mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
416 lines
12 KiB
C++
416 lines
12 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifndef NSCOORD_H
|
|
#define NSCOORD_H
|
|
|
|
#include "nsAlgorithm.h"
|
|
#include "nscore.h"
|
|
#include "nsMathUtils.h"
|
|
#include <math.h>
|
|
#include <float.h>
|
|
|
|
#include "nsDebug.h"
|
|
#include <algorithm>
|
|
|
|
/*
|
|
* Basic type used for the geometry classes.
|
|
*
|
|
* Normally all coordinates are maintained in an app unit coordinate
|
|
* space. An app unit is 1/60th of a CSS device pixel, which is, in turn
|
|
* an integer number of device pixels, such at the CSS DPI is as close to
|
|
* 96dpi as possible.
|
|
*/
|
|
|
|
// This controls whether we're using integers or floats for coordinates. We
|
|
// want to eventually use floats.
|
|
//#define NS_COORD_IS_FLOAT
|
|
|
|
inline float NS_IEEEPositiveInfinity() {
|
|
union { uint32_t mPRUint32; float mFloat; } pun;
|
|
pun.mPRUint32 = 0x7F800000;
|
|
return pun.mFloat;
|
|
}
|
|
inline bool NS_IEEEIsNan(float aF) {
|
|
union { uint32_t mBits; float mFloat; } pun;
|
|
pun.mFloat = aF;
|
|
return (pun.mBits & 0x7F800000) == 0x7F800000 &&
|
|
(pun.mBits & 0x007FFFFF) != 0;
|
|
}
|
|
|
|
#ifdef NS_COORD_IS_FLOAT
|
|
typedef float nscoord;
|
|
#define nscoord_MAX NS_IEEEPositiveInfinity()
|
|
#else
|
|
typedef int32_t nscoord;
|
|
#define nscoord_MAX nscoord(1 << 30)
|
|
#endif
|
|
|
|
#define nscoord_MIN (-nscoord_MAX)
|
|
|
|
inline void VERIFY_COORD(nscoord aCoord) {
|
|
#ifdef NS_COORD_IS_FLOAT
|
|
NS_ASSERTION(floorf(aCoord) == aCoord,
|
|
"Coords cannot have fractions");
|
|
#endif
|
|
}
|
|
|
|
inline nscoord NSToCoordRound(float aValue)
|
|
{
|
|
#if defined(XP_WIN32) && defined(_M_IX86) && !defined(__GNUC__)
|
|
return NS_lroundup30(aValue);
|
|
#else
|
|
return nscoord(floorf(aValue + 0.5f));
|
|
#endif /* XP_WIN32 && _M_IX86 && !__GNUC__ */
|
|
}
|
|
|
|
inline nscoord NSToCoordRound(double aValue)
|
|
{
|
|
#if defined(XP_WIN32) && defined(_M_IX86) && !defined(__GNUC__)
|
|
return NS_lroundup30((float)aValue);
|
|
#else
|
|
return nscoord(floor(aValue + 0.5f));
|
|
#endif /* XP_WIN32 && _M_IX86 && !__GNUC__ */
|
|
}
|
|
|
|
inline nscoord NSToCoordRoundWithClamp(float aValue)
|
|
{
|
|
#ifndef NS_COORD_IS_FLOAT
|
|
// Bounds-check before converting out of float, to avoid overflow
|
|
NS_WARN_IF_FALSE(aValue <= nscoord_MAX,
|
|
"Overflowed nscoord_MAX in conversion to nscoord");
|
|
if (aValue >= nscoord_MAX) {
|
|
return nscoord_MAX;
|
|
}
|
|
NS_WARN_IF_FALSE(aValue >= nscoord_MIN,
|
|
"Overflowed nscoord_MIN in conversion to nscoord");
|
|
if (aValue <= nscoord_MIN) {
|
|
return nscoord_MIN;
|
|
}
|
|
#endif
|
|
return NSToCoordRound(aValue);
|
|
}
|
|
|
|
/**
|
|
* Returns aCoord * aScale, capping the product to nscoord_MAX or nscoord_MIN as
|
|
* appropriate for the signs of aCoord and aScale. If requireNotNegative is
|
|
* true, this method will enforce that aScale is not negative; use that
|
|
* parametrization to get a check of that fact in debug builds.
|
|
*/
|
|
inline nscoord _nscoordSaturatingMultiply(nscoord aCoord, float aScale,
|
|
bool requireNotNegative) {
|
|
VERIFY_COORD(aCoord);
|
|
if (requireNotNegative) {
|
|
NS_ABORT_IF_FALSE(aScale >= 0.0f,
|
|
"negative scaling factors must be handled manually");
|
|
}
|
|
#ifdef NS_COORD_IS_FLOAT
|
|
return floorf(aCoord * aScale);
|
|
#else
|
|
// This one's only a warning because it may be possible to trigger it with
|
|
// valid inputs.
|
|
NS_WARN_IF_FALSE((requireNotNegative
|
|
? aCoord > 0
|
|
: (aCoord > 0) == (aScale > 0))
|
|
? floorf(aCoord * aScale) < nscoord_MAX
|
|
: ceilf(aCoord * aScale) > nscoord_MIN,
|
|
"nscoord multiplication capped");
|
|
|
|
float product = aCoord * aScale;
|
|
if (requireNotNegative ? aCoord > 0 : (aCoord > 0) == (aScale > 0))
|
|
return NSToCoordRoundWithClamp(std::min<float>(nscoord_MAX, product));
|
|
return NSToCoordRoundWithClamp(std::max<float>(nscoord_MIN, product));
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Returns aCoord * aScale, capping the product to nscoord_MAX or nscoord_MIN as
|
|
* appropriate for the sign of aCoord. This method requires aScale to not be
|
|
* negative; use this method when you know that aScale should never be
|
|
* negative to get a sanity check of that invariant in debug builds.
|
|
*/
|
|
inline nscoord NSCoordSaturatingNonnegativeMultiply(nscoord aCoord, float aScale) {
|
|
return _nscoordSaturatingMultiply(aCoord, aScale, true);
|
|
}
|
|
|
|
/**
|
|
* Returns aCoord * aScale, capping the product to nscoord_MAX or nscoord_MIN as
|
|
* appropriate for the signs of aCoord and aScale.
|
|
*/
|
|
inline nscoord NSCoordSaturatingMultiply(nscoord aCoord, float aScale) {
|
|
return _nscoordSaturatingMultiply(aCoord, aScale, false);
|
|
}
|
|
|
|
/**
|
|
* Returns a + b, capping the sum to nscoord_MAX.
|
|
*
|
|
* This function assumes that neither argument is nscoord_MIN.
|
|
*
|
|
* Note: If/when we start using floats for nscoords, this function won't be as
|
|
* necessary. Normal float addition correctly handles adding with infinity,
|
|
* assuming we aren't adding nscoord_MIN. (-infinity)
|
|
*/
|
|
inline nscoord
|
|
NSCoordSaturatingAdd(nscoord a, nscoord b)
|
|
{
|
|
VERIFY_COORD(a);
|
|
VERIFY_COORD(b);
|
|
NS_ASSERTION(a != nscoord_MIN && b != nscoord_MIN,
|
|
"NSCoordSaturatingAdd got nscoord_MIN as argument");
|
|
|
|
#ifdef NS_COORD_IS_FLOAT
|
|
// Float math correctly handles a+b, given that neither is -infinity.
|
|
return a + b;
|
|
#else
|
|
if (a == nscoord_MAX || b == nscoord_MAX) {
|
|
// infinity + anything = anything + infinity = infinity
|
|
return nscoord_MAX;
|
|
} else {
|
|
// a + b = a + b
|
|
NS_ASSERTION(a < nscoord_MAX && b < nscoord_MAX,
|
|
"Doing nscoord addition with values > nscoord_MAX");
|
|
NS_ASSERTION((int64_t)a + (int64_t)b > (int64_t)nscoord_MIN,
|
|
"nscoord addition will reach or pass nscoord_MIN");
|
|
// This one's only a warning because the std::min below means that
|
|
// we'll handle this case correctly.
|
|
NS_WARN_IF_FALSE((int64_t)a + (int64_t)b < (int64_t)nscoord_MAX,
|
|
"nscoord addition capped to nscoord_MAX");
|
|
|
|
// Cap the result, just in case we're dealing with numbers near nscoord_MAX
|
|
return std::min(nscoord_MAX, a + b);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Returns a - b, gracefully handling cases involving nscoord_MAX.
|
|
* This function assumes that neither argument is nscoord_MIN.
|
|
*
|
|
* The behavior is as follows:
|
|
*
|
|
* a) infinity - infinity -> infMinusInfResult
|
|
* b) N - infinity -> 0 (unexpected -- triggers NOTREACHED)
|
|
* c) infinity - N -> infinity
|
|
* d) N1 - N2 -> N1 - N2
|
|
*
|
|
* Note: For float nscoords, cases (c) and (d) are handled by normal float
|
|
* math. We still need to explicitly specify the behavior for cases (a)
|
|
* and (b), though. (Under normal float math, those cases would return NaN
|
|
* and -infinity, respectively.)
|
|
*/
|
|
inline nscoord
|
|
NSCoordSaturatingSubtract(nscoord a, nscoord b,
|
|
nscoord infMinusInfResult)
|
|
{
|
|
VERIFY_COORD(a);
|
|
VERIFY_COORD(b);
|
|
NS_ASSERTION(a != nscoord_MIN && b != nscoord_MIN,
|
|
"NSCoordSaturatingSubtract got nscoord_MIN as argument");
|
|
|
|
if (b == nscoord_MAX) {
|
|
if (a == nscoord_MAX) {
|
|
// case (a)
|
|
return infMinusInfResult;
|
|
} else {
|
|
// case (b)
|
|
NS_NOTREACHED("Attempted to subtract [n - nscoord_MAX]");
|
|
return 0;
|
|
}
|
|
} else {
|
|
#ifdef NS_COORD_IS_FLOAT
|
|
// case (c) and (d) for floats. (float math handles both)
|
|
return a - b;
|
|
#else
|
|
if (a == nscoord_MAX) {
|
|
// case (c) for integers
|
|
return nscoord_MAX;
|
|
} else {
|
|
// case (d) for integers
|
|
NS_ASSERTION(a < nscoord_MAX && b < nscoord_MAX,
|
|
"Doing nscoord subtraction with values > nscoord_MAX");
|
|
NS_ASSERTION((int64_t)a - (int64_t)b > (int64_t)nscoord_MIN,
|
|
"nscoord subtraction will reach or pass nscoord_MIN");
|
|
// This one's only a warning because the std::min below means that
|
|
// we'll handle this case correctly.
|
|
NS_WARN_IF_FALSE((int64_t)a - (int64_t)b < (int64_t)nscoord_MAX,
|
|
"nscoord subtraction capped to nscoord_MAX");
|
|
|
|
// Cap the result, in case we're dealing with numbers near nscoord_MAX
|
|
return std::min(nscoord_MAX, a - b);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
inline float NSCoordToFloat(nscoord aCoord) {
|
|
VERIFY_COORD(aCoord);
|
|
#ifdef NS_COORD_IS_FLOAT
|
|
NS_ASSERTION(!NS_IEEEIsNan(aCoord), "NaN encountered in float conversion");
|
|
#endif
|
|
return (float)aCoord;
|
|
}
|
|
|
|
/*
|
|
* Coord Rounding Functions
|
|
*/
|
|
inline nscoord NSToCoordFloor(float aValue)
|
|
{
|
|
return nscoord(floorf(aValue));
|
|
}
|
|
|
|
inline nscoord NSToCoordFloor(double aValue)
|
|
{
|
|
return nscoord(floor(aValue));
|
|
}
|
|
|
|
inline nscoord NSToCoordFloorClamped(float aValue)
|
|
{
|
|
#ifndef NS_COORD_IS_FLOAT
|
|
// Bounds-check before converting out of float, to avoid overflow
|
|
NS_WARN_IF_FALSE(aValue <= nscoord_MAX,
|
|
"Overflowed nscoord_MAX in conversion to nscoord");
|
|
if (aValue >= nscoord_MAX) {
|
|
return nscoord_MAX;
|
|
}
|
|
NS_WARN_IF_FALSE(aValue >= nscoord_MIN,
|
|
"Overflowed nscoord_MIN in conversion to nscoord");
|
|
if (aValue <= nscoord_MIN) {
|
|
return nscoord_MIN;
|
|
}
|
|
#endif
|
|
return NSToCoordFloor(aValue);
|
|
}
|
|
|
|
inline nscoord NSToCoordCeil(float aValue)
|
|
{
|
|
return nscoord(ceilf(aValue));
|
|
}
|
|
|
|
inline nscoord NSToCoordCeil(double aValue)
|
|
{
|
|
return nscoord(ceil(aValue));
|
|
}
|
|
|
|
inline nscoord NSToCoordCeilClamped(double aValue)
|
|
{
|
|
#ifndef NS_COORD_IS_FLOAT
|
|
// Bounds-check before converting out of double, to avoid overflow
|
|
NS_WARN_IF_FALSE(aValue <= nscoord_MAX,
|
|
"Overflowed nscoord_MAX in conversion to nscoord");
|
|
if (aValue >= nscoord_MAX) {
|
|
return nscoord_MAX;
|
|
}
|
|
NS_WARN_IF_FALSE(aValue >= nscoord_MIN,
|
|
"Overflowed nscoord_MIN in conversion to nscoord");
|
|
if (aValue <= nscoord_MIN) {
|
|
return nscoord_MIN;
|
|
}
|
|
#endif
|
|
return NSToCoordCeil(aValue);
|
|
}
|
|
|
|
/*
|
|
* Int Rounding Functions
|
|
*/
|
|
inline int32_t NSToIntFloor(float aValue)
|
|
{
|
|
return int32_t(floorf(aValue));
|
|
}
|
|
|
|
inline int32_t NSToIntCeil(float aValue)
|
|
{
|
|
return int32_t(ceilf(aValue));
|
|
}
|
|
|
|
inline int32_t NSToIntRound(float aValue)
|
|
{
|
|
return NS_lroundf(aValue);
|
|
}
|
|
|
|
inline int32_t NSToIntRound(double aValue)
|
|
{
|
|
return NS_lround(aValue);
|
|
}
|
|
|
|
inline int32_t NSToIntRoundUp(double aValue)
|
|
{
|
|
return int32_t(floor(aValue + 0.5));
|
|
}
|
|
|
|
/*
|
|
* App Unit/Pixel conversions
|
|
*/
|
|
inline nscoord NSFloatPixelsToAppUnits(float aPixels, float aAppUnitsPerPixel)
|
|
{
|
|
return NSToCoordRoundWithClamp(aPixels * aAppUnitsPerPixel);
|
|
}
|
|
|
|
inline nscoord NSIntPixelsToAppUnits(int32_t aPixels, int32_t aAppUnitsPerPixel)
|
|
{
|
|
// The cast to nscoord makes sure we don't overflow if we ever change
|
|
// nscoord to float
|
|
nscoord r = aPixels * (nscoord)aAppUnitsPerPixel;
|
|
VERIFY_COORD(r);
|
|
return r;
|
|
}
|
|
|
|
inline float NSAppUnitsToFloatPixels(nscoord aAppUnits, float aAppUnitsPerPixel)
|
|
{
|
|
return (float(aAppUnits) / aAppUnitsPerPixel);
|
|
}
|
|
|
|
inline double NSAppUnitsToDoublePixels(nscoord aAppUnits, double aAppUnitsPerPixel)
|
|
{
|
|
return (double(aAppUnits) / aAppUnitsPerPixel);
|
|
}
|
|
|
|
inline int32_t NSAppUnitsToIntPixels(nscoord aAppUnits, float aAppUnitsPerPixel)
|
|
{
|
|
return NSToIntRound(float(aAppUnits) / aAppUnitsPerPixel);
|
|
}
|
|
|
|
inline float NSCoordScale(nscoord aCoord, int32_t aFromAPP, int32_t aToAPP)
|
|
{
|
|
return (NSCoordToFloat(aCoord) * aToAPP) / aFromAPP;
|
|
}
|
|
|
|
/// handy constants
|
|
#define TWIPS_PER_POINT_INT 20
|
|
#define TWIPS_PER_POINT_FLOAT 20.0f
|
|
#define POINTS_PER_INCH_INT 72
|
|
#define POINTS_PER_INCH_FLOAT 72.0f
|
|
#define CM_PER_INCH_FLOAT 2.54f
|
|
#define MM_PER_INCH_FLOAT 25.4f
|
|
|
|
/*
|
|
* Twips/unit conversions
|
|
*/
|
|
inline float NSUnitsToTwips(float aValue, float aPointsPerUnit)
|
|
{
|
|
return aValue * aPointsPerUnit * TWIPS_PER_POINT_FLOAT;
|
|
}
|
|
|
|
inline float NSTwipsToUnits(float aTwips, float aUnitsPerPoint)
|
|
{
|
|
return (aTwips * (aUnitsPerPoint / TWIPS_PER_POINT_FLOAT));
|
|
}
|
|
|
|
/// Unit conversion macros
|
|
//@{
|
|
#define NS_POINTS_TO_TWIPS(x) NSUnitsToTwips((x), 1.0f)
|
|
#define NS_INCHES_TO_TWIPS(x) NSUnitsToTwips((x), POINTS_PER_INCH_FLOAT) // 72 points per inch
|
|
|
|
#define NS_MILLIMETERS_TO_TWIPS(x) NSUnitsToTwips((x), (POINTS_PER_INCH_FLOAT * 0.03937f))
|
|
|
|
#define NS_POINTS_TO_INT_TWIPS(x) NSToIntRound(NS_POINTS_TO_TWIPS(x))
|
|
#define NS_INCHES_TO_INT_TWIPS(x) NSToIntRound(NS_INCHES_TO_TWIPS(x))
|
|
|
|
#define NS_TWIPS_TO_INCHES(x) NSTwipsToUnits((x), 1.0f / POINTS_PER_INCH_FLOAT)
|
|
|
|
#define NS_TWIPS_TO_MILLIMETERS(x) NSTwipsToUnits((x), 1.0f / (POINTS_PER_INCH_FLOAT * 0.03937f))
|
|
//@}
|
|
|
|
#endif /* NSCOORD_H */
|