gecko/layout/base/FrameLayerBuilder.cpp

5717 lines
216 KiB
C++

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/DebugOnly.h"
#include "FrameLayerBuilder.h"
#include "mozilla/LookAndFeel.h"
#include "mozilla/Maybe.h"
#include "mozilla/dom/ProfileTimelineMarkerBinding.h"
#include "mozilla/gfx/Matrix.h"
#include "ActiveLayerTracker.h"
#include "BasicLayers.h"
#include "ImageContainer.h"
#include "LayerTreeInvalidation.h"
#include "Layers.h"
#include "MaskLayerImageCache.h"
#include "UnitTransforms.h"
#include "Units.h"
#include "gfx2DGlue.h"
#include "gfxUtils.h"
#include "nsDisplayList.h"
#include "nsDocShell.h"
#include "nsIScrollableFrame.h"
#include "nsImageFrame.h"
#include "nsLayoutUtils.h"
#include "nsPresContext.h"
#include "nsPrintfCString.h"
#include "nsRenderingContext.h"
#include "nsSVGIntegrationUtils.h"
#include "mozilla/Move.h"
#include "mozilla/ReverseIterator.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/gfx/Tools.h"
#include "mozilla/unused.h"
#include "GeckoProfiler.h"
#include "LayersLogging.h"
#include "gfxPrefs.h"
#include <algorithm>
using namespace mozilla::layers;
using namespace mozilla::gfx;
namespace mozilla {
class PaintedDisplayItemLayerUserData;
static nsTHashtable<nsPtrHashKey<FrameLayerBuilder::DisplayItemData>>* sAliveDisplayItemDatas;
FrameLayerBuilder::DisplayItemData::DisplayItemData(LayerManagerData* aParent, uint32_t aKey,
Layer* aLayer, nsIFrame* aFrame)
: mParent(aParent)
, mLayer(aLayer)
, mDisplayItemKey(aKey)
, mItem(nullptr)
, mUsed(true)
, mIsInvalid(false)
{
MOZ_COUNT_CTOR(FrameLayerBuilder::DisplayItemData);
if (!sAliveDisplayItemDatas) {
sAliveDisplayItemDatas = new nsTHashtable<nsPtrHashKey<FrameLayerBuilder::DisplayItemData>>();
}
MOZ_RELEASE_ASSERT(!sAliveDisplayItemDatas->Contains(this));
sAliveDisplayItemDatas->PutEntry(this);
MOZ_RELEASE_ASSERT(mLayer);
if (aFrame) {
AddFrame(aFrame);
}
}
void
FrameLayerBuilder::DisplayItemData::AddFrame(nsIFrame* aFrame)
{
MOZ_RELEASE_ASSERT(mLayer);
mFrameList.AppendElement(aFrame);
nsTArray<DisplayItemData*>* array =
static_cast<nsTArray<DisplayItemData*>*>(aFrame->Properties().Get(FrameLayerBuilder::LayerManagerDataProperty()));
if (!array) {
array = new nsTArray<DisplayItemData*>();
aFrame->Properties().Set(FrameLayerBuilder::LayerManagerDataProperty(), array);
}
array->AppendElement(this);
}
void
FrameLayerBuilder::DisplayItemData::RemoveFrame(nsIFrame* aFrame)
{
MOZ_RELEASE_ASSERT(mLayer);
bool result = mFrameList.RemoveElement(aFrame);
MOZ_RELEASE_ASSERT(result, "Can't remove a frame that wasn't added!");
nsTArray<DisplayItemData*>* array =
static_cast<nsTArray<DisplayItemData*>*>(aFrame->Properties().Get(FrameLayerBuilder::LayerManagerDataProperty()));
MOZ_RELEASE_ASSERT(array, "Must be already stored on the frame!");
array->RemoveElement(this);
}
void
FrameLayerBuilder::DisplayItemData::EndUpdate()
{
MOZ_RELEASE_ASSERT(mLayer);
MOZ_ASSERT(!mItem);
mIsInvalid = false;
mUsed = false;
}
void
FrameLayerBuilder::DisplayItemData::EndUpdate(nsAutoPtr<nsDisplayItemGeometry> aGeometry)
{
MOZ_RELEASE_ASSERT(mLayer);
MOZ_ASSERT(mItem);
mGeometry = aGeometry;
mClip = mItem->GetClip();
mFrameListChanges.Clear();
mItem = nullptr;
EndUpdate();
}
void
FrameLayerBuilder::DisplayItemData::BeginUpdate(Layer* aLayer, LayerState aState,
uint32_t aContainerLayerGeneration,
nsDisplayItem* aItem /* = nullptr */)
{
MOZ_RELEASE_ASSERT(mLayer);
MOZ_RELEASE_ASSERT(aLayer);
mLayer = aLayer;
mOptLayer = nullptr;
mInactiveManager = nullptr;
mLayerState = aState;
mContainerLayerGeneration = aContainerLayerGeneration;
mUsed = true;
if (aLayer->AsPaintedLayer()) {
mItem = aItem;
}
if (!aItem) {
return;
}
// We avoid adding or removing element unnecessarily
// since we have to modify userdata each time
nsAutoTArray<nsIFrame*, 4> copy(mFrameList);
if (!copy.RemoveElement(aItem->Frame())) {
AddFrame(aItem->Frame());
mFrameListChanges.AppendElement(aItem->Frame());
}
nsAutoTArray<nsIFrame*,4> mergedFrames;
aItem->GetMergedFrames(&mergedFrames);
for (uint32_t i = 0; i < mergedFrames.Length(); ++i) {
if (!copy.RemoveElement(mergedFrames[i])) {
AddFrame(mergedFrames[i]);
mFrameListChanges.AppendElement(mergedFrames[i]);
}
}
for (uint32_t i = 0; i < copy.Length(); i++) {
RemoveFrame(copy[i]);
mFrameListChanges.AppendElement(copy[i]);
}
}
static nsIFrame* sDestroyedFrame = nullptr;
FrameLayerBuilder::DisplayItemData::~DisplayItemData()
{
MOZ_COUNT_DTOR(FrameLayerBuilder::DisplayItemData);
MOZ_RELEASE_ASSERT(mLayer);
for (uint32_t i = 0; i < mFrameList.Length(); i++) {
nsIFrame* frame = mFrameList[i];
if (frame == sDestroyedFrame) {
continue;
}
nsTArray<DisplayItemData*> *array =
reinterpret_cast<nsTArray<DisplayItemData*>*>(frame->Properties().Get(LayerManagerDataProperty()));
array->RemoveElement(this);
}
MOZ_RELEASE_ASSERT(sAliveDisplayItemDatas && sAliveDisplayItemDatas->Contains(this));
sAliveDisplayItemDatas->RemoveEntry(this);
if (sAliveDisplayItemDatas->Count() == 0) {
delete sAliveDisplayItemDatas;
sAliveDisplayItemDatas = nullptr;
}
}
const nsTArray<nsIFrame*>&
FrameLayerBuilder::DisplayItemData::GetFrameListChanges()
{
return mFrameListChanges;
}
/**
* This is the userdata we associate with a layer manager.
*/
class LayerManagerData : public LayerUserData {
public:
explicit LayerManagerData(LayerManager *aManager)
: mLayerManager(aManager)
#ifdef DEBUG_DISPLAY_ITEM_DATA
, mParent(nullptr)
#endif
, mInvalidateAllLayers(false)
{
MOZ_COUNT_CTOR(LayerManagerData);
}
~LayerManagerData() {
MOZ_COUNT_DTOR(LayerManagerData);
}
#ifdef DEBUG_DISPLAY_ITEM_DATA
void Dump(const char *aPrefix = "") {
printf_stderr("%sLayerManagerData %p\n", aPrefix, this);
nsAutoCString prefix;
prefix += aPrefix;
prefix += " ";
mDisplayItems.EnumerateEntries(
FrameLayerBuilder::DumpDisplayItemDataForFrame, (void*)prefix.get());
}
#endif
/**
* Tracks which frames have layers associated with them.
*/
LayerManager *mLayerManager;
#ifdef DEBUG_DISPLAY_ITEM_DATA
LayerManagerData *mParent;
#endif
nsTHashtable<nsRefPtrHashKey<FrameLayerBuilder::DisplayItemData> > mDisplayItems;
bool mInvalidateAllLayers;
};
/* static */ void
FrameLayerBuilder::DestroyDisplayItemDataFor(nsIFrame* aFrame)
{
FrameProperties props = aFrame->Properties();
props.Delete(LayerManagerDataProperty());
}
// a global cache of image containers used for mask layers
static MaskLayerImageCache* gMaskLayerImageCache = nullptr;
static inline MaskLayerImageCache* GetMaskLayerImageCache()
{
if (!gMaskLayerImageCache) {
gMaskLayerImageCache = new MaskLayerImageCache();
}
return gMaskLayerImageCache;
}
struct AssignedDisplayItem
{
AssignedDisplayItem(nsDisplayItem* aItem,
const DisplayItemClip& aClip,
LayerState aLayerState)
: mItem(aItem)
, mClip(aClip)
, mLayerState(aLayerState)
{}
nsDisplayItem* mItem;
DisplayItemClip mClip;
LayerState mLayerState;
};
/**
* We keep a stack of these to represent the PaintedLayers that are
* currently available to have display items added to.
* We use a stack here because as much as possible we want to
* assign display items to existing PaintedLayers, and to the lowest
* PaintedLayer in z-order. This reduces the number of layers and
* makes it more likely a display item will be rendered to an opaque
* layer, giving us the best chance of getting subpixel AA.
*/
class PaintedLayerData {
public:
PaintedLayerData() :
mAnimatedGeometryRoot(nullptr),
mFixedPosFrameForLayerData(nullptr),
mReferenceFrame(nullptr),
mLayer(nullptr),
mIsSolidColorInVisibleRegion(false),
mFontSmoothingBackgroundColor(NS_RGBA(0,0,0,0)),
mSingleItemFixedToViewport(false),
mNeedComponentAlpha(false),
mForceTransparentSurface(false),
mHideAllLayersBelow(false),
mOpaqueForAnimatedGeometryRootParent(false),
mImage(nullptr),
mCommonClipCount(-1),
mNewChildLayersIndex(-1)
{}
#ifdef MOZ_DUMP_PAINTING
/**
* Keep track of important decisions for debugging.
*/
nsCString mLog;
#define FLB_LOG_PAINTED_LAYER_DECISION(pld, ...) \
if (gfxPrefs::LayersDumpDecision()) { \
pld->mLog.AppendPrintf("\t\t\t\t"); \
pld->mLog.AppendPrintf(__VA_ARGS__); \
}
#else
#define FLB_LOG_PAINTED_LAYER_DECISION(...)
#endif
/**
* Record that an item has been added to the PaintedLayer, so we
* need to update our regions.
* @param aVisibleRect the area of the item that's visible
* @param aSolidColor if non-null, the visible area of the item is
* a constant color given by *aSolidColor
*/
void Accumulate(ContainerState* aState,
nsDisplayItem* aItem,
const nsIntRegion& aClippedOpaqueRegion,
const nsIntRect& aVisibleRect,
const DisplayItemClip& aClip,
LayerState aLayerState);
const nsIFrame* GetAnimatedGeometryRoot() { return mAnimatedGeometryRoot; }
/**
* Add the given hit regions to the hit regions to the hit retions for this
* PaintedLayer.
*/
void AccumulateEventRegions(nsDisplayLayerEventRegions* aEventRegions)
{
FLB_LOG_PAINTED_LAYER_DECISION(this, "Accumulating event regions %p against pld=%p\n", aEventRegions, this);
mHitRegion.Or(mHitRegion, aEventRegions->HitRegion());
mMaybeHitRegion.Or(mMaybeHitRegion, aEventRegions->MaybeHitRegion());
mDispatchToContentHitRegion.Or(mDispatchToContentHitRegion, aEventRegions->DispatchToContentHitRegion());
mNoActionRegion.Or(mNoActionRegion, aEventRegions->NoActionRegion());
mHorizontalPanRegion.Or(mHorizontalPanRegion, aEventRegions->HorizontalPanRegion());
mVerticalPanRegion.Or(mVerticalPanRegion, aEventRegions->VerticalPanRegion());
}
/**
* If this represents only a nsDisplayImage, and the image type supports being
* optimized to an ImageLayer, returns true.
*/
bool CanOptimizeToImageLayer(nsDisplayListBuilder* aBuilder);
/**
* If this represents only a nsDisplayImage, and the image type supports being
* optimized to an ImageLayer, returns an ImageContainer for the underlying
* image if one is available.
*/
already_AddRefed<ImageContainer> GetContainerForImageLayer(nsDisplayListBuilder* aBuilder);
bool VisibleAboveRegionIntersects(const nsIntRect& aRect) const
{ return mVisibleAboveRegion.Intersects(aRect); }
bool VisibleAboveRegionIntersects(const nsIntRegion& aRegion) const
{ return !mVisibleAboveRegion.Intersect(aRegion).IsEmpty(); }
bool VisibleRegionIntersects(const nsIntRect& aRect) const
{ return mVisibleRegion.Intersects(aRect); }
bool VisibleRegionIntersects(const nsIntRegion& aRegion) const
{ return !mVisibleRegion.Intersect(aRegion).IsEmpty(); }
/**
* The region of visible content in the layer, relative to the
* container layer (which is at the snapped top-left of the display
* list reference frame).
*/
nsIntRegion mVisibleRegion;
/**
* The region of visible content in the layer that is opaque.
* Same coordinate system as mVisibleRegion.
*/
nsIntRegion mOpaqueRegion;
/**
* The definitely-hit region for this PaintedLayer.
*/
nsRegion mHitRegion;
/**
* The maybe-hit region for this PaintedLayer.
*/
nsRegion mMaybeHitRegion;
/**
* The dispatch-to-content hit region for this PaintedLayer.
*/
nsRegion mDispatchToContentHitRegion;
/**
* The region for this PaintedLayer that is sensitive to events
* but disallows panning and zooming. This is an approximation
* and any deviation from the true region will be part of the
* mDispatchToContentHitRegion.
*/
nsRegion mNoActionRegion;
/**
* The region for this PaintedLayer that is sensitive to events and
* allows horizontal panning but not zooming. This is an approximation
* and any deviation from the true region will be part of the
* mDispatchToContentHitRegion.
*/
nsRegion mHorizontalPanRegion;
/**
* The region for this PaintedLayer that is sensitive to events and
* allows vertical panning but not zooming. This is an approximation
* and any deviation from the true region will be part of the
* mDispatchToContentHitRegion.
*/
nsRegion mVerticalPanRegion;
/**
* The "active scrolled root" for all content in the layer. Must
* be non-null; all content in a PaintedLayer must have the same
* active scrolled root.
*/
const nsIFrame* mAnimatedGeometryRoot;
/**
* The offset between mAnimatedGeometryRoot and the reference frame.
*/
nsPoint mAnimatedGeometryRootOffset;
/**
* If non-null, the frame from which we'll extract "fixed positioning"
* metadata for this layer. This can be a position:fixed frame or a viewport
* frame; the latter case is used for background-attachment:fixed content.
*/
const nsIFrame* mFixedPosFrameForLayerData;
const nsIFrame* mReferenceFrame;
PaintedLayer* mLayer;
/**
* If mIsSolidColorInVisibleRegion is true, this is the color of the visible
* region.
*/
nscolor mSolidColor;
/**
* True if every pixel in mVisibleRegion will have color mSolidColor.
*/
bool mIsSolidColorInVisibleRegion;
/**
* The target background color for smoothing fonts that are drawn on top of
* transparent parts of the layer.
*/
nscolor mFontSmoothingBackgroundColor;
/**
* True if the layer contains exactly one item that returned true for
* ShouldFixToViewport.
*/
bool mSingleItemFixedToViewport;
/**
* True if there is any text visible in the layer that's over
* transparent pixels in the layer.
*/
bool mNeedComponentAlpha;
/**
* Set if the layer should be treated as transparent, even if its entire
* area is covered by opaque display items. For example, this needs to
* be set if something is going to "punch holes" in the layer by clearing
* part of its surface.
*/
bool mForceTransparentSurface;
/**
* Set if all layers below this PaintedLayer should be hidden.
*/
bool mHideAllLayersBelow;
/**
* Set if the opaque region for this layer can be applied to the parent
* animated geometry root of this layer's animated geometry root.
* We set this when a PaintedLayer's animated geometry root is a scrollframe
* and the PaintedLayer completely fills the displayport of the scrollframe.
*/
bool mOpaqueForAnimatedGeometryRootParent;
/**
* Stores the pointer to the nsDisplayImage if we want to
* convert this to an ImageLayer.
*/
nsDisplayImageContainer* mImage;
/**
* Stores the clip that we need to apply to the image or, if there is no
* image, a clip for SOME item in the layer. There is no guarantee which
* item's clip will be stored here and mItemClip should not be used to clip
* the whole layer - only some part of the clip should be used, as determined
* by PaintedDisplayItemLayerUserData::GetCommonClipCount() - which may even be
* no part at all.
*/
DisplayItemClip mItemClip;
/**
* The first mCommonClipCount rounded rectangle clips are identical for
* all items in the layer.
* -1 if there are no items in the layer; must be >=0 by the time that this
* data is popped from the stack.
*/
int32_t mCommonClipCount;
/**
* Index of this layer in mNewChildLayers.
*/
int32_t mNewChildLayersIndex;
/*
* Updates mCommonClipCount by checking for rounded rect clips in common
* between the clip on a new item (aCurrentClip) and the common clips
* on items already in the layer (the first mCommonClipCount rounded rects
* in mItemClip).
*/
void UpdateCommonClipCount(const DisplayItemClip& aCurrentClip);
/**
* The union of all the bounds of the display items in this layer.
*/
nsIntRect mBounds;
/**
* The region of visible content above the layer and below the
* next PaintedLayerData currently in the stack, if any.
* This is a conservative approximation: it contains the true region.
*/
nsIntRegion mVisibleAboveRegion;
/**
* All the display items that have been assigned to this painted layer.
* These items get added by Accumulate().
*/
nsTArray<AssignedDisplayItem> mAssignedDisplayItems;
};
struct NewLayerEntry {
NewLayerEntry()
: mAnimatedGeometryRoot(nullptr)
, mFixedPosFrameForLayerData(nullptr)
, mLayerContentsVisibleRect(0, 0, -1, -1)
, mHideAllLayersBelow(false)
, mOpaqueForAnimatedGeometryRootParent(false)
, mPropagateComponentAlphaFlattening(true)
{}
// mLayer is null if the previous entry is for a PaintedLayer that hasn't
// been optimized to some other form (yet).
nsRefPtr<Layer> mLayer;
const nsIFrame* mAnimatedGeometryRoot;
const nsIFrame* mFixedPosFrameForLayerData;
// If non-null, this FrameMetrics is set to the be the first FrameMetrics
// on the layer.
UniquePtr<FrameMetrics> mBaseFrameMetrics;
// The following are only used for retained layers (for occlusion
// culling of those layers). These regions are all relative to the
// container reference frame.
nsIntRegion mVisibleRegion;
nsIntRegion mOpaqueRegion;
// This rect is in the layer's own coordinate space. The computed visible
// region for the layer cannot extend beyond this rect.
nsIntRect mLayerContentsVisibleRect;
bool mHideAllLayersBelow;
// When mOpaqueForAnimatedGeometryRootParent is true, the opaque region of
// this layer is opaque in the same position even subject to the animation of
// geometry of mAnimatedGeometryRoot. For example when mAnimatedGeometryRoot
// is a scrolled frame and the scrolled content is opaque everywhere in the
// displayport, we can set this flag.
// When this flag is set, we can treat this opaque region as covering
// content whose animated geometry root is the animated geometry root for
// mAnimatedGeometryRoot->GetParent().
bool mOpaqueForAnimatedGeometryRootParent;
// If true, then the content flags for this layer should contribute
// to our decision to flatten component alpha layers, false otherwise.
bool mPropagateComponentAlphaFlattening;
};
class PaintedLayerDataTree;
/**
* This is tree node type for PaintedLayerDataTree.
* Each node corresponds to a different animated geometry root, and contains
* a stack of PaintedLayerDatas, in bottom-to-top order.
* There is at most one node per animated geometry root. The ancestor and
* descendant relations in PaintedLayerDataTree tree mirror those in the frame
* tree.
* Each node can have clip that describes the potential extents that items in
* this node can cover. If mHasClip is false, it means that the node's contents
* can move anywhere.
* Testing against the clip instead of the node's actual contents has the
* advantage that the node's contents can move or animate without affecting
* content in other nodes. So we don't need to re-layerize during animations
* (sync or async), and during async animations everything is guaranteed to
* look correct.
* The contents of a node's PaintedLayerData stack all share the node's
* animated geometry root. The child nodes are on top of the PaintedLayerData
* stack, in z-order, and the clip rects of the child nodes are allowed to
* intersect with the visible region or visible above region of their parent
* node's PaintedLayerDatas.
*/
class PaintedLayerDataNode {
public:
PaintedLayerDataNode(PaintedLayerDataTree& aTree,
PaintedLayerDataNode* aParent,
const nsIFrame* aAnimatedGeometryRoot);
~PaintedLayerDataNode();
const nsIFrame* AnimatedGeometryRoot() const { return mAnimatedGeometryRoot; }
/**
* Whether this node's contents can potentially intersect aRect.
* aRect is in our tree's ContainerState's coordinate space.
*/
bool Intersects(const nsIntRect& aRect) const
{ return !mHasClip || mClipRect.Intersects(aRect); }
/**
* Create a PaintedLayerDataNode for aAnimatedGeometryRoot, add it to our
* children, and return it.
*/
PaintedLayerDataNode* AddChildNodeFor(const nsIFrame* aAnimatedGeometryRoot);
/**
* Find a PaintedLayerData in our mPaintedLayerDataStack that aItem can be
* added to. Creates a new PaintedLayerData by calling
* aNewPaintedLayerCallback if necessary.
*/
template<typename NewPaintedLayerCallbackType>
PaintedLayerData* FindPaintedLayerFor(const nsIntRect& aVisibleRect,
NewPaintedLayerCallbackType aNewPaintedLayerCallback);
/**
* Find an opaque background color for aRegion. Pulls a color from the parent
* geometry root if appropriate, but only if that color is present underneath
* the whole clip of this node, so that this node's contents can animate or
* move (possibly async) without having to change the background color.
* @param aUnderIndex Searching will start in mPaintedLayerDataStack right
* below aUnderIndex.
*/
enum { ABOVE_TOP = -1 };
nscolor FindOpaqueBackgroundColor(const nsIntRegion& aRegion,
int32_t aUnderIndex = ABOVE_TOP) const;
/**
* Same as FindOpaqueBackgroundColor, but only returns a color if absolutely
* nothing is in between, so that it can be used for a layer that can move
* anywhere inside our clip.
*/
nscolor FindOpaqueBackgroundColorCoveringEverything() const;
/**
* Adds aRect to this node's top PaintedLayerData's mVisibleAboveRegion,
* or mVisibleAboveBackgroundRegion if mPaintedLayerDataStack is empty.
*/
void AddToVisibleAboveRegion(const nsIntRect& aRect);
/**
* Call this if all of our existing content can potentially be covered, so
* nothing can merge with it and all new content needs to create new items
* on top. This will finish all of our children and pop our whole
* mPaintedLayerDataStack.
*/
void SetAllDrawingAbove();
/**
* Finish this node: Finish all children, finish our PaintedLayer contents,
* and (if requested) adjust our parent's visible above region to include
* our clip.
*/
void Finish(bool aParentNeedsAccurateVisibleAboveRegion);
/**
* Finish any children that intersect aRect.
*/
void FinishChildrenIntersecting(const nsIntRect& aRect);
/**
* Finish all children.
*/
void FinishAllChildren() { FinishAllChildren(true); }
protected:
/**
* Finish the topmost item in mPaintedLayerDataStack and pop it from the
* stack.
*/
void PopPaintedLayerData();
/**
* Finish all items in mPaintedLayerDataStack and clear the stack.
*/
void PopAllPaintedLayerData();
/**
* Finish all of our child nodes, but don't touch mPaintedLayerDataStack.
*/
void FinishAllChildren(bool aThisNodeNeedsAccurateVisibleAboveRegion);
/**
* Pass off opaque background color searching to our parent node, if we have
* one.
*/
nscolor FindOpaqueBackgroundColorInParentNode() const;
PaintedLayerDataTree& mTree;
PaintedLayerDataNode* mParent;
const nsIFrame* mAnimatedGeometryRoot;
/**
* Our contents: a PaintedLayerData stack and our child nodes.
*/
nsTArray<PaintedLayerData> mPaintedLayerDataStack;
/**
* UniquePtr is used here in the sense of "unique ownership", i.e. there is
* only one owner. Not in the sense of "this is the only pointer to the
* node": There are two other, non-owning, pointers to our child nodes: The
* node's respective children point to their parent node with their mParent
* pointer, and the tree keeps a map of animated geometry root to node in its
* mNodes member. These outside pointers are the reason that mChildren isn't
* just an nsTArray<PaintedLayerDataNode> (since the pointers would become
* invalid whenever the array expands its capacity).
*/
nsTArray<UniquePtr<PaintedLayerDataNode>> mChildren;
/**
* The region that's covered between our "background" and the bottom of
* mPaintedLayerDataStack. This is used to indicate whether we can pull
* a background color from our parent node. If mVisibleAboveBackgroundRegion
* should be considered infinite, mAllDrawingAboveBackground will be true and
* the value of mVisibleAboveBackgroundRegion will be meaningless.
*/
nsIntRegion mVisibleAboveBackgroundRegion;
/**
* Our clip, if we have any. If not, that means we can move anywhere, and
* mHasClip will be false and mClipRect will be meaningless.
*/
nsIntRect mClipRect;
bool mHasClip;
/**
* Whether mVisibleAboveBackgroundRegion should be considered infinite.
*/
bool mAllDrawingAboveBackground;
};
class ContainerState;
/**
* A tree of PaintedLayerDataNodes. At any point in time, the tree only
* contains nodes for animated geometry roots that new items can potentially
* merge into. Any time content is added on top that overlaps existing things
* in such a way that we no longer want to merge new items with some existing
* content, that existing content gets "finished".
* The public-facing methods of this class are FindPaintedLayerFor,
* AddingOwnLayer, and Finish. The other public methods are for
* PaintedLayerDataNode.
* The tree calls out to its containing ContainerState for some things.
* All coordinates / rects in the tree or the tree nodes are in the
* ContainerState's coordinate space, i.e. relative to the reference frame and
* in layer pixels.
* The clip rects of sibling nodes never overlap. This is ensured by finishing
* existing nodes before adding new ones, if this property were to be violated.
* The root tree node doesn't get finished until the ContainerState is
* finished.
* The tree's root node is always the root reference frame of the builder. We
* don't stop at the container state's mContainerAnimatedGeometryRoot because
* some of our contents can have animated geometry roots that are not
* descendants of the container's animated geometry root. Every animated
* geometry root we encounter for our contents needs to have a defined place in
* the tree.
*/
class PaintedLayerDataTree {
public:
PaintedLayerDataTree(ContainerState& aContainerState,
nscolor& aBackgroundColor)
: mContainerState(aContainerState)
, mContainerUniformBackgroundColor(aBackgroundColor)
{}
~PaintedLayerDataTree()
{
MOZ_ASSERT(!mRoot);
MOZ_ASSERT(mNodes.Count() == 0);
}
/**
* Notify our contents that some non-PaintedLayer content has been added.
* *aRect needs to be a rectangle that doesn't move with respect to
* aAnimatedGeometryRoot and that contains the added item.
* If aRect is null, the extents will be considered infinite.
* If aOutUniformBackgroundColor is non-null, it will be set to an opaque
* color that can be pulled into the background of the added content, or
* transparent if that is not possible.
*/
void AddingOwnLayer(const nsIFrame* aAnimatedGeometryRoot,
const nsIntRect* aRect,
nscolor* aOutUniformBackgroundColor);
/**
* Find a PaintedLayerData for aItem. This can either be an existing
* PaintedLayerData from inside a node in our tree, or a new one that gets
* created by a call out to aNewPaintedLayerCallback.
*/
template<typename NewPaintedLayerCallbackType>
PaintedLayerData* FindPaintedLayerFor(const nsIFrame* aAnimatedGeometryRoot,
const nsIntRect& aVisibleRect,
bool aShouldFixToViewport,
NewPaintedLayerCallbackType aNewPaintedLayerCallback);
/**
* Finish everything.
*/
void Finish();
/**
* Get the parent animated geometry root of aAnimatedGeometryRoot.
* That's either aAnimatedGeometryRoot's animated geometry root, or, if
* that's aAnimatedGeometryRoot itself, then it's the animated geometry
* root for aAnimatedGeometryRoot's cross-doc parent frame.
*/
const nsIFrame* GetParentAnimatedGeometryRoot(const nsIFrame* aAnimatedGeometryRoot);
/**
* Whether aAnimatedGeometryRoot has an intrinsic clip that doesn't move with
* respect to aAnimatedGeometryRoot's parent animated geometry root.
* If aAnimatedGeometryRoot is a scroll frame, this will be the scroll frame's
* scroll port, otherwise there is no clip.
* This method doesn't have much to do with PaintedLayerDataTree, but this is
* where we have easy access to a display list builder, which we use to get
* the clip rect result into the right coordinate space.
*/
bool IsClippedWithRespectToParentAnimatedGeometryRoot(const nsIFrame* aAnimatedGeometryRoot,
nsIntRect* aOutClip);
/**
* Called by PaintedLayerDataNode when it is finished, so that we can drop
* our pointers to it.
*/
void NodeWasFinished(const nsIFrame* aAnimatedGeometryRoot);
nsDisplayListBuilder* Builder() const;
ContainerState& ContState() const { return mContainerState; }
nscolor UniformBackgroundColor() const { return mContainerUniformBackgroundColor; }
protected:
/**
* Finish all nodes that potentially intersect *aRect, where *aRect is a rect
* that doesn't move with respect to aAnimatedGeometryRoot.
* If aRect is null, *aRect will be considered infinite.
*/
void FinishPotentiallyIntersectingNodes(const nsIFrame* aAnimatedGeometryRoot,
const nsIntRect* aRect);
/**
* Make sure that there is a node for aAnimatedGeometryRoot and all of its
* ancestor geometry roots. Return the node for aAnimatedGeometryRoot.
*/
PaintedLayerDataNode* EnsureNodeFor(const nsIFrame* aAnimatedGeometryRoot);
/**
* Find an existing node in the tree for an ancestor of aAnimatedGeometryRoot.
* *aOutAncestorChild will be set to the last ancestor that was encountered
* in the search up from aAnimatedGeometryRoot; it will be a child animated
* geometry root of the result, if neither are null.
*/
PaintedLayerDataNode*
FindNodeForAncestorAnimatedGeometryRoot(const nsIFrame* aAnimatedGeometryRoot,
const nsIFrame** aOutAncestorChild);
ContainerState& mContainerState;
UniquePtr<PaintedLayerDataNode> mRoot;
/**
* The uniform opaque color from behind this container layer, or
* NS_RGBA(0,0,0,0) if the background behind this container layer is not
* uniform and opaque. This color can be pulled into PaintedLayers that are
* directly above the background.
*/
nscolor mContainerUniformBackgroundColor;
/**
* A hash map for quick access the node belonging to a particular animated
* geometry root.
*/
nsDataHashtable<nsPtrHashKey<const nsIFrame>, PaintedLayerDataNode*> mNodes;
};
/**
* This is a helper object used to build up the layer children for
* a ContainerLayer.
*/
class ContainerState {
public:
ContainerState(nsDisplayListBuilder* aBuilder,
LayerManager* aManager,
FrameLayerBuilder* aLayerBuilder,
nsIFrame* aContainerFrame,
nsDisplayItem* aContainerItem,
const nsRect& aContainerBounds,
ContainerLayer* aContainerLayer,
const ContainerLayerParameters& aParameters,
bool aFlattenToSingleLayer,
nscolor aBackgroundColor) :
mBuilder(aBuilder), mManager(aManager),
mLayerBuilder(aLayerBuilder),
mContainerFrame(aContainerFrame),
mContainerLayer(aContainerLayer),
mContainerBounds(aContainerBounds),
mParameters(aParameters),
mPaintedLayerDataTree(*this, aBackgroundColor),
mFlattenToSingleLayer(aFlattenToSingleLayer)
{
nsPresContext* presContext = aContainerFrame->PresContext();
mAppUnitsPerDevPixel = presContext->AppUnitsPerDevPixel();
mContainerReferenceFrame =
const_cast<nsIFrame*>(aContainerItem ? aContainerItem->ReferenceFrameForChildren() :
mBuilder->FindReferenceFrameFor(mContainerFrame));
bool isAtRoot = !aContainerItem || (aContainerItem->Frame() == mBuilder->RootReferenceFrame());
MOZ_ASSERT_IF(isAtRoot, mContainerReferenceFrame == mBuilder->RootReferenceFrame());
mContainerAnimatedGeometryRoot = isAtRoot
? mContainerReferenceFrame
: nsLayoutUtils::GetAnimatedGeometryRootFor(aContainerItem, aBuilder, aManager);
MOZ_ASSERT(nsLayoutUtils::IsAncestorFrameCrossDoc(mBuilder->RootReferenceFrame(),
mContainerAnimatedGeometryRoot));
NS_ASSERTION(!aContainerItem || !aContainerItem->ShouldFixToViewport(aManager),
"Container items never return true for ShouldFixToViewport");
mContainerFixedPosFrame =
FindFixedPosFrameForLayerData(mContainerAnimatedGeometryRoot, false);
// When AllowResidualTranslation is false, display items will be drawn
// scaled with a translation by integer pixels, so we know how the snapping
// will work.
mSnappingEnabled = aManager->IsSnappingEffectiveTransforms() &&
!mParameters.AllowResidualTranslation();
CollectOldLayers();
}
/**
* This is the method that actually walks a display list and builds
* the child layers.
*/
void ProcessDisplayItems(nsDisplayList* aList);
/**
* This finalizes all the open PaintedLayers by popping every element off
* mPaintedLayerDataStack, then sets the children of the container layer
* to be all the layers in mNewChildLayers in that order and removes any
* layers as children of the container that aren't in mNewChildLayers.
* @param aTextContentFlags if any child layer has CONTENT_COMPONENT_ALPHA,
* set *aTextContentFlags to CONTENT_COMPONENT_ALPHA
*/
void Finish(uint32_t *aTextContentFlags, LayerManagerData* aData,
const nsIntRect& aContainerPixelBounds,
nsDisplayList* aChildItems, bool& aHasComponentAlphaChildren);
nscoord GetAppUnitsPerDevPixel() { return mAppUnitsPerDevPixel; }
nsIntRect ScaleToNearestPixels(const nsRect& aRect) const
{
return aRect.ScaleToNearestPixels(mParameters.mXScale, mParameters.mYScale,
mAppUnitsPerDevPixel);
}
nsIntRegion ScaleRegionToNearestPixels(const nsRegion& aRegion) const
{
return aRegion.ScaleToNearestPixels(mParameters.mXScale, mParameters.mYScale,
mAppUnitsPerDevPixel);
}
nsIntRect ScaleToOutsidePixels(const nsRect& aRect, bool aSnap = false) const
{
if (aSnap && mSnappingEnabled) {
return ScaleToNearestPixels(aRect);
}
return aRect.ScaleToOutsidePixels(mParameters.mXScale, mParameters.mYScale,
mAppUnitsPerDevPixel);
}
nsIntRect ScaleToInsidePixels(const nsRect& aRect, bool aSnap = false) const
{
if (aSnap && mSnappingEnabled) {
return ScaleToNearestPixels(aRect);
}
return aRect.ScaleToInsidePixels(mParameters.mXScale, mParameters.mYScale,
mAppUnitsPerDevPixel);
}
nsIntRegion ScaleRegionToInsidePixels(const nsRegion& aRegion, bool aSnap = false) const
{
if (aSnap && mSnappingEnabled) {
return ScaleRegionToNearestPixels(aRegion);
}
return aRegion.ScaleToInsidePixels(mParameters.mXScale, mParameters.mYScale,
mAppUnitsPerDevPixel);
}
nsIntRegion ScaleRegionToOutsidePixels(const nsRegion& aRegion, bool aSnap = false) const
{
if (aSnap && mSnappingEnabled) {
return ScaleRegionToNearestPixels(aRegion);
}
return aRegion.ScaleToOutsidePixels(mParameters.mXScale, mParameters.mYScale,
mAppUnitsPerDevPixel);
}
nsIFrame* GetContainerFrame() const { return mContainerFrame; }
nsDisplayListBuilder* Builder() const { return mBuilder; }
/**
* Sets aOuterVisibleRegion as aLayer's visible region. aOuterVisibleRegion
* is in the coordinate space of the container reference frame.
* aLayerContentsVisibleRect, if non-null, is in the layer's own
* coordinate system.
*/
void SetOuterVisibleRegionForLayer(Layer* aLayer,
const nsIntRegion& aOuterVisibleRegion,
const nsIntRect* aLayerContentsVisibleRect = nullptr) const;
/**
* Try to determine whether the PaintedLayer aData has a single opaque color
* covering aRect. If successful, return that color, otherwise return
* NS_RGBA(0,0,0,0).
* If aRect turns out not to intersect any content in the layer,
* *aOutIntersectsLayer will be set to false.
*/
nscolor FindOpaqueBackgroundColorInLayer(const PaintedLayerData* aData,
const nsIntRect& aRect,
bool* aOutIntersectsLayer) const;
/**
* Indicate that we are done adding items to the PaintedLayer represented by
* aData. Make sure that a real PaintedLayer exists for it, and set the final
* visible region and opaque-content.
*/
template<typename FindOpaqueBackgroundColorCallbackType>
void FinishPaintedLayerData(PaintedLayerData& aData, FindOpaqueBackgroundColorCallbackType aFindOpaqueBackgroundColor);
protected:
friend class PaintedLayerData;
LayerManager::PaintedLayerCreationHint
GetLayerCreationHint(const nsIFrame* aAnimatedGeometryRoot);
/**
* Creates a new PaintedLayer and sets up the transform on the PaintedLayer
* to account for scrolling.
*/
already_AddRefed<PaintedLayer> CreatePaintedLayer(PaintedLayerData* aData);
/**
* Find a PaintedLayer for recycling, recycle it and prepare it for use, or
* return null if no suitable layer was found.
*/
already_AddRefed<PaintedLayer> AttemptToRecyclePaintedLayer(const nsIFrame* aAnimatedGeometryRoot,
nsDisplayItem* aItem,
const nsPoint& aTopLeft);
/**
* Recycle aLayer and do any necessary invalidation.
*/
PaintedDisplayItemLayerUserData* RecyclePaintedLayer(PaintedLayer* aLayer,
const nsIFrame* aAnimatedGeometryRoot,
bool& didResetScrollPositionForLayerPixelAlignment);
/**
* Perform the last step of CreatePaintedLayer / AttemptToRecyclePaintedLayer:
* Initialize aData, set up the layer's transform for scrolling, and
* invalidate the layer for layer pixel alignment changes if necessary.
*/
void PreparePaintedLayerForUse(PaintedLayer* aLayer,
PaintedDisplayItemLayerUserData* aData,
const nsIFrame* aAnimatedGeometryRoot,
const nsIFrame* aReferenceFrame,
const nsPoint& aTopLeft,
bool aDidResetScrollPositionForLayerPixelAlignment);
/**
* Attempt to prepare an ImageLayer based upon the provided PaintedLayerData.
* Returns nullptr on failure.
*/
already_AddRefed<Layer> PrepareImageLayer(PaintedLayerData* aData);
/**
* Attempt to prepare a ColorLayer based upon the provided PaintedLayerData.
* Returns nullptr on failure.
*/
already_AddRefed<Layer> PrepareColorLayer(PaintedLayerData* aData);
/**
* Grab the next recyclable ColorLayer, or create one if there are no
* more recyclable ColorLayers.
*/
already_AddRefed<ColorLayer> CreateOrRecycleColorLayer(PaintedLayer* aPainted);
/**
* Grab the next recyclable ImageLayer, or create one if there are no
* more recyclable ImageLayers.
*/
already_AddRefed<ImageLayer> CreateOrRecycleImageLayer(PaintedLayer* aPainted);
/**
* Grab a recyclable ImageLayer for use as a mask layer for aLayer (that is a
* mask layer which has been used for aLayer before), or create one if such
* a layer doesn't exist.
*/
already_AddRefed<ImageLayer> CreateOrRecycleMaskImageLayerFor(Layer* aLayer);
/**
* Grabs all PaintedLayers and ColorLayers from the ContainerLayer and makes them
* available for recycling.
*/
void CollectOldLayers();
/**
* If aItem used to belong to a PaintedLayer, invalidates the area of
* aItem in that layer. If aNewLayer is a PaintedLayer, invalidates the area of
* aItem in that layer.
*/
void InvalidateForLayerChange(nsDisplayItem* aItem,
PaintedLayer* aNewLayer);
/**
* Find the fixed-pos frame, if any, containing (or equal to)
* aAnimatedGeometryRoot. Only return a fixed-pos frame if its viewport
* has a displayport.
* aDisplayItemFixedToViewport is true if the layer contains a single display
* item which returned true for ShouldFixToViewport.
* This can return the actual viewport frame for layers whose display items
* are directly on the viewport (e.g. background-attachment:fixed backgrounds).
*/
const nsIFrame* FindFixedPosFrameForLayerData(const nsIFrame* aAnimatedGeometryRoot,
bool aDisplayItemFixedToViewport);
/**
* Set fixed-pos layer metadata on aLayer according to the data for aFixedPosFrame.
*/
void SetFixedPositionLayerData(Layer* aLayer,
const nsIFrame* aFixedPosFrame);
/**
* Returns true if aItem's opaque area (in aOpaque) covers the entire
* scrollable area of its presshell.
*/
bool ItemCoversScrollableArea(nsDisplayItem* aItem, const nsRegion& aOpaque);
/**
* Set FrameMetrics and scroll-induced clipping on aEntry's layer.
*/
void SetupScrollingMetadata(NewLayerEntry* aEntry);
/**
* Applies occlusion culling.
* For each layer in mNewChildLayers, remove from its visible region the
* opaque regions of the layers at higher z-index, but only if they have
* the same animated geometry root and fixed-pos frame ancestor.
* The opaque region for the child layers that share the same animated
* geometry root as the container frame is returned in
* *aOpaqueRegionForContainer.
*
* Also sets scroll metadata on the layers.
*/
void PostprocessRetainedLayers(nsIntRegion* aOpaqueRegionForContainer);
/**
* Computes the snapped opaque area of aItem. Sets aList's opaque flag
* if it covers the entire list bounds. Sets *aHideAllLayersBelow to true
* this item covers the entire viewport so that all layers below are
* permanently invisible.
*/
nsIntRegion ComputeOpaqueRect(nsDisplayItem* aItem,
const nsIFrame* aAnimatedGeometryRoot,
const nsIFrame* aFixedPosFrame,
const DisplayItemClip& aClip,
nsDisplayList* aList,
bool* aHideAllLayersBelow,
bool* aOpaqueForAnimatedGeometryRootParent);
/**
* Return a PaintedLayerData object that is initialized for a layer that
* aItem will be assigned to.
* @param aItem The item that is going to be added.
* @param aVisibleRect The visible rect of the item.
* @param aAnimatedGeometryRoot The item's animated geometry root.
* @param aTopLeft The offset between aAnimatedGeometryRoot and
* the reference frame.
* @param aShouldFixToViewport If true, aAnimatedGeometryRoot is the
* viewport and we will be adding fixed-pos
* metadata for this layer because the display
* item returned true from ShouldFixToViewport.
*/
PaintedLayerData NewPaintedLayerData(nsDisplayItem* aItem,
const nsIntRect& aVisibleRect,
const nsIFrame* aAnimatedGeometryRoot,
const nsPoint& aTopLeft,
bool aShouldFixToViewport);
/* Build a mask layer to represent the clipping region. Will return null if
* there is no clipping specified or a mask layer cannot be built.
* Builds an ImageLayer for the appropriate backend; the mask is relative to
* aLayer's visible region.
* aLayer is the layer to be clipped.
* aLayerVisibleRegion is the region that will be set as aLayer's visible region,
* relative to the container reference frame
* aRoundedRectClipCount is used when building mask layers for PaintedLayers,
* SetupMaskLayer will build a mask layer for only the first
* aRoundedRectClipCount rounded rects in aClip
*/
void SetupMaskLayer(Layer *aLayer, const DisplayItemClip& aClip,
const nsIntRegion& aLayerVisibleRegion,
uint32_t aRoundedRectClipCount = UINT32_MAX);
bool ChooseAnimatedGeometryRoot(const nsDisplayList& aList,
const nsIFrame **aAnimatedGeometryRoot);
nsDisplayListBuilder* mBuilder;
LayerManager* mManager;
FrameLayerBuilder* mLayerBuilder;
nsIFrame* mContainerFrame;
nsIFrame* mContainerReferenceFrame;
const nsIFrame* mContainerAnimatedGeometryRoot;
const nsIFrame* mContainerFixedPosFrame;
ContainerLayer* mContainerLayer;
nsRect mContainerBounds;
DebugOnly<nsRect> mAccumulatedChildBounds;
ContainerLayerParameters mParameters;
/**
* The region of PaintedLayers that should be invalidated every time
* we recycle one.
*/
nsIntRegion mInvalidPaintedContent;
PaintedLayerDataTree mPaintedLayerDataTree;
/**
* We collect the list of children in here. During ProcessDisplayItems,
* the layers in this array either have mContainerLayer as their parent,
* or no parent.
* PaintedLayers have two entries in this array: the second one is used only if
* the PaintedLayer is optimized away to a ColorLayer or ImageLayer.
* It's essential that this array is only appended to, since PaintedLayerData
* records the index of its PaintedLayer in this array.
*/
typedef nsAutoTArray<NewLayerEntry,1> AutoLayersArray;
AutoLayersArray mNewChildLayers;
nsTHashtable<nsRefPtrHashKey<PaintedLayer>> mPaintedLayersAvailableForRecycling;
nsDataHashtable<nsPtrHashKey<Layer>, nsRefPtr<ImageLayer> >
mRecycledMaskImageLayers;
nscoord mAppUnitsPerDevPixel;
bool mSnappingEnabled;
bool mFlattenToSingleLayer;
};
class PaintedDisplayItemLayerUserData : public LayerUserData
{
public:
PaintedDisplayItemLayerUserData() :
mMaskClipCount(0),
mForcedBackgroundColor(NS_RGBA(0,0,0,0)),
mFontSmoothingBackgroundColor(NS_RGBA(0,0,0,0)),
mXScale(1.f), mYScale(1.f),
mAppUnitsPerDevPixel(0),
mTranslation(0, 0),
mAnimatedGeometryRootPosition(0, 0) {}
/**
* Record the number of clips in the PaintedLayer's mask layer.
* Should not be reset when the layer is recycled since it is used to track
* changes in the use of mask layers.
*/
uint32_t mMaskClipCount;
/**
* A color that should be painted over the bounds of the layer's visible
* region before any other content is painted.
*/
nscolor mForcedBackgroundColor;
/**
* The target background color for smoothing fonts that are drawn on top of
* transparent parts of the layer.
*/
nscolor mFontSmoothingBackgroundColor;
/**
* The resolution scale used.
*/
float mXScale, mYScale;
/**
* The appunits per dev pixel for the items in this layer.
*/
nscoord mAppUnitsPerDevPixel;
/**
* The offset from the PaintedLayer's 0,0 to the
* reference frame. This isn't necessarily the same as the transform
* set on the PaintedLayer since we might also be applying an extra
* offset specified by the parent ContainerLayer/
*/
nsIntPoint mTranslation;
/**
* We try to make 0,0 of the PaintedLayer be the top-left of the
* border-box of the "active scrolled root" frame (i.e. the nearest ancestor
* frame for the display items that is being actively scrolled). But
* we force the PaintedLayer transform to be an integer translation, and we may
* have a resolution scale, so we have to snap the PaintedLayer transform, so
* 0,0 may not be exactly the top-left of the active scrolled root. Here we
* store the coordinates in PaintedLayer space of the top-left of the
* active scrolled root.
*/
gfxPoint mAnimatedGeometryRootPosition;
nsIntRegion mRegionToInvalidate;
// The offset between the active scrolled root of this layer
// and the root of the container for the previous and current
// paints respectively.
nsPoint mLastAnimatedGeometryRootOrigin;
nsPoint mAnimatedGeometryRootOrigin;
// If mIgnoreInvalidationsOutsideRect is set, this contains the bounds of the
// layer's old visible region, in layer pixels.
nsIntRect mOldVisibleBounds;
// If set, invalidations that fall outside of this rect should not result in
// calls to layer->InvalidateRegion during DLBI. Instead, the parts outside
// this rectangle will be invalidated in InvalidateVisibleBoundsChangesForScrolledLayer.
// See the comment in ComputeAndSetIgnoreInvalidationRect for more information.
Maybe<nsIntRect> mIgnoreInvalidationsOutsideRect;
nsRefPtr<ColorLayer> mColorLayer;
nsRefPtr<ImageLayer> mImageLayer;
};
/*
* User data for layers which will be used as masks.
*/
struct MaskLayerUserData : public LayerUserData
{
MaskLayerUserData()
: mScaleX(-1.0f)
, mScaleY(-1.0f)
, mAppUnitsPerDevPixel(-1)
{ }
bool
operator== (const MaskLayerUserData& aOther) const
{
return mRoundedClipRects == aOther.mRoundedClipRects &&
mScaleX == aOther.mScaleX &&
mScaleY == aOther.mScaleY &&
mOffset == aOther.mOffset &&
mAppUnitsPerDevPixel == aOther.mAppUnitsPerDevPixel;
}
nsRefPtr<const MaskLayerImageCache::MaskLayerImageKey> mImageKey;
// properties of the mask layer; the mask layer may be re-used if these
// remain unchanged.
nsTArray<DisplayItemClip::RoundedRect> mRoundedClipRects;
// scale from the masked layer which is applied to the mask
float mScaleX, mScaleY;
// The ContainerLayerParameters offset which is applied to the mask's transform.
nsIntPoint mOffset;
int32_t mAppUnitsPerDevPixel;
};
/**
* The address of gPaintedDisplayItemLayerUserData is used as the user
* data key for PaintedLayers created by FrameLayerBuilder.
* It identifies PaintedLayers used to draw non-layer content, which are
* therefore eligible for recycling. We want display items to be able to
* create their own dedicated PaintedLayers in BuildLayer, if necessary,
* and we wouldn't want to accidentally recycle those.
* The user data is a PaintedDisplayItemLayerUserData.
*/
uint8_t gPaintedDisplayItemLayerUserData;
/**
* The address of gColorLayerUserData is used as the user
* data key for ColorLayers created by FrameLayerBuilder.
* The user data is null.
*/
uint8_t gColorLayerUserData;
/**
* The address of gImageLayerUserData is used as the user
* data key for ImageLayers created by FrameLayerBuilder.
* The user data is null.
*/
uint8_t gImageLayerUserData;
/**
* The address of gLayerManagerUserData is used as the user
* data key for retained LayerManagers managed by FrameLayerBuilder.
* The user data is a LayerManagerData.
*/
uint8_t gLayerManagerUserData;
/**
* The address of gMaskLayerUserData is used as the user
* data key for mask layers managed by FrameLayerBuilder.
* The user data is a MaskLayerUserData.
*/
uint8_t gMaskLayerUserData;
/**
* Helper functions for getting user data and casting it to the correct type.
* aLayer is the layer where the user data is stored.
*/
MaskLayerUserData* GetMaskLayerUserData(Layer* aLayer)
{
return static_cast<MaskLayerUserData*>(aLayer->GetUserData(&gMaskLayerUserData));
}
PaintedDisplayItemLayerUserData* GetPaintedDisplayItemLayerUserData(Layer* aLayer)
{
return static_cast<PaintedDisplayItemLayerUserData*>(
aLayer->GetUserData(&gPaintedDisplayItemLayerUserData));
}
/* static */ void
FrameLayerBuilder::Shutdown()
{
if (gMaskLayerImageCache) {
delete gMaskLayerImageCache;
gMaskLayerImageCache = nullptr;
}
}
void
FrameLayerBuilder::Init(nsDisplayListBuilder* aBuilder, LayerManager* aManager,
PaintedLayerData* aLayerData)
{
mDisplayListBuilder = aBuilder;
mRootPresContext = aBuilder->RootReferenceFrame()->PresContext()->GetRootPresContext();
if (mRootPresContext) {
mInitialDOMGeneration = mRootPresContext->GetDOMGeneration();
}
mContainingPaintedLayer = aLayerData;
aManager->SetUserData(&gLayerManagerLayerBuilder, this);
}
void
FrameLayerBuilder::FlashPaint(gfxContext *aContext)
{
float r = float(rand()) / RAND_MAX;
float g = float(rand()) / RAND_MAX;
float b = float(rand()) / RAND_MAX;
aContext->SetColor(gfxRGBA(r, g, b, 0.4));
aContext->Paint();
}
static FrameLayerBuilder::DisplayItemData*
AssertDisplayItemData(FrameLayerBuilder::DisplayItemData* aData)
{
MOZ_RELEASE_ASSERT(aData);
MOZ_RELEASE_ASSERT(sAliveDisplayItemDatas && sAliveDisplayItemDatas->Contains(aData));
MOZ_RELEASE_ASSERT(aData->mLayer);
return aData;
}
FrameLayerBuilder::DisplayItemData*
FrameLayerBuilder::GetDisplayItemData(nsIFrame* aFrame, uint32_t aKey)
{
const nsTArray<DisplayItemData*>* array =
static_cast<nsTArray<DisplayItemData*>*>(aFrame->Properties().Get(LayerManagerDataProperty()));
if (array) {
for (uint32_t i = 0; i < array->Length(); i++) {
DisplayItemData* item = AssertDisplayItemData(array->ElementAt(i));
if (item->mDisplayItemKey == aKey &&
item->mLayer->Manager() == mRetainingManager) {
return item;
}
}
}
return nullptr;
}
nsACString&
AppendToString(nsACString& s, const nsIntRect& r,
const char* pfx="", const char* sfx="")
{
s += pfx;
s += nsPrintfCString(
"(x=%d, y=%d, w=%d, h=%d)",
r.x, r.y, r.width, r.height);
return s += sfx;
}
nsACString&
AppendToString(nsACString& s, const nsIntRegion& r,
const char* pfx="", const char* sfx="")
{
s += pfx;
nsIntRegionRectIterator it(r);
s += "< ";
while (const nsIntRect* sr = it.Next()) {
AppendToString(s, *sr) += "; ";
}
s += ">";
return s += sfx;
}
/**
* Invalidate aRegion in aLayer. aLayer is in the coordinate system
* *after* aTranslation has been applied, so we need to
* apply the inverse of that transform before calling InvalidateRegion.
*/
template<typename RegionOrRect> void
InvalidatePostTransformRegion(PaintedLayer* aLayer, const RegionOrRect& aRegion,
const nsIntPoint& aTranslation,
PaintedDisplayItemLayerUserData* aData)
{
// Convert the region from the coordinates of the container layer
// (relative to the snapped top-left of the display list reference frame)
// to the PaintedLayer's own coordinates
RegionOrRect rgn = aRegion;
rgn.MoveBy(-aTranslation);
if (aData->mIgnoreInvalidationsOutsideRect) {
rgn = rgn.Intersect(*aData->mIgnoreInvalidationsOutsideRect);
}
if (!rgn.IsEmpty()) {
aLayer->InvalidateRegion(rgn);
#ifdef MOZ_DUMP_PAINTING
if (nsLayoutUtils::InvalidationDebuggingIsEnabled()) {
nsAutoCString str;
AppendToString(str, rgn);
printf_stderr("Invalidating layer %p: %s\n", aLayer, str.get());
}
#endif
}
}
static void
InvalidatePostTransformRegion(PaintedLayer* aLayer, const nsRect& aRect,
const DisplayItemClip& aClip,
const nsIntPoint& aTranslation)
{
PaintedDisplayItemLayerUserData* data =
static_cast<PaintedDisplayItemLayerUserData*>(aLayer->GetUserData(&gPaintedDisplayItemLayerUserData));
nsRect rect = aClip.ApplyNonRoundedIntersection(aRect);
nsIntRect pixelRect = rect.ScaleToOutsidePixels(data->mXScale, data->mYScale, data->mAppUnitsPerDevPixel);
InvalidatePostTransformRegion(aLayer, pixelRect, aTranslation, data);
}
static nsIntPoint
GetTranslationForPaintedLayer(PaintedLayer* aLayer)
{
PaintedDisplayItemLayerUserData* data =
static_cast<PaintedDisplayItemLayerUserData*>
(aLayer->GetUserData(&gPaintedDisplayItemLayerUserData));
NS_ASSERTION(data, "Must be a tracked painted layer!");
return data->mTranslation;
}
/**
* Some frames can have multiple, nested, retaining layer managers
* associated with them (normal manager, inactive managers, SVG effects).
* In these cases we store the 'outermost' LayerManager data property
* on the frame since we can walk down the chain from there.
*
* If one of these frames has just been destroyed, we will free the inner
* layer manager when removing the entry from mFramesWithLayers. Destroying
* the layer manager destroys the LayerManagerData and calls into
* the DisplayItemData destructor. If the inner layer manager had any
* items with the same frame, then we attempt to retrieve properties
* from the deleted frame.
*
* Cache the destroyed frame pointer here so we can avoid crashing in this case.
*/
/* static */ void
FrameLayerBuilder::RemoveFrameFromLayerManager(nsIFrame* aFrame,
void* aPropertyValue)
{
MOZ_RELEASE_ASSERT(!sDestroyedFrame);
sDestroyedFrame = aFrame;
nsTArray<DisplayItemData*> *array =
reinterpret_cast<nsTArray<DisplayItemData*>*>(aPropertyValue);
// Hold a reference to all the items so that they don't get
// deleted from under us.
nsTArray<nsRefPtr<DisplayItemData> > arrayCopy;
for (uint32_t i = 0; i < array->Length(); ++i) {
arrayCopy.AppendElement(array->ElementAt(i));
}
#ifdef DEBUG_DISPLAY_ITEM_DATA
if (array->Length()) {
LayerManagerData *rootData = array->ElementAt(0)->mParent;
while (rootData->mParent) {
rootData = rootData->mParent;
}
printf_stderr("Removing frame %p - dumping display data\n", aFrame);
rootData->Dump();
}
#endif
for (uint32_t i = 0; i < array->Length(); ++i) {
DisplayItemData* data = array->ElementAt(i);
PaintedLayer* t = data->mLayer->AsPaintedLayer();
if (t) {
PaintedDisplayItemLayerUserData* paintedData =
static_cast<PaintedDisplayItemLayerUserData*>(t->GetUserData(&gPaintedDisplayItemLayerUserData));
if (paintedData) {
nsRegion old = data->mGeometry->ComputeInvalidationRegion();
nsIntRegion rgn = old.ScaleToOutsidePixels(paintedData->mXScale, paintedData->mYScale, paintedData->mAppUnitsPerDevPixel);
rgn.MoveBy(-GetTranslationForPaintedLayer(t));
paintedData->mRegionToInvalidate.Or(paintedData->mRegionToInvalidate, rgn);
paintedData->mRegionToInvalidate.SimplifyOutward(8);
}
}
data->mParent->mDisplayItems.RemoveEntry(data);
}
arrayCopy.Clear();
delete array;
sDestroyedFrame = nullptr;
}
void
FrameLayerBuilder::DidBeginRetainedLayerTransaction(LayerManager* aManager)
{
mRetainingManager = aManager;
LayerManagerData* data = static_cast<LayerManagerData*>
(aManager->GetUserData(&gLayerManagerUserData));
if (data) {
mInvalidateAllLayers = data->mInvalidateAllLayers;
} else {
data = new LayerManagerData(aManager);
aManager->SetUserData(&gLayerManagerUserData, data);
}
}
void
FrameLayerBuilder::StoreOptimizedLayerForFrame(nsDisplayItem* aItem, Layer* aLayer)
{
if (!mRetainingManager) {
return;
}
DisplayItemData* data = GetDisplayItemDataForManager(aItem, aLayer->Manager());
NS_ASSERTION(data, "Must have already stored data for this item!");
data->mOptLayer = aLayer;
}
void
FrameLayerBuilder::DidEndTransaction()
{
GetMaskLayerImageCache()->Sweep();
}
void
FrameLayerBuilder::WillEndTransaction()
{
if (!mRetainingManager) {
return;
}
// We need to save the data we'll need to support retaining.
LayerManagerData* data = static_cast<LayerManagerData*>
(mRetainingManager->GetUserData(&gLayerManagerUserData));
NS_ASSERTION(data, "Must have data!");
// Update all the frames that used to have layers.
data->mDisplayItems.EnumerateEntries(ProcessRemovedDisplayItems, this);
data->mInvalidateAllLayers = false;
}
/* static */ PLDHashOperator
FrameLayerBuilder::ProcessRemovedDisplayItems(nsRefPtrHashKey<DisplayItemData>* aEntry,
void* aUserArg)
{
DisplayItemData* data = aEntry->GetKey();
FrameLayerBuilder* layerBuilder = static_cast<FrameLayerBuilder*>(aUserArg);
if (!data->mUsed) {
// This item was visible, but isn't anymore.
PaintedLayer* t = data->mLayer->AsPaintedLayer();
if (t && data->mGeometry) {
#ifdef MOZ_DUMP_PAINTING
if (nsLayoutUtils::InvalidationDebuggingIsEnabled()) {
printf_stderr("Invalidating unused display item (%i) belonging to frame %p from layer %p\n", data->mDisplayItemKey, data->mFrameList[0], t);
}
#endif
InvalidatePostTransformRegion(t,
data->mGeometry->ComputeInvalidationRegion(),
data->mClip,
layerBuilder->GetLastPaintOffset(t));
}
return PL_DHASH_REMOVE;
} else {
layerBuilder->ComputeGeometryChangeForItem(data);
}
return PL_DHASH_NEXT;
}
/* static */ PLDHashOperator
FrameLayerBuilder::DumpDisplayItemDataForFrame(nsRefPtrHashKey<DisplayItemData>* aEntry,
void* aClosure)
{
#ifdef DEBUG_DISPLAY_ITEM_DATA
DisplayItemData *data = aEntry->GetKey();
nsAutoCString prefix;
prefix += static_cast<const char*>(aClosure);
const char *layerState;
switch (data->mLayerState) {
case LAYER_NONE:
layerState = "LAYER_NONE"; break;
case LAYER_INACTIVE:
layerState = "LAYER_INACTIVE"; break;
case LAYER_ACTIVE:
layerState = "LAYER_ACTIVE"; break;
case LAYER_ACTIVE_FORCE:
layerState = "LAYER_ACTIVE_FORCE"; break;
case LAYER_ACTIVE_EMPTY:
layerState = "LAYER_ACTIVE_EMPTY"; break;
case LAYER_SVG_EFFECTS:
layerState = "LAYER_SVG_EFFECTS"; break;
}
uint32_t mask = (1 << nsDisplayItem::TYPE_BITS) - 1;
nsAutoCString str;
str += prefix;
str += nsPrintfCString("Frame %p ", data->mFrameList[0]);
str += nsDisplayItem::DisplayItemTypeName(static_cast<nsDisplayItem::Type>(data->mDisplayItemKey & mask));
if ((data->mDisplayItemKey >> nsDisplayItem::TYPE_BITS)) {
str += nsPrintfCString("(%i)", data->mDisplayItemKey >> nsDisplayItem::TYPE_BITS);
}
str += nsPrintfCString(", %s, Layer %p", layerState, data->mLayer.get());
if (data->mOptLayer) {
str += nsPrintfCString(", OptLayer %p", data->mOptLayer.get());
}
if (data->mInactiveManager) {
str += nsPrintfCString(", InactiveLayerManager %p", data->mInactiveManager.get());
}
str += "\n";
printf_stderr("%s", str.get());
if (data->mInactiveManager) {
prefix += " ";
printf_stderr("%sDumping inactive layer info:\n", prefix.get());
LayerManagerData* lmd = static_cast<LayerManagerData*>
(data->mInactiveManager->GetUserData(&gLayerManagerUserData));
lmd->Dump(prefix.get());
}
#endif
return PL_DHASH_NEXT;
}
/* static */ FrameLayerBuilder::DisplayItemData*
FrameLayerBuilder::GetDisplayItemDataForManager(nsDisplayItem* aItem,
LayerManager* aManager)
{
const nsTArray<DisplayItemData*>* array =
static_cast<nsTArray<DisplayItemData*>*>(aItem->Frame()->Properties().Get(LayerManagerDataProperty()));
if (array) {
for (uint32_t i = 0; i < array->Length(); i++) {
DisplayItemData* item = AssertDisplayItemData(array->ElementAt(i));
if (item->mDisplayItemKey == aItem->GetPerFrameKey() &&
item->mLayer->Manager() == aManager) {
return item;
}
}
}
return nullptr;
}
bool
FrameLayerBuilder::HasRetainedDataFor(nsIFrame* aFrame, uint32_t aDisplayItemKey)
{
const nsTArray<DisplayItemData*>* array =
static_cast<nsTArray<DisplayItemData*>*>(aFrame->Properties().Get(LayerManagerDataProperty()));
if (array) {
for (uint32_t i = 0; i < array->Length(); i++) {
if (AssertDisplayItemData(array->ElementAt(i))->mDisplayItemKey == aDisplayItemKey) {
return true;
}
}
}
return false;
}
void
FrameLayerBuilder::IterateRetainedDataFor(nsIFrame* aFrame, DisplayItemDataCallback aCallback)
{
const nsTArray<DisplayItemData*>* array =
static_cast<nsTArray<DisplayItemData*>*>(aFrame->Properties().Get(LayerManagerDataProperty()));
if (!array) {
return;
}
for (uint32_t i = 0; i < array->Length(); i++) {
DisplayItemData* data = AssertDisplayItemData(array->ElementAt(i));
if (data->mDisplayItemKey != nsDisplayItem::TYPE_ZERO) {
aCallback(aFrame, data);
}
}
}
FrameLayerBuilder::DisplayItemData*
FrameLayerBuilder::GetOldLayerForFrame(nsIFrame* aFrame, uint32_t aDisplayItemKey)
{
// If we need to build a new layer tree, then just refuse to recycle
// anything.
if (!mRetainingManager || mInvalidateAllLayers)
return nullptr;
DisplayItemData *data = GetDisplayItemData(aFrame, aDisplayItemKey);
if (data && data->mLayer->Manager() == mRetainingManager) {
return data;
}
return nullptr;
}
Layer*
FrameLayerBuilder::GetOldLayerFor(nsDisplayItem* aItem,
nsDisplayItemGeometry** aOldGeometry,
DisplayItemClip** aOldClip)
{
uint32_t key = aItem->GetPerFrameKey();
nsIFrame* frame = aItem->Frame();
DisplayItemData* oldData = GetOldLayerForFrame(frame, key);
if (oldData) {
if (aOldGeometry) {
*aOldGeometry = oldData->mGeometry.get();
}
if (aOldClip) {
*aOldClip = &oldData->mClip;
}
return oldData->mLayer;
}
return nullptr;
}
void
FrameLayerBuilder::ClearCachedGeometry(nsDisplayItem* aItem)
{
uint32_t key = aItem->GetPerFrameKey();
nsIFrame* frame = aItem->Frame();
DisplayItemData* oldData = GetOldLayerForFrame(frame, key);
if (oldData) {
oldData->mGeometry = nullptr;
}
}
/* static */ Layer*
FrameLayerBuilder::GetDebugOldLayerFor(nsIFrame* aFrame, uint32_t aDisplayItemKey)
{
const nsTArray<DisplayItemData*>* array =
static_cast<nsTArray<DisplayItemData*>*>(aFrame->Properties().Get(LayerManagerDataProperty()));
if (!array) {
return nullptr;
}
for (uint32_t i = 0; i < array->Length(); i++) {
DisplayItemData *data = AssertDisplayItemData(array->ElementAt(i));
if (data->mDisplayItemKey == aDisplayItemKey) {
return data->mLayer;
}
}
return nullptr;
}
/* static */ Layer*
FrameLayerBuilder::GetDebugSingleOldLayerForFrame(nsIFrame* aFrame)
{
const nsTArray<DisplayItemData*>* array =
static_cast<nsTArray<DisplayItemData*>*>(aFrame->Properties().Get(LayerManagerDataProperty()));
if (!array) {
return nullptr;
}
Layer* layer = nullptr;
for (DisplayItemData* data : *array) {
AssertDisplayItemData(data);
if (layer && layer != data->mLayer) {
// More than one layer assigned, bail.
return nullptr;
}
layer = data->mLayer;
}
return layer;
}
already_AddRefed<ColorLayer>
ContainerState::CreateOrRecycleColorLayer(PaintedLayer *aPainted)
{
PaintedDisplayItemLayerUserData* data =
static_cast<PaintedDisplayItemLayerUserData*>(aPainted->GetUserData(&gPaintedDisplayItemLayerUserData));
nsRefPtr<ColorLayer> layer = data->mColorLayer;
if (layer) {
layer->SetMaskLayer(nullptr);
layer->ClearExtraDumpInfo();
} else {
// Create a new layer
layer = mManager->CreateColorLayer();
if (!layer)
return nullptr;
// Mark this layer as being used for painting display items
data->mColorLayer = layer;
layer->SetUserData(&gColorLayerUserData, nullptr);
// Remove other layer types we might have stored for this PaintedLayer
data->mImageLayer = nullptr;
}
return layer.forget();
}
already_AddRefed<ImageLayer>
ContainerState::CreateOrRecycleImageLayer(PaintedLayer *aPainted)
{
PaintedDisplayItemLayerUserData* data =
static_cast<PaintedDisplayItemLayerUserData*>(aPainted->GetUserData(&gPaintedDisplayItemLayerUserData));
nsRefPtr<ImageLayer> layer = data->mImageLayer;
if (layer) {
layer->SetMaskLayer(nullptr);
layer->ClearExtraDumpInfo();
} else {
// Create a new layer
layer = mManager->CreateImageLayer();
if (!layer)
return nullptr;
// Mark this layer as being used for painting display items
data->mImageLayer = layer;
layer->SetUserData(&gImageLayerUserData, nullptr);
// Remove other layer types we might have stored for this PaintedLayer
data->mColorLayer = nullptr;
}
return layer.forget();
}
already_AddRefed<ImageLayer>
ContainerState::CreateOrRecycleMaskImageLayerFor(Layer* aLayer)
{
nsRefPtr<ImageLayer> result = mRecycledMaskImageLayers.Get(aLayer);
if (result) {
mRecycledMaskImageLayers.Remove(aLayer);
aLayer->ClearExtraDumpInfo();
// XXX if we use clip on mask layers, null it out here
} else {
// Create a new layer
result = mManager->CreateImageLayer();
if (!result)
return nullptr;
result->SetUserData(&gMaskLayerUserData, new MaskLayerUserData());
result->SetDisallowBigImage(true);
}
return result.forget();
}
static const double SUBPIXEL_OFFSET_EPSILON = 0.02;
/**
* This normally computes NSToIntRoundUp(aValue). However, if that would
* give a residual near 0.5 while aOldResidual is near -0.5, or
* it would give a residual near -0.5 while aOldResidual is near 0.5, then
* instead we return the integer in the other direction so that the residual
* is close to aOldResidual.
*/
static int32_t
RoundToMatchResidual(double aValue, double aOldResidual)
{
int32_t v = NSToIntRoundUp(aValue);
double residual = aValue - v;
if (aOldResidual < 0) {
if (residual > 0 && fabs(residual - 1.0 - aOldResidual) < SUBPIXEL_OFFSET_EPSILON) {
// Round up instead
return int32_t(ceil(aValue));
}
} else if (aOldResidual > 0) {
if (residual < 0 && fabs(residual + 1.0 - aOldResidual) < SUBPIXEL_OFFSET_EPSILON) {
// Round down instead
return int32_t(floor(aValue));
}
}
return v;
}
static void
ResetScrollPositionForLayerPixelAlignment(const nsIFrame* aAnimatedGeometryRoot)
{
nsIScrollableFrame* sf = nsLayoutUtils::GetScrollableFrameFor(aAnimatedGeometryRoot);
if (sf) {
sf->ResetScrollPositionForLayerPixelAlignment();
}
}
static void
InvalidateEntirePaintedLayer(PaintedLayer* aLayer, const nsIFrame* aAnimatedGeometryRoot, const char *aReason)
{
#ifdef MOZ_DUMP_PAINTING
if (nsLayoutUtils::InvalidationDebuggingIsEnabled()) {
printf_stderr("Invalidating entire layer %p: %s\n", aLayer, aReason);
}
#endif
nsIntRect invalidate = aLayer->GetValidRegion().GetBounds();
aLayer->InvalidateRegion(invalidate);
aLayer->SetInvalidRectToVisibleRegion();
ResetScrollPositionForLayerPixelAlignment(aAnimatedGeometryRoot);
}
LayerManager::PaintedLayerCreationHint
ContainerState::GetLayerCreationHint(const nsIFrame* aAnimatedGeometryRoot)
{
// Check whether the layer will be scrollable. This is used as a hint to
// influence whether tiled layers are used or not.
if (mParameters.mInLowPrecisionDisplayPort) {
return LayerManager::SCROLLABLE;
}
nsIFrame* animatedGeometryRootParent = aAnimatedGeometryRoot->GetParent();
nsIScrollableFrame* scrollable = do_QueryFrame(animatedGeometryRootParent);
if (scrollable && scrollable->WantAsyncScroll()) {
// WantAsyncScroll() returns false when the frame has overflow:hidden,
// so we won't create tiled layers for overflow:hidden frames even if
// they have a display port. The main purpose of the WantAsyncScroll check
// is to allow the B2G camera app to use hardware composer for compositing.
return LayerManager::SCROLLABLE;
}
return LayerManager::NONE;
}
already_AddRefed<PaintedLayer>
ContainerState::AttemptToRecyclePaintedLayer(const nsIFrame* aAnimatedGeometryRoot,
nsDisplayItem* aItem,
const nsPoint& aTopLeft)
{
Layer* oldLayer = mLayerBuilder->GetOldLayerFor(aItem);
if (!oldLayer || !oldLayer->AsPaintedLayer() ||
!mPaintedLayersAvailableForRecycling.Contains(oldLayer->AsPaintedLayer())) {
return nullptr;
}
// Try to recycle a layer
nsRefPtr<PaintedLayer> layer = oldLayer->AsPaintedLayer();
mPaintedLayersAvailableForRecycling.RemoveEntry(layer);
// Check if the layer hint has changed and whether or not the layer should
// be recreated because of it.
if (!mManager->IsOptimizedFor(layer, GetLayerCreationHint(aAnimatedGeometryRoot))) {
return nullptr;
}
bool didResetScrollPositionForLayerPixelAlignment = false;
PaintedDisplayItemLayerUserData* data =
RecyclePaintedLayer(layer, aAnimatedGeometryRoot,
didResetScrollPositionForLayerPixelAlignment);
PreparePaintedLayerForUse(layer, data, aAnimatedGeometryRoot, aItem->ReferenceFrame(),
aTopLeft,
didResetScrollPositionForLayerPixelAlignment);
return layer.forget();
}
already_AddRefed<PaintedLayer>
ContainerState::CreatePaintedLayer(PaintedLayerData* aData)
{
LayerManager::PaintedLayerCreationHint creationHint =
GetLayerCreationHint(aData->mAnimatedGeometryRoot);
// Create a new painted layer
nsRefPtr<PaintedLayer> layer = mManager->CreatePaintedLayerWithHint(creationHint);
if (!layer) {
return nullptr;
}
// Mark this layer as being used for painting display items
PaintedDisplayItemLayerUserData* userData = new PaintedDisplayItemLayerUserData();
layer->SetUserData(&gPaintedDisplayItemLayerUserData, userData);
ResetScrollPositionForLayerPixelAlignment(aData->mAnimatedGeometryRoot);
PreparePaintedLayerForUse(layer, userData, aData->mAnimatedGeometryRoot,
aData->mReferenceFrame,
aData->mAnimatedGeometryRootOffset, true);
return layer.forget();
}
PaintedDisplayItemLayerUserData*
ContainerState::RecyclePaintedLayer(PaintedLayer* aLayer,
const nsIFrame* aAnimatedGeometryRoot,
bool& didResetScrollPositionForLayerPixelAlignment)
{
// Clear clip rect and mask layer so we don't accidentally stay clipped.
// We will reapply any necessary clipping.
aLayer->SetMaskLayer(nullptr);
aLayer->ClearExtraDumpInfo();
PaintedDisplayItemLayerUserData* data =
static_cast<PaintedDisplayItemLayerUserData*>(
aLayer->GetUserData(&gPaintedDisplayItemLayerUserData));
NS_ASSERTION(data, "Recycled PaintedLayers must have user data");
// This gets called on recycled PaintedLayers that are going to be in the
// final layer tree, so it's a convenient time to invalidate the
// content that changed where we don't know what PaintedLayer it belonged
// to, or if we need to invalidate the entire layer, we can do that.
// This needs to be done before we update the PaintedLayer to its new
// transform. See nsGfxScrollFrame::InvalidateInternal, where
// we ensure that mInvalidPaintedContent is updated according to the
// scroll position as of the most recent paint.
if (!FuzzyEqual(data->mXScale, mParameters.mXScale, 0.00001f) ||
!FuzzyEqual(data->mYScale, mParameters.mYScale, 0.00001f) ||
data->mAppUnitsPerDevPixel != mAppUnitsPerDevPixel) {
#ifdef MOZ_DUMP_PAINTING
if (nsLayoutUtils::InvalidationDebuggingIsEnabled()) {
printf_stderr("Recycled layer %p changed scale\n", aLayer);
}
#endif
InvalidateEntirePaintedLayer(aLayer, aAnimatedGeometryRoot, "recycled layer changed state");
didResetScrollPositionForLayerPixelAlignment = true;
}
if (!data->mRegionToInvalidate.IsEmpty()) {
#ifdef MOZ_DUMP_PAINTING
if (nsLayoutUtils::InvalidationDebuggingIsEnabled()) {
printf_stderr("Invalidating deleted frame content from layer %p\n", aLayer);
}
#endif
aLayer->InvalidateRegion(data->mRegionToInvalidate);
#ifdef MOZ_DUMP_PAINTING
if (nsLayoutUtils::InvalidationDebuggingIsEnabled()) {
nsAutoCString str;
AppendToString(str, data->mRegionToInvalidate);
printf_stderr("Invalidating layer %p: %s\n", aLayer, str.get());
}
#endif
data->mRegionToInvalidate.SetEmpty();
}
return data;
}
static void
ComputeAndSetIgnoreInvalidationRect(PaintedLayer* aLayer,
PaintedDisplayItemLayerUserData* aData,
const nsIFrame* aAnimatedGeometryRoot,
nsDisplayListBuilder* aBuilder,
const nsIntPoint& aLayerTranslation)
{
if (!aLayer->Manager()->IsWidgetLayerManager()) {
// This optimization is only useful for layers with retained content.
return;
}
const nsIFrame* parentFrame = aAnimatedGeometryRoot->GetParent();
// GetDirtyRectForScrolledContents will return an empty rect if parentFrame
// is not a scrollable frame.
nsRect dirtyRect = aBuilder->GetDirtyRectForScrolledContents(parentFrame);
if (dirtyRect.IsEmpty()) {
// parentFrame is not a scrollable frame, or we didn't encounter it during
// display list building (though this shouldn't happen), or it's empty.
// In all those cases this optimization is not needed.
return;
}
// parentFrame is a scrollable frame, and aLayer contains the scrolled
// contents of that frame.
// maxNewVisibleBounds is a conservative approximation of the new visible
// region of aLayer.
nsIntRect maxNewVisibleBounds =
dirtyRect.ScaleToOutsidePixels(aData->mXScale, aData->mYScale,
aData->mAppUnitsPerDevPixel) - aLayerTranslation;
aData->mOldVisibleBounds = aLayer->GetVisibleRegion().GetBounds();
// When the visible region of aLayer changes (e.g. due to scrolling),
// three distinct types of invalidations need to be triggered:
// (1) Items (or parts of items) that have left the visible region need
// to be invalidated so that the pixels they painted are no longer
// part of the layer's valid region.
// (2) Items (or parts of items) that weren't in the old visible region
// but are in the new visible region need to be invalidated. This
// invalidation isn't required for painting the right layer
// contents, because these items weren't part of the layer's valid
// region, so they'd be painted anyway. It is, however, necessary in
// order to get an accurate invalid region for the layer tree that
// aLayer is in, for example for partial compositing.
// (3) Any changes that happened in the intersection of the old and the
// new visible region need to be invalidated. There shouldn't be any
// of these when scrolling static content.
//
// We'd like to guarantee that we won't invalidate anything in the
// intersection area of the old and the new visible region if all
// invalidation are of type (1) and (2). However, if we just call
// aLayer->InvalidateRegion for the invalidations of type (1) and (2),
// at some point we'll hit the complexity limit of the layer's invalid
// region. And the resulting region simplification can cause the region
// to intersect with the intersection of the old and the new visible
// region.
// In order to get around this problem, we're using the following approach:
// - aData->mIgnoreInvalidationsOutsideRect is set to a conservative
// approximation of the intersection of the old and the new visible
// region. At this point we don't know the layer's new visible region.
// - As long as we don't know the layer's new visible region, we ignore all
// invalidations outside that rectangle, so roughly some of the
// invalidations of type (1) and (2).
// - Once we know the layer's new visible region, which happens at some
// point during PostprocessRetainedLayers, we invalidate a conservative
// approximation of (1) and (2). Specifically, we invalidate the region
// union of the old visible bounds and the new visible bounds, minus
// aData->mIgnoreInvalidationsOutsideRect. That region is simple enough
// that it will never be simplified on its own.
// We unset mIgnoreInvalidationsOutsideRect at this point.
// - Any other invalidations that happen on the layer after this point, e.g.
// during WillEndTransaction, will just happen regularly. If they are of
// type (1) or (2), they won't change the layer's invalid region because
// they fall inside the region we invalidated in the previous step.
// Consequently, aData->mIgnoreInvalidationsOutsideRect is safe from
// invalidations as long as there are no invalidations of type (3).
aData->mIgnoreInvalidationsOutsideRect =
Some(maxNewVisibleBounds.Intersect(aData->mOldVisibleBounds));
}
void
ContainerState::PreparePaintedLayerForUse(PaintedLayer* aLayer,
PaintedDisplayItemLayerUserData* aData,
const nsIFrame* aAnimatedGeometryRoot,
const nsIFrame* aReferenceFrame,
const nsPoint& aTopLeft,
bool didResetScrollPositionForLayerPixelAlignment)
{
aData->mXScale = mParameters.mXScale;
aData->mYScale = mParameters.mYScale;
aData->mLastAnimatedGeometryRootOrigin = aData->mAnimatedGeometryRootOrigin;
aData->mAnimatedGeometryRootOrigin = aTopLeft;
aData->mAppUnitsPerDevPixel = mAppUnitsPerDevPixel;
aLayer->SetAllowResidualTranslation(mParameters.AllowResidualTranslation());
mLayerBuilder->SavePreviousDataForLayer(aLayer, aData->mMaskClipCount);
// Set up transform so that 0,0 in the PaintedLayer corresponds to the
// (pixel-snapped) top-left of the aAnimatedGeometryRoot.
nsPoint offset = aAnimatedGeometryRoot->GetOffsetToCrossDoc(aReferenceFrame);
nscoord appUnitsPerDevPixel = aAnimatedGeometryRoot->PresContext()->AppUnitsPerDevPixel();
gfxPoint scaledOffset(
NSAppUnitsToDoublePixels(offset.x, appUnitsPerDevPixel)*mParameters.mXScale,
NSAppUnitsToDoublePixels(offset.y, appUnitsPerDevPixel)*mParameters.mYScale);
// We call RoundToMatchResidual here so that the residual after rounding
// is close to aData->mAnimatedGeometryRootPosition if possible.
nsIntPoint pixOffset(RoundToMatchResidual(scaledOffset.x, aData->mAnimatedGeometryRootPosition.x),
RoundToMatchResidual(scaledOffset.y, aData->mAnimatedGeometryRootPosition.y));
aData->mTranslation = pixOffset;
pixOffset += mParameters.mOffset;
Matrix matrix = Matrix::Translation(pixOffset.x, pixOffset.y);
aLayer->SetBaseTransform(Matrix4x4::From2D(matrix));
ComputeAndSetIgnoreInvalidationRect(aLayer, aData, aAnimatedGeometryRoot, mBuilder, pixOffset);
// FIXME: Temporary workaround for bug 681192 and bug 724786.
#ifndef MOZ_WIDGET_ANDROID
// Calculate exact position of the top-left of the active scrolled root.
// This might not be 0,0 due to the snapping in ScaleToNearestPixels.
gfxPoint animatedGeometryRootTopLeft = scaledOffset - ThebesPoint(matrix.GetTranslation()) + mParameters.mOffset;
// If it has changed, then we need to invalidate the entire layer since the
// pixels in the layer buffer have the content at a (subpixel) offset
// from what we need.
if (!animatedGeometryRootTopLeft.WithinEpsilonOf(aData->mAnimatedGeometryRootPosition, SUBPIXEL_OFFSET_EPSILON)) {
aData->mAnimatedGeometryRootPosition = animatedGeometryRootTopLeft;
InvalidateEntirePaintedLayer(aLayer, aAnimatedGeometryRoot, "subpixel offset");
} else if (didResetScrollPositionForLayerPixelAlignment) {
aData->mAnimatedGeometryRootPosition = animatedGeometryRootTopLeft;
}
#else
unused << didResetScrollPositionForLayerPixelAlignment;
#endif
}
#if defined(DEBUG) || defined(MOZ_DUMP_PAINTING)
/**
* Returns the appunits per dev pixel for the item's frame
*/
static int32_t
AppUnitsPerDevPixel(nsDisplayItem* aItem)
{
// The underlying frame for zoom items is the root frame of the subdocument.
// But zoom display items report their bounds etc using the parent document's
// APD because zoom items act as a conversion layer between the two different
// APDs.
if (aItem->GetType() == nsDisplayItem::TYPE_ZOOM) {
return static_cast<nsDisplayZoom*>(aItem)->GetParentAppUnitsPerDevPixel();
}
return aItem->Frame()->PresContext()->AppUnitsPerDevPixel();
}
#endif
/**
* Set the visible region for aLayer.
* aOuterVisibleRegion is the visible region relative to the parent layer.
* aLayerContentsVisibleRect, if non-null, is a rectangle in the layer's
* own coordinate system to which the layer's visible region is restricted.
* Consumes *aOuterVisibleRegion.
*/
static void
SetOuterVisibleRegion(Layer* aLayer, nsIntRegion* aOuterVisibleRegion,
const nsIntRect* aLayerContentsVisibleRect = nullptr)
{
Matrix4x4 transform = aLayer->GetTransform();
Matrix transform2D;
if (transform.Is2D(&transform2D) && !transform2D.HasNonIntegerTranslation()) {
aOuterVisibleRegion->MoveBy(-int(transform2D._31), -int(transform2D._32));
if (aLayerContentsVisibleRect) {
aOuterVisibleRegion->And(*aOuterVisibleRegion, *aLayerContentsVisibleRect);
}
} else {
nsIntRect outerRect = aOuterVisibleRegion->GetBounds();
// if 'transform' is not invertible, then nothing will be displayed
// for the layer, so it doesn't really matter what we do here
Rect outerVisible(outerRect.x, outerRect.y, outerRect.width, outerRect.height);
transform.Invert();
Rect layerContentsVisible(-float(INT32_MAX) / 2, -float(INT32_MAX) / 2,
float(INT32_MAX), float(INT32_MAX));
if (aLayerContentsVisibleRect) {
NS_ASSERTION(aLayerContentsVisibleRect->width >= 0 &&
aLayerContentsVisibleRect->height >= 0,
"Bad layer contents rectangle");
// restrict to aLayerContentsVisibleRect before call GfxRectToIntRect,
// in case layerVisible is extremely large (as it can be when
// projecting through the inverse of a 3D transform)
layerContentsVisible = Rect(
aLayerContentsVisibleRect->x, aLayerContentsVisibleRect->y,
aLayerContentsVisibleRect->width, aLayerContentsVisibleRect->height);
}
gfxRect layerVisible = ThebesRect(transform.ProjectRectBounds(outerVisible, layerContentsVisible));
layerVisible.RoundOut();
nsIntRect visRect;
if (gfxUtils::GfxRectToIntRect(layerVisible, &visRect)) {
*aOuterVisibleRegion = visRect;
} else {
aOuterVisibleRegion->SetEmpty();
}
}
aLayer->SetVisibleRegion(*aOuterVisibleRegion);
}
void
ContainerState::SetOuterVisibleRegionForLayer(Layer* aLayer,
const nsIntRegion& aOuterVisibleRegion,
const nsIntRect* aLayerContentsVisibleRect) const
{
nsIntRegion visRegion = aOuterVisibleRegion;
visRegion.MoveBy(mParameters.mOffset);
SetOuterVisibleRegion(aLayer, &visRegion, aLayerContentsVisibleRect);
}
nscolor
ContainerState::FindOpaqueBackgroundColorInLayer(const PaintedLayerData* aData,
const nsIntRect& aRect,
bool* aOutIntersectsLayer) const
{
*aOutIntersectsLayer = true;
// Scan the candidate's display items.
nsIntRect deviceRect = aRect;
nsRect appUnitRect = ToAppUnits(deviceRect, mAppUnitsPerDevPixel);
appUnitRect.ScaleInverseRoundOut(mParameters.mXScale, mParameters.mYScale);
for (auto& assignedItem : Reversed(aData->mAssignedDisplayItems)) {
nsDisplayItem* item = assignedItem.mItem;
bool snap;
nsRect bounds = item->GetBounds(mBuilder, &snap);
if (snap && mSnappingEnabled) {
nsIntRect snappedBounds = ScaleToNearestPixels(bounds);
if (!snappedBounds.Intersects(deviceRect))
continue;
if (!snappedBounds.Contains(deviceRect))
return NS_RGBA(0,0,0,0);
} else {
// The layer's visible rect is already (close enough to) pixel
// aligned, so no need to round out and in here.
if (!bounds.Intersects(appUnitRect))
continue;
if (!bounds.Contains(appUnitRect))
return NS_RGBA(0,0,0,0);
}
if (item->IsInvisibleInRect(appUnitRect)) {
continue;
}
if (assignedItem.mClip.IsRectAffectedByClip(deviceRect,
mParameters.mXScale,
mParameters.mYScale,
mAppUnitsPerDevPixel)) {
return NS_RGBA(0,0,0,0);
}
nscolor color;
if (item->IsUniform(mBuilder, &color) && NS_GET_A(color) == 255)
return color;
return NS_RGBA(0,0,0,0);
}
*aOutIntersectsLayer = false;
return NS_RGBA(0,0,0,0);
}
nscolor
PaintedLayerDataNode::FindOpaqueBackgroundColor(const nsIntRegion& aTargetVisibleRegion,
int32_t aUnderIndex) const
{
if (aUnderIndex == ABOVE_TOP) {
aUnderIndex = mPaintedLayerDataStack.Length();
}
for (int32_t i = aUnderIndex - 1; i >= 0; --i) {
const PaintedLayerData* candidate = &mPaintedLayerDataStack[i];
if (candidate->VisibleAboveRegionIntersects(aTargetVisibleRegion)) {
// Some non-PaintedLayer content between target and candidate; this is
// hopeless
return NS_RGBA(0,0,0,0);
}
if (!candidate->VisibleRegionIntersects(aTargetVisibleRegion)) {
// The layer doesn't intersect our target, ignore it and move on
continue;
}
bool intersectsLayer = true;
nsIntRect rect = aTargetVisibleRegion.GetBounds();
nscolor color = mTree.ContState().FindOpaqueBackgroundColorInLayer(
candidate, rect, &intersectsLayer);
if (!intersectsLayer) {
continue;
}
return color;
}
if (mAllDrawingAboveBackground ||
!mVisibleAboveBackgroundRegion.Intersect(aTargetVisibleRegion).IsEmpty()) {
// Some non-PaintedLayer content is between this node's background and target.
return NS_RGBA(0,0,0,0);
}
return FindOpaqueBackgroundColorInParentNode();
}
nscolor
PaintedLayerDataNode::FindOpaqueBackgroundColorCoveringEverything() const
{
if (!mPaintedLayerDataStack.IsEmpty() ||
mAllDrawingAboveBackground ||
!mVisibleAboveBackgroundRegion.IsEmpty()) {
return NS_RGBA(0,0,0,0);
}
return FindOpaqueBackgroundColorInParentNode();
}
nscolor
PaintedLayerDataNode::FindOpaqueBackgroundColorInParentNode() const
{
if (mParent) {
if (mHasClip) {
// Check whether our parent node has uniform content behind our whole
// clip.
// There's one tricky case here: If our parent node is also a scrollable,
// and is currently scrolled in such a way that this inner one is
// clipped by it, then it's not really clear how we should determine
// whether we have a uniform background in the parent: There might be
// non-uniform content in the parts that our scroll port covers in the
// parent and that are currently outside the parent's clip.
// For now, we'll fail to pull a background color in that case.
return mParent->FindOpaqueBackgroundColor(mClipRect);
}
return mParent->FindOpaqueBackgroundColorCoveringEverything();
}
// We are the root.
return mTree.UniformBackgroundColor();
}
void
PaintedLayerData::UpdateCommonClipCount(
const DisplayItemClip& aCurrentClip)
{
if (mCommonClipCount >= 0) {
mCommonClipCount = mItemClip.GetCommonRoundedRectCount(aCurrentClip, mCommonClipCount);
} else {
// first item in the layer
mCommonClipCount = aCurrentClip.GetRoundedRectCount();
}
}
bool
PaintedLayerData::CanOptimizeToImageLayer(nsDisplayListBuilder* aBuilder)
{
if (!mImage) {
return false;
}
return mImage->CanOptimizeToImageLayer(mLayer->Manager(), aBuilder);
}
already_AddRefed<ImageContainer>
PaintedLayerData::GetContainerForImageLayer(nsDisplayListBuilder* aBuilder)
{
if (!mImage) {
return nullptr;
}
return mImage->GetContainer(mLayer->Manager(), aBuilder);
}
PaintedLayerDataNode::PaintedLayerDataNode(PaintedLayerDataTree& aTree,
PaintedLayerDataNode* aParent,
const nsIFrame* aAnimatedGeometryRoot)
: mTree(aTree)
, mParent(aParent)
, mAnimatedGeometryRoot(aAnimatedGeometryRoot)
, mAllDrawingAboveBackground(false)
{
MOZ_ASSERT(nsLayoutUtils::IsAncestorFrameCrossDoc(mTree.Builder()->RootReferenceFrame(), mAnimatedGeometryRoot));
mHasClip = mTree.IsClippedWithRespectToParentAnimatedGeometryRoot(mAnimatedGeometryRoot, &mClipRect);
}
PaintedLayerDataNode::~PaintedLayerDataNode()
{
MOZ_ASSERT(mPaintedLayerDataStack.IsEmpty());
MOZ_ASSERT(mChildren.IsEmpty());
}
PaintedLayerDataNode*
PaintedLayerDataNode::AddChildNodeFor(const nsIFrame* aAnimatedGeometryRoot)
{
MOZ_ASSERT(mTree.GetParentAnimatedGeometryRoot(aAnimatedGeometryRoot) == mAnimatedGeometryRoot);
UniquePtr<PaintedLayerDataNode> child =
MakeUnique<PaintedLayerDataNode>(mTree, this, aAnimatedGeometryRoot);
mChildren.AppendElement(Move(child));
return mChildren.LastElement().get();
}
template<typename NewPaintedLayerCallbackType>
PaintedLayerData*
PaintedLayerDataNode::FindPaintedLayerFor(const nsIntRect& aVisibleRect,
NewPaintedLayerCallbackType aNewPaintedLayerCallback)
{
if (!mPaintedLayerDataStack.IsEmpty()) {
if (mPaintedLayerDataStack[0].mSingleItemFixedToViewport) {
MOZ_ASSERT(mPaintedLayerDataStack.Length() == 1);
SetAllDrawingAbove();
MOZ_ASSERT(mPaintedLayerDataStack.IsEmpty());
} else {
PaintedLayerData* lowestUsableLayer = nullptr;
for (auto& data : Reversed(mPaintedLayerDataStack)) {
if (data.VisibleAboveRegionIntersects(aVisibleRect)) {
break;
}
MOZ_ASSERT(!data.mSingleItemFixedToViewport);
lowestUsableLayer = &data;
if (data.VisibleRegionIntersects(aVisibleRect)) {
break;
}
}
if (lowestUsableLayer) {
return lowestUsableLayer;
}
}
}
return mPaintedLayerDataStack.AppendElement(aNewPaintedLayerCallback());
}
void
PaintedLayerDataNode::FinishChildrenIntersecting(const nsIntRect& aRect)
{
for (int32_t i = mChildren.Length() - 1; i >= 0; i--) {
if (mChildren[i]->Intersects(aRect)) {
mChildren[i]->Finish(true);
mChildren.RemoveElementAt(i);
}
}
}
void
PaintedLayerDataNode::FinishAllChildren(bool aThisNodeNeedsAccurateVisibleAboveRegion)
{
for (int32_t i = mChildren.Length() - 1; i >= 0; i--) {
mChildren[i]->Finish(aThisNodeNeedsAccurateVisibleAboveRegion);
}
mChildren.Clear();
}
void
PaintedLayerDataNode::Finish(bool aParentNeedsAccurateVisibleAboveRegion)
{
// Skip "visible above region" maintenance, because this node is going away.
FinishAllChildren(false);
PopAllPaintedLayerData();
if (mParent && aParentNeedsAccurateVisibleAboveRegion) {
if (mHasClip) {
mParent->AddToVisibleAboveRegion(mClipRect);
} else {
mParent->SetAllDrawingAbove();
}
}
mTree.NodeWasFinished(mAnimatedGeometryRoot);
}
void
PaintedLayerDataNode::AddToVisibleAboveRegion(const nsIntRect& aRect)
{
nsIntRegion& visibleAboveRegion = mPaintedLayerDataStack.IsEmpty()
? mVisibleAboveBackgroundRegion
: mPaintedLayerDataStack.LastElement().mVisibleAboveRegion;
visibleAboveRegion.Or(visibleAboveRegion, aRect);
visibleAboveRegion.SimplifyOutward(8);
}
void
PaintedLayerDataNode::SetAllDrawingAbove()
{
PopAllPaintedLayerData();
mAllDrawingAboveBackground = true;
mVisibleAboveBackgroundRegion.SetEmpty();
}
void
PaintedLayerDataNode::PopPaintedLayerData()
{
MOZ_ASSERT(!mPaintedLayerDataStack.IsEmpty());
size_t lastIndex = mPaintedLayerDataStack.Length() - 1;
PaintedLayerData& data = mPaintedLayerDataStack[lastIndex];
mTree.ContState().FinishPaintedLayerData(data, [this, &data, lastIndex]() {
return this->FindOpaqueBackgroundColor(data.mVisibleRegion, lastIndex);
});
mPaintedLayerDataStack.RemoveElementAt(lastIndex);
}
void
PaintedLayerDataNode::PopAllPaintedLayerData()
{
while (!mPaintedLayerDataStack.IsEmpty()) {
PopPaintedLayerData();
}
}
nsDisplayListBuilder*
PaintedLayerDataTree::Builder() const
{
return mContainerState.Builder();
}
const nsIFrame*
PaintedLayerDataTree::GetParentAnimatedGeometryRoot(const nsIFrame* aAnimatedGeometryRoot)
{
MOZ_ASSERT(aAnimatedGeometryRoot);
MOZ_ASSERT(nsLayoutUtils::IsAncestorFrameCrossDoc(Builder()->RootReferenceFrame(), aAnimatedGeometryRoot));
if (aAnimatedGeometryRoot == Builder()->RootReferenceFrame()) {
return nullptr;
}
nsIFrame* agr = Builder()->FindAnimatedGeometryRootFor(
const_cast<nsIFrame*>(aAnimatedGeometryRoot), Builder()->RootReferenceFrame());
MOZ_ASSERT_IF(agr, nsLayoutUtils::IsAncestorFrameCrossDoc(Builder()->RootReferenceFrame(), agr));
if (agr != aAnimatedGeometryRoot) {
return agr;
}
// aAnimatedGeometryRoot is its own animated geometry root.
// Find the animated geometry root for its cross-doc parent frame.
nsIFrame* parent = nsLayoutUtils::GetCrossDocParentFrame(aAnimatedGeometryRoot);
if (!parent) {
return nullptr;
}
return Builder()->FindAnimatedGeometryRootFor(parent, Builder()->RootReferenceFrame());
}
void
PaintedLayerDataTree::Finish()
{
if (mRoot) {
mRoot->Finish(false);
}
MOZ_ASSERT(mNodes.Count() == 0);
mRoot = nullptr;
}
void
PaintedLayerDataTree::NodeWasFinished(const nsIFrame* aAnimatedGeometryRoot)
{
mNodes.Remove(aAnimatedGeometryRoot);
}
void
PaintedLayerDataTree::AddingOwnLayer(const nsIFrame* aAnimatedGeometryRoot,
const nsIntRect* aRect,
nscolor* aOutUniformBackgroundColor)
{
FinishPotentiallyIntersectingNodes(aAnimatedGeometryRoot, aRect);
PaintedLayerDataNode* node = EnsureNodeFor(aAnimatedGeometryRoot);
if (aRect) {
if (aOutUniformBackgroundColor) {
*aOutUniformBackgroundColor = node->FindOpaqueBackgroundColor(*aRect);
}
node->AddToVisibleAboveRegion(*aRect);
} else {
if (aOutUniformBackgroundColor) {
*aOutUniformBackgroundColor = node->FindOpaqueBackgroundColorCoveringEverything();
}
node->SetAllDrawingAbove();
}
}
template<typename NewPaintedLayerCallbackType>
PaintedLayerData*
PaintedLayerDataTree::FindPaintedLayerFor(const nsIFrame* aAnimatedGeometryRoot,
const nsIntRect& aVisibleRect,
bool aShouldFixToViewport,
NewPaintedLayerCallbackType aNewPaintedLayerCallback)
{
const nsIntRect* bounds = aShouldFixToViewport ? nullptr : &aVisibleRect;
FinishPotentiallyIntersectingNodes(aAnimatedGeometryRoot, bounds);
PaintedLayerDataNode* node = EnsureNodeFor(aAnimatedGeometryRoot);
if (aShouldFixToViewport) {
node->SetAllDrawingAbove();
}
return node->FindPaintedLayerFor(aVisibleRect, aNewPaintedLayerCallback);
}
void
PaintedLayerDataTree::FinishPotentiallyIntersectingNodes(const nsIFrame* aAnimatedGeometryRoot,
const nsIntRect* aRect)
{
const nsIFrame* ancestorThatIsChildOfCommonAncestor = nullptr;
PaintedLayerDataNode* ancestorNode =
FindNodeForAncestorAnimatedGeometryRoot(aAnimatedGeometryRoot,
&ancestorThatIsChildOfCommonAncestor);
if (!ancestorNode) {
// None of our ancestors are in the tree. This should only happen if this
// is the very first item we're looking at.
MOZ_ASSERT(!mRoot);
return;
}
if (ancestorNode->AnimatedGeometryRoot() == aAnimatedGeometryRoot) {
// aAnimatedGeometryRoot already has a node in the tree.
// This is the common case.
MOZ_ASSERT(!ancestorThatIsChildOfCommonAncestor);
if (aRect) {
ancestorNode->FinishChildrenIntersecting(*aRect);
} else {
ancestorNode->FinishAllChildren();
}
return;
}
// We have found an existing ancestor, but it's a proper ancestor of our
// animated geometry root.
// ancestorThatIsChildOfCommonAncestor is the last animated geometry root
// encountered on the way up from aAnimatedGeometryRoot to ancestorNode.
MOZ_ASSERT(ancestorThatIsChildOfCommonAncestor);
MOZ_ASSERT(nsLayoutUtils::IsAncestorFrameCrossDoc(ancestorThatIsChildOfCommonAncestor, aAnimatedGeometryRoot));
MOZ_ASSERT(GetParentAnimatedGeometryRoot(ancestorThatIsChildOfCommonAncestor) == ancestorNode->AnimatedGeometryRoot());
// ancestorThatIsChildOfCommonAncestor is not in the tree yet!
MOZ_ASSERT(!mNodes.Get(ancestorThatIsChildOfCommonAncestor));
// We're about to add a node for ancestorThatIsChildOfCommonAncestor, so we
// finish all intersecting siblings.
nsIntRect clip;
if (IsClippedWithRespectToParentAnimatedGeometryRoot(ancestorThatIsChildOfCommonAncestor, &clip)) {
ancestorNode->FinishChildrenIntersecting(clip);
} else {
ancestorNode->FinishAllChildren();
}
}
PaintedLayerDataNode*
PaintedLayerDataTree::EnsureNodeFor(const nsIFrame* aAnimatedGeometryRoot)
{
MOZ_ASSERT(aAnimatedGeometryRoot);
PaintedLayerDataNode* node = mNodes.Get(aAnimatedGeometryRoot);
if (node) {
return node;
}
const nsIFrame* parentAnimatedGeometryRoot = GetParentAnimatedGeometryRoot(aAnimatedGeometryRoot);
if (!parentAnimatedGeometryRoot) {
MOZ_ASSERT(!mRoot);
MOZ_ASSERT(aAnimatedGeometryRoot == Builder()->RootReferenceFrame());
mRoot = MakeUnique<PaintedLayerDataNode>(*this, nullptr, aAnimatedGeometryRoot);
node = mRoot.get();
} else {
PaintedLayerDataNode* parentNode = EnsureNodeFor(parentAnimatedGeometryRoot);
MOZ_ASSERT(parentNode);
node = parentNode->AddChildNodeFor(aAnimatedGeometryRoot);
}
MOZ_ASSERT(node);
mNodes.Put(aAnimatedGeometryRoot, node);
return node;
}
bool
PaintedLayerDataTree::IsClippedWithRespectToParentAnimatedGeometryRoot(const nsIFrame* aAnimatedGeometryRoot,
nsIntRect* aOutClip)
{
nsIScrollableFrame* scrollableFrame = nsLayoutUtils::GetScrollableFrameFor(aAnimatedGeometryRoot);
if (!scrollableFrame) {
return false;
}
nsIFrame* scrollFrame = do_QueryFrame(scrollableFrame);
nsRect scrollPort = scrollableFrame->GetScrollPortRect() + Builder()->ToReferenceFrame(scrollFrame);
*aOutClip = mContainerState.ScaleToNearestPixels(scrollPort);
return true;
}
PaintedLayerDataNode*
PaintedLayerDataTree::FindNodeForAncestorAnimatedGeometryRoot(const nsIFrame* aAnimatedGeometryRoot,
const nsIFrame** aOutAncestorChild)
{
if (!aAnimatedGeometryRoot) {
return nullptr;
}
PaintedLayerDataNode* node = mNodes.Get(aAnimatedGeometryRoot);
if (node) {
return node;
}
*aOutAncestorChild = aAnimatedGeometryRoot;
return FindNodeForAncestorAnimatedGeometryRoot(
GetParentAnimatedGeometryRoot(aAnimatedGeometryRoot), aOutAncestorChild);
}
const nsIFrame*
ContainerState::FindFixedPosFrameForLayerData(const nsIFrame* aAnimatedGeometryRoot,
bool aDisplayItemFixedToViewport)
{
if (!mManager->IsWidgetLayerManager()) {
// Never attach any fixed-pos metadata to inactive layers, it's pointless!
return nullptr;
}
nsPresContext* presContext = mContainerFrame->PresContext();
nsIFrame* viewport = presContext->PresShell()->GetRootFrame();
if (viewport == aAnimatedGeometryRoot && aDisplayItemFixedToViewport &&
nsLayoutUtils::ViewportHasDisplayPort(presContext)) {
// Probably a background-attachment:fixed item
return viewport;
}
// Viewports with no fixed-pos frames are not relevant.
if (!viewport->GetFirstChild(nsIFrame::kFixedList)) {
return nullptr;
}
for (const nsIFrame* f = aAnimatedGeometryRoot; f; f = f->GetParent()) {
if (nsLayoutUtils::IsFixedPosFrameInDisplayPort(f)) {
return f;
}
if (f == mContainerReferenceFrame) {
// The metadata will go on an ancestor layer if necessary.
return nullptr;
}
}
return nullptr;
}
void
ContainerState::SetFixedPositionLayerData(Layer* aLayer,
const nsIFrame* aFixedPosFrame)
{
aLayer->SetIsFixedPosition(aFixedPosFrame != nullptr);
if (!aFixedPosFrame) {
return;
}
nsPresContext* presContext = aFixedPosFrame->PresContext();
const nsIFrame* viewportFrame = aFixedPosFrame->GetParent();
// anchorRect will be in the container's coordinate system (aLayer's parent layer).
// This is the same as the display items' reference frame.
nsRect anchorRect;
if (viewportFrame) {
// Fixed position frames are reflowed into the scroll-port size if one has
// been set.
if (presContext->PresShell()->IsScrollPositionClampingScrollPortSizeSet()) {
anchorRect.SizeTo(presContext->PresShell()->GetScrollPositionClampingScrollPortSize());
} else {
anchorRect.SizeTo(viewportFrame->GetSize());
}
} else {
// A display item directly attached to the viewport.
// For background-attachment:fixed items, the anchor point is always the
// top-left of the viewport currently.
viewportFrame = aFixedPosFrame;
}
// The anchorRect top-left is always the viewport top-left.
anchorRect.MoveTo(viewportFrame->GetOffsetToCrossDoc(mContainerReferenceFrame));
nsLayoutUtils::SetFixedPositionLayerData(aLayer,
viewportFrame, anchorRect, aFixedPosFrame, presContext, mParameters);
}
static bool
CanOptimizeAwayPaintedLayer(PaintedLayerData* aData,
FrameLayerBuilder* aLayerBuilder)
{
if (!aLayerBuilder->IsBuildingRetainedLayers()) {
return false;
}
// If there's no painted layer with valid content in it that we can reuse,
// always create a color or image layer (and potentially throw away an
// existing completely invalid painted layer).
if (aData->mLayer->GetValidRegion().IsEmpty()) {
return true;
}
// There is an existing painted layer we can reuse. Throwing it away can make
// compositing cheaper (see bug 946952), but it might cause us to re-allocate
// the painted layer frequently due to an animation. So we only discard it if
// we're in tree compression mode, which is triggered at a low frequency.
return aLayerBuilder->CheckInLayerTreeCompressionMode();
}
#ifdef DEBUG
static int32_t FindIndexOfLayerIn(nsTArray<NewLayerEntry>& aArray,
Layer* aLayer)
{
for (uint32_t i = 0; i < aArray.Length(); ++i) {
if (aArray[i].mLayer == aLayer) {
return i;
}
}
return -1;
}
#endif
already_AddRefed<Layer>
ContainerState::PrepareImageLayer(PaintedLayerData* aData)
{
nsRefPtr<ImageContainer> imageContainer =
aData->GetContainerForImageLayer(mBuilder);
if (!imageContainer) {
return nullptr;
}
nsRefPtr<ImageLayer> imageLayer = CreateOrRecycleImageLayer(aData->mLayer);
imageLayer->SetContainer(imageContainer);
aData->mImage->ConfigureLayer(imageLayer, mParameters);
imageLayer->SetPostScale(mParameters.mXScale,
mParameters.mYScale);
if (aData->mItemClip.HasClip()) {
ParentLayerIntRect clip =
ViewAs<ParentLayerPixel>(ScaleToNearestPixels(aData->mItemClip.GetClipRect()));
clip.MoveBy(ViewAs<ParentLayerPixel>(mParameters.mOffset));
imageLayer->SetClipRect(Some(clip));
} else {
imageLayer->SetClipRect(Nothing());
}
mLayerBuilder->StoreOptimizedLayerForFrame(aData->mImage, imageLayer);
FLB_LOG_PAINTED_LAYER_DECISION(aData,
" Selected image layer=%p\n", imageLayer.get());
return imageLayer.forget();
}
already_AddRefed<Layer>
ContainerState::PrepareColorLayer(PaintedLayerData* aData)
{
nsRefPtr<ColorLayer> colorLayer = CreateOrRecycleColorLayer(aData->mLayer);
colorLayer->SetColor(aData->mSolidColor);
// Copy transform
colorLayer->SetBaseTransform(aData->mLayer->GetBaseTransform());
colorLayer->SetPostScale(aData->mLayer->GetPostXScale(),
aData->mLayer->GetPostYScale());
nsIntRect visibleRect = aData->mVisibleRegion.GetBounds();
visibleRect.MoveBy(-GetTranslationForPaintedLayer(aData->mLayer));
colorLayer->SetBounds(visibleRect);
colorLayer->SetClipRect(Nothing());
FLB_LOG_PAINTED_LAYER_DECISION(aData,
" Selected color layer=%p\n", colorLayer.get());
return colorLayer.forget();
}
template<typename FindOpaqueBackgroundColorCallbackType>
void ContainerState::FinishPaintedLayerData(PaintedLayerData& aData, FindOpaqueBackgroundColorCallbackType aFindOpaqueBackgroundColor)
{
PaintedLayerData* data = &aData;
if (!data->mLayer) {
// No layer was recycled, so we create a new one.
nsRefPtr<PaintedLayer> paintedLayer = CreatePaintedLayer(data);
data->mLayer = paintedLayer;
NS_ASSERTION(FindIndexOfLayerIn(mNewChildLayers, paintedLayer) < 0,
"Layer already in list???");
mNewChildLayers[data->mNewChildLayersIndex].mLayer = paintedLayer.forget();
}
for (auto& item : data->mAssignedDisplayItems) {
MOZ_ASSERT(item.mItem->GetType() != nsDisplayItem::TYPE_LAYER_EVENT_REGIONS);
InvalidateForLayerChange(item.mItem, data->mLayer);
mLayerBuilder->AddPaintedDisplayItem(data, item.mItem, item.mClip,
*this, item.mLayerState,
data->mAnimatedGeometryRootOffset);
}
NewLayerEntry* newLayerEntry = &mNewChildLayers[data->mNewChildLayersIndex];
nsRefPtr<Layer> layer;
bool canOptimizeToImageLayer = data->CanOptimizeToImageLayer(mBuilder);
FLB_LOG_PAINTED_LAYER_DECISION(data, "Selecting layer for pld=%p\n", data);
FLB_LOG_PAINTED_LAYER_DECISION(data, " Solid=%i, hasImage=%c, canOptimizeAwayPaintedLayer=%i\n",
data->mIsSolidColorInVisibleRegion, canOptimizeToImageLayer ? 'y' : 'n',
CanOptimizeAwayPaintedLayer(data, mLayerBuilder));
if ((data->mIsSolidColorInVisibleRegion || canOptimizeToImageLayer) &&
CanOptimizeAwayPaintedLayer(data, mLayerBuilder)) {
NS_ASSERTION(!(data->mIsSolidColorInVisibleRegion && canOptimizeToImageLayer),
"Can't be a solid color as well as an image!");
layer = canOptimizeToImageLayer ? PrepareImageLayer(data)
: PrepareColorLayer(data);
if (layer) {
NS_ASSERTION(FindIndexOfLayerIn(mNewChildLayers, layer) < 0,
"Layer already in list???");
NS_ASSERTION(newLayerEntry->mLayer == data->mLayer,
"Painted layer at wrong index");
// Store optimized layer in reserved slot
newLayerEntry = &mNewChildLayers[data->mNewChildLayersIndex + 1];
NS_ASSERTION(!newLayerEntry->mLayer, "Slot already occupied?");
newLayerEntry->mLayer = layer;
newLayerEntry->mAnimatedGeometryRoot = data->mAnimatedGeometryRoot;
newLayerEntry->mFixedPosFrameForLayerData = data->mFixedPosFrameForLayerData;
// Hide the PaintedLayer. We leave it in the layer tree so that we
// can find and recycle it later.
ParentLayerIntRect emptyRect;
data->mLayer->SetClipRect(Some(emptyRect));
data->mLayer->SetVisibleRegion(nsIntRegion());
data->mLayer->InvalidateRegion(data->mLayer->GetValidRegion().GetBounds());
data->mLayer->SetEventRegions(EventRegions());
}
}
if (!layer) {
// We couldn't optimize to an image layer or a color layer above.
layer = data->mLayer;
layer->SetClipRect(Nothing());
FLB_LOG_PAINTED_LAYER_DECISION(data, " Selected painted layer=%p\n", layer.get());
}
if (mLayerBuilder->IsBuildingRetainedLayers()) {
newLayerEntry->mVisibleRegion = data->mVisibleRegion;
newLayerEntry->mOpaqueRegion = data->mOpaqueRegion;
newLayerEntry->mHideAllLayersBelow = data->mHideAllLayersBelow;
newLayerEntry->mOpaqueForAnimatedGeometryRootParent = data->mOpaqueForAnimatedGeometryRootParent;
} else {
SetOuterVisibleRegionForLayer(layer, data->mVisibleRegion);
}
nsIntRect layerBounds = data->mBounds;
layerBounds.MoveBy(-GetTranslationForPaintedLayer(data->mLayer));
layer->SetLayerBounds(layerBounds);
#ifdef MOZ_DUMP_PAINTING
if (!data->mLog.IsEmpty()) {
if (PaintedLayerData* containingPld = mLayerBuilder->GetContainingPaintedLayerData()) {
containingPld->mLayer->AddExtraDumpInfo(nsCString(data->mLog));
} else {
layer->AddExtraDumpInfo(nsCString(data->mLog));
}
}
#endif
nsIntRegion transparentRegion;
transparentRegion.Sub(data->mVisibleRegion, data->mOpaqueRegion);
bool isOpaque = transparentRegion.IsEmpty();
// For translucent PaintedLayers, try to find an opaque background
// color that covers the entire area beneath it so we can pull that
// color into this layer to make it opaque.
if (layer == data->mLayer) {
nscolor backgroundColor = NS_RGBA(0,0,0,0);
if (!isOpaque) {
backgroundColor = aFindOpaqueBackgroundColor();
if (NS_GET_A(backgroundColor) == 255) {
isOpaque = true;
}
}
// Store the background color
PaintedDisplayItemLayerUserData* userData =
GetPaintedDisplayItemLayerUserData(data->mLayer);
NS_ASSERTION(userData, "where did our user data go?");
if (userData->mForcedBackgroundColor != backgroundColor) {
// Invalidate the entire target PaintedLayer since we're changing
// the background color
#ifdef MOZ_DUMP_PAINTING
if (nsLayoutUtils::InvalidationDebuggingIsEnabled()) {
printf_stderr("Forced background color has changed from #%08X to #%08X on layer %p\n",
userData->mForcedBackgroundColor, backgroundColor, data->mLayer);
nsAutoCString str;
AppendToString(str, data->mLayer->GetValidRegion());
printf_stderr("Invalidating layer %p: %s\n", data->mLayer, str.get());
}
#endif
data->mLayer->InvalidateRegion(data->mLayer->GetValidRegion());
}
userData->mForcedBackgroundColor = backgroundColor;
userData->mFontSmoothingBackgroundColor = data->mFontSmoothingBackgroundColor;
// use a mask layer for rounded rect clipping.
// data->mCommonClipCount may be -1 if we haven't put any actual
// drawable items in this layer (i.e. it's only catching events).
int32_t commonClipCount = std::max(0, data->mCommonClipCount);
SetupMaskLayer(layer, data->mItemClip, data->mVisibleRegion, commonClipCount);
// copy commonClipCount to the entry
FrameLayerBuilder::PaintedLayerItemsEntry* entry = mLayerBuilder->
GetPaintedLayerItemsEntry(static_cast<PaintedLayer*>(layer.get()));
entry->mCommonClipCount = commonClipCount;
} else {
// mask layer for image and color layers
SetupMaskLayer(layer, data->mItemClip, data->mVisibleRegion);
}
uint32_t flags = 0;
nsIWidget* widget = mContainerReferenceFrame->PresContext()->GetRootWidget();
// See bug 941095. Not quite ready to disable this.
bool hidpi = false && widget && widget->GetDefaultScale().scale >= 2;
if (hidpi) {
flags |= Layer::CONTENT_DISABLE_SUBPIXEL_AA;
}
if (isOpaque && !data->mForceTransparentSurface) {
flags |= Layer::CONTENT_OPAQUE;
} else if (data->mNeedComponentAlpha && !hidpi) {
flags |= Layer::CONTENT_COMPONENT_ALPHA;
}
layer->SetContentFlags(flags);
SetFixedPositionLayerData(layer, data->mFixedPosFrameForLayerData);
PaintedLayerData* containingPaintedLayerData =
mLayerBuilder->GetContainingPaintedLayerData();
if (containingPaintedLayerData) {
if (!data->mDispatchToContentHitRegion.GetBounds().IsEmpty()) {
nsRect rect = nsLayoutUtils::TransformFrameRectToAncestor(
mContainerReferenceFrame,
data->mDispatchToContentHitRegion.GetBounds(),
containingPaintedLayerData->mReferenceFrame);
containingPaintedLayerData->mDispatchToContentHitRegion.Or(
containingPaintedLayerData->mDispatchToContentHitRegion, rect);
}
if (!data->mMaybeHitRegion.GetBounds().IsEmpty()) {
nsRect rect = nsLayoutUtils::TransformFrameRectToAncestor(
mContainerReferenceFrame,
data->mMaybeHitRegion.GetBounds(),
containingPaintedLayerData->mReferenceFrame);
containingPaintedLayerData->mMaybeHitRegion.Or(
containingPaintedLayerData->mMaybeHitRegion, rect);
}
nsLayoutUtils::TransformToAncestorAndCombineRegions(
data->mHitRegion.GetBounds(),
mContainerReferenceFrame,
containingPaintedLayerData->mReferenceFrame,
&containingPaintedLayerData->mHitRegion,
&containingPaintedLayerData->mMaybeHitRegion);
nsLayoutUtils::TransformToAncestorAndCombineRegions(
data->mNoActionRegion.GetBounds(),
mContainerReferenceFrame,
containingPaintedLayerData->mReferenceFrame,
&containingPaintedLayerData->mNoActionRegion,
&containingPaintedLayerData->mDispatchToContentHitRegion);
nsLayoutUtils::TransformToAncestorAndCombineRegions(
data->mHorizontalPanRegion.GetBounds(),
mContainerReferenceFrame,
containingPaintedLayerData->mReferenceFrame,
&containingPaintedLayerData->mHorizontalPanRegion,
&containingPaintedLayerData->mDispatchToContentHitRegion);
nsLayoutUtils::TransformToAncestorAndCombineRegions(
data->mVerticalPanRegion.GetBounds(),
mContainerReferenceFrame,
containingPaintedLayerData->mReferenceFrame,
&containingPaintedLayerData->mVerticalPanRegion,
&containingPaintedLayerData->mDispatchToContentHitRegion);
} else {
EventRegions regions;
regions.mHitRegion = ScaleRegionToOutsidePixels(data->mHitRegion);
regions.mNoActionRegion = ScaleRegionToOutsidePixels(data->mNoActionRegion);
regions.mHorizontalPanRegion = ScaleRegionToOutsidePixels(data->mHorizontalPanRegion);
regions.mVerticalPanRegion = ScaleRegionToOutsidePixels(data->mVerticalPanRegion);
// Points whose hit-region status we're not sure about need to be dispatched
// to the content thread. If a point is in both maybeHitRegion and hitRegion
// then it's not a "maybe" any more, and doesn't go into the dispatch-to-
// content region.
nsIntRegion maybeHitRegion = ScaleRegionToOutsidePixels(data->mMaybeHitRegion);
regions.mDispatchToContentHitRegion.Sub(maybeHitRegion, regions.mHitRegion);
regions.mDispatchToContentHitRegion.OrWith(
ScaleRegionToOutsidePixels(data->mDispatchToContentHitRegion));
regions.mHitRegion.OrWith(maybeHitRegion);
Matrix mat = layer->GetTransform().As2D();
mat.Invert();
regions.ApplyTranslationAndScale(mat._31, mat._32, mat._11, mat._22);
layer->SetEventRegions(regions);
}
}
static bool
IsItemAreaInWindowOpaqueRegion(nsDisplayListBuilder* aBuilder,
nsDisplayItem* aItem,
const nsRect& aComponentAlphaBounds)
{
if (!aItem->Frame()->PresContext()->IsChrome()) {
// Assume that Web content is always in the window opaque region.
return true;
}
if (aItem->ReferenceFrame() != aBuilder->RootReferenceFrame()) {
// aItem is probably in some transformed subtree.
// We're not going to bother figuring out where this landed, we're just
// going to assume it might have landed over a transparent part of
// the window.
return false;
}
return aBuilder->GetWindowOpaqueRegion().Contains(aComponentAlphaBounds);
}
void
PaintedLayerData::Accumulate(ContainerState* aState,
nsDisplayItem* aItem,
const nsIntRegion& aClippedOpaqueRegion,
const nsIntRect& aVisibleRect,
const DisplayItemClip& aClip,
LayerState aLayerState)
{
FLB_LOG_PAINTED_LAYER_DECISION(this, "Accumulating dp=%s(%p), f=%p against pld=%p\n", aItem->Name(), aItem, aItem->Frame(), this);
bool snap;
nsRect itemBounds = aItem->GetBounds(aState->mBuilder, &snap);
mBounds = mBounds.Union(aState->ScaleToOutsidePixels(itemBounds, snap));
if (aState->mBuilder->NeedToForceTransparentSurfaceForItem(aItem)) {
mForceTransparentSurface = true;
}
if (aState->mParameters.mDisableSubpixelAntialiasingInDescendants) {
// Disable component alpha.
// Note that the transform (if any) on the PaintedLayer is always an integer translation so
// we don't have to factor that in here.
aItem->DisableComponentAlpha();
}
bool clipMatches = mItemClip == aClip;
mItemClip = aClip;
mAssignedDisplayItems.AppendElement(AssignedDisplayItem(aItem, aClip, aLayerState));
if (!mIsSolidColorInVisibleRegion && mOpaqueRegion.Contains(aVisibleRect) &&
mVisibleRegion.Contains(aVisibleRect) && !mImage) {
// A very common case! Most pages have a PaintedLayer with the page
// background (opaque) visible and most or all of the page content over the
// top of that background.
// The rest of this method won't do anything. mVisibleRegion and mOpaqueRegion
// don't need updating. mVisibleRegion contains aVisibleRect already,
// mOpaqueRegion contains aVisibleRect and therefore whatever the opaque
// region of the item is. mVisibleRegion must contain mOpaqueRegion
// and therefore aVisibleRect.
return;
}
/* Mark as available for conversion to image layer if this is a nsDisplayImage and
* it's the only thing visible in this layer.
*/
if (nsIntRegion(aVisibleRect).Contains(mVisibleRegion) &&
aClippedOpaqueRegion.Contains(mVisibleRegion) &&
aItem->SupportsOptimizingToImage()) {
mImage = static_cast<nsDisplayImageContainer*>(aItem);
FLB_LOG_PAINTED_LAYER_DECISION(this, " Tracking image: nsDisplayImageContainer covers the layer\n");
} else if (mImage) {
FLB_LOG_PAINTED_LAYER_DECISION(this, " No longer tracking image\n");
mImage = nullptr;
}
bool isFirstVisibleItem = mVisibleRegion.IsEmpty();
if (isFirstVisibleItem) {
nscolor fontSmoothingBGColor;
if (aItem->ProvidesFontSmoothingBackgroundColor(aState->mBuilder,
&fontSmoothingBGColor)) {
mFontSmoothingBackgroundColor = fontSmoothingBGColor;
}
}
nscolor uniformColor;
bool isUniform = aItem->IsUniform(aState->mBuilder, &uniformColor);
// Some display items have to exist (so they can set forceTransparentSurface
// below) but don't draw anything. They'll return true for isUniform but
// a color with opacity 0.
if (!isUniform || NS_GET_A(uniformColor) > 0) {
// Make sure that the visible area is covered by uniform pixels. In
// particular this excludes cases where the edges of the item are not
// pixel-aligned (thus the item will not be truly uniform).
if (isUniform) {
bool snap;
nsRect bounds = aItem->GetBounds(aState->mBuilder, &snap);
if (!aState->ScaleToInsidePixels(bounds, snap).Contains(aVisibleRect)) {
isUniform = false;
FLB_LOG_PAINTED_LAYER_DECISION(this, " Display item does not cover the visible rect\n");
}
}
if (isUniform) {
if (isFirstVisibleItem) {
// This color is all we have
mSolidColor = uniformColor;
mIsSolidColorInVisibleRegion = true;
} else if (mIsSolidColorInVisibleRegion &&
mVisibleRegion.IsEqual(nsIntRegion(aVisibleRect)) &&
clipMatches) {
// we can just blend the colors together
mSolidColor = NS_ComposeColors(mSolidColor, uniformColor);
} else {
FLB_LOG_PAINTED_LAYER_DECISION(this, " Layer not a solid color: Can't blend colors togethers\n");
mIsSolidColorInVisibleRegion = false;
}
} else {
FLB_LOG_PAINTED_LAYER_DECISION(this, " Layer is not a solid color: Display item is not uniform over the visible bound\n");
mIsSolidColorInVisibleRegion = false;
}
mVisibleRegion.Or(mVisibleRegion, aVisibleRect);
mVisibleRegion.SimplifyOutward(4);
}
if (!aClippedOpaqueRegion.IsEmpty()) {
nsIntRegionRectIterator iter(aClippedOpaqueRegion);
for (const nsIntRect* r = iter.Next(); r; r = iter.Next()) {
// We don't use SimplifyInward here since it's not defined exactly
// what it will discard. For our purposes the most important case
// is a large opaque background at the bottom of z-order (e.g.,
// a canvas background), so we need to make sure that the first rect
// we see doesn't get discarded.
nsIntRegion tmp;
tmp.Or(mOpaqueRegion, *r);
// Opaque display items in chrome documents whose window is partially
// transparent are always added to the opaque region. This helps ensure
// that we get as much subpixel-AA as possible in the chrome.
if (tmp.GetNumRects() <= 4 || aItem->Frame()->PresContext()->IsChrome()) {
mOpaqueRegion = tmp;
}
}
}
if (!aState->mParameters.mDisableSubpixelAntialiasingInDescendants) {
nsRect componentAlpha = aItem->GetComponentAlphaBounds(aState->mBuilder);
if (!componentAlpha.IsEmpty()) {
nsIntRect componentAlphaRect =
aState->ScaleToOutsidePixels(componentAlpha, false).Intersect(aVisibleRect);
if (!mOpaqueRegion.Contains(componentAlphaRect)) {
if (IsItemAreaInWindowOpaqueRegion(aState->mBuilder, aItem,
componentAlpha.Intersect(aItem->GetVisibleRect()))) {
mNeedComponentAlpha = true;
} else {
aItem->DisableComponentAlpha();
}
}
}
}
}
PaintedLayerData
ContainerState::NewPaintedLayerData(nsDisplayItem* aItem,
const nsIntRect& aVisibleRect,
const nsIFrame* aAnimatedGeometryRoot,
const nsPoint& aTopLeft,
bool aShouldFixToViewport)
{
PaintedLayerData data;
data.mAnimatedGeometryRoot = aAnimatedGeometryRoot;
data.mAnimatedGeometryRootOffset = aTopLeft;
data.mFixedPosFrameForLayerData =
FindFixedPosFrameForLayerData(aAnimatedGeometryRoot, aShouldFixToViewport);
data.mReferenceFrame = aItem->ReferenceFrame();
data.mSingleItemFixedToViewport = aShouldFixToViewport;
data.mNewChildLayersIndex = mNewChildLayers.Length();
NewLayerEntry* newLayerEntry = mNewChildLayers.AppendElement();
newLayerEntry->mAnimatedGeometryRoot = aAnimatedGeometryRoot;
newLayerEntry->mFixedPosFrameForLayerData = data.mFixedPosFrameForLayerData;
// newLayerEntry->mOpaqueRegion is filled in later from
// paintedLayerData->mOpaqueRegion, if necessary.
// Allocate another entry for this layer's optimization to ColorLayer/ImageLayer
mNewChildLayers.AppendElement();
return data;
}
#ifdef MOZ_DUMP_PAINTING
static void
DumpPaintedImage(nsDisplayItem* aItem, SourceSurface* aSurface)
{
nsCString string(aItem->Name());
string.Append('-');
string.AppendInt((uint64_t)aItem);
fprintf_stderr(gfxUtils::sDumpPaintFile, "array[\"%s\"]=\"", string.BeginReading());
gfxUtils::DumpAsDataURI(aSurface, gfxUtils::sDumpPaintFile);
fprintf_stderr(gfxUtils::sDumpPaintFile, "\";");
}
#endif
static void
PaintInactiveLayer(nsDisplayListBuilder* aBuilder,
LayerManager* aManager,
nsDisplayItem* aItem,
gfxContext* aContext,
nsRenderingContext* aCtx)
{
// This item has an inactive layer. Render it to a PaintedLayer
// using a temporary BasicLayerManager.
BasicLayerManager* basic = static_cast<BasicLayerManager*>(aManager);
nsRefPtr<gfxContext> context = aContext;
#ifdef MOZ_DUMP_PAINTING
int32_t appUnitsPerDevPixel = AppUnitsPerDevPixel(aItem);
nsIntRect itemVisibleRect =
aItem->GetVisibleRect().ToOutsidePixels(appUnitsPerDevPixel);
RefPtr<DrawTarget> tempDT;
if (gfxUtils::sDumpPainting) {
tempDT = gfxPlatform::GetPlatform()->CreateOffscreenContentDrawTarget(
itemVisibleRect.Size(),
SurfaceFormat::B8G8R8A8);
if (tempDT) {
context = new gfxContext(tempDT);
context->SetMatrix(gfxMatrix::Translation(-itemVisibleRect.x,
-itemVisibleRect.y));
}
}
#endif
basic->BeginTransaction();
basic->SetTarget(context);
if (aItem->GetType() == nsDisplayItem::TYPE_SVG_EFFECTS) {
static_cast<nsDisplaySVGEffects*>(aItem)->PaintAsLayer(aBuilder, aCtx, basic);
if (basic->InTransaction()) {
basic->AbortTransaction();
}
} else {
basic->EndTransaction(FrameLayerBuilder::DrawPaintedLayer, aBuilder);
}
FrameLayerBuilder *builder = static_cast<FrameLayerBuilder*>(basic->GetUserData(&gLayerManagerLayerBuilder));
if (builder) {
builder->DidEndTransaction();
}
basic->SetTarget(nullptr);
#ifdef MOZ_DUMP_PAINTING
if (gfxUtils::sDumpPainting && tempDT) {
RefPtr<SourceSurface> surface = tempDT->Snapshot();
DumpPaintedImage(aItem, surface);
DrawTarget* drawTarget = aContext->GetDrawTarget();
Rect rect(itemVisibleRect.x, itemVisibleRect.y,
itemVisibleRect.width, itemVisibleRect.height);
drawTarget->DrawSurface(surface, rect, Rect(Point(0,0), rect.Size()));
aItem->SetPainted();
}
#endif
}
/**
* Chooses a single active scrolled root for the entire display list, used
* when we are flattening layers.
*/
bool
ContainerState::ChooseAnimatedGeometryRoot(const nsDisplayList& aList,
const nsIFrame **aAnimatedGeometryRoot)
{
for (nsDisplayItem* item = aList.GetBottom(); item; item = item->GetAbove()) {
LayerState layerState = item->GetLayerState(mBuilder, mManager, mParameters);
// Don't use an item that won't be part of any PaintedLayers to pick the
// active scrolled root.
if (layerState == LAYER_ACTIVE_FORCE) {
continue;
}
// Try using the actual active scrolled root of the backmost item, as that
// should result in the least invalidation when scrolling.
*aAnimatedGeometryRoot =
nsLayoutUtils::GetAnimatedGeometryRootFor(item, mBuilder, mManager);
return true;
}
return false;
}
nsIntRegion
ContainerState::ComputeOpaqueRect(nsDisplayItem* aItem,
const nsIFrame* aAnimatedGeometryRoot,
const nsIFrame* aFixedPosFrame,
const DisplayItemClip& aClip,
nsDisplayList* aList,
bool* aHideAllLayersBelow,
bool* aOpaqueForAnimatedGeometryRootParent)
{
bool snapOpaque;
nsRegion opaque = aItem->GetOpaqueRegion(mBuilder, &snapOpaque);
nsIntRegion opaquePixels;
if (!opaque.IsEmpty()) {
nsRegion opaqueClipped;
nsRegionRectIterator iter(opaque);
for (const nsRect* r = iter.Next(); r; r = iter.Next()) {
opaqueClipped.Or(opaqueClipped, aClip.ApproximateIntersectInward(*r));
}
if (aAnimatedGeometryRoot == mContainerAnimatedGeometryRoot &&
aFixedPosFrame == mContainerFixedPosFrame &&
opaqueClipped.Contains(mContainerBounds)) {
*aHideAllLayersBelow = true;
aList->SetIsOpaque();
}
// Add opaque areas to the "exclude glass" region. Only do this when our
// container layer is going to be the rootmost layer, otherwise transforms
// etc will mess us up (and opaque contributions from other containers are
// not needed).
if (!nsLayoutUtils::GetCrossDocParentFrame(mContainerFrame)) {
mBuilder->AddWindowOpaqueRegion(opaqueClipped);
}
opaquePixels = ScaleRegionToInsidePixels(opaqueClipped, snapOpaque);
nsIScrollableFrame* sf = nsLayoutUtils::GetScrollableFrameFor(aAnimatedGeometryRoot);
if (sf) {
nsRect displayport;
bool usingDisplayport =
nsLayoutUtils::GetDisplayPort(aAnimatedGeometryRoot->GetContent(), &displayport);
if (!usingDisplayport) {
// No async scrolling, so all that matters is that the layer contents
// cover the scrollport.
displayport = sf->GetScrollPortRect();
}
nsIFrame* scrollFrame = do_QueryFrame(sf);
displayport += scrollFrame->GetOffsetToCrossDoc(mContainerReferenceFrame);
if (opaque.Contains(displayport)) {
*aOpaqueForAnimatedGeometryRootParent = true;
}
}
}
return opaquePixels;
}
/*
* Iterate through the non-clip items in aList and its descendants.
* For each item we compute the effective clip rect. Each item is assigned
* to a layer. We invalidate the areas in PaintedLayers where an item
* has moved from one PaintedLayer to another. Also,
* aState->mInvalidPaintedContent is invalidated in every PaintedLayer.
* We set the clip rect for items that generated their own layer, and
* create a mask layer to do any rounded rect clipping.
* (PaintedLayers don't need a clip rect on the layer, we clip the items
* individually when we draw them.)
* We set the visible rect for all layers, although the actual setting
* of visible rects for some PaintedLayers is deferred until the calling
* of ContainerState::Finish.
*/
void
ContainerState::ProcessDisplayItems(nsDisplayList* aList)
{
PROFILER_LABEL("ContainerState", "ProcessDisplayItems",
js::ProfileEntry::Category::GRAPHICS);
const nsIFrame* lastAnimatedGeometryRoot = mContainerReferenceFrame;
nsPoint topLeft(0,0);
// When NO_COMPONENT_ALPHA is set, items will be flattened into a single
// layer, so we need to choose which active scrolled root to use for all
// items.
if (mFlattenToSingleLayer) {
if (ChooseAnimatedGeometryRoot(*aList, &lastAnimatedGeometryRoot)) {
topLeft = lastAnimatedGeometryRoot->GetOffsetToCrossDoc(mContainerReferenceFrame);
}
}
int32_t maxLayers = nsDisplayItem::MaxActiveLayers();
int layerCount = 0;
nsDisplayList savedItems;
nsDisplayItem* item;
while ((item = aList->RemoveBottom()) != nullptr) {
// Peek ahead to the next item and try merging with it or swapping with it
// if necessary.
nsDisplayItem* aboveItem;
while ((aboveItem = aList->GetBottom()) != nullptr) {
if (aboveItem->TryMerge(mBuilder, item)) {
aList->RemoveBottom();
item->~nsDisplayItem();
item = aboveItem;
} else {
break;
}
}
nsDisplayList* itemSameCoordinateSystemChildren
= item->GetSameCoordinateSystemChildren();
if (item->ShouldFlattenAway(mBuilder)) {
aList->AppendToBottom(itemSameCoordinateSystemChildren);
item->~nsDisplayItem();
continue;
}
savedItems.AppendToTop(item);
NS_ASSERTION(mAppUnitsPerDevPixel == AppUnitsPerDevPixel(item),
"items in a container layer should all have the same app units per dev pixel");
if (mBuilder->NeedToForceTransparentSurfaceForItem(item)) {
aList->SetNeedsTransparentSurface();
}
bool snap;
nsRect itemContent = item->GetBounds(mBuilder, &snap);
nsDisplayItem::Type itemType = item->GetType();
if (itemType == nsDisplayItem::TYPE_LAYER_EVENT_REGIONS) {
nsDisplayLayerEventRegions* eventRegions =
static_cast<nsDisplayLayerEventRegions*>(item);
itemContent = eventRegions->GetHitRegionBounds(mBuilder, &snap);
}
nsIntRect itemDrawRect = ScaleToOutsidePixels(itemContent, snap);
bool prerenderedTransform = itemType == nsDisplayItem::TYPE_TRANSFORM &&
static_cast<nsDisplayTransform*>(item)->ShouldPrerender(mBuilder);
ParentLayerIntRect clipRect;
const DisplayItemClip& itemClip = item->GetClip();
if (itemClip.HasClip()) {
itemContent.IntersectRect(itemContent, itemClip.GetClipRect());
clipRect = ViewAs<ParentLayerPixel>(ScaleToNearestPixels(itemClip.GetClipRect()));
if (!prerenderedTransform) {
itemDrawRect.IntersectRect(itemDrawRect, ParentLayerIntRect::ToUntyped(clipRect));
}
clipRect.MoveBy(ViewAs<ParentLayerPixel>(mParameters.mOffset));
}
#ifdef DEBUG
nsRect bounds = itemContent;
bool dummy;
if (itemType == nsDisplayItem::TYPE_LAYER_EVENT_REGIONS) {
bounds = item->GetBounds(mBuilder, &dummy);
if (itemClip.HasClip()) {
bounds.IntersectRect(bounds, itemClip.GetClipRect());
}
}
((nsRect&)mAccumulatedChildBounds).UnionRect(mAccumulatedChildBounds, bounds);
#endif
// We haven't computed visibility at this point, so item->GetVisibleRect()
// is just the dirty rect that item was initialized with. We intersect it
// with the clipped item bounds to get a tighter visible rect.
nsIntRect itemVisibleRect = itemDrawRect.Intersect(
ScaleToOutsidePixels(item->GetVisibleRect(), false));
LayerState layerState = item->GetLayerState(mBuilder, mManager, mParameters);
if (layerState == LAYER_INACTIVE &&
nsDisplayItem::ForceActiveLayers()) {
layerState = LAYER_ACTIVE;
}
bool forceInactive;
const nsIFrame* animatedGeometryRoot;
if (mFlattenToSingleLayer) {
forceInactive = true;
animatedGeometryRoot = lastAnimatedGeometryRoot;
} else {
forceInactive = false;
if (mManager->IsWidgetLayerManager()) {
animatedGeometryRoot = nsLayoutUtils::GetAnimatedGeometryRootFor(item, mBuilder, mManager);
} else {
// For inactive layer subtrees, splitting content into PaintedLayers
// based on animated geometry roots is pointless. It's more efficient
// to build the minimum number of layers.
animatedGeometryRoot = mContainerAnimatedGeometryRoot;
}
if (animatedGeometryRoot != lastAnimatedGeometryRoot) {
lastAnimatedGeometryRoot = animatedGeometryRoot;
topLeft = animatedGeometryRoot->GetOffsetToCrossDoc(mContainerReferenceFrame);
}
}
bool shouldFixToViewport = !animatedGeometryRoot->GetParent() &&
item->ShouldFixToViewport(mManager);
if (maxLayers != -1 && layerCount >= maxLayers) {
forceInactive = true;
}
// Assign the item to a layer
if (layerState == LAYER_ACTIVE_FORCE ||
(layerState == LAYER_INACTIVE && !mManager->IsWidgetLayerManager()) ||
(!forceInactive &&
(layerState == LAYER_ACTIVE_EMPTY ||
layerState == LAYER_ACTIVE))) {
layerCount++;
// LAYER_ACTIVE_EMPTY means the layer is created just for its metadata.
// We should never see an empty layer with any visible content!
NS_ASSERTION(layerState != LAYER_ACTIVE_EMPTY ||
itemVisibleRect.IsEmpty(),
"State is LAYER_ACTIVE_EMPTY but visible rect is not.");
// As long as the new layer isn't going to be a PaintedLayer,
// InvalidateForLayerChange doesn't need the new layer pointer.
// We also need to check the old data now, because BuildLayer
// can overwrite it.
InvalidateForLayerChange(item, nullptr);
// If the item would have its own layer but is invisible, just hide it.
// Note that items without their own layers can't be skipped this
// way, since their PaintedLayer may decide it wants to draw them
// into its buffer even if they're currently covered.
if (itemVisibleRect.IsEmpty() &&
!item->ShouldBuildLayerEvenIfInvisible(mBuilder)) {
continue;
}
// 3D-transformed layers don't necessarily draw in the order in which
// they're added to their parent container layer.
bool mayDrawOutOfOrder = itemType == nsDisplayItem::TYPE_TRANSFORM &&
(item->Frame()->Preserves3D() || item->Frame()->Preserves3DChildren());
// Let mPaintedLayerDataTree know about this item, so that
// FindPaintedLayerFor and FindOpaqueBackgroundColor are aware of this
// item, even though it's not in any PaintedLayerDataStack.
// Ideally we'd only need the "else" case here and have
// mPaintedLayerDataTree figure out the right clip from the animated
// geometry root that we give it, but it can't easily figure about
// overflow:hidden clips on ancestors just by looking at the frame.
// So we'll do a little hand holding and pass the clip instead of the
// visible rect for the two important cases.
nscolor uniformColor = NS_RGBA(0,0,0,0);
nscolor* uniformColorPtr = !mayDrawOutOfOrder ? &uniformColor : nullptr;
nsIntRect clipRectUntyped;
nsIntRect* clipPtr = itemClip.HasClip() ? &clipRectUntyped : nullptr;
if (clipPtr) {
clipRectUntyped = ParentLayerIntRect::ToUntyped(clipRect);
}
if (animatedGeometryRoot == item->Frame() &&
animatedGeometryRoot != mBuilder->RootReferenceFrame()) {
// This is the case for scrollbar thumbs, for example. In that case the
// clip we care about is the overflow:hidden clip on the scrollbar.
const nsIFrame* clipAnimatedGeometryRoot =
mPaintedLayerDataTree.GetParentAnimatedGeometryRoot(animatedGeometryRoot);
mPaintedLayerDataTree.AddingOwnLayer(clipAnimatedGeometryRoot,
clipPtr,
uniformColorPtr);
} else if (prerenderedTransform) {
mPaintedLayerDataTree.AddingOwnLayer(animatedGeometryRoot,
clipPtr,
uniformColorPtr);
} else {
// Using itemVisibleRect here isn't perfect. itemVisibleRect can be
// larger or smaller than the potential bounds of item's contents in
// animatedGeometryRoot: It's too large if there's a clipped display
// port somewhere among item's contents (see bug 1147673), and it can
// be too small if the contents can move, because it only looks at the
// contents' current bounds and doesn't anticipate any animations.
// Time will tell whether this is good enough, or whether we need to do
// something more sophisticated here.
mPaintedLayerDataTree.AddingOwnLayer(animatedGeometryRoot,
&itemVisibleRect, uniformColorPtr);
}
mParameters.mBackgroundColor = uniformColor;
// Just use its layer.
// Set layerContentsVisibleRect.width/height to -1 to indicate we
// currently don't know. If BuildContainerLayerFor gets called by
// item->BuildLayer, this will be set to a proper rect.
nsIntRect layerContentsVisibleRect(0, 0, -1, -1);
mParameters.mLayerContentsVisibleRect = &layerContentsVisibleRect;
nsRefPtr<Layer> ownLayer = item->BuildLayer(mBuilder, mManager, mParameters);
if (!ownLayer) {
continue;
}
NS_ASSERTION(!ownLayer->AsPaintedLayer(),
"Should never have created a dedicated Painted layer!");
const nsIFrame* fixedPosFrame =
FindFixedPosFrameForLayerData(animatedGeometryRoot, shouldFixToViewport);
SetFixedPositionLayerData(ownLayer, fixedPosFrame);
nsRect invalid;
if (item->IsInvalid(invalid)) {
ownLayer->SetInvalidRectToVisibleRegion();
}
// If it's not a ContainerLayer, we need to apply the scale transform
// ourselves.
if (!ownLayer->AsContainerLayer()) {
ownLayer->SetPostScale(mParameters.mXScale,
mParameters.mYScale);
}
// Update that layer's clip and visible rects.
NS_ASSERTION(ownLayer->Manager() == mManager, "Wrong manager");
NS_ASSERTION(!ownLayer->HasUserData(&gLayerManagerUserData),
"We shouldn't have a FrameLayerBuilder-managed layer here!");
NS_ASSERTION(itemClip.HasClip() ||
itemClip.GetRoundedRectCount() == 0,
"If we have rounded rects, we must have a clip rect");
// It has its own layer. Update that layer's clip and visible rects.
if (itemClip.HasClip()) {
ownLayer->SetClipRect(Some(clipRect));
} else {
ownLayer->SetClipRect(Nothing());
}
// rounded rectangle clipping using mask layers
// (must be done after visible rect is set on layer)
if (itemClip.IsRectClippedByRoundedCorner(itemContent)) {
SetupMaskLayer(ownLayer, itemClip, itemVisibleRect);
}
ContainerLayer* oldContainer = ownLayer->GetParent();
if (oldContainer && oldContainer != mContainerLayer) {
oldContainer->RemoveChild(ownLayer);
}
NS_ASSERTION(FindIndexOfLayerIn(mNewChildLayers, ownLayer) < 0,
"Layer already in list???");
NewLayerEntry* newLayerEntry = mNewChildLayers.AppendElement();
newLayerEntry->mLayer = ownLayer;
newLayerEntry->mAnimatedGeometryRoot = animatedGeometryRoot;
newLayerEntry->mFixedPosFrameForLayerData = fixedPosFrame;
// Don't attempt to flatten compnent alpha layers that are within
// a forced active layer, or an active transform;
if (itemType == nsDisplayItem::TYPE_TRANSFORM ||
layerState == LAYER_ACTIVE_FORCE) {
newLayerEntry->mPropagateComponentAlphaFlattening = false;
}
// nsDisplayTransform::BuildLayer must set layerContentsVisibleRect.
// We rely on this to ensure 3D transforms compute a reasonable
// layer visible region.
NS_ASSERTION(itemType != nsDisplayItem::TYPE_TRANSFORM ||
layerContentsVisibleRect.width >= 0,
"Transform items must set layerContentsVisibleRect!");
if (mLayerBuilder->IsBuildingRetainedLayers()) {
newLayerEntry->mLayerContentsVisibleRect = layerContentsVisibleRect;
newLayerEntry->mVisibleRegion = itemVisibleRect;
newLayerEntry->mOpaqueRegion = ComputeOpaqueRect(item,
animatedGeometryRoot, fixedPosFrame, itemClip, aList,
&newLayerEntry->mHideAllLayersBelow,
&newLayerEntry->mOpaqueForAnimatedGeometryRootParent);
} else {
SetOuterVisibleRegionForLayer(ownLayer, itemVisibleRect,
layerContentsVisibleRect.width >= 0 ? &layerContentsVisibleRect : nullptr);
}
if (itemType == nsDisplayItem::TYPE_SCROLL_INFO_LAYER) {
nsDisplayScrollInfoLayer* scrollItem = static_cast<nsDisplayScrollInfoLayer*>(item);
newLayerEntry->mOpaqueForAnimatedGeometryRootParent = false;
newLayerEntry->mBaseFrameMetrics =
scrollItem->ComputeFrameMetrics(ownLayer, mParameters);
} else if ((itemType == nsDisplayItem::TYPE_SUBDOCUMENT ||
itemType == nsDisplayItem::TYPE_ZOOM ||
itemType == nsDisplayItem::TYPE_RESOLUTION) &&
gfxPrefs::LayoutUseContainersForRootFrames())
{
newLayerEntry->mBaseFrameMetrics =
static_cast<nsDisplaySubDocument*>(item)->ComputeFrameMetrics(ownLayer, mParameters);
}
/**
* No need to allocate geometry for items that aren't
* part of a PaintedLayer.
*/
mLayerBuilder->AddLayerDisplayItem(ownLayer, item,
layerState,
topLeft, nullptr);
} else {
PaintedLayerData* paintedLayerData =
mPaintedLayerDataTree.FindPaintedLayerFor(animatedGeometryRoot, itemVisibleRect,
shouldFixToViewport, [&]() {
return NewPaintedLayerData(item, itemVisibleRect, animatedGeometryRoot,
topLeft, shouldFixToViewport);
});
if (itemType == nsDisplayItem::TYPE_LAYER_EVENT_REGIONS) {
nsDisplayLayerEventRegions* eventRegions =
static_cast<nsDisplayLayerEventRegions*>(item);
paintedLayerData->AccumulateEventRegions(eventRegions);
} else {
// check to see if the new item has rounded rect clips in common with
// other items in the layer
if (mManager->IsWidgetLayerManager()) {
paintedLayerData->UpdateCommonClipCount(itemClip);
}
nsIntRegion opaquePixels = ComputeOpaqueRect(item,
animatedGeometryRoot, paintedLayerData->mFixedPosFrameForLayerData,
itemClip, aList,
&paintedLayerData->mHideAllLayersBelow,
&paintedLayerData->mOpaqueForAnimatedGeometryRootParent);
MOZ_ASSERT(nsIntRegion(itemDrawRect).Contains(opaquePixels));
opaquePixels.AndWith(itemVisibleRect);
paintedLayerData->Accumulate(this, item, opaquePixels,
itemVisibleRect, itemClip, layerState);
if (!paintedLayerData->mLayer) {
// Try to recycle the old layer of this display item.
nsRefPtr<PaintedLayer> layer =
AttemptToRecyclePaintedLayer(animatedGeometryRoot, item, topLeft);
if (layer) {
paintedLayerData->mLayer = layer;
NS_ASSERTION(FindIndexOfLayerIn(mNewChildLayers, layer) < 0,
"Layer already in list???");
mNewChildLayers[paintedLayerData->mNewChildLayersIndex].mLayer = layer.forget();
}
}
}
}
if (itemSameCoordinateSystemChildren &&
itemSameCoordinateSystemChildren->NeedsTransparentSurface()) {
aList->SetNeedsTransparentSurface();
}
}
aList->AppendToTop(&savedItems);
}
void
ContainerState::InvalidateForLayerChange(nsDisplayItem* aItem, PaintedLayer* aNewLayer)
{
NS_ASSERTION(aItem->GetPerFrameKey(),
"Display items that render using Thebes must have a key");
nsDisplayItemGeometry* oldGeometry = nullptr;
DisplayItemClip* oldClip = nullptr;
Layer* oldLayer = mLayerBuilder->GetOldLayerFor(aItem, &oldGeometry, &oldClip);
if (aNewLayer != oldLayer && oldLayer) {
// The item has changed layers.
// Invalidate the old bounds in the old layer and new bounds in the new layer.
PaintedLayer* t = oldLayer->AsPaintedLayer();
if (t && oldGeometry) {
// Note that whenever the layer's scale changes, we invalidate the whole thing,
// so it doesn't matter whether we are using the old scale at last paint
// or a new scale here
#ifdef MOZ_DUMP_PAINTING
if (nsLayoutUtils::InvalidationDebuggingIsEnabled()) {
printf_stderr("Display item type %s(%p) changed layers %p to %p!\n", aItem->Name(), aItem->Frame(), t, aNewLayer);
}
#endif
InvalidatePostTransformRegion(t,
oldGeometry->ComputeInvalidationRegion(),
*oldClip,
mLayerBuilder->GetLastPaintOffset(t));
}
// Clear the old geometry so that invalidation thinks the item has been
// added this paint.
mLayerBuilder->ClearCachedGeometry(aItem);
aItem->NotifyRenderingChanged();
}
}
void
FrameLayerBuilder::ComputeGeometryChangeForItem(DisplayItemData* aData)
{
nsDisplayItem *item = aData->mItem;
PaintedLayer* paintedLayer = aData->mLayer->AsPaintedLayer();
if (!item || !paintedLayer) {
aData->EndUpdate();
return;
}
PaintedLayerItemsEntry* entry = mPaintedLayerItems.GetEntry(paintedLayer);
nsAutoPtr<nsDisplayItemGeometry> geometry(item->AllocateGeometry(mDisplayListBuilder));
PaintedDisplayItemLayerUserData* layerData =
static_cast<PaintedDisplayItemLayerUserData*>(aData->mLayer->GetUserData(&gPaintedDisplayItemLayerUserData));
nsPoint shift = layerData->mAnimatedGeometryRootOrigin - layerData->mLastAnimatedGeometryRootOrigin;
const DisplayItemClip& clip = item->GetClip();
// If the frame is marked as invalidated, and didn't specify a rect to invalidate then we want to
// invalidate both the old and new bounds, otherwise we only want to invalidate the changed areas.
// If we do get an invalid rect, then we want to add this on top of the change areas.
nsRect invalid;
nsRegion combined;
bool notifyRenderingChanged = true;
if (!aData->mGeometry) {
// This item is being added for the first time, invalidate its entire area.
//TODO: We call GetGeometry again in AddPaintedDisplayItem, we should reuse this.
combined = clip.ApplyNonRoundedIntersection(geometry->ComputeInvalidationRegion());
#ifdef MOZ_DUMP_PAINTING
if (nsLayoutUtils::InvalidationDebuggingIsEnabled()) {
printf_stderr("Display item type %s(%p) added to layer %p!\n", item->Name(), item->Frame(), aData->mLayer.get());
}
#endif
} else if (aData->mIsInvalid || (item->IsInvalid(invalid) && invalid.IsEmpty())) {
// Either layout marked item as needing repainting, invalidate the entire old and new areas.
combined = aData->mClip.ApplyNonRoundedIntersection(aData->mGeometry->ComputeInvalidationRegion());
combined.MoveBy(shift);
combined.Or(combined, clip.ApplyNonRoundedIntersection(geometry->ComputeInvalidationRegion()));
#ifdef MOZ_DUMP_PAINTING
if (nsLayoutUtils::InvalidationDebuggingIsEnabled()) {
printf_stderr("Display item type %s(%p) (in layer %p) belongs to an invalidated frame!\n", item->Name(), item->Frame(), aData->mLayer.get());
}
#endif
} else {
// Let the display item check for geometry changes and decide what needs to be
// repainted.
const nsTArray<nsIFrame*>& changedFrames = aData->GetFrameListChanges();
// We have an optimization to cache the drawing background-attachment: fixed canvas
// background images so we can scroll and just blit them when they are flattened into
// the same layer as scrolling content. NotifyRenderingChanged is only used to tell
// the canvas bg image item to purge this cache. We want to be careful not to accidentally
// purge the cache if we are just invalidating due to scrolling (ie the background image
// moves on the scrolling layer but it's rendering stays the same) so if
// AddOffsetAndComputeDifference is the only thing that will invalidate we skip the
// NotifyRenderingChanged call (ComputeInvalidationRegion for background images also calls
// NotifyRenderingChanged if anything changes).
if (aData->mGeometry->ComputeInvalidationRegion() == geometry->ComputeInvalidationRegion() &&
aData->mClip == clip && invalid.IsEmpty() && changedFrames.Length() == 0) {
notifyRenderingChanged = false;
}
aData->mGeometry->MoveBy(shift);
item->ComputeInvalidationRegion(mDisplayListBuilder, aData->mGeometry, &combined);
aData->mClip.AddOffsetAndComputeDifference(entry->mCommonClipCount,
shift, aData->mGeometry->ComputeInvalidationRegion(),
clip, entry->mLastCommonClipCount, geometry->ComputeInvalidationRegion(),
&combined);
// Add in any rect that the frame specified
combined.Or(combined, invalid);
for (uint32_t i = 0; i < changedFrames.Length(); i++) {
combined.Or(combined, changedFrames[i]->GetVisualOverflowRect());
}
// Restrict invalidation to the clipped region
nsRegion clipRegion;
if (clip.ComputeRegionInClips(&aData->mClip, shift, &clipRegion)) {
combined.And(combined, clipRegion);
}
#ifdef MOZ_DUMP_PAINTING
if (nsLayoutUtils::InvalidationDebuggingIsEnabled()) {
if (!combined.IsEmpty()) {
printf_stderr("Display item type %s(%p) (in layer %p) changed geometry!\n", item->Name(), item->Frame(), aData->mLayer.get());
}
}
#endif
}
if (!combined.IsEmpty()) {
if (notifyRenderingChanged) {
item->NotifyRenderingChanged();
}
InvalidatePostTransformRegion(paintedLayer,
combined.ScaleToOutsidePixels(layerData->mXScale, layerData->mYScale, layerData->mAppUnitsPerDevPixel),
layerData->mTranslation,
layerData);
}
aData->EndUpdate(geometry);
}
void
FrameLayerBuilder::AddPaintedDisplayItem(PaintedLayerData* aLayerData,
nsDisplayItem* aItem,
const DisplayItemClip& aClip,
ContainerState& aContainerState,
LayerState aLayerState,
const nsPoint& aTopLeft)
{
PaintedLayer* layer = aLayerData->mLayer;
PaintedDisplayItemLayerUserData* paintedData =
static_cast<PaintedDisplayItemLayerUserData*>
(layer->GetUserData(&gPaintedDisplayItemLayerUserData));
nsRefPtr<BasicLayerManager> tempManager;
nsIntRect intClip;
bool hasClip = false;
if (aLayerState != LAYER_NONE) {
DisplayItemData *data = GetDisplayItemDataForManager(aItem, layer->Manager());
if (data) {
tempManager = data->mInactiveManager;
}
if (!tempManager) {
tempManager = new BasicLayerManager(BasicLayerManager::BLM_INACTIVE);
}
// We need to grab these before calling AddLayerDisplayItem because it will overwrite them.
nsRegion clip;
DisplayItemClip* oldClip = nullptr;
GetOldLayerFor(aItem, nullptr, &oldClip);
hasClip = aClip.ComputeRegionInClips(oldClip,
aTopLeft - paintedData->mLastAnimatedGeometryRootOrigin,
&clip);
if (hasClip) {
intClip = clip.GetBounds().ScaleToOutsidePixels(paintedData->mXScale,
paintedData->mYScale,
paintedData->mAppUnitsPerDevPixel);
}
}
AddLayerDisplayItem(layer, aItem, aLayerState, aTopLeft, tempManager);
PaintedLayerItemsEntry* entry = mPaintedLayerItems.PutEntry(layer);
if (entry) {
entry->mContainerLayerFrame = aContainerState.GetContainerFrame();
if (entry->mContainerLayerGeneration == 0) {
entry->mContainerLayerGeneration = mContainerLayerGeneration;
}
if (tempManager) {
FLB_LOG_PAINTED_LAYER_DECISION(aLayerData, "Creating nested FLB for item %p\n", aItem);
FrameLayerBuilder* layerBuilder = new FrameLayerBuilder();
layerBuilder->Init(mDisplayListBuilder, tempManager, aLayerData);
tempManager->BeginTransaction();
if (mRetainingManager) {
layerBuilder->DidBeginRetainedLayerTransaction(tempManager);
}
UniquePtr<LayerProperties> props(LayerProperties::CloneFrom(tempManager->GetRoot()));
nsRefPtr<Layer> tmpLayer =
aItem->BuildLayer(mDisplayListBuilder, tempManager, ContainerLayerParameters());
// We have no easy way of detecting if this transaction will ever actually get finished.
// For now, I've just silenced the warning with nested transactions in BasicLayers.cpp
if (!tmpLayer) {
tempManager->EndTransaction(nullptr, nullptr);
tempManager->SetUserData(&gLayerManagerLayerBuilder, nullptr);
return;
}
bool snap;
nsRect visibleRect =
aItem->GetVisibleRect().Intersect(aItem->GetBounds(mDisplayListBuilder, &snap));
nsIntRegion rgn = visibleRect.ToOutsidePixels(paintedData->mAppUnitsPerDevPixel);
SetOuterVisibleRegion(tmpLayer, &rgn);
// If BuildLayer didn't call BuildContainerLayerFor, then our new layer won't have been
// stored in layerBuilder. Manually add it now.
if (mRetainingManager) {
#ifdef DEBUG_DISPLAY_ITEM_DATA
LayerManagerData* parentLmd = static_cast<LayerManagerData*>
(layer->Manager()->GetUserData(&gLayerManagerUserData));
LayerManagerData* lmd = static_cast<LayerManagerData*>
(tempManager->GetUserData(&gLayerManagerUserData));
lmd->mParent = parentLmd;
#endif
layerBuilder->StoreDataForFrame(aItem, tmpLayer, LAYER_ACTIVE);
}
tempManager->SetRoot(tmpLayer);
layerBuilder->WillEndTransaction();
tempManager->AbortTransaction();
nsIntPoint offset = GetLastPaintOffset(layer) - GetTranslationForPaintedLayer(layer);
props->MoveBy(-offset);
nsIntRegion invalid = props->ComputeDifferences(tmpLayer, nullptr);
if (aLayerState == LAYER_SVG_EFFECTS) {
invalid = nsSVGIntegrationUtils::AdjustInvalidAreaForSVGEffects(aItem->Frame(),
aItem->ToReferenceFrame(),
invalid);
}
if (!invalid.IsEmpty()) {
#ifdef MOZ_DUMP_PAINTING
if (nsLayoutUtils::InvalidationDebuggingIsEnabled()) {
printf_stderr("Inactive LayerManager(%p) for display item %s(%p) has an invalid region - invalidating layer %p\n", tempManager.get(), aItem->Name(), aItem->Frame(), layer);
}
#endif
invalid.ScaleRoundOut(paintedData->mXScale, paintedData->mYScale);
if (hasClip) {
invalid.And(invalid, intClip);
}
InvalidatePostTransformRegion(layer, invalid,
GetTranslationForPaintedLayer(layer),
paintedData);
}
}
ClippedDisplayItem* cdi =
entry->mItems.AppendElement(ClippedDisplayItem(aItem,
mContainerLayerGeneration));
cdi->mInactiveLayerManager = tempManager;
}
}
FrameLayerBuilder::DisplayItemData*
FrameLayerBuilder::StoreDataForFrame(nsDisplayItem* aItem, Layer* aLayer, LayerState aState)
{
DisplayItemData* oldData = GetDisplayItemDataForManager(aItem, mRetainingManager);
if (oldData) {
if (!oldData->mUsed) {
oldData->BeginUpdate(aLayer, aState, mContainerLayerGeneration, aItem);
}
return oldData;
}
LayerManagerData* lmd = static_cast<LayerManagerData*>
(mRetainingManager->GetUserData(&gLayerManagerUserData));
nsRefPtr<DisplayItemData> data =
new DisplayItemData(lmd, aItem->GetPerFrameKey(), aLayer);
data->BeginUpdate(aLayer, aState, mContainerLayerGeneration, aItem);
lmd->mDisplayItems.PutEntry(data);
return data;
}
void
FrameLayerBuilder::StoreDataForFrame(nsIFrame* aFrame,
uint32_t aDisplayItemKey,
Layer* aLayer,
LayerState aState)
{
DisplayItemData* oldData = GetDisplayItemData(aFrame, aDisplayItemKey);
if (oldData && oldData->mFrameList.Length() == 1) {
oldData->BeginUpdate(aLayer, aState, mContainerLayerGeneration);
return;
}
LayerManagerData* lmd = static_cast<LayerManagerData*>
(mRetainingManager->GetUserData(&gLayerManagerUserData));
nsRefPtr<DisplayItemData> data =
new DisplayItemData(lmd, aDisplayItemKey, aLayer, aFrame);
data->BeginUpdate(aLayer, aState, mContainerLayerGeneration);
lmd->mDisplayItems.PutEntry(data);
}
FrameLayerBuilder::ClippedDisplayItem::~ClippedDisplayItem()
{
if (mInactiveLayerManager) {
mInactiveLayerManager->SetUserData(&gLayerManagerLayerBuilder, nullptr);
}
}
void
FrameLayerBuilder::AddLayerDisplayItem(Layer* aLayer,
nsDisplayItem* aItem,
LayerState aLayerState,
const nsPoint& aTopLeft,
BasicLayerManager* aManager)
{
if (aLayer->Manager() != mRetainingManager)
return;
DisplayItemData *data = StoreDataForFrame(aItem, aLayer, aLayerState);
data->mInactiveManager = aManager;
}
nsIntPoint
FrameLayerBuilder::GetLastPaintOffset(PaintedLayer* aLayer)
{
PaintedLayerItemsEntry* entry = mPaintedLayerItems.PutEntry(aLayer);
if (entry) {
if (entry->mContainerLayerGeneration == 0) {
entry->mContainerLayerGeneration = mContainerLayerGeneration;
}
if (entry->mHasExplicitLastPaintOffset)
return entry->mLastPaintOffset;
}
return GetTranslationForPaintedLayer(aLayer);
}
void
FrameLayerBuilder::SavePreviousDataForLayer(PaintedLayer* aLayer, uint32_t aClipCount)
{
PaintedLayerItemsEntry* entry = mPaintedLayerItems.PutEntry(aLayer);
if (entry) {
if (entry->mContainerLayerGeneration == 0) {
entry->mContainerLayerGeneration = mContainerLayerGeneration;
}
entry->mLastPaintOffset = GetTranslationForPaintedLayer(aLayer);
entry->mHasExplicitLastPaintOffset = true;
entry->mLastCommonClipCount = aClipCount;
}
}
bool
FrameLayerBuilder::CheckInLayerTreeCompressionMode()
{
if (mInLayerTreeCompressionMode) {
return true;
}
// If we wanted to be in layer tree compression mode, but weren't, then scheduled
// a delayed repaint where we will be.
mRootPresContext->PresShell()->GetRootFrame()->SchedulePaint(nsIFrame::PAINT_DELAYED_COMPRESS);
return false;
}
void
ContainerState::CollectOldLayers()
{
for (Layer* layer = mContainerLayer->GetFirstChild(); layer;
layer = layer->GetNextSibling()) {
NS_ASSERTION(!layer->HasUserData(&gMaskLayerUserData),
"Mask layer in layer tree; could not be recycled.");
if (layer->HasUserData(&gPaintedDisplayItemLayerUserData)) {
NS_ASSERTION(layer->AsPaintedLayer(), "Wrong layer type");
mPaintedLayersAvailableForRecycling.PutEntry(static_cast<PaintedLayer*>(layer));
}
if (Layer* maskLayer = layer->GetMaskLayer()) {
NS_ASSERTION(maskLayer->GetType() == Layer::TYPE_IMAGE,
"Could not recycle mask layer, unsupported layer type.");
mRecycledMaskImageLayers.Put(layer, static_cast<ImageLayer*>(maskLayer));
}
}
}
struct OpaqueRegionEntry {
const nsIFrame* mAnimatedGeometryRoot;
const nsIFrame* mFixedPosFrameForLayerData;
nsIntRegion mOpaqueRegion;
};
static OpaqueRegionEntry*
FindOpaqueRegionEntry(nsTArray<OpaqueRegionEntry>& aEntries,
const nsIFrame* aAnimatedGeometryRoot,
const nsIFrame* aFixedPosFrameForLayerData)
{
for (uint32_t i = 0; i < aEntries.Length(); ++i) {
OpaqueRegionEntry* d = &aEntries[i];
if (d->mAnimatedGeometryRoot == aAnimatedGeometryRoot &&
d->mFixedPosFrameForLayerData == aFixedPosFrameForLayerData) {
return d;
}
}
return nullptr;
}
void
ContainerState::SetupScrollingMetadata(NewLayerEntry* aEntry)
{
if (mFlattenToSingleLayer) {
// animated geometry roots are forced to all match, so we can't
// use them and we don't get async scrolling.
return;
}
nsAutoTArray<FrameMetrics,2> metricsArray;
if (aEntry->mBaseFrameMetrics) {
metricsArray.AppendElement(*aEntry->mBaseFrameMetrics);
}
uint32_t baseLength = metricsArray.Length();
nsIFrame* fParent;
for (const nsIFrame* f = aEntry->mAnimatedGeometryRoot;
f != mContainerAnimatedGeometryRoot;
f = nsLayoutUtils::GetAnimatedGeometryRootForFrame(this->mBuilder,
fParent, mContainerAnimatedGeometryRoot)) {
fParent = nsLayoutUtils::GetCrossDocParentFrame(f);
if (!fParent) {
// This means mContainerAnimatedGeometryRoot was not an ancestor
// of aEntry->mAnimatedGeometryRoot. This is a weird case but it
// can happen, e.g. when a scrolled frame contains a frame with opacity
// which contains a frame that is not scrolled by the scrolled frame.
// For now, we just don't apply any specific async scrolling to this layer.
// It will async-scroll with mContainerAnimatedGeometryRoot, which
// is substandard but not fatal.
metricsArray.SetLength(baseLength);
aEntry->mLayer->SetFrameMetrics(metricsArray);
return;
}
nsIScrollableFrame* scrollFrame = nsLayoutUtils::GetScrollableFrameFor(f);
if (!scrollFrame) {
continue;
}
scrollFrame->ComputeFrameMetrics(aEntry->mLayer, mContainerReferenceFrame,
mParameters, &metricsArray);
}
// Watch out for FrameMetrics copies in profiles
aEntry->mLayer->SetFrameMetrics(metricsArray);
}
static void
InvalidateVisibleBoundsChangesForScrolledLayer(PaintedLayer* aLayer)
{
PaintedDisplayItemLayerUserData* data =
static_cast<PaintedDisplayItemLayerUserData*>(aLayer->GetUserData(&gPaintedDisplayItemLayerUserData));
if (data->mIgnoreInvalidationsOutsideRect) {
// We haven't invalidated anything outside *data->mIgnoreInvalidationsOutsideRect
// during DLBI. Now is the right time to do that, because at this point aLayer
// knows its new visible region.
// We use the visible regions' bounds here (as opposed to the true region)
// in order to limit rgn's complexity. The only possible disadvantage of
// this is that it might cause us to unnecessarily recomposite parts of the
// window that are in the visible region's bounds but not in the visible
// region itself, but that is acceptable for scrolled layers.
nsIntRegion rgn;
rgn.Or(data->mOldVisibleBounds, aLayer->GetVisibleRegion().GetBounds());
rgn.Sub(rgn, *data->mIgnoreInvalidationsOutsideRect);
if (!rgn.IsEmpty()) {
aLayer->InvalidateRegion(rgn);
#ifdef MOZ_DUMP_PAINTING
if (nsLayoutUtils::InvalidationDebuggingIsEnabled()) {
printf_stderr("Invalidating changes of the visible region bounds of the scrolled contents\n");
nsAutoCString str;
AppendToString(str, rgn);
printf_stderr("Invalidating layer %p: %s\n", aLayer, str.get());
}
#endif
}
data->mIgnoreInvalidationsOutsideRect = Nothing();
}
}
static inline const Maybe<ParentLayerIntRect>&
GetStationaryClipInContainer(Layer* aLayer)
{
if (size_t metricsCount = aLayer->GetFrameMetricsCount()) {
return aLayer->GetFrameMetrics(metricsCount - 1).GetClipRect();
}
return aLayer->GetClipRect();
}
void
ContainerState::PostprocessRetainedLayers(nsIntRegion* aOpaqueRegionForContainer)
{
nsAutoTArray<OpaqueRegionEntry,4> opaqueRegions;
bool hideAll = false;
int32_t opaqueRegionForContainer = -1;
for (int32_t i = mNewChildLayers.Length() - 1; i >= 0; --i) {
NewLayerEntry* e = &mNewChildLayers.ElementAt(i);
if (!e->mLayer) {
continue;
}
// If mFlattenToSingleLayer is true, there isn't going to be any
// async scrolling so we can apply all our opaqueness to the same
// entry, the entry for mContainerAnimatedGeometryRoot.
const nsIFrame* animatedGeometryRootForOpaqueness =
mFlattenToSingleLayer ? mContainerAnimatedGeometryRoot : e->mAnimatedGeometryRoot;
OpaqueRegionEntry* data = FindOpaqueRegionEntry(opaqueRegions,
animatedGeometryRootForOpaqueness, e->mFixedPosFrameForLayerData);
SetupScrollingMetadata(e);
if (hideAll) {
e->mVisibleRegion.SetEmpty();
} else if (!e->mLayer->IsScrollbarContainer()) {
const Maybe<ParentLayerIntRect>& clipRect = GetStationaryClipInContainer(e->mLayer);
if (clipRect && opaqueRegionForContainer >= 0 &&
opaqueRegions[opaqueRegionForContainer].mOpaqueRegion.Contains(ParentLayerIntRect::ToUntyped(*clipRect))) {
e->mVisibleRegion.SetEmpty();
} else if (data) {
e->mVisibleRegion.Sub(e->mVisibleRegion, data->mOpaqueRegion);
}
}
SetOuterVisibleRegionForLayer(e->mLayer, e->mVisibleRegion,
e->mLayerContentsVisibleRect.width >= 0 ? &e->mLayerContentsVisibleRect : nullptr);
PaintedLayer* p = e->mLayer->AsPaintedLayer();
if (p) {
InvalidateVisibleBoundsChangesForScrolledLayer(p);
}
if (!e->mOpaqueRegion.IsEmpty()) {
const nsIFrame* animatedGeometryRootToCover = animatedGeometryRootForOpaqueness;
if (e->mOpaqueForAnimatedGeometryRootParent &&
nsLayoutUtils::GetAnimatedGeometryRootForFrame(mBuilder, e->mAnimatedGeometryRoot->GetParent(),
mContainerAnimatedGeometryRoot)
== mContainerAnimatedGeometryRoot) {
animatedGeometryRootToCover = mContainerAnimatedGeometryRoot;
data = FindOpaqueRegionEntry(opaqueRegions,
animatedGeometryRootToCover, e->mFixedPosFrameForLayerData);
}
if (!data) {
if (animatedGeometryRootToCover == mContainerAnimatedGeometryRoot &&
e->mFixedPosFrameForLayerData == mContainerFixedPosFrame) {
NS_ASSERTION(opaqueRegionForContainer == -1, "Already found it?");
opaqueRegionForContainer = opaqueRegions.Length();
}
data = opaqueRegions.AppendElement();
data->mAnimatedGeometryRoot = animatedGeometryRootToCover;
data->mFixedPosFrameForLayerData = e->mFixedPosFrameForLayerData;
}
nsIntRegion clippedOpaque = e->mOpaqueRegion;
Maybe<ParentLayerIntRect> clipRect = e->mLayer->GetCombinedClipRect();
if (clipRect) {
clippedOpaque.AndWith(ParentLayerIntRect::ToUntyped(*clipRect));
}
data->mOpaqueRegion.Or(data->mOpaqueRegion, clippedOpaque);
if (e->mHideAllLayersBelow) {
hideAll = true;
}
}
if (e->mLayer->GetType() == Layer::TYPE_READBACK) {
// ReadbackLayers need to accurately read what's behind them. So,
// we don't want to do any occlusion culling of layers behind them.
// Theoretically we could just punch out the ReadbackLayer's rectangle
// from all mOpaqueRegions, but that's probably not worth doing.
opaqueRegions.Clear();
opaqueRegionForContainer = -1;
}
}
if (opaqueRegionForContainer >= 0) {
aOpaqueRegionForContainer->Or(*aOpaqueRegionForContainer,
opaqueRegions[opaqueRegionForContainer].mOpaqueRegion);
}
}
void
ContainerState::Finish(uint32_t* aTextContentFlags, LayerManagerData* aData,
const nsIntRect& aContainerPixelBounds,
nsDisplayList* aChildItems, bool& aHasComponentAlphaChildren)
{
mPaintedLayerDataTree.Finish();
NS_ASSERTION(mContainerBounds.IsEqualInterior(mAccumulatedChildBounds),
"Bounds computation mismatch");
if (mLayerBuilder->IsBuildingRetainedLayers()) {
nsIntRegion containerOpaqueRegion;
PostprocessRetainedLayers(&containerOpaqueRegion);
if (containerOpaqueRegion.Contains(aContainerPixelBounds)) {
aChildItems->SetIsOpaque();
}
}
uint32_t textContentFlags = 0;
// Make sure that current/existing layers are added to the parent and are
// in the correct order.
Layer* layer = nullptr;
Layer* prevChild = nullptr;
for (uint32_t i = 0; i < mNewChildLayers.Length(); ++i, prevChild = layer) {
if (!mNewChildLayers[i].mLayer) {
continue;
}
layer = mNewChildLayers[i].mLayer;
if (!layer->GetVisibleRegion().IsEmpty()) {
textContentFlags |=
layer->GetContentFlags() & (Layer::CONTENT_COMPONENT_ALPHA |
Layer::CONTENT_COMPONENT_ALPHA_DESCENDANT);
// Notify the parent of component alpha children unless it's coming from
// within a child that has asked not to contribute to layer flattening.
if (mNewChildLayers[i].mPropagateComponentAlphaFlattening &&
(layer->GetContentFlags() & Layer::CONTENT_COMPONENT_ALPHA)) {
aHasComponentAlphaChildren = true;
}
}
if (!layer->GetParent()) {
// This is not currently a child of the container, so just add it
// now.
mContainerLayer->InsertAfter(layer, prevChild);
} else {
NS_ASSERTION(layer->GetParent() == mContainerLayer,
"Layer shouldn't be the child of some other container");
if (layer->GetPrevSibling() != prevChild) {
mContainerLayer->RepositionChild(layer, prevChild);
}
}
}
// Remove old layers that have become unused.
if (!layer) {
layer = mContainerLayer->GetFirstChild();
} else {
layer = layer->GetNextSibling();
}
while (layer) {
Layer *layerToRemove = layer;
layer = layer->GetNextSibling();
mContainerLayer->RemoveChild(layerToRemove);
}
*aTextContentFlags = textContentFlags;
}
static inline gfxSize RoundToFloatPrecision(const gfxSize& aSize)
{
return gfxSize(float(aSize.width), float(aSize.height));
}
static inline gfxSize NudgedToIntegerSize(const gfxSize& aSize)
{
float width = aSize.width;
float height = aSize.height;
gfx::NudgeToInteger(&width);
gfx::NudgeToInteger(&height);
return gfxSize(width, height);
}
static void RestrictScaleToMaxLayerSize(gfxSize& aScale,
const nsRect& aVisibleRect,
nsIFrame* aContainerFrame,
Layer* aContainerLayer)
{
if (!aContainerLayer->Manager()->IsWidgetLayerManager()) {
return;
}
nsIntRect pixelSize =
aVisibleRect.ScaleToOutsidePixels(aScale.width, aScale.height,
aContainerFrame->PresContext()->AppUnitsPerDevPixel());
int32_t maxLayerSize = aContainerLayer->GetMaxLayerSize();
if (pixelSize.width > maxLayerSize) {
float scale = (float)pixelSize.width / maxLayerSize;
scale = gfxUtils::ClampToScaleFactor(scale);
aScale.width /= scale;
}
if (pixelSize.height > maxLayerSize) {
float scale = (float)pixelSize.height / maxLayerSize;
scale = gfxUtils::ClampToScaleFactor(scale);
aScale.height /= scale;
}
}
static bool
ChooseScaleAndSetTransform(FrameLayerBuilder* aLayerBuilder,
nsDisplayListBuilder* aDisplayListBuilder,
nsIFrame* aContainerFrame,
const nsRect& aVisibleRect,
const Matrix4x4* aTransform,
const ContainerLayerParameters& aIncomingScale,
ContainerLayer* aLayer,
LayerState aState,
ContainerLayerParameters& aOutgoingScale)
{
nsIntPoint offset;
Matrix4x4 transform =
Matrix4x4::Scaling(aIncomingScale.mXScale, aIncomingScale.mYScale, 1.0);
if (aTransform) {
// aTransform is applied first, then the scale is applied to the result
transform = (*aTransform)*transform;
// Set relevant 3d matrix entries that are close to integers to be those
// exact integers. This protects against floating-point inaccuracies
// causing problems in the CanDraw2D / Is2D checks below.
// We don't nudge all matrix components here. In particular, we don't want to
// nudge the X/Y translation components, because those include the scroll
// offset, and we don't want scrolling to affect whether we nudge or not.
transform.NudgeTo2D();
}
Matrix transform2d;
if (aContainerFrame &&
(aState == LAYER_INACTIVE || aState == LAYER_SVG_EFFECTS) &&
(!aTransform || (aTransform->Is2D(&transform2d) &&
!transform2d.HasNonTranslation()))) {
// When we have an inactive ContainerLayer, translate the container by the offset to the
// reference frame (and offset all child layers by the reverse) so that the coordinate
// space of the child layers isn't affected by scrolling.
// This gets confusing for complicated transform (since we'd have to compute the scale
// factors for the matrix), so we don't bother. Any frames that are building an nsDisplayTransform
// for a css transform would have 0,0 as their offset to the reference frame, so this doesn't
// matter.
nsPoint appUnitOffset = aDisplayListBuilder->ToReferenceFrame(aContainerFrame);
nscoord appUnitsPerDevPixel = aContainerFrame->PresContext()->AppUnitsPerDevPixel();
offset = nsIntPoint(
NS_lround(NSAppUnitsToDoublePixels(appUnitOffset.x, appUnitsPerDevPixel)*aIncomingScale.mXScale),
NS_lround(NSAppUnitsToDoublePixels(appUnitOffset.y, appUnitsPerDevPixel)*aIncomingScale.mYScale));
}
transform.PostTranslate(offset.x + aIncomingScale.mOffset.x,
offset.y + aIncomingScale.mOffset.y,
0);
if (transform.IsSingular()) {
return false;
}
bool canDraw2D = transform.CanDraw2D(&transform2d);
gfxSize scale;
// XXX Should we do something for 3D transforms?
if (canDraw2D) {
// If the container's transform is animated off main thread, fix a suitable scale size
// for animation
if (aContainerFrame->GetContent() &&
nsLayoutUtils::HasAnimationsForCompositor(
aContainerFrame->GetContent(), eCSSProperty_transform)) {
scale = nsLayoutUtils::ComputeSuitableScaleForAnimation(
aContainerFrame->GetContent(), aVisibleRect.Size(),
aContainerFrame->PresContext()->GetVisibleArea().Size());
} else {
// Scale factors are normalized to a power of 2 to reduce the number of resolution changes
scale = RoundToFloatPrecision(ThebesMatrix(transform2d).ScaleFactors(true));
// For frames with a changing transform that's not just a translation,
// round scale factors up to nearest power-of-2 boundary so that we don't
// keep having to redraw the content as it scales up and down. Rounding up to nearest
// power-of-2 boundary ensures we never scale up, only down --- avoiding
// jaggies. It also ensures we never scale down by more than a factor of 2,
// avoiding bad downscaling quality.
Matrix frameTransform;
if (ActiveLayerTracker::IsStyleAnimated(aDisplayListBuilder, aContainerFrame, eCSSProperty_transform) &&
aTransform &&
(!aTransform->Is2D(&frameTransform) || frameTransform.HasNonTranslationOrFlip())) {
// Don't clamp the scale factor when the new desired scale factor matches the old one
// or it was previously unscaled.
bool clamp = true;
Matrix oldFrameTransform2d;
if (aLayer->GetBaseTransform().Is2D(&oldFrameTransform2d)) {
gfxSize oldScale = RoundToFloatPrecision(ThebesMatrix(oldFrameTransform2d).ScaleFactors(true));
if (oldScale == scale || oldScale == gfxSize(1.0, 1.0)) {
clamp = false;
}
}
if (clamp) {
scale.width = gfxUtils::ClampToScaleFactor(scale.width);
scale.height = gfxUtils::ClampToScaleFactor(scale.height);
}
} else {
scale = NudgedToIntegerSize(scale);
}
}
// If the scale factors are too small, just use 1.0. The content is being
// scaled out of sight anyway.
if (fabs(scale.width) < 1e-8 || fabs(scale.height) < 1e-8) {
scale = gfxSize(1.0, 1.0);
}
// If this is a transform container layer, then pre-rendering might
// mean we try render a layer bigger than the max texture size. Apply
// clmaping to prevent this.
if (aTransform) {
RestrictScaleToMaxLayerSize(scale, aVisibleRect, aContainerFrame, aLayer);
}
} else {
scale = gfxSize(1.0, 1.0);
}
// Store the inverse of our resolution-scale on the layer
aLayer->SetBaseTransform(transform);
aLayer->SetPreScale(1.0f/float(scale.width),
1.0f/float(scale.height));
aLayer->SetInheritedScale(aIncomingScale.mXScale,
aIncomingScale.mYScale);
aOutgoingScale =
ContainerLayerParameters(scale.width, scale.height, -offset, aIncomingScale);
if (aTransform) {
aOutgoingScale.mInTransformedSubtree = true;
if (ActiveLayerTracker::IsStyleAnimated(aDisplayListBuilder, aContainerFrame,
eCSSProperty_transform)) {
aOutgoingScale.mInActiveTransformedSubtree = true;
}
}
if (aLayerBuilder->IsBuildingRetainedLayers() &&
(!canDraw2D || transform2d.HasNonIntegerTranslation())) {
aOutgoingScale.mDisableSubpixelAntialiasingInDescendants = true;
}
return true;
}
/* static */ PLDHashOperator
FrameLayerBuilder::RestoreDisplayItemData(nsRefPtrHashKey<DisplayItemData>* aEntry, void* aUserArg)
{
DisplayItemData* data = aEntry->GetKey();
uint32_t *generation = static_cast<uint32_t*>(aUserArg);
if (data->mUsed && data->mContainerLayerGeneration >= *generation) {
return PL_DHASH_REMOVE;
}
return PL_DHASH_NEXT;
}
/* static */ PLDHashOperator
FrameLayerBuilder::RestorePaintedLayerItemEntries(PaintedLayerItemsEntry* aEntry, void* aUserArg)
{
uint32_t *generation = static_cast<uint32_t*>(aUserArg);
if (aEntry->mContainerLayerGeneration >= *generation) {
// We can just remove these items rather than attempting to revert them
// because we're going to want to invalidate everything when transitioning
// to component alpha flattening.
return PL_DHASH_REMOVE;
}
for (uint32_t i = 0; i < aEntry->mItems.Length(); i++) {
if (aEntry->mItems[i].mContainerLayerGeneration >= *generation) {
aEntry->mItems.TruncateLength(i);
return PL_DHASH_NEXT;
}
}
return PL_DHASH_NEXT;
}
already_AddRefed<ContainerLayer>
FrameLayerBuilder::BuildContainerLayerFor(nsDisplayListBuilder* aBuilder,
LayerManager* aManager,
nsIFrame* aContainerFrame,
nsDisplayItem* aContainerItem,
nsDisplayList* aChildren,
const ContainerLayerParameters& aParameters,
const Matrix4x4* aTransform,
uint32_t aFlags)
{
uint32_t containerDisplayItemKey =
aContainerItem ? aContainerItem->GetPerFrameKey() : nsDisplayItem::TYPE_ZERO;
NS_ASSERTION(aContainerFrame, "Container display items here should have a frame");
NS_ASSERTION(!aContainerItem ||
aContainerItem->Frame() == aContainerFrame,
"Container display item must match given frame");
if (!aParameters.mXScale || !aParameters.mYScale) {
return nullptr;
}
nsRefPtr<ContainerLayer> containerLayer;
if (aManager == mRetainingManager) {
// Using GetOldLayerFor will search merged frames, as well as the underlying
// frame. The underlying frame can change when a page scrolls, so this
// avoids layer recreation in the situation that a new underlying frame is
// picked for a layer.
Layer* oldLayer = nullptr;
if (aContainerItem) {
oldLayer = GetOldLayerFor(aContainerItem);
} else {
DisplayItemData *data = GetOldLayerForFrame(aContainerFrame, containerDisplayItemKey);
if (data) {
oldLayer = data->mLayer;
}
}
if (oldLayer) {
NS_ASSERTION(oldLayer->Manager() == aManager, "Wrong manager");
if (oldLayer->HasUserData(&gPaintedDisplayItemLayerUserData)) {
// The old layer for this item is actually our PaintedLayer
// because we rendered its layer into that PaintedLayer. So we
// don't actually have a retained container layer.
} else {
NS_ASSERTION(oldLayer->GetType() == Layer::TYPE_CONTAINER,
"Wrong layer type");
containerLayer = static_cast<ContainerLayer*>(oldLayer);
containerLayer->SetMaskLayer(nullptr);
}
}
}
if (!containerLayer) {
// No suitable existing layer was found.
containerLayer = aManager->CreateContainerLayer();
if (!containerLayer)
return nullptr;
}
LayerState state = aContainerItem ? aContainerItem->GetLayerState(aBuilder, aManager, aParameters) : LAYER_ACTIVE;
if (state == LAYER_INACTIVE &&
nsDisplayItem::ForceActiveLayers()) {
state = LAYER_ACTIVE;
}
if (aContainerItem && state == LAYER_ACTIVE_EMPTY) {
// Empty layers only have metadata and should never have display items. We
// early exit because later, invalidation will walk up the frame tree to
// determine which painted layer gets invalidated. Since an empty layer
// should never have anything to paint, it should never be invalidated.
NS_ASSERTION(aChildren->IsEmpty(), "Should have no children");
return containerLayer.forget();
}
ContainerLayerParameters scaleParameters;
nsRect bounds = aChildren->GetBounds(aBuilder);
nsRect childrenVisible =
aContainerItem ? aContainerItem->GetVisibleRectForChildren() :
aContainerFrame->GetVisualOverflowRectRelativeToSelf();
if (!ChooseScaleAndSetTransform(this, aBuilder, aContainerFrame,
bounds.Intersect(childrenVisible),
aTransform, aParameters,
containerLayer, state, scaleParameters)) {
return nullptr;
}
uint32_t oldGeneration = mContainerLayerGeneration;
mContainerLayerGeneration = ++mMaxContainerLayerGeneration;
nsRefPtr<RefCountedRegion> paintedLayerInvalidRegion = nullptr;
if (mRetainingManager) {
if (aContainerItem) {
StoreDataForFrame(aContainerItem, containerLayer, LAYER_ACTIVE);
} else {
StoreDataForFrame(aContainerFrame, containerDisplayItemKey, containerLayer, LAYER_ACTIVE);
}
}
LayerManagerData* data = static_cast<LayerManagerData*>
(aManager->GetUserData(&gLayerManagerUserData));
nsIntRect pixBounds;
nscoord appUnitsPerDevPixel;
bool flattenToSingleLayer = false;
if ((aContainerFrame->GetStateBits() & NS_FRAME_NO_COMPONENT_ALPHA) &&
mRetainingManager &&
mRetainingManager->ShouldAvoidComponentAlphaLayers() &&
!nsLayoutUtils::AsyncPanZoomEnabled(aContainerFrame))
{
flattenToSingleLayer = true;
}
nscolor backgroundColor = NS_RGBA(0,0,0,0);
if (aFlags & CONTAINER_ALLOW_PULL_BACKGROUND_COLOR) {
backgroundColor = aParameters.mBackgroundColor;
}
uint32_t flags;
while (true) {
ContainerState state(aBuilder, aManager, aManager->GetLayerBuilder(),
aContainerFrame, aContainerItem, bounds,
containerLayer, scaleParameters, flattenToSingleLayer,
backgroundColor);
state.ProcessDisplayItems(aChildren);
// Set CONTENT_COMPONENT_ALPHA if any of our children have it.
// This is suboptimal ... a child could have text that's over transparent
// pixels in its own layer, but over opaque parts of previous siblings.
bool hasComponentAlphaChildren = false;
pixBounds = state.ScaleToOutsidePixels(bounds, false);
appUnitsPerDevPixel = state.GetAppUnitsPerDevPixel();
state.Finish(&flags, data, pixBounds, aChildren, hasComponentAlphaChildren);
if (hasComponentAlphaChildren &&
mRetainingManager &&
mRetainingManager->ShouldAvoidComponentAlphaLayers() &&
containerLayer->HasMultipleChildren() &&
!flattenToSingleLayer &&
!nsLayoutUtils::AsyncPanZoomEnabled(aContainerFrame))
{
// Since we don't want any component alpha layers on BasicLayers, we repeat
// the layer building process with this explicitely forced off.
// We restore the previous FrameLayerBuilder state since the first set
// of layer building will have changed it.
flattenToSingleLayer = true;
data->mDisplayItems.EnumerateEntries(RestoreDisplayItemData,
&mContainerLayerGeneration);
mPaintedLayerItems.EnumerateEntries(RestorePaintedLayerItemEntries,
&mContainerLayerGeneration);
aContainerFrame->AddStateBits(NS_FRAME_NO_COMPONENT_ALPHA);
continue;
}
break;
}
// CONTENT_COMPONENT_ALPHA is propogated up to the nearest CONTENT_OPAQUE
// ancestor so that BasicLayerManager knows when to copy the background into
// pushed groups. Accelerated layers managers can't necessarily do this (only
// when the visible region is a simple rect), so we propogate
// CONTENT_COMPONENT_ALPHA_DESCENDANT all the way to the root.
if (flags & Layer::CONTENT_COMPONENT_ALPHA) {
flags |= Layer::CONTENT_COMPONENT_ALPHA_DESCENDANT;
}
// Make sure that rounding the visible region out didn't add any area
// we won't paint
if (aChildren->IsOpaque() && !aChildren->NeedsTransparentSurface()) {
bounds.ScaleRoundIn(scaleParameters.mXScale, scaleParameters.mYScale);
if (bounds.Contains(ToAppUnits(pixBounds, appUnitsPerDevPixel))) {
// Clear CONTENT_COMPONENT_ALPHA and add CONTENT_OPAQUE instead.
flags &= ~Layer::CONTENT_COMPONENT_ALPHA;
flags |= Layer::CONTENT_OPAQUE;
}
}
containerLayer->SetContentFlags(flags);
// If aContainerItem is non-null some BuildContainerLayer further up the
// call stack is responsible for setting containerLayer's visible region.
if (!aContainerItem) {
containerLayer->SetVisibleRegion(pixBounds);
}
if (aParameters.mLayerContentsVisibleRect) {
*aParameters.mLayerContentsVisibleRect = pixBounds + scaleParameters.mOffset;
}
mContainerLayerGeneration = oldGeneration;
nsPresContext::ClearNotifySubDocInvalidationData(containerLayer);
return containerLayer.forget();
}
Layer*
FrameLayerBuilder::GetLeafLayerFor(nsDisplayListBuilder* aBuilder,
nsDisplayItem* aItem)
{
Layer* layer = GetOldLayerFor(aItem);
if (!layer)
return nullptr;
if (layer->HasUserData(&gPaintedDisplayItemLayerUserData)) {
// This layer was created to render Thebes-rendered content for this
// display item. The display item should not use it for its own
// layer rendering.
return nullptr;
}
layer->SetMaskLayer(nullptr);
return layer;
}
/* static */ void
FrameLayerBuilder::InvalidateAllLayers(LayerManager* aManager)
{
LayerManagerData* data = static_cast<LayerManagerData*>
(aManager->GetUserData(&gLayerManagerUserData));
if (data) {
data->mInvalidateAllLayers = true;
}
}
/* static */ void
FrameLayerBuilder::InvalidateAllLayersForFrame(nsIFrame *aFrame)
{
const nsTArray<DisplayItemData*>* array =
static_cast<nsTArray<DisplayItemData*>*>(aFrame->Properties().Get(LayerManagerDataProperty()));
if (array) {
for (uint32_t i = 0; i < array->Length(); i++) {
AssertDisplayItemData(array->ElementAt(i))->mParent->mInvalidateAllLayers = true;
}
}
}
/* static */
Layer*
FrameLayerBuilder::GetDedicatedLayer(nsIFrame* aFrame, uint32_t aDisplayItemKey)
{
//TODO: This isn't completely correct, since a frame could exist as a layer
// in the normal widget manager, and as a different layer (or no layer)
// in the secondary manager
const nsTArray<DisplayItemData*>* array =
static_cast<nsTArray<DisplayItemData*>*>(aFrame->Properties().Get(LayerManagerDataProperty()));
if (array) {
for (uint32_t i = 0; i < array->Length(); i++) {
DisplayItemData *element = AssertDisplayItemData(array->ElementAt(i));
if (!element->mParent->mLayerManager->IsWidgetLayerManager()) {
continue;
}
if (element->mDisplayItemKey == aDisplayItemKey) {
if (element->mOptLayer) {
return element->mOptLayer;
}
Layer* layer = element->mLayer;
if (!layer->HasUserData(&gColorLayerUserData) &&
!layer->HasUserData(&gImageLayerUserData) &&
!layer->HasUserData(&gPaintedDisplayItemLayerUserData)) {
return layer;
}
}
}
}
return nullptr;
}
static gfxSize
PredictScaleForContent(nsIFrame* aFrame, nsIFrame* aAncestorWithScale,
const gfxSize& aScale)
{
Matrix4x4 transform = Matrix4x4::Scaling(aScale.width, aScale.height, 1.0);
if (aFrame != aAncestorWithScale) {
// aTransform is applied first, then the scale is applied to the result
transform = nsLayoutUtils::GetTransformToAncestor(aFrame, aAncestorWithScale)*transform;
}
Matrix transform2d;
if (transform.CanDraw2D(&transform2d)) {
return ThebesMatrix(transform2d).ScaleFactors(true);
}
return gfxSize(1.0, 1.0);
}
gfxSize
FrameLayerBuilder::GetPaintedLayerScaleForFrame(nsIFrame* aFrame)
{
MOZ_ASSERT(aFrame, "need a frame");
nsIFrame* last = nullptr;
for (nsIFrame* f = aFrame; f; f = nsLayoutUtils::GetCrossDocParentFrame(f)) {
last = f;
if (nsLayoutUtils::IsPopup(f)) {
// Don't examine ancestors of a popup. It won't make sense to check
// the transform from some content inside the popup to some content
// which is an ancestor of the popup.
break;
}
const nsTArray<DisplayItemData*>* array =
static_cast<nsTArray<DisplayItemData*>*>(f->Properties().Get(LayerManagerDataProperty()));
if (!array) {
continue;
}
for (uint32_t i = 0; i < array->Length(); i++) {
Layer* layer = AssertDisplayItemData(array->ElementAt(i))->mLayer;
ContainerLayer* container = layer->AsContainerLayer();
if (!container ||
!layer->Manager()->IsWidgetLayerManager()) {
continue;
}
for (Layer* l = container->GetFirstChild(); l; l = l->GetNextSibling()) {
PaintedDisplayItemLayerUserData* data =
static_cast<PaintedDisplayItemLayerUserData*>
(l->GetUserData(&gPaintedDisplayItemLayerUserData));
if (data) {
return PredictScaleForContent(aFrame, f, gfxSize(data->mXScale, data->mYScale));
}
}
}
}
float presShellResolution = last->PresContext()->PresShell()->GetResolution();
return PredictScaleForContent(aFrame, last,
gfxSize(presShellResolution, presShellResolution));
}
#ifdef MOZ_DUMP_PAINTING
static void DebugPaintItem(DrawTarget& aDrawTarget,
nsPresContext* aPresContext,
nsDisplayItem *aItem,
nsDisplayListBuilder* aBuilder)
{
bool snap;
Rect bounds = NSRectToRect(aItem->GetBounds(aBuilder, &snap),
aPresContext->AppUnitsPerDevPixel());
RefPtr<DrawTarget> tempDT =
aDrawTarget.CreateSimilarDrawTarget(IntSize(bounds.width, bounds.height),
SurfaceFormat::B8G8R8A8);
nsRefPtr<gfxContext> context = new gfxContext(tempDT);
context->SetMatrix(gfxMatrix::Translation(-bounds.x, -bounds.y));
nsRenderingContext ctx(context);
aItem->Paint(aBuilder, &ctx);
RefPtr<SourceSurface> surface = tempDT->Snapshot();
DumpPaintedImage(aItem, surface);
aDrawTarget.DrawSurface(surface, bounds, Rect(Point(0,0), bounds.Size()));
aItem->SetPainted();
}
#endif
/* static */ void
FrameLayerBuilder::RecomputeVisibilityForItems(nsTArray<ClippedDisplayItem>& aItems,
nsDisplayListBuilder *aBuilder,
const nsIntRegion& aRegionToDraw,
const nsIntPoint& aOffset,
int32_t aAppUnitsPerDevPixel,
float aXScale,
float aYScale)
{
uint32_t i;
// Update visible regions. We perform visibility analysis to take account
// of occlusion culling.
nsRegion visible = aRegionToDraw.ToAppUnits(aAppUnitsPerDevPixel);
visible.MoveBy(NSIntPixelsToAppUnits(aOffset.x, aAppUnitsPerDevPixel),
NSIntPixelsToAppUnits(aOffset.y, aAppUnitsPerDevPixel));
visible.ScaleInverseRoundOut(aXScale, aYScale);
for (i = aItems.Length(); i > 0; --i) {
ClippedDisplayItem* cdi = &aItems[i - 1];
const DisplayItemClip& clip = cdi->mItem->GetClip();
NS_ASSERTION(AppUnitsPerDevPixel(cdi->mItem) == aAppUnitsPerDevPixel,
"a painted layer should contain items only at the same zoom");
MOZ_ASSERT(clip.HasClip() || clip.GetRoundedRectCount() == 0,
"If we have rounded rects, we must have a clip rect");
if (!clip.IsRectAffectedByClip(visible.GetBounds())) {
cdi->mItem->RecomputeVisibility(aBuilder, &visible);
continue;
}
// Do a little dance to account for the fact that we're clipping
// to cdi->mClipRect
nsRegion clipped;
clipped.And(visible, clip.NonRoundedIntersection());
nsRegion finalClipped = clipped;
cdi->mItem->RecomputeVisibility(aBuilder, &finalClipped);
// If we have rounded clip rects, don't subtract from the visible
// region since we aren't displaying everything inside the rect.
if (clip.GetRoundedRectCount() == 0) {
nsRegion removed;
removed.Sub(clipped, finalClipped);
nsRegion newVisible;
newVisible.Sub(visible, removed);
// Don't let the visible region get too complex.
if (newVisible.GetNumRects() <= 15) {
visible = newVisible;
}
}
}
}
void
FrameLayerBuilder::PaintItems(nsTArray<ClippedDisplayItem>& aItems,
const nsIntRect& aRect,
gfxContext *aContext,
nsRenderingContext *aRC,
nsDisplayListBuilder* aBuilder,
nsPresContext* aPresContext,
const nsIntPoint& aOffset,
float aXScale, float aYScale,
int32_t aCommonClipCount)
{
DrawTarget& aDrawTarget = *aRC->GetDrawTarget();
int32_t appUnitsPerDevPixel = aPresContext->AppUnitsPerDevPixel();
nsRect boundRect = ToAppUnits(aRect, appUnitsPerDevPixel);
boundRect.MoveBy(NSIntPixelsToAppUnits(aOffset.x, appUnitsPerDevPixel),
NSIntPixelsToAppUnits(aOffset.y, appUnitsPerDevPixel));
boundRect.ScaleInverseRoundOut(aXScale, aYScale);
DisplayItemClip currentClip;
bool currentClipIsSetInContext = false;
DisplayItemClip tmpClip;
for (uint32_t i = 0; i < aItems.Length(); ++i) {
ClippedDisplayItem* cdi = &aItems[i];
nsRect paintRect = cdi->mItem->GetVisibleRect().Intersect(boundRect);
if (paintRect.IsEmpty())
continue;
#ifdef MOZ_DUMP_PAINTING
PROFILER_LABEL_PRINTF("DisplayList", "Draw",
js::ProfileEntry::Category::GRAPHICS, "%s", cdi->mItem->Name());
#else
PROFILER_LABEL("DisplayList", "Draw",
js::ProfileEntry::Category::GRAPHICS);
#endif
// If the new desired clip state is different from the current state,
// update the clip.
const DisplayItemClip* clip = &cdi->mItem->GetClip();
if (clip->GetRoundedRectCount() > 0 &&
!clip->IsRectClippedByRoundedCorner(cdi->mItem->GetVisibleRect())) {
tmpClip = *clip;
tmpClip.RemoveRoundedCorners();
clip = &tmpClip;
}
if (currentClipIsSetInContext != clip->HasClip() ||
(clip->HasClip() && *clip != currentClip)) {
if (currentClipIsSetInContext) {
aContext->Restore();
}
currentClipIsSetInContext = clip->HasClip();
if (currentClipIsSetInContext) {
currentClip = *clip;
aContext->Save();
NS_ASSERTION(aCommonClipCount < 100,
"Maybe you really do have more than a hundred clipping rounded rects, or maybe something has gone wrong.");
currentClip.ApplyTo(aContext, aPresContext, aCommonClipCount);
aContext->NewPath();
}
}
if (cdi->mInactiveLayerManager) {
bool saved = aDrawTarget.GetPermitSubpixelAA();
PaintInactiveLayer(aBuilder, cdi->mInactiveLayerManager, cdi->mItem, aContext, aRC);
aDrawTarget.SetPermitSubpixelAA(saved);
} else {
nsIFrame* frame = cdi->mItem->Frame();
frame->AddStateBits(NS_FRAME_PAINTED_THEBES);
#ifdef MOZ_DUMP_PAINTING
if (gfxUtils::sDumpPaintItems) {
DebugPaintItem(aDrawTarget, aPresContext, cdi->mItem, aBuilder);
} else {
#else
{
#endif
cdi->mItem->Paint(aBuilder, aRC);
}
}
if (CheckDOMModified())
break;
}
if (currentClipIsSetInContext) {
aContext->Restore();
}
}
/**
* Returns true if it is preferred to draw the list of display
* items separately for each rect in the visible region rather
* than clipping to a complex region.
*/
static bool ShouldDrawRectsSeparately(gfxContext* aContext, DrawRegionClip aClip)
{
if (!gfxPrefs::LayoutPaintRectsSeparately() ||
aClip == DrawRegionClip::NONE) {
return false;
}
DrawTarget *dt = aContext->GetDrawTarget();
return !dt->SupportsRegionClipping();
}
static void DrawForcedBackgroundColor(DrawTarget& aDrawTarget,
Layer* aLayer, nscolor
aBackgroundColor)
{
if (NS_GET_A(aBackgroundColor) > 0) {
nsIntRect r = aLayer->GetVisibleRegion().GetBounds();
ColorPattern color(ToDeviceColor(aBackgroundColor));
aDrawTarget.FillRect(Rect(r.x, r.y, r.width, r.height), color);
}
}
class LayerTimelineMarker : public TimelineMarker
{
public:
LayerTimelineMarker(nsDocShell* aDocShell, const nsIntRegion& aRegion)
: TimelineMarker(aDocShell, "Layer", TRACING_EVENT)
, mRegion(aRegion)
{
}
~LayerTimelineMarker()
{
}
virtual void AddLayerRectangles(mozilla::dom::Sequence<mozilla::dom::ProfileTimelineLayerRect>& aRectangles) override
{
nsIntRegionRectIterator it(mRegion);
while (const nsIntRect* iterRect = it.Next()) {
mozilla::dom::ProfileTimelineLayerRect rect;
rect.mX = iterRect->X();
rect.mY = iterRect->Y();
rect.mWidth = iterRect->Width();
rect.mHeight = iterRect->Height();
aRectangles.AppendElement(rect, fallible);
}
}
private:
nsIntRegion mRegion;
};
/*
* A note on residual transforms:
*
* In a transformed subtree we sometimes apply the PaintedLayer's
* "residual transform" when drawing content into the PaintedLayer.
* This is a translation by components in the range [-0.5,0.5) provided
* by the layer system; applying the residual transform followed by the
* transforms used by layer compositing ensures that the subpixel alignment
* of the content of the PaintedLayer exactly matches what it would be if
* we used cairo/Thebes to draw directly to the screen without going through
* retained layer buffers.
*
* The visible and valid regions of the PaintedLayer are computed without
* knowing the residual transform (because we don't know what the residual
* transform is going to be until we've built the layer tree!). So we have to
* consider whether content painted in the range [x, xmost) might be painted
* outside the visible region we computed for that content. The visible region
* would be [floor(x), ceil(xmost)). The content would be rendered at
* [x + r, xmost + r), where -0.5 <= r < 0.5. So some half-rendered pixels could
* indeed fall outside the computed visible region, which is not a big deal;
* similar issues already arise when we snap cliprects to nearest pixels.
* Note that if the rendering of the content is snapped to nearest pixels ---
* which it often is --- then the content is actually rendered at
* [snap(x + r), snap(xmost + r)). It turns out that floor(x) <= snap(x + r)
* and ceil(xmost) >= snap(xmost + r), so the rendering of snapped content
* always falls within the visible region we computed.
*/
/* static */ void
FrameLayerBuilder::DrawPaintedLayer(PaintedLayer* aLayer,
gfxContext* aContext,
const nsIntRegion& aRegionToDraw,
DrawRegionClip aClip,
const nsIntRegion& aRegionToInvalidate,
void* aCallbackData)
{
DrawTarget& aDrawTarget = *aContext->GetDrawTarget();
PROFILER_LABEL("FrameLayerBuilder", "DrawPaintedLayer",
js::ProfileEntry::Category::GRAPHICS);
nsDisplayListBuilder* builder = static_cast<nsDisplayListBuilder*>
(aCallbackData);
FrameLayerBuilder *layerBuilder = aLayer->Manager()->GetLayerBuilder();
NS_ASSERTION(layerBuilder, "Unexpectedly null layer builder!");
if (layerBuilder->CheckDOMModified())
return;
PaintedLayerItemsEntry* entry = layerBuilder->mPaintedLayerItems.GetEntry(aLayer);
NS_ASSERTION(entry, "We shouldn't be drawing into a layer with no items!");
if (!entry->mContainerLayerFrame) {
return;
}
PaintedDisplayItemLayerUserData* userData =
static_cast<PaintedDisplayItemLayerUserData*>
(aLayer->GetUserData(&gPaintedDisplayItemLayerUserData));
NS_ASSERTION(userData, "where did our user data go?");
bool shouldDrawRectsSeparately = ShouldDrawRectsSeparately(aContext, aClip);
if (!shouldDrawRectsSeparately) {
if (aClip == DrawRegionClip::DRAW) {
gfxUtils::ClipToRegion(aContext, aRegionToDraw);
}
DrawForcedBackgroundColor(aDrawTarget, aLayer,
userData->mForcedBackgroundColor);
}
if (NS_GET_A(userData->mFontSmoothingBackgroundColor) > 0) {
aContext->SetFontSmoothingBackgroundColor(
Color::FromABGR(userData->mFontSmoothingBackgroundColor));
}
// make the origin of the context coincide with the origin of the
// PaintedLayer
gfxContextMatrixAutoSaveRestore saveMatrix(aContext);
nsIntPoint offset = GetTranslationForPaintedLayer(aLayer);
nsPresContext* presContext = entry->mContainerLayerFrame->PresContext();
if (!layerBuilder->GetContainingPaintedLayerData()) {
// Recompute visibility of items in our PaintedLayer. Note that this
// recomputes visibility for all descendants of our display items too,
// so there's no need to do this for the items in inactive PaintedLayers.
int32_t appUnitsPerDevPixel = presContext->AppUnitsPerDevPixel();
RecomputeVisibilityForItems(entry->mItems, builder, aRegionToDraw,
offset, appUnitsPerDevPixel,
userData->mXScale, userData->mYScale);
}
nsRenderingContext rc(aContext);
if (shouldDrawRectsSeparately) {
nsIntRegionRectIterator it(aRegionToDraw);
while (const nsIntRect* iterRect = it.Next()) {
gfxContextAutoSaveRestore save(aContext);
aContext->NewPath();
aContext->Rectangle(*iterRect);
aContext->Clip();
DrawForcedBackgroundColor(aDrawTarget, aLayer,
userData->mForcedBackgroundColor);
// Apply the residual transform if it has been enabled, to ensure that
// snapping when we draw into aContext exactly matches the ideal transform.
// See above for why this is OK.
aContext->SetMatrix(
aContext->CurrentMatrix().Translate(aLayer->GetResidualTranslation() - gfxPoint(offset.x, offset.y)).
Scale(userData->mXScale, userData->mYScale));
layerBuilder->PaintItems(entry->mItems, *iterRect, aContext, &rc,
builder, presContext,
offset, userData->mXScale, userData->mYScale,
entry->mCommonClipCount);
}
} else {
// Apply the residual transform if it has been enabled, to ensure that
// snapping when we draw into aContext exactly matches the ideal transform.
// See above for why this is OK.
aContext->SetMatrix(
aContext->CurrentMatrix().Translate(aLayer->GetResidualTranslation() - gfxPoint(offset.x, offset.y)).
Scale(userData->mXScale,userData->mYScale));
layerBuilder->PaintItems(entry->mItems, aRegionToDraw.GetBounds(), aContext, &rc,
builder, presContext,
offset, userData->mXScale, userData->mYScale,
entry->mCommonClipCount);
}
aContext->SetFontSmoothingBackgroundColor(Color());
bool isActiveLayerManager = !aLayer->Manager()->IsInactiveLayerManager();
if (presContext->GetPaintFlashing() && isActiveLayerManager) {
gfxContextAutoSaveRestore save(aContext);
if (shouldDrawRectsSeparately) {
if (aClip == DrawRegionClip::DRAW) {
gfxUtils::ClipToRegion(aContext, aRegionToDraw);
}
}
FlashPaint(aContext);
}
if (presContext && presContext->GetDocShell() && isActiveLayerManager) {
nsDocShell* docShell = static_cast<nsDocShell*>(presContext->GetDocShell());
bool isRecording;
docShell->GetRecordProfileTimelineMarkers(&isRecording);
if (isRecording) {
mozilla::UniquePtr<TimelineMarker> marker =
MakeUnique<LayerTimelineMarker>(docShell, aRegionToDraw);
docShell->AddProfileTimelineMarker(Move(marker));
}
}
if (!aRegionToInvalidate.IsEmpty()) {
aLayer->AddInvalidRect(aRegionToInvalidate.GetBounds());
}
}
bool
FrameLayerBuilder::CheckDOMModified()
{
if (!mRootPresContext ||
mInitialDOMGeneration == mRootPresContext->GetDOMGeneration())
return false;
if (mDetectedDOMModification) {
// Don't spam the console with extra warnings
return true;
}
mDetectedDOMModification = true;
// Painting is not going to complete properly. There's not much
// we can do here though. Invalidating the window to get another repaint
// is likely to lead to an infinite repaint loop.
NS_WARNING("Detected DOM modification during paint, bailing out!");
return true;
}
/* static */ void
FrameLayerBuilder::DumpRetainedLayerTree(LayerManager* aManager, std::stringstream& aStream, bool aDumpHtml)
{
aManager->Dump(aStream, "", aDumpHtml);
}
nsDisplayItemGeometry*
FrameLayerBuilder::GetMostRecentGeometry(nsDisplayItem* aItem)
{
typedef nsTArray<DisplayItemData*> DataArray;
// Retrieve the array of DisplayItemData associated with our frame.
FrameProperties properties = aItem->Frame()->Properties();
const DataArray* dataArray =
static_cast<DataArray*>(properties.Get(LayerManagerDataProperty()));
if (!dataArray) {
return nullptr;
}
// Find our display item data, if it exists, and return its geometry.
uint32_t itemPerFrameKey = aItem->GetPerFrameKey();
for (uint32_t i = 0; i < dataArray->Length(); i++) {
DisplayItemData* data = AssertDisplayItemData(dataArray->ElementAt(i));
if (data->GetDisplayItemKey() == itemPerFrameKey) {
return data->GetGeometry();
}
}
return nullptr;
}
gfx::Rect
CalculateBounds(const nsTArray<DisplayItemClip::RoundedRect>& aRects, int32_t A2D)
{
nsRect bounds = aRects[0].mRect;
for (uint32_t i = 1; i < aRects.Length(); ++i) {
bounds.UnionRect(bounds, aRects[i].mRect);
}
return gfx::ToRect(nsLayoutUtils::RectToGfxRect(bounds, A2D));
}
static void
SetClipCount(PaintedDisplayItemLayerUserData* apaintedData,
uint32_t aClipCount)
{
if (apaintedData) {
apaintedData->mMaskClipCount = aClipCount;
}
}
void
ContainerState::SetupMaskLayer(Layer *aLayer,
const DisplayItemClip& aClip,
const nsIntRegion& aLayerVisibleRegion,
uint32_t aRoundedRectClipCount)
{
// if the number of clips we are going to mask has decreased, then aLayer might have
// cached graphics which assume the existence of a soon-to-be non-existent mask layer
// in that case, invalidate the whole layer.
PaintedDisplayItemLayerUserData* paintedData = GetPaintedDisplayItemLayerUserData(aLayer);
if (paintedData &&
aRoundedRectClipCount < paintedData->mMaskClipCount) {
PaintedLayer* painted = aLayer->AsPaintedLayer();
painted->InvalidateRegion(painted->GetValidRegion().GetBounds());
}
// don't build an unnecessary mask
nsIntRect layerBounds = aLayerVisibleRegion.GetBounds();
if (aClip.GetRoundedRectCount() == 0 ||
aRoundedRectClipCount == 0 ||
layerBounds.IsEmpty()) {
SetClipCount(paintedData, 0);
return;
}
// check if we can re-use the mask layer
nsRefPtr<ImageLayer> maskLayer = CreateOrRecycleMaskImageLayerFor(aLayer);
MaskLayerUserData* userData = GetMaskLayerUserData(maskLayer);
MaskLayerUserData newData;
aClip.AppendRoundedRects(&newData.mRoundedClipRects, aRoundedRectClipCount);
newData.mScaleX = mParameters.mXScale;
newData.mScaleY = mParameters.mYScale;
newData.mOffset = mParameters.mOffset;
newData.mAppUnitsPerDevPixel = mContainerFrame->PresContext()->AppUnitsPerDevPixel();
if (*userData == newData) {
aLayer->SetMaskLayer(maskLayer);
SetClipCount(paintedData, aRoundedRectClipCount);
return;
}
// calculate a more precise bounding rect
gfx::Rect boundingRect = CalculateBounds(newData.mRoundedClipRects,
newData.mAppUnitsPerDevPixel);
boundingRect.Scale(mParameters.mXScale, mParameters.mYScale);
uint32_t maxSize = mManager->GetMaxTextureSize();
NS_ASSERTION(maxSize > 0, "Invalid max texture size");
gfx::Size surfaceSize(std::min<gfx::Float>(boundingRect.Width(), maxSize),
std::min<gfx::Float>(boundingRect.Height(), maxSize));
// maskTransform is applied to the clip when it is painted into the mask (as a
// component of imageTransform), and its inverse used when the mask is used for
// masking.
// It is the transform from the masked layer's space to mask space
gfx::Matrix maskTransform =
Matrix::Scaling(surfaceSize.width / boundingRect.Width(),
surfaceSize.height / boundingRect.Height());
gfx::Point p = boundingRect.TopLeft();
maskTransform.PreTranslate(-p.x, -p.y);
// imageTransform is only used when the clip is painted to the mask
gfx::Matrix imageTransform = maskTransform;
imageTransform.PreScale(mParameters.mXScale, mParameters.mYScale);
nsAutoPtr<MaskLayerImageCache::MaskLayerImageKey> newKey(
new MaskLayerImageCache::MaskLayerImageKey());
// copy and transform the rounded rects
for (uint32_t i = 0; i < newData.mRoundedClipRects.Length(); ++i) {
newKey->mRoundedClipRects.AppendElement(
MaskLayerImageCache::PixelRoundedRect(newData.mRoundedClipRects[i],
mContainerFrame->PresContext()));
newKey->mRoundedClipRects[i].ScaleAndTranslate(imageTransform);
}
const MaskLayerImageCache::MaskLayerImageKey* lookupKey = newKey;
// check to see if we can reuse a mask image
nsRefPtr<ImageContainer> container =
GetMaskLayerImageCache()->FindImageFor(&lookupKey);
if (!container) {
IntSize surfaceSizeInt(NSToIntCeil(surfaceSize.width),
NSToIntCeil(surfaceSize.height));
// no existing mask image, so build a new one
RefPtr<DrawTarget> dt =
aLayer->Manager()->CreateOptimalMaskDrawTarget(surfaceSizeInt);
// fail if we can't get the right surface
if (!dt) {
NS_WARNING("Could not create DrawTarget for mask layer.");
SetClipCount(paintedData, 0);
return;
}
nsRefPtr<gfxContext> context = new gfxContext(dt);
context->Multiply(ThebesMatrix(imageTransform));
// paint the clipping rects with alpha to create the mask
aClip.FillIntersectionOfRoundedRectClips(context,
Color(1.f, 1.f, 1.f, 1.f),
newData.mAppUnitsPerDevPixel,
0,
aRoundedRectClipCount);
RefPtr<SourceSurface> surface = dt->Snapshot();
// build the image and container
container = aLayer->Manager()->CreateImageContainer();
NS_ASSERTION(container, "Could not create image container for mask layer.");
nsRefPtr<Image> image = container->CreateImage(ImageFormat::CAIRO_SURFACE);
NS_ASSERTION(image, "Could not create image container for mask layer.");
CairoImage::Data data;
data.mSize = surfaceSizeInt;
data.mSourceSurface = surface;
static_cast<CairoImage*>(image.get())->SetData(data);
container->SetCurrentImageInTransaction(image);
GetMaskLayerImageCache()->PutImage(newKey.forget(), container);
}
maskLayer->SetContainer(container);
maskTransform.Invert();
Matrix4x4 matrix = Matrix4x4::From2D(maskTransform);
matrix.PreTranslate(mParameters.mOffset.x, mParameters.mOffset.y, 0);
maskLayer->SetBaseTransform(matrix);
// save the details of the clip in user data
userData->mScaleX = newData.mScaleX;
userData->mScaleY = newData.mScaleY;
userData->mOffset = newData.mOffset;
userData->mAppUnitsPerDevPixel = newData.mAppUnitsPerDevPixel;
userData->mRoundedClipRects.SwapElements(newData.mRoundedClipRects);
userData->mImageKey = lookupKey;
aLayer->SetMaskLayer(maskLayer);
SetClipCount(paintedData, aRoundedRectClipCount);
return;
}
} // namespace mozilla