, minute, second);
// If the most significant bit of the least significant nibble is 1,
// the timezone offset is negative (fourth bit from the right => 0x08):
// localtime = UTC + tzOffset
// therefore
// UTC = localtime - tzOffset
let tzOctet = this.readHexOctet();
let tzOffset = this.octetToBCD(tzOctet & ~0x08) * 15 * 60 * 1000;
tzOffset = (tzOctet & 0x08) ? -tzOffset : tzOffset;
timestamp -= tzOffset;
return timestamp;
},
/**
* User data can be 7 bit (default alphabet) data, 8 bit data, or 16 bit
* (UCS2) data.
*
* @param msg
* message object for output.
* @param length
* length of user data to read in octets.
*/
readUserData: function readUserData(msg, length) {
if (DEBUG) {
debug("Reading " + length + " bytes of user data.");
}
let paddingBits = 0;
if (msg.udhi) {
this.readUserDataHeader(msg);
if (msg.encoding == PDU_DCS_MSG_CODING_7BITS_ALPHABET) {
let headerBits = (msg.header.length + 1) * 8;
let headerSeptets = Math.ceil(headerBits / 7);
length -= headerSeptets;
paddingBits = headerSeptets * 7 - headerBits;
} else {
length -= (msg.header.length + 1);
}
}
if (DEBUG) debug("After header, " + length + " septets left of user data");
msg.body = null;
msg.data = null;
switch (msg.encoding) {
case PDU_DCS_MSG_CODING_7BITS_ALPHABET:
// 7 bit encoding allows 140 octets, which means 160 characters
// ((140x8) / 7 = 160 chars)
if (length > PDU_MAX_USER_DATA_7BIT) {
if (DEBUG) debug("PDU error: user data is too long: " + length);
break;
}
let langIndex = msg.udhi ? msg.header.langIndex : PDU_NL_IDENTIFIER_DEFAULT;
let langShiftIndex = msg.udhi ? msg.header.langShiftIndex : PDU_NL_IDENTIFIER_DEFAULT;
msg.body = this.readSeptetsToString(length, paddingBits, langIndex,
langShiftIndex);
break;
case PDU_DCS_MSG_CODING_8BITS_ALPHABET:
msg.data = this.readHexOctetArray(length);
break;
case PDU_DCS_MSG_CODING_16BITS_ALPHABET:
msg.body = this.readUCS2String(length);
break;
}
},
/**
* Read extra parameters if TP-PI is set.
*
* @param msg
* message object for output.
*/
readExtraParams: function readExtraParams(msg) {
// Because each PDU octet is converted to two UCS2 char2, we should always
// get even messageStringLength in this#_processReceivedSms(). So, we'll
// always need two delimitors at the end.
if (Buf.readAvailable <= 4) {
return;
}
// TP-Parameter-Indicator
let pi;
do {
// `The most significant bit in octet 1 and any other TP-PI octets which
// may be added later is reserved as an extension bit which when set to a
// 1 shall indicate that another TP-PI octet follows immediately
// afterwards.` ~ 3GPP TS 23.040 9.2.3.27
pi = this.readHexOctet();
} while (pi & PDU_PI_EXTENSION);
// `If the TP-UDL bit is set to "1" but the TP-DCS bit is set to "0" then
// the receiving entity shall for TP-DCS assume a value of 0x00, i.e. the
// 7bit default alphabet.` ~ 3GPP 23.040 9.2.3.27
msg.dcs = 0;
msg.encoding = PDU_DCS_MSG_CODING_7BITS_ALPHABET;
// TP-Protocol-Identifier
if (pi & PDU_PI_PROTOCOL_IDENTIFIER) {
this.readProtocolIndicator(msg);
}
// TP-Data-Coding-Scheme
if (pi & PDU_PI_DATA_CODING_SCHEME) {
this.readDataCodingScheme(msg);
}
// TP-User-Data-Length
if (pi & PDU_PI_USER_DATA_LENGTH) {
let userDataLength = this.readHexOctet();
this.readUserData(msg, userDataLength);
}
},
/**
* Read and decode a PDU-encoded message from the stream.
*
* TODO: add some basic sanity checks like:
* - do we have the minimum number of chars available
*/
readMessage: function readMessage() {
// An empty message object. This gets filled below and then returned.
let msg = {
// D:DELIVER, DR:DELIVER-REPORT, S:SUBMIT, SR:SUBMIT-REPORT,
// ST:STATUS-REPORT, C:COMMAND
// M:Mandatory, O:Optional, X:Unavailable
// D DR S SR ST C
SMSC: null, // M M M M M M
mti: null, // M M M M M M
udhi: null, // M M O M M M
sender: null, // M X X X X X
recipient: null, // X X M X M M
pid: null, // M O M O O M
epid: null, // M O M O O M
dcs: null, // M O M O O X
mwi: null, // O O O O O O
replace: false, // O O O O O O
header: null, // M M O M M M
body: null, // M O M O O O
data: null, // M O M O O O
timestamp: null, // M X X X X X
status: null, // X X X X M X
scts: null, // X X X M M X
dt: null, // X X X X M X
};
// SMSC info
let smscLength = this.readHexOctet();
if (smscLength > 0) {
let smscTypeOfAddress = this.readHexOctet();
// Subtract the type-of-address octet we just read from the length.
msg.SMSC = this.readSwappedNibbleBcdString(smscLength - 1);
if ((smscTypeOfAddress >> 4) == (PDU_TOA_INTERNATIONAL >> 4)) {
msg.SMSC = '+' + msg.SMSC;
}
}
// First octet of this SMS-DELIVER or SMS-SUBMIT message
let firstOctet = this.readHexOctet();
// Message Type Indicator
msg.mti = firstOctet & 0x03;
// User data header indicator
msg.udhi = firstOctet & PDU_UDHI;
switch (msg.mti) {
case PDU_MTI_SMS_RESERVED:
// `If an MS receives a TPDU with a "Reserved" value in the TP-MTI it
// shall process the message as if it were an "SMS-DELIVER" but store
// the message exactly as received.` ~ 3GPP TS 23.040 9.2.3.1
case PDU_MTI_SMS_DELIVER:
return this.readDeliverMessage(msg);
case PDU_MTI_SMS_STATUS_REPORT:
return this.readStatusReportMessage(msg);
default:
return null;
}
},
/**
* Read and decode a SMS-DELIVER PDU.
*
* @param msg
* message object for output.
*/
readDeliverMessage: function readDeliverMessage(msg) {
// - Sender Address info -
let senderAddressLength = this.readHexOctet();
msg.sender = this.readAddress(senderAddressLength);
// - TP-Protocolo-Identifier -
this.readProtocolIndicator(msg);
// - TP-Data-Coding-Scheme -
this.readDataCodingScheme(msg);
// - TP-Service-Center-Time-Stamp -
msg.timestamp = this.readTimestamp();
// - TP-User-Data-Length -
let userDataLength = this.readHexOctet();
// - TP-User-Data -
if (userDataLength > 0) {
this.readUserData(msg, userDataLength);
}
return msg;
},
/**
* Read and decode a SMS-STATUS-REPORT PDU.
*
* @param msg
* message object for output.
*/
readStatusReportMessage: function readStatusReportMessage(msg) {
// TP-Message-Reference
msg.messageRef = this.readHexOctet();
// TP-Recipient-Address
let recipientAddressLength = this.readHexOctet();
msg.recipient = this.readAddress(recipientAddressLength);
// TP-Service-Centre-Time-Stamp
msg.scts = this.readTimestamp();
// TP-Discharge-Time
msg.dt = this.readTimestamp();
// TP-Status
msg.status = this.readHexOctet();
this.readExtraParams(msg);
return msg;
},
/**
* Serialize a SMS-SUBMIT PDU message and write it to the output stream.
*
* This method expects that a data coding scheme has been chosen already
* and that the length of the user data payload in that encoding is known,
* too. Both go hand in hand together anyway.
*
* @param address
* String containing the address (number) of the SMS receiver
* @param userData
* String containing the message to be sent as user data
* @param dcs
* Data coding scheme. One of the PDU_DCS_MSG_CODING_*BITS_ALPHABET
* constants.
* @param userDataHeaderLength
* Length of embedded user data header, in bytes. The whole header
* size will be userDataHeaderLength + 1; 0 for no header.
* @param encodedBodyLength
* Length of the user data when encoded with the given DCS. For UCS2,
* in bytes; for 7-bit, in septets.
* @param langIndex
* Table index used for normal 7-bit encoded character lookup.
* @param langShiftIndex
* Table index used for escaped 7-bit encoded character lookup.
* @param requestStatusReport
* Request status report.
*/
writeMessage: function writeMessage(options) {
if (DEBUG) {
debug("writeMessage: " + JSON.stringify(options));
}
let address = options.number;
let body = options.body;
let dcs = options.dcs;
let userDataHeaderLength = options.userDataHeaderLength;
let encodedBodyLength = options.encodedBodyLength;
let langIndex = options.langIndex;
let langShiftIndex = options.langShiftIndex;
// SMS-SUBMIT Format:
//
// PDU Type - 1 octet
// Message Reference - 1 octet
// DA - Destination Address - 2 to 12 octets
// PID - Protocol Identifier - 1 octet
// DCS - Data Coding Scheme - 1 octet
// VP - Validity Period - 0, 1 or 7 octets
// UDL - User Data Length - 1 octet
// UD - User Data - 140 octets
let addressFormat = PDU_TOA_ISDN; // 81
if (address[0] == '+') {
addressFormat = PDU_TOA_INTERNATIONAL | PDU_TOA_ISDN; // 91
address = address.substring(1);
}
//TODO validity is unsupported for now
let validity = 0;
let headerOctets = (userDataHeaderLength ? userDataHeaderLength + 1 : 0);
let paddingBits;
let userDataLengthInSeptets;
let userDataLengthInOctets;
if (dcs == PDU_DCS_MSG_CODING_7BITS_ALPHABET) {
let headerSeptets = Math.ceil(headerOctets * 8 / 7);
userDataLengthInSeptets = headerSeptets + encodedBodyLength;
userDataLengthInOctets = Math.ceil(userDataLengthInSeptets * 7 / 8);
paddingBits = headerSeptets * 7 - headerOctets * 8;
} else {
userDataLengthInOctets = headerOctets + encodedBodyLength;
paddingBits = 0;
}
let pduOctetLength = 4 + // PDU Type, Message Ref, address length + format
Math.ceil(address.length / 2) +
3 + // PID, DCS, UDL
userDataLengthInOctets;
if (validity) {
//TODO: add more to pduOctetLength
}
// Start the string. Since octets are represented in hex, we will need
// twice as many characters as octets.
Buf.writeUint32(pduOctetLength * 2);
// - PDU-TYPE-
// +--------+----------+---------+---------+--------+---------+
// | RP (1) | UDHI (1) | SRR (1) | VPF (2) | RD (1) | MTI (2) |
// +--------+----------+---------+---------+--------+---------+
// RP: 0 Reply path parameter is not set
// 1 Reply path parameter is set
// UDHI: 0 The UD Field contains only the short message
// 1 The beginning of the UD field contains a header in addition
// of the short message
// SRR: 0 A status report is not requested
// 1 A status report is requested
// VPF: bit4 bit3
// 0 0 VP field is not present
// 0 1 Reserved
// 1 0 VP field present an integer represented (relative)
// 1 1 VP field present a semi-octet represented (absolute)
// RD: Instruct the SMSC to accept(0) or reject(1) an SMS-SUBMIT
// for a short message still held in the SMSC which has the same
// MR and DA as a previously submitted short message from the
// same OA
// MTI: bit1 bit0 Message Type
// 0 0 SMS-DELIVER (SMSC ==> MS)
// 0 1 SMS-SUBMIT (MS ==> SMSC)
// PDU type. MTI is set to SMS-SUBMIT
let firstOctet = PDU_MTI_SMS_SUBMIT;
// Status-Report-Request
if (options.requestStatusReport) {
firstOctet |= PDU_SRI_SRR;
}
// Validity period
if (validity) {
//TODO: not supported yet, OR with one of PDU_VPF_*
}
// User data header indicator
if (headerOctets) {
firstOctet |= PDU_UDHI;
}
this.writeHexOctet(firstOctet);
// Message reference 00
this.writeHexOctet(0x00);
// - Destination Address -
this.writeHexOctet(address.length);
this.writeHexOctet(addressFormat);
this.writeSwappedNibbleBCD(address);
// - Protocol Identifier -
this.writeHexOctet(0x00);
// - Data coding scheme -
// For now it assumes bits 7..4 = 1111 except for the 16 bits use case
this.writeHexOctet(dcs);
// - Validity Period -
if (validity) {
this.writeHexOctet(validity);
}
// - User Data -
if (dcs == PDU_DCS_MSG_CODING_7BITS_ALPHABET) {
this.writeHexOctet(userDataLengthInSeptets);
} else {
this.writeHexOctet(userDataLengthInOctets);
}
if (headerOctets) {
this.writeUserDataHeader(options);
}
switch (dcs) {
case PDU_DCS_MSG_CODING_7BITS_ALPHABET:
this.writeStringAsSeptets(body, paddingBits, langIndex, langShiftIndex);
break;
case PDU_DCS_MSG_CODING_8BITS_ALPHABET:
// Unsupported.
break;
case PDU_DCS_MSG_CODING_16BITS_ALPHABET:
this.writeUCS2String(body);
break;
}
// End of the string. The string length is always even by definition, so
// we write two \0 delimiters.
Buf.writeUint16(0);
Buf.writeUint16(0);
}
};
/**
* Global stuff.
*/
if (!this.debug) {
// Debugging stub that goes nowhere.
this.debug = function debug(message) {
dump("RIL Worker: " + message + "\n");
};
}
// Initialize buffers. This is a separate function so that unit tests can
// re-initialize the buffers at will.
Buf.init();
function onRILMessage(data) {
Buf.processIncoming(data);
};
onmessage = function onmessage(event) {
RIL.handleDOMMessage(event.data);
};
onerror = function onerror(event) {
debug("RIL Worker error" + event.message + "\n");
};