gecko/dom/system/gonk/ril_worker.js

9473 lines
294 KiB
JavaScript

/* Copyright 2012 Mozilla Foundation and Mozilla contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* This file implements the RIL worker thread. It communicates with
* the main thread to provide a high-level API to the phone's RIL
* stack, and with the RIL IPC thread to communicate with the RIL
* device itself. These communication channels use message events as
* known from Web Workers:
*
* - postMessage()/"message" events for main thread communication
*
* - postRILMessage()/"RILMessageEvent" events for RIL IPC thread
* communication.
*
* The two main objects in this file represent individual parts of this
* communication chain:
*
* - RILMessageEvent -> Buf -> RIL -> postMessage() -> nsIRadioInterfaceLayer
* - nsIRadioInterfaceLayer -> postMessage() -> RIL -> Buf -> postRILMessage()
*
* Note: The code below is purposely lean on abstractions to be as lean in
* terms of object allocations. As a result, it may look more like C than
* JavaScript, and that's intended.
*/
"use strict";
importScripts("ril_consts.js", "systemlibs.js");
// set to true in ril_consts.js to see debug messages
let DEBUG = DEBUG_WORKER;
const INT32_MAX = 2147483647;
const UINT8_SIZE = 1;
const UINT16_SIZE = 2;
const UINT32_SIZE = 4;
const PARCEL_SIZE_SIZE = UINT32_SIZE;
const PDU_HEX_OCTET_SIZE = 4;
const TLV_COMMAND_DETAILS_SIZE = 5;
const TLV_DEVICE_ID_SIZE = 4;
const TLV_RESULT_SIZE = 3;
const TLV_ITEM_ID_SIZE = 3;
const TLV_HELP_REQUESTED_SIZE = 2;
const TLV_EVENT_LIST_SIZE = 3;
const TLV_LOCATION_STATUS_SIZE = 3;
const TLV_LOCATION_INFO_GSM_SIZE = 9;
const TLV_LOCATION_INFO_UMTS_SIZE = 11;
const TLV_IMEI_SIZE = 10;
const TLV_DATE_TIME_ZONE_SIZE = 9;
const TLV_LANGUAGE_SIZE = 4;
const TLV_TIMER_IDENTIFIER = 3;
const TLV_TIMER_VALUE = 5;
const DEFAULT_EMERGENCY_NUMBERS = ["112", "911"];
// MMI match groups
const MMI_MATCH_GROUP_FULL_MMI = 1;
const MMI_MATCH_GROUP_MMI_PROCEDURE = 2;
const MMI_MATCH_GROUP_SERVICE_CODE = 3;
const MMI_MATCH_GROUP_SIA = 5;
const MMI_MATCH_GROUP_SIB = 7;
const MMI_MATCH_GROUP_SIC = 9;
const MMI_MATCH_GROUP_PWD_CONFIRM = 11;
const MMI_MATCH_GROUP_DIALING_NUMBER = 12;
const MMI_MAX_LENGTH_SHORT_CODE = 2;
const MMI_END_OF_USSD = "#";
let RILQUIRKS_CALLSTATE_EXTRA_UINT32 = libcutils.property_get("ro.moz.ril.callstate_extra_int");
// This may change at runtime since in RIL v6 and later, we get the version
// number via the UNSOLICITED_RIL_CONNECTED parcel.
let RILQUIRKS_V5_LEGACY = libcutils.property_get("ro.moz.ril.v5_legacy");
let RILQUIRKS_REQUEST_USE_DIAL_EMERGENCY_CALL = libcutils.property_get("ro.moz.ril.dial_emergency_call");
let RILQUIRKS_MODEM_DEFAULTS_TO_EMERGENCY_MODE = libcutils.property_get("ro.moz.ril.emergency_by_default");
let RILQUIRKS_SIM_APP_STATE_EXTRA_FIELDS = libcutils.property_get("ro.moz.ril.simstate_extra_field");
// Marker object.
let PENDING_NETWORK_TYPE = {};
/**
* This object contains helpers buffering incoming data & deconstructing it
* into parcels as well as buffering outgoing data & constructing parcels.
* For that it maintains two buffers and corresponding uint8 views, indexes.
*
* The incoming buffer is a circular buffer where we store incoming data.
* As soon as a complete parcel is received, it is processed right away, so
* the buffer only needs to be large enough to hold one parcel.
*
* The outgoing buffer is to prepare outgoing parcels. The index is reset
* every time a parcel is sent.
*/
let Buf = {
INCOMING_BUFFER_LENGTH: 1024,
OUTGOING_BUFFER_LENGTH: 1024,
init: function init() {
this.incomingBuffer = new ArrayBuffer(this.INCOMING_BUFFER_LENGTH);
this.outgoingBuffer = new ArrayBuffer(this.OUTGOING_BUFFER_LENGTH);
this.incomingBytes = new Uint8Array(this.incomingBuffer);
this.outgoingBytes = new Uint8Array(this.outgoingBuffer);
// Track where incoming data is read from and written to.
this.incomingWriteIndex = 0;
this.incomingReadIndex = 0;
// Leave room for the parcel size for outgoing parcels.
this.outgoingIndex = PARCEL_SIZE_SIZE;
// How many bytes we've read for this parcel so far.
this.readIncoming = 0;
// How many bytes available as parcel data.
this.readAvailable = 0;
// Size of the incoming parcel. If this is zero, we're expecting a new
// parcel.
this.currentParcelSize = 0;
// This gets incremented each time we send out a parcel.
this.token = 1;
// Maps tokens we send out with requests to the request type, so that
// when we get a response parcel back, we know what request it was for.
this.tokenRequestMap = {};
// This is the token of last solicited response.
this.lastSolicitedToken = 0;
},
/**
* Grow the incoming buffer.
*
* @param min_size
* Minimum new size. The actual new size will be the the smallest
* power of 2 that's larger than this number.
*/
growIncomingBuffer: function growIncomingBuffer(min_size) {
if (DEBUG) {
debug("Current buffer of " + this.INCOMING_BUFFER_LENGTH +
" can't handle incoming " + min_size + " bytes.");
}
let oldBytes = this.incomingBytes;
this.INCOMING_BUFFER_LENGTH =
2 << Math.floor(Math.log(min_size)/Math.log(2));
if (DEBUG) debug("New incoming buffer size: " + this.INCOMING_BUFFER_LENGTH);
this.incomingBuffer = new ArrayBuffer(this.INCOMING_BUFFER_LENGTH);
this.incomingBytes = new Uint8Array(this.incomingBuffer);
if (this.incomingReadIndex <= this.incomingWriteIndex) {
// Read and write index are in natural order, so we can just copy
// the old buffer over to the bigger one without having to worry
// about the indexes.
this.incomingBytes.set(oldBytes, 0);
} else {
// The write index has wrapped around but the read index hasn't yet.
// Write whatever the read index has left to read until it would
// circle around to the beginning of the new buffer, and the rest
// behind that.
let head = oldBytes.subarray(this.incomingReadIndex);
let tail = oldBytes.subarray(0, this.incomingReadIndex);
this.incomingBytes.set(head, 0);
this.incomingBytes.set(tail, head.length);
this.incomingReadIndex = 0;
this.incomingWriteIndex += head.length;
}
if (DEBUG) {
debug("New incoming buffer size is " + this.INCOMING_BUFFER_LENGTH);
}
},
/**
* Grow the outgoing buffer.
*
* @param min_size
* Minimum new size. The actual new size will be the the smallest
* power of 2 that's larger than this number.
*/
growOutgoingBuffer: function growOutgoingBuffer(min_size) {
if (DEBUG) {
debug("Current buffer of " + this.OUTGOING_BUFFER_LENGTH +
" is too small.");
}
let oldBytes = this.outgoingBytes;
this.OUTGOING_BUFFER_LENGTH =
2 << Math.floor(Math.log(min_size)/Math.log(2));
this.outgoingBuffer = new ArrayBuffer(this.OUTGOING_BUFFER_LENGTH);
this.outgoingBytes = new Uint8Array(this.outgoingBuffer);
this.outgoingBytes.set(oldBytes, 0);
if (DEBUG) {
debug("New outgoing buffer size is " + this.OUTGOING_BUFFER_LENGTH);
}
},
/**
* Functions for reading data from the incoming buffer.
*
* These are all little endian, apart from readParcelSize();
*/
/**
* Ensure position specified is readable.
*
* @param index
* Data position in incoming parcel, valid from 0 to
* this.currentParcelSize.
*/
ensureIncomingAvailable: function ensureIncomingAvailable(index) {
if (index >= this.currentParcelSize) {
throw new Error("Trying to read data beyond the parcel end!");
} else if (index < 0) {
throw new Error("Trying to read data before the parcel begin!");
}
},
/**
* Seek in current incoming parcel.
*
* @param offset
* Seek offset in relative to current position.
*/
seekIncoming: function seekIncoming(offset) {
// Translate to 0..currentParcelSize
let cur = this.currentParcelSize - this.readAvailable;
let newIndex = cur + offset;
this.ensureIncomingAvailable(newIndex);
// ... incomingReadIndex -->|
// 0 new cur currentParcelSize
// |================|=======|===================|
// |<-- cur -->|<- readAvailable ->|
// |<-- newIndex -->|<-- new readAvailable -->|
this.readAvailable = this.currentParcelSize - newIndex;
// Translate back:
if (this.incomingReadIndex < cur) {
// The incomingReadIndex is wrapped.
newIndex += this.INCOMING_BUFFER_LENGTH;
}
newIndex += (this.incomingReadIndex - cur);
newIndex %= this.INCOMING_BUFFER_LENGTH;
this.incomingReadIndex = newIndex;
},
readUint8Unchecked: function readUint8Unchecked() {
let value = this.incomingBytes[this.incomingReadIndex];
this.incomingReadIndex = (this.incomingReadIndex + 1) %
this.INCOMING_BUFFER_LENGTH;
return value;
},
readUint8: function readUint8() {
// Translate to 0..currentParcelSize
let cur = this.currentParcelSize - this.readAvailable;
this.ensureIncomingAvailable(cur);
this.readAvailable--;
return this.readUint8Unchecked();
},
readUint8Array: function readUint8Array(length) {
// Translate to 0..currentParcelSize
let last = this.currentParcelSize - this.readAvailable;
last += (length - 1);
this.ensureIncomingAvailable(last);
let array = new Uint8Array(length);
for (let i = 0; i < length; i++) {
array[i] = this.readUint8Unchecked();
}
this.readAvailable -= length;
return array;
},
readUint16: function readUint16() {
return this.readUint8() | this.readUint8() << 8;
},
readUint32: function readUint32() {
return this.readUint8() | this.readUint8() << 8 |
this.readUint8() << 16 | this.readUint8() << 24;
},
readUint32List: function readUint32List() {
let length = this.readUint32();
let ints = [];
for (let i = 0; i < length; i++) {
ints.push(this.readUint32());
}
return ints;
},
readString: function readString() {
let string_len = this.readUint32();
if (string_len < 0 || string_len >= INT32_MAX) {
return null;
}
let s = "";
for (let i = 0; i < string_len; i++) {
s += String.fromCharCode(this.readUint16());
}
// Strings are \0\0 delimited, but that isn't part of the length. And
// if the string length is even, the delimiter is two characters wide.
// It's insane, I know.
this.readStringDelimiter(string_len);
return s;
},
readStringList: function readStringList() {
let num_strings = this.readUint32();
let strings = [];
for (let i = 0; i < num_strings; i++) {
strings.push(this.readString());
}
return strings;
},
readStringDelimiter: function readStringDelimiter(length) {
let delimiter = this.readUint16();
if (!(length & 1)) {
delimiter |= this.readUint16();
}
if (DEBUG) {
if (delimiter != 0) {
debug("Something's wrong, found string delimiter: " + delimiter);
}
}
},
readParcelSize: function readParcelSize() {
return this.readUint8Unchecked() << 24 |
this.readUint8Unchecked() << 16 |
this.readUint8Unchecked() << 8 |
this.readUint8Unchecked();
},
/**
* Functions for writing data to the outgoing buffer.
*/
/**
* Ensure position specified is writable.
*
* @param index
* Data position in outgoing parcel, valid from 0 to
* this.OUTGOING_BUFFER_LENGTH.
*/
ensureOutgoingAvailable: function ensureOutgoingAvailable(index) {
if (index >= this.OUTGOING_BUFFER_LENGTH) {
this.growOutgoingBuffer(index + 1);
}
},
writeUint8: function writeUint8(value) {
this.ensureOutgoingAvailable(this.outgoingIndex);
this.outgoingBytes[this.outgoingIndex] = value;
this.outgoingIndex++;
},
writeUint16: function writeUint16(value) {
this.writeUint8(value & 0xff);
this.writeUint8((value >> 8) & 0xff);
},
writeUint32: function writeUint32(value) {
this.writeUint8(value & 0xff);
this.writeUint8((value >> 8) & 0xff);
this.writeUint8((value >> 16) & 0xff);
this.writeUint8((value >> 24) & 0xff);
},
writeString: function writeString(value) {
if (value == null) {
this.writeUint32(-1);
return;
}
this.writeUint32(value.length);
for (let i = 0; i < value.length; i++) {
this.writeUint16(value.charCodeAt(i));
}
// Strings are \0\0 delimited, but that isn't part of the length. And
// if the string length is even, the delimiter is two characters wide.
// It's insane, I know.
this.writeStringDelimiter(value.length);
},
writeStringList: function writeStringList(strings) {
this.writeUint32(strings.length);
for (let i = 0; i < strings.length; i++) {
this.writeString(strings[i]);
}
},
writeStringDelimiter: function writeStringDelimiter(length) {
this.writeUint16(0);
if (!(length & 1)) {
this.writeUint16(0);
}
},
writeParcelSize: function writeParcelSize(value) {
/**
* Parcel size will always be the first thing in the parcel byte
* array, but the last thing written. Store the current index off
* to a temporary to be reset after we write the size.
*/
let currentIndex = this.outgoingIndex;
this.outgoingIndex = 0;
this.writeUint8((value >> 24) & 0xff);
this.writeUint8((value >> 16) & 0xff);
this.writeUint8((value >> 8) & 0xff);
this.writeUint8(value & 0xff);
this.outgoingIndex = currentIndex;
},
copyIncomingToOutgoing: function copyIncomingToOutgoing(length) {
if (!length || (length < 0)) {
return;
}
let translatedReadIndexEnd = this.currentParcelSize - this.readAvailable + length - 1;
this.ensureIncomingAvailable(translatedReadIndexEnd);
let translatedWriteIndexEnd = this.outgoingIndex + length - 1
this.ensureOutgoingAvailable(translatedWriteIndexEnd);
let newIncomingReadIndex = this.incomingReadIndex + length;
if (newIncomingReadIndex < this.INCOMING_BUFFER_LENGTH) {
// Reading won't cause wrapping, go ahead with builtin copy.
this.outgoingBytes.set(this.incomingBytes.subarray(this.incomingReadIndex, newIncomingReadIndex),
this.outgoingIndex);
} else {
// Not so lucky.
newIncomingReadIndex %= this.INCOMING_BUFFER_LENGTH;
this.outgoingBytes.set(this.incomingBytes.subarray(this.incomingReadIndex, this.INCOMING_BUFFER_LENGTH),
this.outgoingIndex);
if (newIncomingReadIndex) {
let firstPartLength = this.INCOMING_BUFFER_LENGTH - this.incomingReadIndex;
this.outgoingBytes.set(this.incomingBytes.subarray(0, newIncomingReadIndex),
this.outgoingIndex + firstPartLength);
}
}
this.incomingReadIndex = newIncomingReadIndex;
this.readAvailable -= length;
this.outgoingIndex += length;
},
/**
* Parcel management
*/
/**
* Write incoming data to the circular buffer.
*
* @param incoming
* Uint8Array containing the incoming data.
*/
writeToIncoming: function writeToIncoming(incoming) {
// We don't have to worry about the head catching the tail since
// we process any backlog in parcels immediately, before writing
// new data to the buffer. So the only edge case we need to handle
// is when the incoming data is larger than the buffer size.
let minMustAvailableSize = incoming.length + this.readIncoming;
if (minMustAvailableSize > this.INCOMING_BUFFER_LENGTH) {
this.growIncomingBuffer(minMustAvailableSize);
}
// We can let the typed arrays do the copying if the incoming data won't
// wrap around the edges of the circular buffer.
let remaining = this.INCOMING_BUFFER_LENGTH - this.incomingWriteIndex;
if (remaining >= incoming.length) {
this.incomingBytes.set(incoming, this.incomingWriteIndex);
} else {
// The incoming data would wrap around it.
let head = incoming.subarray(0, remaining);
let tail = incoming.subarray(remaining);
this.incomingBytes.set(head, this.incomingWriteIndex);
this.incomingBytes.set(tail, 0);
}
this.incomingWriteIndex = (this.incomingWriteIndex + incoming.length) %
this.INCOMING_BUFFER_LENGTH;
},
/**
* Process incoming data.
*
* @param incoming
* Uint8Array containing the incoming data.
*/
processIncoming: function processIncoming(incoming) {
if (DEBUG) {
debug("Received " + incoming.length + " bytes.");
debug("Already read " + this.readIncoming);
}
this.writeToIncoming(incoming);
this.readIncoming += incoming.length;
while (true) {
if (!this.currentParcelSize) {
// We're expecting a new parcel.
if (this.readIncoming < PARCEL_SIZE_SIZE) {
// We don't know how big the next parcel is going to be, need more
// data.
if (DEBUG) debug("Next parcel size unknown, going to sleep.");
return;
}
this.currentParcelSize = this.readParcelSize();
if (DEBUG) debug("New incoming parcel of size " +
this.currentParcelSize);
// The size itself is not included in the size.
this.readIncoming -= PARCEL_SIZE_SIZE;
}
if (this.readIncoming < this.currentParcelSize) {
// We haven't read enough yet in order to be able to process a parcel.
if (DEBUG) debug("Read " + this.readIncoming + ", but parcel size is "
+ this.currentParcelSize + ". Going to sleep.");
return;
}
// Alright, we have enough data to process at least one whole parcel.
// Let's do that.
let expectedAfterIndex = (this.incomingReadIndex + this.currentParcelSize)
% this.INCOMING_BUFFER_LENGTH;
if (DEBUG) {
let parcel;
if (expectedAfterIndex < this.incomingReadIndex) {
let head = this.incomingBytes.subarray(this.incomingReadIndex);
let tail = this.incomingBytes.subarray(0, expectedAfterIndex);
parcel = Array.slice(head).concat(Array.slice(tail));
} else {
parcel = Array.slice(this.incomingBytes.subarray(
this.incomingReadIndex, expectedAfterIndex));
}
debug("Parcel (size " + this.currentParcelSize + "): " + parcel);
}
if (DEBUG) debug("We have at least one complete parcel.");
try {
this.readAvailable = this.currentParcelSize;
this.processParcel();
} catch (ex) {
if (DEBUG) debug("Parcel handling threw " + ex + "\n" + ex.stack);
}
// Ensure that the whole parcel was consumed.
if (this.incomingReadIndex != expectedAfterIndex) {
if (DEBUG) {
debug("Parcel handler didn't consume whole parcel, " +
Math.abs(expectedAfterIndex - this.incomingReadIndex) +
" bytes left over");
}
this.incomingReadIndex = expectedAfterIndex;
}
this.readIncoming -= this.currentParcelSize;
this.readAvailable = 0;
this.currentParcelSize = 0;
}
},
/**
* Process one parcel.
*/
processParcel: function processParcel() {
let response_type = this.readUint32();
let request_type, options;
if (response_type == RESPONSE_TYPE_SOLICITED) {
let token = this.readUint32();
let error = this.readUint32();
options = this.tokenRequestMap[token];
if (!options) {
if (DEBUG) {
debug("Suspicious uninvited request found: " + token + ". Ignored!");
}
return;
}
delete this.tokenRequestMap[token];
request_type = options.rilRequestType;
options.rilRequestError = error;
if (DEBUG) {
debug("Solicited response for request type " + request_type +
", token " + token + ", error " + error);
}
} else if (response_type == RESPONSE_TYPE_UNSOLICITED) {
request_type = this.readUint32();
if (DEBUG) debug("Unsolicited response for request type " + request_type);
} else {
if (DEBUG) debug("Unknown response type: " + response_type);
return;
}
RIL.handleParcel(request_type, this.readAvailable, options);
},
/**
* Start a new outgoing parcel.
*
* @param type
* Integer specifying the request type.
* @param options [optional]
* Object containing information about the request, e.g. the
* original main thread message object that led to the RIL request.
*/
newParcel: function newParcel(type, options) {
if (DEBUG) debug("New outgoing parcel of type " + type);
// We're going to leave room for the parcel size at the beginning.
this.outgoingIndex = PARCEL_SIZE_SIZE;
this.writeUint32(type);
let token = this.token;
this.writeUint32(token);
if (!options) {
options = {};
}
options.rilRequestType = type;
options.rilRequestError = null;
this.tokenRequestMap[token] = options;
this.token++;
return token;
},
/**
* Communicate with the RIL IPC thread.
*/
sendParcel: function sendParcel() {
// Compute the size of the parcel and write it to the front of the parcel
// where we left room for it. Note that he parcel size does not include
// the size itself.
let parcelSize = this.outgoingIndex - PARCEL_SIZE_SIZE;
this.writeParcelSize(parcelSize);
// This assumes that postRILMessage will make a copy of the ArrayBufferView
// right away!
let parcel = this.outgoingBytes.subarray(0, this.outgoingIndex);
if (DEBUG) debug("Outgoing parcel: " + Array.slice(parcel));
postRILMessage(parcel);
this.outgoingIndex = PARCEL_SIZE_SIZE;
},
simpleRequest: function simpleRequest(type, options) {
this.newParcel(type, options);
this.sendParcel();
}
};
/**
* The RIL state machine.
*
* This object communicates with rild via parcels and with the main thread
* via post messages. It maintains state about the radio, ICC, calls, etc.
* and acts upon state changes accordingly.
*/
let RIL = {
/**
* Valid calls.
*/
currentCalls: {},
/**
* Existing data calls.
*/
currentDataCalls: {},
/**
* Hash map for received multipart sms fragments. Messages are hashed with
* its sender address and concatenation reference number. Three additional
* attributes `segmentMaxSeq`, `receivedSegments`, `segments` are inserted.
*/
_receivedSmsSegmentsMap: {},
/**
* Outgoing messages waiting for SMS-STATUS-REPORT.
*/
_pendingSentSmsMap: {},
/**
* Index of the RIL_PREFERRED_NETWORK_TYPE_TO_GECKO. Its value should be
* preserved over rild reset.
*/
preferredNetworkType: null,
/**
* Parsed Cell Broadcast search lists.
* cellBroadcastConfigs.MMI should be preserved over rild reset.
*/
cellBroadcastConfigs: null,
mergedCellBroadcastConfig: null,
_receivedSmsCbPagesMap: {},
initRILState: function initRILState() {
/**
* One of the RADIO_STATE_* constants.
*/
this.radioState = GECKO_RADIOSTATE_UNAVAILABLE;
this._isInitialRadioState = true;
/**
* ICC status. Keeps a reference of the data response to the
* getICCStatus request.
*/
this.iccStatus = null;
/**
* Card state
*/
this.cardState = null;
/**
* Strings
*/
this.IMEI = null;
this.IMEISV = null;
this.ESN = null;
this.MEID = null;
this.SMSC = null;
/**
* ICC information that is not exposed to Gaia.
*/
this.iccInfoPrivate = {};
/**
* ICC information, such as MSISDN, IMSI, ...etc.
*/
this.iccInfo = {};
/**
* Application identification for apps in ICC.
*/
this.aid = null;
/**
* Application type for apps in ICC.
*/
this.appType = null,
this.networkSelectionMode = null;
this.voiceRegistrationState = {};
this.dataRegistrationState = {};
/**
* List of strings identifying the network operator.
*/
this.operator = null;
/**
* String containing the baseband version.
*/
this.basebandVersion = null;
// Clean up this.currentCalls: rild might have restarted.
for each (let currentCall in this.currentCalls) {
delete this.currentCalls[currentCall.callIndex];
this._handleDisconnectedCall(currentCall);
}
// Deactivate this.currentDataCalls: rild might have restarted.
for each (let datacall in this.currentDataCalls) {
this.deactivateDataCall(datacall);
}
// Don't clean up this._receivedSmsSegmentsMap or this._pendingSentSmsMap
// because on rild restart: we may continue with the pending segments.
/**
* Whether or not the multiple requests in requestNetworkInfo() are currently
* being processed
*/
this._processingNetworkInfo = false;
/**
* Pending messages to be send in batch from requestNetworkInfo()
*/
this._pendingNetworkInfo = {rilMessageType: "networkinfochanged"};
/**
* Mute or unmute the radio.
*/
this._muted = true;
/**
* USSD session flag.
* Only one USSD session may exist at a time, and the session is assumed
* to exist until:
* a) There's a call to cancelUSSD()
* b) The implementation sends a UNSOLICITED_ON_USSD with a type code
* of "0" (USSD-Notify/no further action) or "2" (session terminated)
*/
this._ussdSession = null;
/**
* Regular expresion to parse MMI codes.
*/
this._mmiRegExp = null;
/**
* Cell Broadcast Search Lists.
*/
let cbmmi = this.cellBroadcastConfigs && this.cellBroadcastConfigs.MMI;
this.cellBroadcastConfigs = {
MMI: cbmmi || null
};
},
get muted() {
return this._muted;
},
set muted(val) {
val = Boolean(val);
if (this._muted != val) {
this.setMute(val);
this._muted = val;
}
},
/**
* Parse an integer from a string, falling back to a default value
* if the the provided value is not a string or does not contain a valid
* number.
*
* @param string
* String to be parsed.
* @param defaultValue [optional]
* Default value to be used.
* @param radix [optional]
* A number that represents the numeral system to be used. Default 10.
*/
parseInt: function RIL_parseInt(string, defaultValue, radix) {
let number = parseInt(string, radix || 10);
if (!isNaN(number)) {
return number;
}
if (defaultValue === undefined) {
defaultValue = null;
}
return defaultValue;
},
/**
* Outgoing requests to the RIL. These can be triggered from the
* main thread via messages that look like this:
*
* {rilMessageType: "methodName",
* extra: "parameters",
* go: "here"}
*
* So if one of the following methods takes arguments, it takes only one,
* an object, which then contains all of the parameters as attributes.
* The "@param" documentation is to be interpreted accordingly.
*/
/**
* Retrieve the ICC's status.
*/
getICCStatus: function getICCStatus() {
Buf.simpleRequest(REQUEST_GET_SIM_STATUS);
},
/**
* Helper function for unlocking ICC locks.
*/
iccUnlockCardLock: function iccUnlockCardLock(options) {
switch (options.lockType) {
case "pin":
this.enterICCPIN(options);
break;
case "pin2":
this.enterICCPIN2(options);
break;
case "puk":
this.enterICCPUK(options);
break;
case "puk2":
this.enterICCPUK2(options);
break;
case "nck":
options.type = CARD_PERSOSUBSTATE_SIM_NETWORK;
this.enterDepersonalization(options);
break;
default:
options.errorMsg = "Unsupported Card Lock.";
options.success = false;
this.sendDOMMessage(options);
}
},
/**
* Enter a PIN to unlock the ICC.
*
* @param pin
* String containing the PIN.
* @param [optional] aid
* AID value.
*/
enterICCPIN: function enterICCPIN(options) {
Buf.newParcel(REQUEST_ENTER_SIM_PIN, options);
Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 1 : 2);
Buf.writeString(options.pin);
if (!RILQUIRKS_V5_LEGACY) {
Buf.writeString(options.aid || this.aid);
}
Buf.sendParcel();
},
/**
* Enter a PIN2 to unlock the ICC.
*
* @param pin
* String containing the PIN2.
* @param [optional] aid
* AID value.
*/
enterICCPIN2: function enterICCPIN2(options) {
Buf.newParcel(REQUEST_ENTER_SIM_PIN2, options);
Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 1 : 2);
Buf.writeString(options.pin);
if (!RILQUIRKS_V5_LEGACY) {
Buf.writeString(options.aid || this.aid);
}
Buf.sendParcel();
},
/**
* Requests a network personalization be deactivated.
*
* @param type
* Integer indicating the network personalization be deactivated.
* @param pin
* String containing the pin.
*/
enterDepersonalization: function enterDepersonalization(options) {
Buf.newParcel(REQUEST_ENTER_NETWORK_DEPERSONALIZATION_CODE, options);
Buf.writeUint32(options.type);
Buf.writeString(options.pin);
Buf.sendParcel();
},
/**
* Helper function for changing ICC locks.
*/
iccSetCardLock: function iccSetCardLock(options) {
if (options.newPin !== undefined) {
switch (options.lockType) {
case "pin":
this.changeICCPIN(options);
break;
case "pin2":
this.changeICCPIN2(options);
break;
default:
options.errorMsg = "Unsupported Card Lock.";
options.success = false;
this.sendDOMMessage(options);
}
} else { // Enable/Disable pin lock.
if (options.lockType != "pin") {
options.errorMsg = "Unsupported Card Lock.";
options.success = false;
this.sendDOMMessage(options);
return;
}
this.setICCPinLock(options);
}
},
/**
* Change the current ICC PIN number.
*
* @param pin
* String containing the old PIN value
* @param newPin
* String containing the new PIN value
* @param [optional] aid
* AID value.
*/
changeICCPIN: function changeICCPIN(options) {
Buf.newParcel(REQUEST_CHANGE_SIM_PIN, options);
Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 2 : 3);
Buf.writeString(options.pin);
Buf.writeString(options.newPin);
if (!RILQUIRKS_V5_LEGACY) {
Buf.writeString(options.aid || this.aid);
}
Buf.sendParcel();
},
/**
* Change the current ICC PIN2 number.
*
* @param pin
* String containing the old PIN2 value
* @param newPin
* String containing the new PIN2 value
* @param [optional] aid
* AID value.
*/
changeICCPIN2: function changeICCPIN2(options) {
Buf.newParcel(REQUEST_CHANGE_SIM_PIN2, options);
Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 2 : 3);
Buf.writeString(options.pin);
Buf.writeString(options.newPin);
if (!RILQUIRKS_V5_LEGACY) {
Buf.writeString(options.aid || this.aid);
}
Buf.sendParcel();
},
/**
* Supplies ICC PUK and a new PIN to unlock the ICC.
*
* @param puk
* String containing the PUK value.
* @param newPin
* String containing the new PIN value.
* @param [optional] aid
* AID value.
*/
enterICCPUK: function enterICCPUK(options) {
Buf.newParcel(REQUEST_ENTER_SIM_PUK, options);
Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 2 : 3);
Buf.writeString(options.puk);
Buf.writeString(options.newPin);
if (!RILQUIRKS_V5_LEGACY) {
Buf.writeString(options.aid || this.aid);
}
Buf.sendParcel();
},
/**
* Supplies ICC PUK2 and a new PIN2 to unlock the ICC.
*
* @param puk
* String containing the PUK2 value.
* @param newPin
* String containing the new PIN2 value.
* @param [optional] aid
* AID value.
*/
enterICCPUK2: function enterICCPUK2(options) {
Buf.newParcel(REQUEST_ENTER_SIM_PUK2, options);
Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 2 : 3);
Buf.writeString(options.puk);
Buf.writeString(options.newPin);
if (!RILQUIRKS_V5_LEGACY) {
Buf.writeString(options.aid || this.aid);
}
Buf.sendParcel();
},
/**
* Helper function for fetching the state of ICC locks.
*/
iccGetCardLock: function iccGetCardLock(options) {
switch (options.lockType) {
case "pin":
this.getICCPinLock(options);
break;
default:
options.errorMsg = "Unsupported Card Lock.";
options.success = false;
this.sendDOMMessage(options);
}
},
/**
* Get ICC Pin lock. A wrapper call to queryICCFacilityLock.
*
* @param requestId
* Request Id from RadioInterfaceLayer.
*/
getICCPinLock: function getICCPinLock(options) {
options.facility = ICC_CB_FACILITY_SIM;
options.password = ""; // For query no need to provide pin.
options.serviceClass = ICC_SERVICE_CLASS_VOICE |
ICC_SERVICE_CLASS_DATA |
ICC_SERVICE_CLASS_FAX;
this.queryICCFacilityLock(options);
},
/**
* Query ICC facility lock.
*
* @param facility
* One of ICC_CB_FACILITY_*.
* @param password
* Password for the facility, or "" if not required.
* @param serviceClass
* One of ICC_SERVICE_CLASS_*.
* @param [optional] aid
* AID value.
*/
queryICCFacilityLock: function queryICCFacilityLock(options) {
Buf.newParcel(REQUEST_QUERY_FACILITY_LOCK, options);
Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 3 : 4);
Buf.writeString(options.facility);
Buf.writeString(options.password);
Buf.writeString(options.serviceClass.toString());
if (!RILQUIRKS_V5_LEGACY) {
Buf.writeString(options.aid || this.aid);
}
Buf.sendParcel();
},
/**
* Set ICC Pin lock. A wrapper call to setICCFacilityLock.
*
* @param enabled
* true to enable, false to disable.
* @param pin
* Pin code.
* @param requestId
* Request Id from RadioInterfaceLayer.
*/
setICCPinLock: function setICCPinLock(options) {
options.facility = ICC_CB_FACILITY_SIM;
options.enabled = options.enabled;
options.password = options.pin;
options.serviceClass = ICC_SERVICE_CLASS_VOICE |
ICC_SERVICE_CLASS_DATA |
ICC_SERVICE_CLASS_FAX;
this.setICCFacilityLock(options);
},
/**
* Set ICC facility lock.
*
* @param facility
* One of ICC_CB_FACILITY_*.
* @param enabled
* true to enable, false to disable.
* @param password
* Password for the facility, or "" if not required.
* @param serviceClass
* One of ICC_SERVICE_CLASS_*.
* @param [optional] aid
* AID value.
*/
setICCFacilityLock: function setICCFacilityLock(options) {
Buf.newParcel(REQUEST_SET_FACILITY_LOCK, options);
Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 3 : 4);
Buf.writeString(options.facility);
Buf.writeString(options.enabled ? "1" : "0");
Buf.writeString(options.password);
Buf.writeString(options.serviceClass.toString());
if (!RILQUIRKS_V5_LEGACY) {
Buf.writeString(options.aid || this.aid);
}
Buf.sendParcel();
},
/**
* Request an ICC I/O operation.
*
* See TS 27.007 "restricted SIM" operation, "AT Command +CRSM".
* The sequence is in the same order as how libril reads this parcel,
* see the struct RIL_SIM_IO_v5 or RIL_SIM_IO_v6 defined in ril.h
*
* @param command
* The I/O command, one of the ICC_COMMAND_* constants.
* @param fileId
* The file to operate on, one of the ICC_EF_* constants.
* @param pathId
* String type, check the 'pathid' parameter from TS 27.007 +CRSM.
* @param p1, p2, p3
* Arbitrary integer parameters for the command.
* @param data
* String parameter for the command.
* @param pin2
* String containing the PIN2.
* @param [optional] aid
* AID value.
*/
iccIO: function iccIO(options) {
let token = Buf.newParcel(REQUEST_SIM_IO, options);
Buf.writeUint32(options.command);
Buf.writeUint32(options.fileId);
Buf.writeString(options.pathId);
Buf.writeUint32(options.p1);
Buf.writeUint32(options.p2);
Buf.writeUint32(options.p3);
Buf.writeString(options.data || null);
Buf.writeString(options.pin2 || null);
if (!RILQUIRKS_V5_LEGACY) {
Buf.writeString(options.aid || this.aid);
}
Buf.sendParcel();
},
/**
* Get IMSI.
*
* @param [optional] aid
* AID value.
*/
getIMSI: function getIMSI(aid) {
if (RILQUIRKS_V5_LEGACY) {
Buf.simpleRequest(REQUEST_GET_IMSI);
return;
}
let token = Buf.newParcel(REQUEST_GET_IMSI);
Buf.writeUint32(1);
Buf.writeString(aid || this.aid);
Buf.sendParcel();
},
/**
* Choose network names using EF_OPL and EF_PNN
* See 3GPP TS 31.102 sec. 4.2.58 and sec. 4.2.59 for USIM,
* 3GPP TS 51.011 sec. 10.3.41 and sec. 10.3.42 for SIM.
*/
updateNetworkName: function updateNetworkName() {
let iccInfoPriv = this.iccInfoPrivate;
let iccInfo = this.iccInfo;
// We won't update network name if voice registration isn't ready
// or PNN file haven't been retrieved.
if (!iccInfoPriv.PNN ||
!this.voiceRegistrationState.cell ||
this.voiceRegistrationState.cell.gsmLocationAreaCode == -1) {
return null;
}
let pnnEntry;
let lac = this.voiceRegistrationState.cell.gsmLocationAreaCode;
let mcc = this.operator.mcc;
let mnc = this.operator.mnc;
// According to 3GPP TS 31.102 Sec. 4.2.59 and 3GPP TS 51.011 Sec. 10.3.42,
// the ME shall use this EF_OPL in association with the EF_PNN in place
// of any network name stored within the ME's internal list and any network
// name received when registered to the PLMN.
if (iccInfoPriv.OPL) {
for (let i in iccInfoPriv.OPL) {
let opl = iccInfoPriv.OPL[i];
// Try to match the MCC/MNC.
if (mcc != opl.mcc || mnc != opl.mnc) {
continue;
}
// Try to match the location area code. If current local area code is
// covered by lac range that specified in the OPL entry, use the PNN
// that specified in the OPL entry.
if ((opl.lacTacStart == 0x0 && opl.lacTacEnd == 0xFFFE) ||
(opl.lacTacStart <= lac && opl.lacTacEnd >= lac)) {
if (opl.pnnRecordId == 0) {
// See 3GPP TS 31.102 Sec. 4.2.59 and 3GPP TS 51.011 Sec. 10.3.42,
// A value of '00' indicates that the name is to be taken from other
// sources.
return null;
}
pnnEntry = iccInfoPriv.PNN[opl.pnnRecordId - 1]
break;
}
}
}
// According to 3GPP TS 31.102 Sec. 4.2.58 and 3GPP TS 51.011 Sec. 10.3.41,
// the first record in this EF is used for the default network name when
// registered to the HPLMN.
// If we haven't get pnnEntry assigned, we should try to assign default
// value to it.
if (!pnnEntry && mcc == iccInfo.mcc && mnc == iccInfo.mnc) {
pnnEntry = iccInfoPriv.PNN[0]
}
if (DEBUG) {
if (pnnEntry) {
debug("updateNetworkName: Network names will be overriden: longName = " +
pnnEntry.fullName + ", shortName = " + pnnEntry.shortName);
} else {
debug("updateNetworkName: Network names will not be overriden");
}
}
if (pnnEntry) {
return [pnnEntry.fullName, pnnEntry.shortName];
}
return null;
},
/**
* Get UICC Phonebook.
*
* @params contactType
* "ADN" or "FDN".
*/
getICCContacts: function getICCContacts(options) {
if (!this.appType) {
options.rilMessageType = "icccontacts";
options.errorMsg = GECKO_ERROR_REQUEST_NOT_SUPPORTED;
this.sendDOMMessage(options);
}
let type = options.contactType;
switch (type) {
case "ADN":
switch (this.appType) {
case CARD_APPTYPE_SIM:
options.fileId = ICC_EF_ADN;
ICCRecordHelper.getADN(options);
break;
case CARD_APPTYPE_USIM:
ICCRecordHelper.getPBR(options);
break;
}
break;
case "FDN":
ICCRecordHelper.getFDN(options);
break;
}
},
/**
* Request the phone's radio power to be switched on or off.
*
* @param on
* Boolean indicating the desired power state.
*/
setRadioPower: function setRadioPower(options) {
Buf.newParcel(REQUEST_RADIO_POWER);
Buf.writeUint32(1);
Buf.writeUint32(options.on ? 1 : 0);
Buf.sendParcel();
},
/**
* Set call waiting status.
*
* @param on
* Boolean indicating the desired waiting status.
*/
setCallWaiting: function setCallWaiting(options) {
Buf.newParcel(REQUEST_SET_CALL_WAITING, options);
Buf.writeUint32(2);
Buf.writeUint32(options.enabled ? 1 : 0);
Buf.writeUint32(ICC_SERVICE_CLASS_VOICE);
Buf.sendParcel();
},
/**
* Set screen state.
*
* @param on
* Boolean indicating whether the screen should be on or off.
*/
setScreenState: function setScreenState(on) {
Buf.newParcel(REQUEST_SCREEN_STATE);
Buf.writeUint32(1);
Buf.writeUint32(on ? 1 : 0);
Buf.sendParcel();
},
getVoiceRegistrationState: function getVoiceRegistrationState() {
Buf.simpleRequest(REQUEST_VOICE_REGISTRATION_STATE);
},
getDataRegistrationState: function getDataRegistrationState() {
Buf.simpleRequest(REQUEST_DATA_REGISTRATION_STATE);
},
getOperator: function getOperator() {
Buf.simpleRequest(REQUEST_OPERATOR);
},
/**
* Set the preferred network type.
*
* @param options An object contains a valid index of
* RIL_PREFERRED_NETWORK_TYPE_TO_GECKO as its `networkType`
* attribute, or undefined to set current preferred network
* type.
*/
setPreferredNetworkType: function setPreferredNetworkType(options) {
if (options) {
this.preferredNetworkType = options.networkType;
}
if (this.preferredNetworkType == null) {
return;
}
Buf.newParcel(REQUEST_SET_PREFERRED_NETWORK_TYPE, options);
Buf.writeUint32(1);
Buf.writeUint32(this.preferredNetworkType);
Buf.sendParcel();
},
/**
* Get the preferred network type.
*/
getPreferredNetworkType: function getPreferredNetworkType() {
Buf.simpleRequest(REQUEST_GET_PREFERRED_NETWORK_TYPE);
},
/**
* Request various states about the network.
*/
requestNetworkInfo: function requestNetworkInfo() {
if (this._processingNetworkInfo) {
if (DEBUG) debug("Network info requested, but we're already requesting network info.");
return;
}
if (DEBUG) debug("Requesting network info");
this._processingNetworkInfo = true;
this.getVoiceRegistrationState();
this.getDataRegistrationState(); //TODO only GSM
this.getOperator();
this.getNetworkSelectionMode();
},
/**
* Get the available networks
*/
getAvailableNetworks: function getAvailableNetworks(options) {
if (DEBUG) debug("Getting available networks");
Buf.newParcel(REQUEST_QUERY_AVAILABLE_NETWORKS, options);
Buf.sendParcel();
},
/**
* Request the radio's network selection mode
*/
getNetworkSelectionMode: function getNetworkSelectionMode(options) {
if (DEBUG) debug("Getting network selection mode");
Buf.simpleRequest(REQUEST_QUERY_NETWORK_SELECTION_MODE, options);
},
/**
* Tell the radio to automatically choose a voice/data network
*/
selectNetworkAuto: function selectNetworkAuto(options) {
if (DEBUG) debug("Setting automatic network selection");
Buf.simpleRequest(REQUEST_SET_NETWORK_SELECTION_AUTOMATIC, options);
},
/**
* Tell the radio to choose a specific voice/data network
*/
selectNetwork: function selectNetwork(options) {
if (DEBUG) {
debug("Setting manual network selection: " + options.mcc + options.mnc);
}
// TODO: Bug 828307 - B2G RIL: Change to store MNC/MCC values from integer to string
let mnc = options.mnc.toString();
if (mnc.length == 1)
mnc = "0" + mnc;
let numeric = options.mcc.toString() + mnc;
Buf.newParcel(REQUEST_SET_NETWORK_SELECTION_MANUAL, options);
Buf.writeString(numeric);
Buf.sendParcel();
},
/**
* Get current calls.
*/
getCurrentCalls: function getCurrentCalls() {
Buf.simpleRequest(REQUEST_GET_CURRENT_CALLS);
},
/**
* Get the signal strength.
*/
getSignalStrength: function getSignalStrength() {
Buf.simpleRequest(REQUEST_SIGNAL_STRENGTH);
},
getIMEI: function getIMEI(options) {
Buf.simpleRequest(REQUEST_GET_IMEI, options);
},
getIMEISV: function getIMEISV() {
Buf.simpleRequest(REQUEST_GET_IMEISV);
},
getDeviceIdentity: function getDeviceIdentity() {
Buf.simpleRequest(REQUEST_DEVICE_IDENTITY);
},
getBasebandVersion: function getBasebandVersion() {
Buf.simpleRequest(REQUEST_BASEBAND_VERSION);
},
/**
* Dial the phone.
*
* @param number
* String containing the number to dial.
* @param clirMode
* Integer doing something XXX TODO
* @param uusInfo
* Integer doing something XXX TODO
*/
dial: function dial(options) {
let dial_request_type = REQUEST_DIAL;
if (this.voiceRegistrationState.emergencyCallsOnly ||
options.isDialEmergency) {
if (!this._isEmergencyNumber(options.number)) {
// Notify error in establishing the call with an invalid number.
options.callIndex = -1;
options.rilMessageType = "callError";
options.error =
RIL_CALL_FAILCAUSE_TO_GECKO_CALL_ERROR[CALL_FAIL_UNOBTAINABLE_NUMBER];
this.sendDOMMessage(options);
return;
}
if (RILQUIRKS_REQUEST_USE_DIAL_EMERGENCY_CALL) {
dial_request_type = REQUEST_DIAL_EMERGENCY_CALL;
}
} else {
if (this._isEmergencyNumber(options.number) &&
RILQUIRKS_REQUEST_USE_DIAL_EMERGENCY_CALL) {
dial_request_type = REQUEST_DIAL_EMERGENCY_CALL;
}
}
let token = Buf.newParcel(dial_request_type);
Buf.writeString(options.number);
Buf.writeUint32(options.clirMode || 0);
Buf.writeUint32(options.uusInfo || 0);
// TODO Why do we need this extra 0? It was put it in to make this
// match the format of the binary message.
Buf.writeUint32(0);
Buf.sendParcel();
},
/**
* Hang up the phone.
*
* @param callIndex
* Call index (1-based) as reported by REQUEST_GET_CURRENT_CALLS.
*/
hangUp: function hangUp(options) {
let call = this.currentCalls[options.callIndex];
if (!call) {
return;
}
switch (call.state) {
case CALL_STATE_ACTIVE:
case CALL_STATE_DIALING:
case CALL_STATE_ALERTING:
Buf.newParcel(REQUEST_HANGUP);
Buf.writeUint32(1);
Buf.writeUint32(options.callIndex);
Buf.sendParcel();
break;
case CALL_STATE_HOLDING:
Buf.simpleRequest(REQUEST_HANGUP_WAITING_OR_BACKGROUND);
break;
}
},
/**
* Mute or unmute the radio.
*
* @param mute
* Boolean to indicate whether to mute or unmute the radio.
*/
setMute: function setMute(mute) {
Buf.newParcel(REQUEST_SET_MUTE);
Buf.writeUint32(1);
Buf.writeUint32(mute ? 1 : 0);
Buf.sendParcel();
},
/**
* Answer an incoming/waiting call.
*
* @param callIndex
* Call index of the call to answer.
*/
answerCall: function answerCall(options) {
// Check for races. Since we dispatched the incoming/waiting call
// notification the incoming/waiting call may have changed. The main
// thread thinks that it is answering the call with the given index,
// so only answer if that is still incoming/waiting.
let call = this.currentCalls[options.callIndex];
if (!call) {
return;
}
switch (call.state) {
case CALL_STATE_INCOMING:
Buf.simpleRequest(REQUEST_ANSWER);
break;
case CALL_STATE_WAITING:
// Answer the waiting (second) call, and hold the first call.
Buf.simpleRequest(REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE);
break;
}
},
/**
* Reject an incoming/waiting call.
*
* @param callIndex
* Call index of the call to reject.
*/
rejectCall: function rejectCall(options) {
// Check for races. Since we dispatched the incoming/waiting call
// notification the incoming/waiting call may have changed. The main
// thread thinks that it is rejecting the call with the given index,
// so only reject if that is still incoming/waiting.
let call = this.currentCalls[options.callIndex];
if (!call) {
return;
}
switch (call.state) {
case CALL_STATE_INCOMING:
Buf.simpleRequest(REQUEST_UDUB);
break;
case CALL_STATE_WAITING:
// Reject the waiting (second) call, and remain the first call.
Buf.simpleRequest(REQUEST_HANGUP_WAITING_OR_BACKGROUND);
break;
}
},
holdCall: function holdCall(options) {
let call = this.currentCalls[options.callIndex];
if (call && call.state == CALL_STATE_ACTIVE) {
Buf.simpleRequest(REQUEST_SWITCH_HOLDING_AND_ACTIVE);
}
},
resumeCall: function resumeCall(options) {
let call = this.currentCalls[options.callIndex];
if (call && call.state == CALL_STATE_HOLDING) {
Buf.simpleRequest(REQUEST_SWITCH_HOLDING_AND_ACTIVE);
}
},
/**
* Send an SMS.
*
* The `options` parameter object should contain the following attributes:
*
* @param number
* String containing the recipient number.
* @param body
* String containing the message text.
* @param requestId
* String identifying the sms request used by the SmsRequestManager.
* @param processId
* String containing the processId for the SmsRequestManager.
*/
sendSMS: function sendSMS(options) {
options.langIndex = options.langIndex || PDU_NL_IDENTIFIER_DEFAULT;
options.langShiftIndex = options.langShiftIndex || PDU_NL_IDENTIFIER_DEFAULT;
if (!options.retryCount) {
options.retryCount = 0;
}
if (!options.segmentSeq) {
// Fist segment to send
options.segmentSeq = 1;
options.body = options.segments[0].body;
options.encodedBodyLength = options.segments[0].encodedBodyLength;
}
Buf.newParcel(REQUEST_SEND_SMS, options);
Buf.writeUint32(2);
Buf.writeString(options.SMSC);
GsmPDUHelper.writeMessage(options);
Buf.sendParcel();
},
/**
* Acknowledge the receipt and handling of an SMS.
*
* @param success
* Boolean indicating whether the message was successfuly handled.
* @param cause
* SMS_* constant indicating the reason for unsuccessful handling.
*/
acknowledgeSMS: function acknowledgeSMS(success, cause) {
let token = Buf.newParcel(REQUEST_SMS_ACKNOWLEDGE);
Buf.writeUint32(2);
Buf.writeUint32(success ? 1 : 0);
Buf.writeUint32(cause);
Buf.sendParcel();
},
setCellBroadcastSearchList: function setCellBroadcastSearchList(options) {
try {
let str = options.searchListStr;
this.cellBroadcastConfigs.MMI = this._convertCellBroadcastSearchList(str);
} catch (e) {
if (DEBUG) {
debug("Invalid Cell Broadcast search list: " + e);
}
options.rilRequestError = ERROR_GENERIC_FAILURE;
this.sendDOMMessage(options);
return;
}
this._mergeAllCellBroadcastConfigs();
},
updateCellBroadcastConfig: function updateCellBroadcastConfig() {
let activate = (this.mergedCellBroadcastConfig != null)
&& (this.mergedCellBroadcastConfig.length > 0);
if (activate) {
this.setGsmSmsBroadcastConfig(this.mergedCellBroadcastConfig);
} else {
// It's unnecessary to set config first if we're deactivating.
this.setGsmSmsBroadcastActivation(false);
}
},
setGsmSmsBroadcastConfig: function setGsmSmsBroadcastConfig(config) {
Buf.newParcel(REQUEST_GSM_SET_BROADCAST_SMS_CONFIG);
let numConfigs = config ? config.length / 2 : 0;
Buf.writeUint32(numConfigs);
for (let i = 0; i < config.length;) {
Buf.writeUint32(config[i++]);
Buf.writeUint32(config[i++]);
Buf.writeUint32(0x00);
Buf.writeUint32(0xFF);
Buf.writeUint32(1);
}
Buf.sendParcel();
},
setGsmSmsBroadcastActivation: function setGsmSmsBroadcastActivation(activate) {
Buf.newParcel(REQUEST_GSM_SMS_BROADCAST_ACTIVATION);
Buf.writeUint32(1);
Buf.writeUint32(activate ? 1 : 0);
Buf.sendParcel();
},
/**
* Start a DTMF Tone.
*
* @param dtmfChar
* DTMF signal to send, 0-9, *, +
*/
startTone: function startTone(options) {
Buf.newParcel(REQUEST_DTMF_START);
Buf.writeString(options.dtmfChar);
Buf.sendParcel();
},
stopTone: function stopTone() {
Buf.simpleRequest(REQUEST_DTMF_STOP);
},
/**
* Send a DTMF tone.
*
* @param dtmfChar
* DTMF signal to send, 0-9, *, +
*/
sendTone: function sendTone(options) {
Buf.newParcel(REQUEST_DTMF);
Buf.writeString(options.dtmfChar);
Buf.sendParcel();
},
/**
* Get the Short Message Service Center address.
*/
getSMSCAddress: function getSMSCAddress() {
Buf.simpleRequest(REQUEST_GET_SMSC_ADDRESS);
},
/**
* Set the Short Message Service Center address.
*
* @param SMSC
* Short Message Service Center address in PDU format.
*/
setSMSCAddress: function setSMSCAddress(options) {
Buf.newParcel(REQUEST_SET_SMSC_ADDRESS);
Buf.writeString(options.SMSC);
Buf.sendParcel();
},
/**
* Setup a data call.
*
* @param radioTech
* Integer to indicate radio technology.
* DATACALL_RADIOTECHNOLOGY_CDMA => CDMA.
* DATACALL_RADIOTECHNOLOGY_GSM => GSM.
* @param apn
* String containing the name of the APN to connect to.
* @param user
* String containing the username for the APN.
* @param passwd
* String containing the password for the APN.
* @param chappap
* Integer containing CHAP/PAP auth type.
* DATACALL_AUTH_NONE => PAP and CHAP is never performed.
* DATACALL_AUTH_PAP => PAP may be performed.
* DATACALL_AUTH_CHAP => CHAP may be performed.
* DATACALL_AUTH_PAP_OR_CHAP => PAP / CHAP may be performed.
* @param pdptype
* String containing PDP type to request. ("IP", "IPV6", ...)
*/
setupDataCall: function setupDataCall(options) {
let token = Buf.newParcel(REQUEST_SETUP_DATA_CALL, options);
Buf.writeUint32(7);
Buf.writeString(options.radioTech.toString());
Buf.writeString(DATACALL_PROFILE_DEFAULT.toString());
Buf.writeString(options.apn);
Buf.writeString(options.user);
Buf.writeString(options.passwd);
Buf.writeString(options.chappap.toString());
Buf.writeString(options.pdptype);
Buf.sendParcel();
return token;
},
/**
* Deactivate a data call.
*
* @param cid
* String containing CID.
* @param reason
* One of DATACALL_DEACTIVATE_* constants.
*/
deactivateDataCall: function deactivateDataCall(options) {
let datacall = this.currentDataCalls[options.cid];
if (!datacall) {
return;
}
let token = Buf.newParcel(REQUEST_DEACTIVATE_DATA_CALL, options);
Buf.writeUint32(2);
Buf.writeString(options.cid);
Buf.writeString(options.reason || DATACALL_DEACTIVATE_NO_REASON);
Buf.sendParcel();
datacall.state = GECKO_NETWORK_STATE_DISCONNECTING;
this.sendDOMMessage(datacall);
},
/**
* Get a list of data calls.
*/
getDataCallList: function getDataCallList() {
Buf.simpleRequest(REQUEST_DATA_CALL_LIST);
},
/**
* Get failure casue code for the most recently failed PDP context.
*/
getFailCauseCode: function getFailCauseCode(options) {
Buf.simpleRequest(REQUEST_LAST_CALL_FAIL_CAUSE, options);
},
/**
* Helper to parse and process a MMI string.
*/
_parseMMI: function _parseMMI(mmiString) {
if (!mmiString || !mmiString.length) {
return null;
}
// Regexp to parse and process the MMI code.
if (this._mmiRegExp == null) {
// The first group of the regexp takes the whole MMI string.
// The second group takes the MMI procedure that can be:
// - Activation (*SC*SI#).
// - Deactivation (#SC*SI#).
// - Interrogation (*#SC*SI#).
// - Registration (**SC*SI#).
// - Erasure (##SC*SI#).
// where SC = Service Code (2 or 3 digits) and SI = Supplementary Info
// (variable length).
let pattern = "((\\*[*#]?|##?)";
// Third group of the regexp looks for the MMI Service code, which is a
// 2 or 3 digits that uniquely specifies the Supplementary Service
// associated with the MMI code.
pattern += "(\\d{2,3})";
// Groups from 4 to 9 looks for the MMI Supplementary Information SIA,
// SIB and SIC. SIA may comprise e.g. a PIN code or Directory Number,
// SIB may be used to specify the tele or bearer service and SIC to
// specify the value of the "No Reply Condition Timer". Where a particular
// service request does not require any SI, "*SI" is not entered. The use
// of SIA, SIB and SIC is optional and shall be entered in any of the
// following formats:
// - *SIA*SIB*SIC#
// - *SIA*SIB#
// - *SIA**SIC#
// - *SIA#
// - **SIB*SIC#
// - ***SISC#
pattern += "(\\*([^*#]*)(\\*([^*#]*)(\\*([^*#]*)";
// The eleventh group takes the password for the case of a password
// registration procedure.
pattern += "(\\*([^*#]*))?)?)?)?#)";
// The last group takes the dial string after the #.
pattern += "([^#]*)";
this._mmiRegExp = new RegExp(pattern);
}
let matches = this._mmiRegExp.exec(mmiString);
// If the regex does not apply over the MMI string, it can still be an MMI
// code. If the MMI String is a #-string (entry of any characters defined
// in the TS.23.038 Default Alphabet followed by #SEND) it shall be treated
// as a USSD code.
if (matches == null) {
if (mmiString.charAt(mmiString.length - 1) == MMI_END_OF_USSD) {
return {
fullMMI: mmiString
};
}
return null;
}
// After successfully executing the regular expresion over the MMI string,
// the following match groups should contain:
// 1 = full MMI string that might be used as a USSD request.
// 2 = MMI procedure.
// 3 = Service code.
// 5 = SIA.
// 7 = SIB.
// 9 = SIC.
// 11 = Password registration.
// 12 = Dialing number.
return {
fullMMI: matches[MMI_MATCH_GROUP_FULL_MMI],
procedure: matches[MMI_MATCH_GROUP_MMI_PROCEDURE],
serviceCode: matches[MMI_MATCH_GROUP_SERVICE_CODE],
sia: matches[MMI_MATCH_GROUP_SIA],
sib: matches[MMI_MATCH_GROUP_SIB],
sic: matches[MMI_MATCH_GROUP_SIC],
pwd: matches[MMI_MATCH_GROUP_PWD_CONFIRM],
dialNumber: matches[MMI_MATCH_GROUP_DIALING_NUMBER]
};
},
sendMMI: function sendMMI(options) {
if (DEBUG) {
debug("SendMMI " + JSON.stringify(options));
}
let mmiString = options.mmi;
let mmi = this._parseMMI(mmiString);
let _sendMMIError = (function _sendMMIError(errorMsg) {
options.rilMessageType = "sendMMI";
options.errorMsg = errorMsg;
this.sendDOMMessage(options);
}).bind(this);
function _isValidPINPUKRequest() {
// The only allowed MMI procedure for ICC PIN, PIN2, PUK and PUK2 handling
// is "Registration" (**).
if (!mmi.procedure || mmi.procedure != MMI_PROCEDURE_REGISTRATION ) {
_sendMMIError("WRONG_MMI_PROCEDURE");
return;
}
if (!mmi.sia || !mmi.sia.length || !mmi.sib || !mmi.sib.length ||
!mmi.sic || !mmi.sic.length) {
_sendMMIError("MISSING_SUPPLEMENTARY_INFORMATION");
return;
}
if (mmi.sib != mmi.sic) {
_sendMMIError("NEW_PIN_MISMATCH");
return;
}
return true;
}
if (mmi == null) {
if (this._ussdSession) {
options.ussd = mmiString;
this.sendUSSD(options);
return;
}
_sendMMIError("NO_VALID_MMI_STRING");
return;
}
if (DEBUG) {
debug("MMI " + JSON.stringify(mmi));
}
// We check if the MMI service code is supported and in that case we
// trigger the appropriate RIL request if possible.
let sc = mmi.serviceCode;
switch (sc) {
// Call forwarding
case MMI_SC_CFU:
case MMI_SC_CF_BUSY:
case MMI_SC_CF_NO_REPLY:
case MMI_SC_CF_NOT_REACHABLE:
case MMI_SC_CF_ALL:
case MMI_SC_CF_ALL_CONDITIONAL:
// Call forwarding requires at least an action, given by the MMI
// procedure, and a reason, given by the MMI service code, but there
// is no way that we get this far without a valid procedure or service
// code.
options.action = MMI_PROC_TO_CF_ACTION[mmi.procedure];
options.rilMessageType = "sendMMI";
options.reason = MMI_SC_TO_CF_REASON[sc];
options.number = mmi.sia;
options.serviceClass = this._siToServiceClass(mmi.sib);
if (options.action == CALL_FORWARD_ACTION_QUERY_STATUS) {
this.queryCallForwardStatus(options);
return;
}
options.timeSeconds = mmi.sic;
this.setCallForward(options);
return;
// Change the current ICC PIN number.
case MMI_SC_PIN:
// As defined in TS.122.030 6.6.2 to change the ICC PIN we should expect
// an MMI code of the form **04*OLD_PIN*NEW_PIN*NEW_PIN#, where old PIN
// should be entered as the SIA parameter and the new PIN as SIB and
// SIC.
if (!_isValidPINPUKRequest()) {
return;
}
options.rilRequestType = "sendMMI";
options.pin = mmi.sia;
options.newPin = mmi.sib;
this.changeICCPIN(options);
return;
// Change the current ICC PIN2 number.
case MMI_SC_PIN2:
// As defined in TS.122.030 6.6.2 to change the ICC PIN2 we should
// enter and MMI code of the form **042*OLD_PIN2*NEW_PIN2*NEW_PIN2#,
// where the old PIN2 should be entered as the SIA parameter and the
// new PIN2 as SIB and SIC.
if (!_isValidPINPUKRequest()) {
return;
}
options.rilRequestType = "sendMMI";
options.pin = mmi.sia;
options.newPin = mmi.sib;
this.changeICCPIN2(options);
return;
// Unblock ICC PIN.
case MMI_SC_PUK:
// As defined in TS.122.030 6.6.3 to unblock the ICC PIN we should
// enter an MMI code of the form **05*PUK*NEW_PIN*NEW_PIN#, where PUK
// should be entered as the SIA parameter and the new PIN as SIB and
// SIC.
if (!_isValidPINPUKRequest()) {
return;
}
options.rilRequestType = "sendMMI";
options.puk = mmi.sia;
options.newPin = mmi.sib;
this.enterICCPUK(options);
return;
// Unblock ICC PIN2.
case MMI_SC_PUK2:
// As defined in TS.122.030 6.6.3 to unblock the ICC PIN2 we should
// enter an MMI code of the form **052*PUK2*NEW_PIN2*NEW_PIN2#, where
// PUK2 should be entered as the SIA parameter and the new PIN2 as SIB
// and SIC.
if (!_isValidPINPUKRequest()) {
return;
}
options.rilRequestType = "sendMMI";
options.puk = mmi.sia;
options.newPin = mmi.sib;
this.enterICCPUK2(options);
return;
// IMEI
case MMI_SC_IMEI:
// A device's IMEI can't change, so we only need to request it once.
if (this.IMEI == null) {
this.getIMEI({mmi: true});
return;
}
// If we already had the device's IMEI, we just send it to the DOM.
options.rilMessageType = "sendMMI";
options.success = true;
options.result = this.IMEI;
this.sendDOMMessage(options);
return;
// Call barring
case MMI_SC_BAOC:
case MMI_SC_BAOIC:
case MMI_SC_BAOICxH:
case MMI_SC_BAIC:
case MMI_SC_BAICr:
case MMI_SC_BA_ALL:
case MMI_SC_BA_MO:
case MMI_SC_BA_MT:
_sendMMIError("CALL_BARRING_NOT_SUPPORTED_VIA_MMI");
return;
// Call waiting
case MMI_SC_CALL_WAITING:
_sendMMIError("CALL_WAITING_NOT_SUPPORTED_VIA_MMI");
return;
}
// If the MMI code is not a known code and is a recognized USSD request or
// a #-string, it shall still be sent as a USSD request.
if (mmi.fullMMI &&
(mmiString.charAt(mmiString.length - 1) == MMI_END_OF_USSD)) {
options.ussd = mmi.fullMMI;
this.sendUSSD(options);
return;
}
// At this point, the MMI string is considered as not valid MMI code and
// not valid USSD code.
_sendMMIError("NOT_VALID_MMI_STRING");
},
/**
* Send USSD.
*
* @param ussd
* String containing the USSD code.
*
*/
sendUSSD: function sendUSSD(options) {
Buf.newParcel(REQUEST_SEND_USSD, options);
Buf.writeString(options.ussd);
Buf.sendParcel();
},
/**
* Cancel pending USSD.
*/
cancelUSSD: function cancelUSSD(options) {
Buf.simpleRequest(REQUEST_CANCEL_USSD, options);
},
/**
* Queries current call forward rules.
*
* @param reason
* One of nsIDOMMozMobileCFInfo.CALL_FORWARD_REASON_* constants.
* @param serviceClass
* One of ICC_SERVICE_CLASS_* constants.
* @param number
* Phone number of forwarding address.
*/
queryCallForwardStatus: function queryCallForwardStatus(options) {
Buf.newParcel(REQUEST_QUERY_CALL_FORWARD_STATUS, options);
Buf.writeUint32(CALL_FORWARD_ACTION_QUERY_STATUS);
Buf.writeUint32(options.reason);
Buf.writeUint32(options.serviceClass);
Buf.writeUint32(this._toaFromString(options.number));
Buf.writeString(options.number);
Buf.writeUint32(0);
Buf.sendParcel();
},
/**
* Configures call forward rule.
*
* @param action
* One of nsIDOMMozMobileCFInfo.CALL_FORWARD_ACTION_* constants.
* @param reason
* One of nsIDOMMozMobileCFInfo.CALL_FORWARD_REASON_* constants.
* @param serviceClass
* One of ICC_SERVICE_CLASS_* constants.
* @param number
* Phone number of forwarding address.
* @param timeSeconds
* Time in seconds to wait beforec all is forwarded.
*/
setCallForward: function setCallForward(options) {
Buf.newParcel(REQUEST_SET_CALL_FORWARD, options);
Buf.writeUint32(options.action);
Buf.writeUint32(options.reason);
Buf.writeUint32(options.serviceClass);
Buf.writeUint32(this._toaFromString(options.number));
Buf.writeString(options.number);
Buf.writeUint32(options.timeSeconds);
Buf.sendParcel();
},
/**
* Handle STK CALL_SET_UP request.
*
* @param hasConfirmed
* Does use have confirmed the call requested from ICC?
*/
stkHandleCallSetup: function stkHandleCallSetup(options) {
Buf.newParcel(REQUEST_STK_HANDLE_CALL_SETUP_REQUESTED_FROM_SIM, options);
Buf.writeUint32(1);
Buf.writeUint32(options.hasConfirmed ? 1 : 0);
Buf.sendParcel();
},
/**
* Send STK Profile Download.
*
* @param profile Profile supported by ME.
*/
sendStkTerminalProfile: function sendStkTerminalProfile(profile) {
Buf.newParcel(REQUEST_STK_SET_PROFILE);
Buf.writeUint32(profile.length * 2);
for (let i = 0; i < profile.length; i++) {
GsmPDUHelper.writeHexOctet(profile[i]);
}
Buf.writeUint32(0);
Buf.sendParcel();
},
/**
* Send STK terminal response.
*
* @param command
* @param deviceIdentities
* @param resultCode
* @param [optional] itemIdentifier
* @param [optional] input
* @param [optional] isYesNo
* @param [optional] hasConfirmed
* @param [optional] localInfo
* @param [optional] timer
*/
sendStkTerminalResponse: function sendStkTerminalResponse(response) {
if (response.hasConfirmed !== undefined) {
this.stkHandleCallSetup(response);
return;
}
let token = Buf.newParcel(REQUEST_STK_SEND_TERMINAL_RESPONSE);
let textLen = 0;
let command = response.command;
if (response.resultCode != STK_RESULT_HELP_INFO_REQUIRED) {
if (response.isYesNo) {
textLen = 1;
} else if (response.input) {
if (command.options.isUCS2) {
textLen = response.input.length * 2;
} else if (command.options.isPacked) {
let bits = response.input.length * 7;
textLen = bits * 7 / 8 + (bits % 8 ? 1 : 0);
} else {
textLen = response.input.length;
}
}
}
let berLen = TLV_COMMAND_DETAILS_SIZE +
TLV_DEVICE_ID_SIZE +
TLV_RESULT_SIZE +
(response.itemIdentifier ? TLV_ITEM_ID_SIZE : 0) +
(textLen ? textLen + 3 : 0);
if (response.localInfo) {
let localInfo = response.localInfo;
berLen += ((localInfo.locationInfo ?
(localInfo.locationInfo.gsmCellId > 0xffff ?
TLV_LOCATION_INFO_UMTS_SIZE :
TLV_LOCATION_INFO_GSM_SIZE) :
0) +
(localInfo.imei ? TLV_IMEI_SIZE : 0) +
(localInfo.date ? TLV_DATE_TIME_ZONE_SIZE : 0) +
(localInfo.language ? TLV_LANGUAGE_SIZE : 0));
}
if (response.timer) {
let timer = response.timer;
berLen += TLV_TIMER_IDENTIFIER +
(timer.timerValue ? TLV_TIMER_VALUE : 0);
}
// 1 octets = 2 chars.
let size = berLen * 2;
Buf.writeUint32(size);
// Command Details
GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_COMMAND_DETAILS |
COMPREHENSIONTLV_FLAG_CR);
GsmPDUHelper.writeHexOctet(3);
if (response.command) {
GsmPDUHelper.writeHexOctet(command.commandNumber);
GsmPDUHelper.writeHexOctet(command.typeOfCommand);
GsmPDUHelper.writeHexOctet(command.commandQualifier);
} else {
GsmPDUHelper.writeHexOctet(0x00);
GsmPDUHelper.writeHexOctet(0x00);
GsmPDUHelper.writeHexOctet(0x00);
}
// Device Identifier
// According to TS102.223/TS31.111 section 6.8 Structure of
// TERMINAL RESPONSE, "For all SIMPLE-TLV objects with Min=N,
// the ME should set the CR(comprehension required) flag to
// comprehension not required.(CR=0)"
// Since DEVICE_IDENTITIES and DURATION TLVs have Min=N,
// the CR flag is not set.
GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_DEVICE_ID);
GsmPDUHelper.writeHexOctet(2);
GsmPDUHelper.writeHexOctet(STK_DEVICE_ID_ME);
GsmPDUHelper.writeHexOctet(STK_DEVICE_ID_SIM);
// Result
GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_RESULT |
COMPREHENSIONTLV_FLAG_CR);
GsmPDUHelper.writeHexOctet(1);
GsmPDUHelper.writeHexOctet(response.resultCode);
// Item Identifier
if (response.itemIdentifier) {
GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_ITEM_ID |
COMPREHENSIONTLV_FLAG_CR);
GsmPDUHelper.writeHexOctet(1);
GsmPDUHelper.writeHexOctet(response.itemIdentifier);
}
// No need to process Text data if user requests help information.
if (response.resultCode != STK_RESULT_HELP_INFO_REQUIRED) {
let text;
if (response.isYesNo !== undefined) {
// GET_INKEY
// When the ME issues a successful TERMINAL RESPONSE for a GET INKEY
// ("Yes/No") command with command qualifier set to "Yes/No", it shall
// supply the value '01' when the answer is "positive" and the value
// '00' when the answer is "negative" in the Text string data object.
text = response.isYesNo ? 0x01 : 0x00;
} else {
text = response.input;
}
if (text) {
GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_TEXT_STRING |
COMPREHENSIONTLV_FLAG_CR);
GsmPDUHelper.writeHexOctet(textLen + 1); // +1 for coding
let coding = command.options.isUCS2 ?
STK_TEXT_CODING_UCS2 :
(command.options.isPacked ?
STK_TEXT_CODING_GSM_7BIT_PACKED :
STK_TEXT_CODING_GSM_8BIT);
GsmPDUHelper.writeHexOctet(coding);
// Write Text String.
switch (coding) {
case STK_TEXT_CODING_UCS2:
GsmPDUHelper.writeUCS2String(text);
break;
case STK_TEXT_CODING_GSM_7BIT_PACKED:
GsmPDUHelper.writeStringAsSeptets(text, 0, 0, 0);
break;
case STK_TEXT_CODING_GSM_8BIT:
for (let i = 0; i < textLen; i++) {
GsmPDUHelper.writeHexOctet(text.charCodeAt(i));
}
break;
}
}
}
// Local Information
if (response.localInfo) {
let localInfo = response.localInfo;
// Location Infomation
if (localInfo.locationInfo) {
ComprehensionTlvHelper.writeLocationInfoTlv(localInfo.locationInfo);
}
// IMEI
if (localInfo.imei) {
let imei = localInfo.imei;
if(imei.length == 15) {
imei = imei + "0";
}
GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_IMEI);
GsmPDUHelper.writeHexOctet(8);
for (let i = 0; i < imei.length / 2; i++) {
GsmPDUHelper.writeHexOctet(parseInt(imei.substr(i * 2, 2), 16));
}
}
// Date and Time Zone
if (localInfo.date) {
ComprehensionTlvHelper.writeDateTimeZoneTlv(localInfo.date);
}
// Language
if (localInfo.language) {
ComprehensionTlvHelper.writeLanguageTlv(localInfo.language);
}
}
// Timer
if (response.timer) {
let timer = response.timer;
if (timer.timerId) {
GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_TIMER_IDENTIFIER);
GsmPDUHelper.writeHexOctet(1);
GsmPDUHelper.writeHexOctet(timer.timerId);
}
if (timer.timerValue) {
ComprehensionTlvHelper.writeTimerValueTlv(timer.timerValue, false);
}
}
Buf.writeUint32(0);
Buf.sendParcel();
},
/**
* Send STK Envelope(Menu Selection) command.
*
* @param itemIdentifier
* @param helpRequested
*/
sendStkMenuSelection: function sendStkMenuSelection(command) {
command.tag = BER_MENU_SELECTION_TAG;
command.deviceId = {
sourceId :STK_DEVICE_ID_KEYPAD,
destinationId: STK_DEVICE_ID_SIM
};
this.sendICCEnvelopeCommand(command);
},
/**
* Send STK Envelope(Timer Expiration) command.
*
* @param timer
*/
sendStkTimerExpiration: function sendStkTimerExpiration(command) {
command.tag = BER_TIMER_EXPIRATION_TAG;
command.deviceId = {
sourceId: STK_DEVICE_ID_ME,
destinationId: STK_DEVICE_ID_SIM
};
command.timerId = command.timer.timerId;
command.timerValue = command.timer.timerValue;
this.sendICCEnvelopeCommand(command);
},
/**
* Send STK Envelope(Event Download) command.
* @param event
*/
sendStkEventDownload: function sendStkEventDownload(command) {
command.tag = BER_EVENT_DOWNLOAD_TAG;
command.eventList = command.event.eventType;
switch (command.eventList) {
case STK_EVENT_TYPE_LOCATION_STATUS:
command.deviceId = {
sourceId :STK_DEVICE_ID_ME,
destinationId: STK_DEVICE_ID_SIM
};
command.locationStatus = command.event.locationStatus;
// Location info should only be provided when locationStatus is normal.
if (command.locationStatus == STK_SERVICE_STATE_NORMAL) {
command.locationInfo = command.event.locationInfo;
}
break;
case STK_EVENT_TYPE_MT_CALL:
command.deviceId = {
sourceId: STK_DEVICE_ID_NETWORK,
destinationId: STK_DEVICE_ID_SIM
};
command.transactionId = 0;
command.address = command.eventData.number;
break;
case STK_EVENT_TYPE_CALL_DISCONNECTED:
command.cause = command.eventData.error;
case STK_EVENT_TYPE_CALL_CONNECTED: // Fall through
command.deviceId = {
sourceId: (command.eventData.isIssuedByRemote ?
STK_DEVICE_ID_NETWORK : STK_DEVICE_ID_ME),
destinationId: STK_DEVICE_ID_SIM
};
command.transactionId = 0;
break;
}
this.sendICCEnvelopeCommand(command);
},
/**
* Send REQUEST_STK_SEND_ENVELOPE_COMMAND to ICC.
*
* @param tag
* @patam deviceId
* @param [optioanl] itemIdentifier
* @param [optional] helpRequested
* @param [optional] eventList
* @param [optional] locationStatus
* @param [optional] locationInfo
* @param [optional] address
* @param [optional] transactionId
* @param [optional] cause
* @param [optional] timerId
* @param [optional] timerValue
*/
sendICCEnvelopeCommand: function sendICCEnvelopeCommand(options) {
if (DEBUG) {
debug("Stk Envelope " + JSON.stringify(options));
}
let token = Buf.newParcel(REQUEST_STK_SEND_ENVELOPE_COMMAND);
let berLen = TLV_DEVICE_ID_SIZE + /* Size of Device Identifier TLV */
(options.itemIdentifier ? TLV_ITEM_ID_SIZE : 0) +
(options.helpRequested ? TLV_HELP_REQUESTED_SIZE : 0) +
(options.eventList ? TLV_EVENT_LIST_SIZE : 0) +
(options.locationStatus ? TLV_LOCATION_STATUS_SIZE : 0) +
(options.locationInfo ?
(options.locationInfo.gsmCellId > 0xffff ?
TLV_LOCATION_INFO_UMTS_SIZE :
TLV_LOCATION_INFO_GSM_SIZE) :
0) +
(options.transactionId ? 3 : 0) +
(options.address ?
1 + // Length of tag.
ComprehensionTlvHelper.getSizeOfLengthOctets(
Math.ceil(options.address.length/2) + 1) + // Length of length field.
Math.ceil(options.address.length/2) + 1 // address BCD + TON.
: 0) +
(options.cause ? 4 : 0) +
(options.timerId ? TLV_TIMER_IDENTIFIER : 0) +
(options.timerValue ? TLV_TIMER_VALUE : 0);
let size = (2 + berLen) * 2;
Buf.writeUint32(size);
// Write a BER-TLV
GsmPDUHelper.writeHexOctet(options.tag);
GsmPDUHelper.writeHexOctet(berLen);
// Device Identifies
GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_DEVICE_ID |
COMPREHENSIONTLV_FLAG_CR);
GsmPDUHelper.writeHexOctet(2);
GsmPDUHelper.writeHexOctet(options.deviceId.sourceId);
GsmPDUHelper.writeHexOctet(options.deviceId.destinationId);
// Item Identifier
if (options.itemIdentifier) {
GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_ITEM_ID |
COMPREHENSIONTLV_FLAG_CR);
GsmPDUHelper.writeHexOctet(1);
GsmPDUHelper.writeHexOctet(options.itemIdentifier);
}
// Help Request
if (options.helpRequested) {
GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_HELP_REQUEST |
COMPREHENSIONTLV_FLAG_CR);
GsmPDUHelper.writeHexOctet(0);
// Help Request doesn't have value
}
// Event List
if (options.eventList) {
GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_EVENT_LIST |
COMPREHENSIONTLV_FLAG_CR);
GsmPDUHelper.writeHexOctet(1);
GsmPDUHelper.writeHexOctet(options.eventList);
}
// Location Status
if (options.locationStatus) {
let len = options.locationStatus.length;
GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_LOCATION_STATUS |
COMPREHENSIONTLV_FLAG_CR);
GsmPDUHelper.writeHexOctet(1);
GsmPDUHelper.writeHexOctet(options.locationStatus);
}
// Location Info
if (options.locationInfo) {
ComprehensionTlvHelper.writeLocationInfoTlv(options.locationInfo);
}
// Transaction Id
if (options.transactionId) {
GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_TRANSACTION_ID |
COMPREHENSIONTLV_FLAG_CR);
GsmPDUHelper.writeHexOctet(1);
GsmPDUHelper.writeHexOctet(options.transactionId);
}
// Address
if (options.address) {
GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_ADDRESS |
COMPREHENSIONTLV_FLAG_CR);
ComprehensionTlvHelper.writeLength(
Math.ceil(options.address.length/2) + 1 // address BCD + TON
);
GsmPDUHelper.writeDiallingNumber(options.address);
}
// Cause of disconnection.
if (options.cause) {
ComprehensionTlvHelper.writeCauseTlv(options.cause);
}
// Timer Identifier
if (options.timerId) {
GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_TIMER_IDENTIFIER |
COMPREHENSIONTLV_FLAG_CR);
GsmPDUHelper.writeHexOctet(1);
GsmPDUHelper.writeHexOctet(options.timerId);
}
// Timer Value
if (options.timerValue) {
ComprehensionTlvHelper.writeTimerValueTlv(options.timerValue, true);
}
Buf.writeUint32(0);
Buf.sendParcel();
},
/**
* Check a given number against the list of emergency numbers provided by the RIL.
*
* @param number
* The number to look up.
*/
_isEmergencyNumber: function _isEmergencyNumber(number) {
// Check read-write ecclist property first.
let numbers = libcutils.property_get("ril.ecclist");
if (!numbers) {
// Then read-only ecclist property since others RIL only uses this.
numbers = libcutils.property_get("ro.ril.ecclist");
}
if (numbers) {
numbers = numbers.split(",");
} else {
// No ecclist system property, so use our own list.
numbers = DEFAULT_EMERGENCY_NUMBERS;
}
return numbers.indexOf(number) != -1;
},
/**
* Report STK Service is running.
*/
reportStkServiceIsRunning: function reportStkServiceIsRunning() {
Buf.simpleRequest(REQUEST_REPORT_STK_SERVICE_IS_RUNNING);
},
/**
* Process ICC status.
*/
_processICCStatus: function _processICCStatus(iccStatus) {
this.iccStatus = iccStatus;
if ((!iccStatus) || (iccStatus.cardState == CARD_STATE_ABSENT)) {
if (DEBUG) debug("ICC absent");
if (this.cardState == GECKO_CARDSTATE_ABSENT) {
this.operator = null;
return;
}
this.cardState = GECKO_CARDSTATE_ABSENT;
this.sendDOMMessage({rilMessageType: "cardstatechange",
cardState: this.cardState});
return;
}
// TODO: Bug 726098, change to use cdmaSubscriptionAppIndex when in CDMA.
let index = iccStatus.gsmUmtsSubscriptionAppIndex;
let app = iccStatus.apps[index];
if (!app) {
if (DEBUG) {
debug("Subscription application is not present in iccStatus.");
}
if (this.cardState == GECKO_CARDSTATE_ABSENT) {
return;
}
this.cardState = GECKO_CARDSTATE_ABSENT;
this.operator = null;
this.sendDOMMessage({rilMessageType: "cardstatechange",
cardState: this.cardState});
return;
}
// fetchICCRecords will need to read aid, so read aid here.
this.aid = app.aid;
this.appType = app.app_type;
let newCardState;
switch (app.app_state) {
case CARD_APPSTATE_PIN:
newCardState = GECKO_CARDSTATE_PIN_REQUIRED;
break;
case CARD_APPSTATE_PUK:
newCardState = GECKO_CARDSTATE_PUK_REQUIRED;
break;
case CARD_APPSTATE_SUBSCRIPTION_PERSO:
newCardState = GECKO_CARDSTATE_NETWORK_LOCKED;
break;
case CARD_APPSTATE_READY:
newCardState = GECKO_CARDSTATE_READY;
break;
case CARD_APPSTATE_UNKNOWN:
case CARD_APPSTATE_DETECTED:
default:
newCardState = GECKO_CARDSTATE_NOT_READY;
}
if (this.cardState == newCardState) {
return;
}
// This was moved down from CARD_APPSTATE_READY
this.requestNetworkInfo();
this.getSignalStrength();
if (newCardState == GECKO_CARDSTATE_READY) {
// For type SIM, we need to check EF_phase first.
// Other types of ICC we can send Terminal_Profile immediately.
if (this.appType == CARD_APPTYPE_SIM) {
ICCRecordHelper.getICCPhase();
} else {
this.sendStkTerminalProfile(STK_SUPPORTED_TERMINAL_PROFILE);
}
ICCRecordHelper.fetchICCRecords();
this.reportStkServiceIsRunning();
}
this.cardState = newCardState;
this.sendDOMMessage({rilMessageType: "cardstatechange",
cardState: this.cardState});
},
/**
* Helper for processing responses of functions such as enterICC* and changeICC*.
*/
_processEnterAndChangeICCResponses: function _processEnterAndChangeICCResponses(length, options) {
options.success = options.rilRequestError == 0;
if (!options.success) {
options.errorMsg = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError];
}
options.retryCount = length ? Buf.readUint32List()[0] : -1;
this.sendDOMMessage(options);
},
// We combine all of the NETWORK_INFO_MESSAGE_TYPES into one "networkinfochange"
// message to the RadioInterfaceLayer, so we can avoid sending multiple
// VoiceInfoChanged events for both operator / voice_data_registration
//
// State management here is a little tricky. We need to know both:
// 1. Whether or not a response was received for each of the
// NETWORK_INFO_MESSAGE_TYPES
// 2. The outbound message that corresponds with that response -- but this
// only happens when internal state changes (i.e. it isn't guaranteed)
//
// To collect this state, each message response function first calls
// _receivedNetworkInfo, to mark the response as received. When the
// final response is received, a call to _sendPendingNetworkInfo is placed
// on the next tick of the worker thread.
//
// Since the original call to _receivedNetworkInfo happens at the top
// of the response handler, this gives the final handler a chance to
// queue up it's "changed" message by calling _sendNetworkInfoMessage if/when
// the internal state has actually changed.
_sendNetworkInfoMessage: function _sendNetworkInfoMessage(type, message) {
if (!this._processingNetworkInfo) {
// We only combine these messages in the case of the combined request
// in requestNetworkInfo()
this.sendDOMMessage(message);
return;
}
if (DEBUG) debug("Queuing " + type + " network info message: " + JSON.stringify(message));
this._pendingNetworkInfo[type] = message;
},
_receivedNetworkInfo: function _receivedNetworkInfo(type) {
if (DEBUG) debug("Received " + type + " network info.");
if (!this._processingNetworkInfo) {
return;
}
let pending = this._pendingNetworkInfo;
// We still need to track states for events that aren't fired.
if (!(type in pending)) {
pending[type] = PENDING_NETWORK_TYPE;
}
// Pending network info is ready to be sent when no more messages
// are waiting for responses, but the combined payload hasn't been sent.
for (let i = 0; i < NETWORK_INFO_MESSAGE_TYPES.length; i++) {
let type = NETWORK_INFO_MESSAGE_TYPES[i];
if (!(type in pending)) {
if (DEBUG) debug("Still missing some more network info, not notifying main thread.");
return;
}
}
// Do a pass to clean up the processed messages that didn't create
// a response message, so we don't have unused keys in the outbound
// networkinfochanged message.
for (let key in pending) {
if (pending[key] == PENDING_NETWORK_TYPE) {
delete pending[key];
}
}
if (DEBUG) debug("All pending network info has been received: " + JSON.stringify(pending));
// Send the message on the next tick of the worker's loop, so we give the
// last message a chance to call _sendNetworkInfoMessage first.
setTimeout(this._sendPendingNetworkInfo, 0);
},
_sendPendingNetworkInfo: function _sendPendingNetworkInfo() {
RIL.sendDOMMessage(RIL._pendingNetworkInfo);
RIL._processingNetworkInfo = false;
for (let i = 0; i < NETWORK_INFO_MESSAGE_TYPES.length; i++) {
delete RIL._pendingNetworkInfo[NETWORK_INFO_MESSAGE_TYPES[i]];
}
},
/**
* Process the network registration flags.
*
* @return true if the state changed, false otherwise.
*/
_processCREG: function _processCREG(curState, newState) {
let changed = false;
let regState = RIL.parseInt(newState[0], NETWORK_CREG_STATE_UNKNOWN);
if (curState.regState != regState) {
changed = true;
curState.regState = regState;
curState.state = NETWORK_CREG_TO_GECKO_MOBILE_CONNECTION_STATE[regState];
curState.connected = regState == NETWORK_CREG_STATE_REGISTERED_HOME ||
regState == NETWORK_CREG_STATE_REGISTERED_ROAMING;
curState.roaming = regState == NETWORK_CREG_STATE_REGISTERED_ROAMING;
curState.emergencyCallsOnly =
(regState >= NETWORK_CREG_STATE_NOT_SEARCHING_EMERGENCY_CALLS) &&
(regState <= NETWORK_CREG_STATE_UNKNOWN_EMERGENCY_CALLS);
if (RILQUIRKS_MODEM_DEFAULTS_TO_EMERGENCY_MODE) {
curState.emergencyCallsOnly = !curState.connected;
}
}
if (!curState.cell) {
curState.cell = {};
}
// From TS 23.003, 0000 and 0xfffe are indicated that no valid LAI exists
// in MS. So we still need to report the '0000' as well.
let lac = RIL.parseInt(newState[1], -1, 16);
if (curState.cell.gsmLocationAreaCode !== lac) {
curState.cell.gsmLocationAreaCode = lac;
changed = true;
}
let cid = RIL.parseInt(newState[2], -1, 16);
if (curState.cell.gsmCellId !== cid) {
curState.cell.gsmCellId = cid;
changed = true;
}
let radioTech = RIL.parseInt(newState[3], NETWORK_CREG_TECH_UNKNOWN);
if (curState.radioTech != radioTech) {
changed = true;
curState.radioTech = radioTech;
curState.type = GECKO_RADIO_TECH[radioTech] || null;
}
return changed;
},
_processVoiceRegistrationState: function _processVoiceRegistrationState(state) {
let rs = this.voiceRegistrationState;
let stateChanged = this._processCREG(rs, state);
if (stateChanged && rs.connected) {
RIL.getSMSCAddress();
}
// TODO: This zombie code branch that will be raised from the dead once
// we add explicit CDMA support everywhere (bug 726098).
let cdma = false;
if (cdma) {
let baseStationId = RIL.parseInt(state[4]);
let baseStationLatitude = RIL.parseInt(state[5]);
let baseStationLongitude = RIL.parseInt(state[6]);
if (!baseStationLatitude && !baseStationLongitude) {
baseStationLatitude = baseStationLongitude = null;
}
let cssIndicator = RIL.parseInt(state[7]);
let systemId = RIL.parseInt(state[8]);
let networkId = RIL.parseInt(state[9]);
let roamingIndicator = RIL.parseInt(state[10]);
let systemIsInPRL = RIL.parseInt(state[11]);
let defaultRoamingIndicator = RIL.parseInt(state[12]);
let reasonForDenial = RIL.parseInt(state[13]);
}
if (stateChanged) {
rs.rilMessageType = "voiceregistrationstatechange";
this._sendNetworkInfoMessage(NETWORK_INFO_VOICE_REGISTRATION_STATE, rs);
}
},
_processDataRegistrationState: function _processDataRegistrationState(state) {
let rs = this.dataRegistrationState;
let stateChanged = this._processCREG(rs, state);
if (stateChanged) {
rs.rilMessageType = "dataregistrationstatechange";
this._sendNetworkInfoMessage(NETWORK_INFO_DATA_REGISTRATION_STATE, rs);
}
},
_processOperator: function _processOperator(operatorData) {
if (operatorData.length < 3) {
if (DEBUG) {
debug("Expected at least 3 strings for operator.");
}
}
if (!this.operator) {
this.operator = {rilMessageType: "operatorchange"};
}
let [longName, shortName, networkTuple] = operatorData;
let thisTuple = "" + this.operator.mcc + this.operator.mnc;
if (this.operator.longName !== longName ||
this.operator.shortName !== shortName ||
thisTuple !== networkTuple) {
let networkName = this.updateNetworkName();
if (networkName) {
this.operator.longName = networkName[0];
this.operator.shortName = networkName[1];
} else {
this.operator.longName = longName;
this.operator.shortName = shortName;
}
this.operator.mcc = 0;
this.operator.mnc = 0;
// According to ril.h, the operator fields will be NULL when the operator
// is not currently registered. We can avoid trying to parse the numeric
// tuple in that case.
if (DEBUG && !longName) {
debug("Operator is currently unregistered");
}
if (networkTuple) {
try {
this._processNetworkTuple(networkTuple, this.operator);
} catch (e) {
debug("Error processing operator tuple: " + e);
}
}
if (ICCUtilsHelper.updateDisplayCondition()) {
ICCUtilsHelper.handleICCInfoChange();
}
this._sendNetworkInfoMessage(NETWORK_INFO_OPERATOR, this.operator);
}
},
/**
* Helpers for processing call state and handle the active call.
*/
_processCalls: function _processCalls(newCalls) {
// Go through the calls we currently have on file and see if any of them
// changed state. Remove them from the newCalls map as we deal with them
// so that only new calls remain in the map after we're done.
for each (let currentCall in this.currentCalls) {
let newCall;
if (newCalls) {
newCall = newCalls[currentCall.callIndex];
delete newCalls[currentCall.callIndex];
}
if (newCall) {
// Call is still valid.
if (newCall.state != currentCall.state) {
// State has changed.
if (!currentCall.started && newCall.state == CALL_STATE_ACTIVE) {
currentCall.started = new Date().getTime();
}
currentCall.state = newCall.state;
this._handleChangedCallState(currentCall);
}
} else {
// Call is no longer reported by the radio. Remove from our map and
// send disconnected state change.
delete this.currentCalls[currentCall.callIndex];
this.getFailCauseCode(currentCall);
}
}
// Go through any remaining calls that are new to us.
for each (let newCall in newCalls) {
if (newCall.isVoice) {
// Format international numbers appropriately.
if (newCall.number &&
newCall.toa == TOA_INTERNATIONAL &&
newCall.number[0] != "+") {
newCall.number = "+" + newCall.number;
}
if (newCall.state == CALL_STATE_INCOMING) {
newCall.direction = 'incoming';
} else if (newCall.state == CALL_STATE_DIALING) {
newCall.direction = 'outgoing';
}
// Add to our map.
this.currentCalls[newCall.callIndex] = newCall;
this._handleChangedCallState(newCall);
}
}
// Update our mute status. If there is anything in our currentCalls map then
// we know it's a voice call and we should leave audio on.
this.muted = Object.getOwnPropertyNames(this.currentCalls).length == 0;
},
_handleChangedCallState: function _handleChangedCallState(changedCall) {
let message = {rilMessageType: "callStateChange",
call: changedCall};
this.sendDOMMessage(message);
},
_handleDisconnectedCall: function _handleDisconnectedCall(disconnectedCall) {
let message = {rilMessageType: "callDisconnected",
call: disconnectedCall};
this.sendDOMMessage(message);
},
_sendDataCallError: function _sendDataCallError(message, errorCode) {
message.rilMessageType = "datacallerror";
if (errorCode == ERROR_GENERIC_FAILURE) {
message.error = RIL_ERROR_TO_GECKO_ERROR[errorCode];
} else {
message.error = RIL_DATACALL_FAILCAUSE_TO_GECKO_DATACALL_ERROR[errorCode];
}
this.sendDOMMessage(message);
},
_processDataCallList: function _processDataCallList(datacalls, newDataCallOptions) {
// Check for possible PDP errors: We check earlier because the datacall
// can be removed if is the same as the current one.
for each (let newDataCall in datacalls) {
if (newDataCall.status != DATACALL_FAIL_NONE) {
if (newDataCallOptions) {
newDataCall.apn = newDataCallOptions.apn;
}
this._sendDataCallError(newDataCall, newDataCall.status);
}
}
for each (let currentDataCall in this.currentDataCalls) {
let updatedDataCall;
if (datacalls) {
updatedDataCall = datacalls[currentDataCall.cid];
delete datacalls[currentDataCall.cid];
}
if (!updatedDataCall) {
// If datacalls list is coming from REQUEST_SETUP_DATA_CALL response,
// we do not change state for any currentDataCalls not in datacalls list.
if (!newDataCallOptions) {
currentDataCall.state = GECKO_NETWORK_STATE_DISCONNECTED;
currentDataCall.rilMessageType = "datacallstatechange";
this.sendDOMMessage(currentDataCall);
}
continue;
}
if (updatedDataCall && !updatedDataCall.ifname) {
delete this.currentDataCalls[currentDataCall.cid];
currentDataCall.state = GECKO_NETWORK_STATE_UNKNOWN;
currentDataCall.rilMessageType = "datacallstatechange";
this.sendDOMMessage(currentDataCall);
continue;
}
this._setDataCallGeckoState(updatedDataCall);
if (updatedDataCall.state != currentDataCall.state) {
currentDataCall.status = updatedDataCall.status;
currentDataCall.active = updatedDataCall.active;
currentDataCall.state = updatedDataCall.state;
currentDataCall.rilMessageType = "datacallstatechange";
this.sendDOMMessage(currentDataCall);
}
}
for each (let newDataCall in datacalls) {
if (!newDataCall.ifname) {
continue;
}
this.currentDataCalls[newDataCall.cid] = newDataCall;
this._setDataCallGeckoState(newDataCall);
if (newDataCallOptions) {
newDataCall.radioTech = newDataCallOptions.radioTech;
newDataCall.apn = newDataCallOptions.apn;
newDataCall.user = newDataCallOptions.user;
newDataCall.passwd = newDataCallOptions.passwd;
newDataCall.chappap = newDataCallOptions.chappap;
newDataCall.pdptype = newDataCallOptions.pdptype;
newDataCallOptions = null;
} else if (DEBUG) {
debug("Unexpected new data call: " + JSON.stringify(newDataCall));
}
newDataCall.rilMessageType = "datacallstatechange";
this.sendDOMMessage(newDataCall);
}
},
_setDataCallGeckoState: function _setDataCallGeckoState(datacall) {
switch (datacall.active) {
case DATACALL_INACTIVE:
datacall.state = GECKO_NETWORK_STATE_DISCONNECTED;
break;
case DATACALL_ACTIVE_DOWN:
case DATACALL_ACTIVE_UP:
datacall.state = GECKO_NETWORK_STATE_CONNECTED;
break;
}
},
_processNetworks: function _processNetworks() {
let strings = Buf.readStringList();
let networks = [];
for (let i = 0; i < strings.length; i += 4) {
let network = {
longName: strings[i],
shortName: strings[i + 1],
mcc: 0, mnc: 0,
state: null
};
let networkTuple = strings[i + 2];
try {
this._processNetworkTuple(networkTuple, network);
} catch (e) {
debug("Error processing operator tuple: " + e);
}
let state = strings[i + 3];
if (state === NETWORK_STATE_UNKNOWN) {
// TODO: looks like this might conflict in style with
// GECKO_NETWORK_STYLE_UNKNOWN / nsINetworkManager
state = GECKO_QAN_STATE_UNKNOWN;
}
network.state = state;
networks.push(network);
}
return networks;
},
/**
* The "numeric" portion of the operator info is a tuple
* containing MCC (country code) and MNC (network code).
* AFAICT, MCC should always be 3 digits, making the remaining
* portion the MNC.
*/
_processNetworkTuple: function _processNetworkTuple(networkTuple, network) {
let tupleLen = networkTuple.length;
let mcc = 0, mnc = 0;
if (tupleLen == 5 || tupleLen == 6) {
mcc = parseInt(networkTuple.substr(0, 3), 10);
if (isNaN(mcc)) {
throw new Error("MCC could not be parsed from network tuple: " + networkTuple );
}
mnc = parseInt(networkTuple.substr(3), 10);
if (isNaN(mnc)) {
throw new Error("MNC could not be parsed from network tuple: " + networkTuple);
}
} else {
throw new Error("Invalid network tuple (should be 5 or 6 digits): " + networkTuple);
}
network.mcc = mcc;
network.mnc = mnc;
},
/**
* Helper for returning the TOA for the given dial string.
*/
_toaFromString: function _toaFromString(number) {
let toa = TOA_UNKNOWN;
if (number && number.length > 0 && number[0] == '+') {
toa = TOA_INTERNATIONAL;
}
return toa;
},
/**
* Helper for translating basic service group to call forwarding service class
* parameter.
*/
_siToServiceClass: function _siToServiceClass(si) {
if (!si) {
return ICC_SERVICE_CLASS_NONE;
}
let serviceCode = parseInt(si, 10);
switch (serviceCode) {
case 10:
return ICC_SERVICE_CLASS_SMS + ICC_SERVICE_CLASS_FAX + ICC_SERVICE_CLASS_VOICE;
case 11:
return ICC_SERVICE_CLASS_VOICE;
case 12:
return ICC_SERVICE_CLASS_SMS + ICC_SERVICE_CLASS_FAX;
case 13:
return ICC_SERVICE_CLASS_FAX;
case 16:
return ICC_SERVICE_CLASS_SMS;
case 19:
return ICC_SERVICE_CLASS_FAX + ICC_SERVICE_CLASS_VOICE;
case 21:
return ICC_SERVICE_CLASS_PAD + ICC_SERVICE_CLASS_DATA_ASYNC;
case 22:
return ICC_SERVICE_CLASS_PACKET + ICC_SERVICE_CLASS_DATA_SYNC;
case 25:
return ICC_SERVICE_CLASS_DATA_ASYNC;
case 26:
return ICC_SERVICE_CLASS_DATA_SYNC + SERVICE_CLASS_VOICE;
case 99:
return ICC_SERVICE_CLASS_PACKET;
default:
return ICC_SERVICE_CLASS_NONE;
}
},
/**
* @param message A decoded SMS-DELIVER message.
*
* @see 3GPP TS 31.111 section 7.1.1
*/
dataDownloadViaSMSPP: function dataDownloadViaSMSPP(message) {
let options = {
pid: message.pid,
dcs: message.dcs,
encoding: message.encoding,
};
Buf.newParcel(REQUEST_STK_SEND_ENVELOPE_WITH_STATUS, options);
Buf.seekIncoming(-1 * (Buf.currentParcelSize - Buf.readAvailable
- 2 * UINT32_SIZE)); // Skip response_type & request_type.
let messageStringLength = Buf.readUint32(); // In semi-octets
let smscLength = GsmPDUHelper.readHexOctet(); // In octets, inclusive of TOA
let tpduLength = (messageStringLength / 2) - (smscLength + 1); // In octets
// Device identities: 4 bytes
// Address: 0 or (2 + smscLength)
// SMS TPDU: (2 or 3) + tpduLength
let berLen = 4 +
(smscLength ? (2 + smscLength) : 0) +
(tpduLength <= 127 ? 2 : 3) + tpduLength; // In octets
let parcelLength = (berLen <= 127 ? 2 : 3) + berLen; // In octets
Buf.writeUint32(parcelLength * 2); // In semi-octets
// Write a BER-TLV
GsmPDUHelper.writeHexOctet(BER_SMS_PP_DOWNLOAD_TAG);
if (berLen > 127) {
GsmPDUHelper.writeHexOctet(0x81);
}
GsmPDUHelper.writeHexOctet(berLen);
// Device Identifies-TLV
GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_DEVICE_ID |
COMPREHENSIONTLV_FLAG_CR);
GsmPDUHelper.writeHexOctet(0x02);
GsmPDUHelper.writeHexOctet(STK_DEVICE_ID_NETWORK);
GsmPDUHelper.writeHexOctet(STK_DEVICE_ID_SIM);
// Address-TLV
if (smscLength) {
GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_ADDRESS);
GsmPDUHelper.writeHexOctet(smscLength);
Buf.copyIncomingToOutgoing(PDU_HEX_OCTET_SIZE * smscLength);
}
// SMS TPDU-TLV
GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_SMS_TPDU |
COMPREHENSIONTLV_FLAG_CR);
if (tpduLength > 127) {
GsmPDUHelper.writeHexOctet(0x81);
}
GsmPDUHelper.writeHexOctet(tpduLength);
Buf.copyIncomingToOutgoing(PDU_HEX_OCTET_SIZE * tpduLength);
// Write 2 string delimitors for the total string length must be even.
Buf.writeStringDelimiter(0);
Buf.sendParcel();
},
/**
* @param success A boolean value indicating the result of previous
* SMS-DELIVER message handling.
* @param responsePduLen ICC IO response PDU length in octets.
* @param options An object that contains four attributes: `pid`, `dcs`,
* `encoding` and `responsePduLen`.
*
* @see 3GPP TS 23.040 section 9.2.2.1a
*/
acknowledgeIncomingGsmSmsWithPDU: function acknowledgeIncomingGsmSmsWithPDU(success, responsePduLen, options) {
Buf.newParcel(REQUEST_ACKNOWLEDGE_INCOMING_GSM_SMS_WITH_PDU);
// Two strings.
Buf.writeUint32(2);
// String 1: Success
Buf.writeString(success ? "1" : "0");
// String 2: RP-ACK/RP-ERROR PDU
Buf.writeUint32(2 * (responsePduLen + (success ? 5 : 6))); // In semi-octet
// 1. TP-MTI & TP-UDHI
GsmPDUHelper.writeHexOctet(PDU_MTI_SMS_DELIVER);
if (!success) {
// 2. TP-FCS
GsmPDUHelper.writeHexOctet(PDU_FCS_USIM_DATA_DOWNLOAD_ERROR);
}
// 3. TP-PI
GsmPDUHelper.writeHexOctet(PDU_PI_USER_DATA_LENGTH |
PDU_PI_DATA_CODING_SCHEME |
PDU_PI_PROTOCOL_IDENTIFIER);
// 4. TP-PID
GsmPDUHelper.writeHexOctet(options.pid);
// 5. TP-DCS
GsmPDUHelper.writeHexOctet(options.dcs);
// 6. TP-UDL
if (options.encoding == PDU_DCS_MSG_CODING_7BITS_ALPHABET) {
GsmPDUHelper.writeHexOctet(Math.floor(responsePduLen * 8 / 7));
} else {
GsmPDUHelper.writeHexOctet(responsePduLen);
}
// TP-UD
Buf.copyIncomingToOutgoing(PDU_HEX_OCTET_SIZE * responsePduLen);
// Write 2 string delimitors for the total string length must be even.
Buf.writeStringDelimiter(0);
Buf.sendParcel();
},
/**
* @param message A decoded SMS-DELIVER message.
*/
writeSmsToSIM: function writeSmsToSIM(message) {
Buf.newParcel(REQUEST_WRITE_SMS_TO_SIM);
// Write EFsms Status
Buf.writeUint32(EFSMS_STATUS_FREE);
Buf.seekIncoming(-1 * (Buf.currentParcelSize - Buf.readAvailable
- 2 * UINT32_SIZE)); // Skip response_type & request_type.
let messageStringLength = Buf.readUint32(); // In semi-octets
let smscLength = GsmPDUHelper.readHexOctet(); // In octets, inclusive of TOA
let pduLength = (messageStringLength / 2) - (smscLength + 1); // In octets
// 1. Write PDU first.
if (smscLength > 0) {
Buf.seekIncoming(smscLength * PDU_HEX_OCTET_SIZE);
}
// Write EFsms PDU string length
Buf.writeUint32(2 * pduLength); // In semi-octets
if (pduLength) {
Buf.copyIncomingToOutgoing(PDU_HEX_OCTET_SIZE * pduLength);
}
// Write 2 string delimitors for the total string length must be even.
Buf.writeStringDelimiter(0);
// 2. Write SMSC
// Write EFsms SMSC string length
Buf.writeUint32(2 * (smscLength + 1)); // Plus smscLength itself, in semi-octets
// Write smscLength
GsmPDUHelper.writeHexOctet(smscLength);
// Write TOA & SMSC Address
if (smscLength) {
Buf.seekIncoming(-1 * (Buf.currentParcelSize - Buf.readAvailable
- 2 * UINT32_SIZE // Skip response_type, request_type.
- 2 * PDU_HEX_OCTET_SIZE)); // Skip messageStringLength & smscLength.
Buf.copyIncomingToOutgoing(PDU_HEX_OCTET_SIZE * smscLength);
}
// Write 2 string delimitors for the total string length must be even.
Buf.writeStringDelimiter(0);
Buf.sendParcel();
},
/**
* Helper for processing received SMS parcel data.
*
* @param length
* Length of SMS string in the incoming parcel.
*
* @return Message parsed or null for invalid message.
*/
_processReceivedSms: function _processReceivedSms(length) {
if (!length) {
if (DEBUG) debug("Received empty SMS!");
return null;
}
// An SMS is a string, but we won't read it as such, so let's read the
// string length and then defer to PDU parsing helper.
let messageStringLength = Buf.readUint32();
if (DEBUG) debug("Got new SMS, length " + messageStringLength);
let message = GsmPDUHelper.readMessage();
if (DEBUG) debug("Got new SMS: " + JSON.stringify(message));
// Read string delimiters. See Buf.readString().
Buf.readStringDelimiter(length);
return message;
},
/**
* Helper for processing SMS-DELIVER PDUs.
*
* @param length
* Length of SMS string in the incoming parcel.
*
* @return A failure cause defined in 3GPP 23.040 clause 9.2.3.22.
*/
_processSmsDeliver: function _processSmsDeliver(length) {
let message = this._processReceivedSms(length);
if (!message) {
return PDU_FCS_UNSPECIFIED;
}
if (message.epid == PDU_PID_SHORT_MESSAGE_TYPE_0) {
// `A short message type 0 indicates that the ME must acknowledge receipt
// of the short message but shall discard its contents.` ~ 3GPP TS 23.040
// 9.2.3.9
return PDU_FCS_OK;
}
if (message.messageClass == GECKO_SMS_MESSAGE_CLASSES[PDU_DCS_MSG_CLASS_2]) {
switch (message.epid) {
case PDU_PID_ANSI_136_R_DATA:
case PDU_PID_USIM_DATA_DOWNLOAD:
if (ICCUtilsHelper.isICCServiceAvailable("DATA_DOWNLOAD_SMS_PP")) {
// `If the service "data download via SMS Point-to-Point" is
// allocated and activated in the (U)SIM Service Table, ... then the
// ME shall pass the message transparently to the UICC using the
// ENVELOPE (SMS-PP DOWNLOAD).` ~ 3GPP TS 31.111 7.1.1.1
this.dataDownloadViaSMSPP(message);
// `the ME shall not display the message, or alert the user of a
// short message waiting.` ~ 3GPP TS 31.111 7.1.1.1
return PDU_FCS_RESERVED;
}
// If the service "data download via SMS-PP" is not available in the
// (U)SIM Service Table, ..., then the ME shall store the message in
// EFsms in accordance with TS 31.102` ~ 3GPP TS 31.111 7.1.1.1
default:
this.writeSmsToSIM(message);
break;
}
}
// TODO: Bug 739143: B2G SMS: Support SMS Storage Full event
if ((message.messageClass != GECKO_SMS_MESSAGE_CLASSES[PDU_DCS_MSG_CLASS_0]) && !true) {
// `When a mobile terminated message is class 0..., the MS shall display
// the message immediately and send a ACK to the SC ..., irrespective of
// whether there is memory available in the (U)SIM or ME.` ~ 3GPP 23.038
// clause 4.
if (message.messageClass == GECKO_SMS_MESSAGE_CLASSES[PDU_DCS_MSG_CLASS_2]) {
// `If all the short message storage at the MS is already in use, the
// MS shall return "memory capacity exceeded".` ~ 3GPP 23.038 clause 4.
return PDU_FCS_MEMORY_CAPACITY_EXCEEDED;
}
return PDU_FCS_UNSPECIFIED;
}
if (message.header && (message.header.segmentMaxSeq > 1)) {
message = this._processReceivedSmsSegment(message);
} else {
if (message.encoding == PDU_DCS_MSG_CODING_8BITS_ALPHABET) {
message.fullData = message.data;
delete message.data;
} else {
message.fullBody = message.body;
delete message.body;
}
}
if (message) {
message.rilMessageType = "sms-received";
this.sendDOMMessage(message);
}
if (message && message.messageClass == GECKO_SMS_MESSAGE_CLASSES[PDU_DCS_MSG_CLASS_2]) {
// `MS shall ensure that the message has been to the SMS data field in
// the (U)SIM before sending an ACK to the SC.` ~ 3GPP 23.038 clause 4
return PDU_FCS_RESERVED;
}
return PDU_FCS_OK;
},
/**
* Helper for processing SMS-STATUS-REPORT PDUs.
*
* @param length
* Length of SMS string in the incoming parcel.
*
* @return A failure cause defined in 3GPP 23.040 clause 9.2.3.22.
*/
_processSmsStatusReport: function _processSmsStatusReport(length) {
let message = this._processReceivedSms(length);
if (!message) {
if (DEBUG) debug("invalid SMS-STATUS-REPORT");
return PDU_FCS_UNSPECIFIED;
}
let options = this._pendingSentSmsMap[message.messageRef];
if (!options) {
if (DEBUG) debug("no pending SMS-SUBMIT message");
return PDU_FCS_OK;
}
let status = message.status;
// 3GPP TS 23.040 9.2.3.15 `The MS shall interpret any reserved values as
// "Service Rejected"(01100011) but shall store them exactly as received.`
if ((status >= 0x80)
|| ((status >= PDU_ST_0_RESERVED_BEGIN)
&& (status < PDU_ST_0_SC_SPECIFIC_BEGIN))
|| ((status >= PDU_ST_1_RESERVED_BEGIN)
&& (status < PDU_ST_1_SC_SPECIFIC_BEGIN))
|| ((status >= PDU_ST_2_RESERVED_BEGIN)
&& (status < PDU_ST_2_SC_SPECIFIC_BEGIN))
|| ((status >= PDU_ST_3_RESERVED_BEGIN)
&& (status < PDU_ST_3_SC_SPECIFIC_BEGIN))
) {
status = PDU_ST_3_SERVICE_REJECTED;
}
// Pending. Waiting for next status report.
if ((status >>> 5) == 0x01) {
if (DEBUG) debug("SMS-STATUS-REPORT: delivery still pending");
return PDU_FCS_OK;
}
delete this._pendingSentSmsMap[message.messageRef];
let deliveryStatus = ((status >>> 5) == 0x00)
? GECKO_SMS_DELIVERY_STATUS_SUCCESS
: GECKO_SMS_DELIVERY_STATUS_ERROR;
this.sendDOMMessage({
rilMessageType: "sms-delivery",
envelopeId: options.envelopeId,
deliveryStatus: deliveryStatus
});
return PDU_FCS_OK;
},
/**
* Helper for processing received multipart SMS.
*
* @return null for handled segments, and an object containing full message
* body/data once all segments are received.
*/
_processReceivedSmsSegment: function _processReceivedSmsSegment(original) {
let hash = original.sender + ":" + original.header.segmentRef;
let seq = original.header.segmentSeq;
let options = this._receivedSmsSegmentsMap[hash];
if (!options) {
options = original;
this._receivedSmsSegmentsMap[hash] = options;
options.segmentMaxSeq = original.header.segmentMaxSeq;
options.receivedSegments = 0;
options.segments = [];
} else if (options.segments[seq]) {
// Duplicated segment?
if (DEBUG) {
debug("Got duplicated segment no." + seq + " of a multipart SMS: "
+ JSON.stringify(original));
}
return null;
}
if (options.encoding == PDU_DCS_MSG_CODING_8BITS_ALPHABET) {
options.segments[seq] = original.data;
delete original.data;
} else {
options.segments[seq] = original.body;
delete original.body;
}
options.receivedSegments++;
if (options.receivedSegments < options.segmentMaxSeq) {
if (DEBUG) {
debug("Got segment no." + seq + " of a multipart SMS: "
+ JSON.stringify(options));
}
return null;
}
// Remove from map
delete this._receivedSmsSegmentsMap[hash];
// Rebuild full body
if (options.encoding == PDU_DCS_MSG_CODING_8BITS_ALPHABET) {
// Uint8Array doesn't have `concat`, so we have to merge all segements
// by hand.
let fullDataLen = 0;
for (let i = 1; i <= options.segmentMaxSeq; i++) {
fullDataLen += options.segments[i].length;
}
options.fullData = new Uint8Array(fullDataLen);
for (let d= 0, i = 1; i <= options.segmentMaxSeq; i++) {
let data = options.segments[i];
for (let j = 0; j < data.length; j++) {
options.fullData[d++] = data[j];
}
}
} else {
options.fullBody = options.segments.join("");
}
if (DEBUG) {
debug("Got full multipart SMS: " + JSON.stringify(options));
}
return options;
},
/**
* Helper for processing sent multipart SMS.
*/
_processSentSmsSegment: function _processSentSmsSegment(options) {
// Setup attributes for sending next segment
let next = options.segmentSeq;
options.body = options.segments[next].body;
options.encodedBodyLength = options.segments[next].encodedBodyLength;
options.segmentSeq = next + 1;
this.sendSMS(options);
},
_processReceivedSmsCbPage: function _processReceivedSmsCbPage(original) {
if (original.numPages <= 1) {
if (original.body) {
original.fullBody = original.body;
delete original.body;
} else if (original.data) {
original.fullData = original.data;
delete original.data;
}
return original;
}
// Hash = <serial>:<mcc>:<mnc>:<lac>:<cid>
let hash = original.serial + ":" + this.iccInfo.mcc + ":"
+ this.iccInfo.mnc + ":";
switch (original.geographicalScope) {
case CB_GSM_GEOGRAPHICAL_SCOPE_CELL_WIDE_IMMEDIATE:
case CB_GSM_GEOGRAPHICAL_SCOPE_CELL_WIDE:
hash += this.voiceRegistrationState.cell.gsmLocationAreaCode + ":"
+ this.voiceRegistrationState.cell.gsmCellId;
break;
case CB_GSM_GEOGRAPHICAL_SCOPE_LOCATION_AREA_WIDE:
hash += this.voiceRegistrationState.cell.gsmLocationAreaCode + ":";
break;
default:
hash += ":";
break;
}
let index = original.pageIndex;
let options = this._receivedSmsCbPagesMap[hash];
if (!options) {
options = original;
this._receivedSmsCbPagesMap[hash] = options;
options.receivedPages = 0;
options.pages = [];
} else if (options.pages[index]) {
// Duplicated page?
if (DEBUG) {
debug("Got duplicated page no." + index + " of a multipage SMSCB: "
+ JSON.stringify(original));
}
return null;
}
if (options.encoding == PDU_DCS_MSG_CODING_8BITS_ALPHABET) {
options.pages[index] = original.data;
delete original.data;
} else {
options.pages[index] = original.body;
delete original.body;
}
options.receivedPages++;
if (options.receivedPages < options.numPages) {
if (DEBUG) {
debug("Got page no." + index + " of a multipage SMSCB: "
+ JSON.stringify(options));
}
return null;
}
// Remove from map
delete this._receivedSmsCbPagesMap[hash];
// Rebuild full body
if (options.encoding == PDU_DCS_MSG_CODING_8BITS_ALPHABET) {
// Uint8Array doesn't have `concat`, so we have to merge all pages by hand.
let fullDataLen = 0;
for (let i = 1; i <= options.numPages; i++) {
fullDataLen += options.pages[i].length;
}
options.fullData = new Uint8Array(fullDataLen);
for (let d= 0, i = 1; i <= options.numPages; i++) {
let data = options.pages[i];
for (let j = 0; j < data.length; j++) {
options.fullData[d++] = data[j];
}
}
} else {
options.fullBody = options.pages.join("");
}
if (DEBUG) {
debug("Got full multipage SMSCB: " + JSON.stringify(options));
}
return options;
},
_mergeCellBroadcastConfigs: function _mergeCellBroadcastConfigs(list, from, to) {
if (!list) {
return [from, to];
}
for (let i = 0, f1, t1; i < list.length;) {
f1 = list[i++];
t1 = list[i++];
if (to == f1) {
// ...[from]...[to|f1]...(t1)
list[i - 2] = from;
return list;
}
if (to < f1) {
// ...[from]...(to)...[f1] or ...[from]...(to)[f1]
if (i > 2) {
// Not the first range pair, merge three arrays.
return list.slice(0, i - 2).concat([from, to]).concat(list.slice(i - 2));
} else {
return [from, to].concat(list);
}
}
if (from > t1) {
// ...[f1]...(t1)[from] or ...[f1]...(t1)...[from]
continue;
}
// Have overlap or merge-able adjacency with [f1]...(t1). Replace it
// with [min(from, f1)]...(max(to, t1)).
let changed = false;
if (from < f1) {
// [from]...[f1]...(t1) or [from][f1]...(t1)
// Save minimum from value.
list[i - 2] = from;
changed = true;
}
if (to <= t1) {
// [from]...[to](t1) or [from]...(to|t1)
// Can't have further merge-able adjacency. Return.
return list;
}
// Try merging possible next adjacent range.
let j = i;
for (let f2, t2; j < list.length;) {
f2 = list[j++];
t2 = list[j++];
if (to > t2) {
// [from]...[f2]...[t2]...(to) or [from]...[f2]...[t2](to)
// Merge next adjacent range again.
continue;
}
if (to < t2) {
if (to < f2) {
// [from]...(to)[f2] or [from]...(to)...[f2]
// Roll back and give up.
j -= 2;
} else if (to < t2) {
// [from]...[to|f2]...(t2), or [from]...[f2]...[to](t2)
// Merge to [from]...(t2) and give up.
to = t2;
}
}
break;
}
// Save maximum to value.
list[i - 1] = to;
if (j != i) {
// Remove merged adjacent ranges.
let ret = list.slice(0, i);
if (j < list.length) {
ret = ret.concat(list.slice(j));
}
return ret;
}
return list;
}
// Append to the end.
list.push(from);
list.push(to);
return list;
},
/**
* Merge all members of cellBroadcastConfigs into mergedCellBroadcastConfig.
*/
_mergeAllCellBroadcastConfigs: function _mergeAllCellBroadcastConfigs() {
if (!("CBMI" in this.cellBroadcastConfigs)
|| !("CBMIR" in this.cellBroadcastConfigs)
|| !("MMI" in this.cellBroadcastConfigs)) {
if (DEBUG) {
debug("cell broadcast configs not ready, waiting ...");
}
return;
}
if (DEBUG) {
debug("Cell Broadcast search lists: " + JSON.stringify(this.cellBroadcastConfigs));
}
let list = null;
for each (let ll in this.cellBroadcastConfigs) {
if (ll == null) {
continue;
}
for (let i = 0; i < ll.length; i += 2) {
list = this._mergeCellBroadcastConfigs(list, ll[i], ll[i + 1]);
}
}
if (DEBUG) {
debug("Cell Broadcast search lists(merged): " + JSON.stringify(list));
}
this.mergedCellBroadcastConfig = list;
this.updateCellBroadcastConfig();
},
/**
* Check whether search list from settings is settable by MMI, that is,
* whether the range is bounded in any entries of CB_NON_MMI_SETTABLE_RANGES.
*/
_checkCellBroadcastMMISettable: function _checkCellBroadcastMMISettable(from, to) {
if ((to <= from) || (from >= 65536) || (from < 0)) {
return false;
}
for (let i = 0, f, t; i < CB_NON_MMI_SETTABLE_RANGES.length;) {
f = CB_NON_MMI_SETTABLE_RANGES[i++];
t = CB_NON_MMI_SETTABLE_RANGES[i++];
if ((from < t) && (to > f)) {
// Have overlap.
return false;
}
}
return true;
},
/**
* Convert Cell Broadcast settings string into search list.
*/
_convertCellBroadcastSearchList: function _convertCellBroadcastSearchList(searchListStr) {
let parts = searchListStr && searchListStr.split(",");
if (!parts) {
return null;
}
let list = null;
let result, from, to;
for (let range of parts) {
// Match "12" or "12-34". The result will be ["12", "12", null] or
// ["12-34", "12", "34"].
result = range.match(/^(\d+)(?:-(\d+))?$/);
if (!result) {
throw "Invalid format";
}
from = parseInt(result[1]);
to = (result[2] != null) ? parseInt(result[2]) + 1 : from + 1;
if (!this._checkCellBroadcastMMISettable(from, to)) {
throw "Invalid range";
}
if (list == null) {
list = [];
}
list.push(from);
list.push(to);
}
return list;
},
/**
* Handle incoming messages from the main UI thread.
*
* @param message
* Object containing the message. Messages are supposed
*/
handleDOMMessage: function handleMessage(message) {
if (DEBUG) debug("Received DOM message " + JSON.stringify(message));
let method = this[message.rilMessageType];
if (typeof method != "function") {
if (DEBUG) {
debug("Don't know what to do with message " + JSON.stringify(message));
}
return;
}
method.call(this, message);
},
/**
* Get a list of current voice calls.
*/
enumerateCalls: function enumerateCalls(options) {
if (DEBUG) debug("Sending all current calls");
let calls = [];
for each (let call in this.currentCalls) {
calls.push(call);
}
options.calls = calls;
this.sendDOMMessage(options);
},
/**
* Get a list of current data calls.
*/
enumerateDataCalls: function enumerateDataCalls() {
let datacall_list = [];
for each (let datacall in this.currentDataCalls) {
datacall_list.push(datacall);
}
this.sendDOMMessage({rilMessageType: "datacalllist",
datacalls: datacall_list});
},
/**
* Process STK Proactive Command.
*/
processStkProactiveCommand: function processStkProactiveCommand() {
let length = Buf.readUint32();
let berTlv = BerTlvHelper.decode(length / 2);
Buf.readStringDelimiter(length);
let ctlvs = berTlv.value;
let ctlv = StkProactiveCmdHelper.searchForTag(
COMPREHENSIONTLV_TAG_COMMAND_DETAILS, ctlvs);
if (!ctlv) {
RIL.sendStkTerminalResponse({
resultCode: STK_RESULT_CMD_DATA_NOT_UNDERSTOOD});
throw new Error("Can't find COMMAND_DETAILS ComprehensionTlv");
}
let cmdDetails = ctlv.value;
if (DEBUG) {
debug("commandNumber = " + cmdDetails.commandNumber +
" typeOfCommand = " + cmdDetails.typeOfCommand.toString(16) +
" commandQualifier = " + cmdDetails.commandQualifier);
}
// STK_CMD_MORE_TIME need not to propagate event to DOM.
if (cmdDetails.typeOfCommand == STK_CMD_MORE_TIME) {
RIL.sendStkTerminalResponse({
command: cmdDetails,
resultCode: STK_RESULT_OK});
return;
}
cmdDetails.rilMessageType = "stkcommand";
cmdDetails.options = StkCommandParamsFactory.createParam(cmdDetails, ctlvs);
RIL.sendDOMMessage(cmdDetails);
},
/**
* Send messages to the main thread.
*/
sendDOMMessage: function sendDOMMessage(message) {
postMessage(message);
},
/**
* Handle incoming requests from the RIL. We find the method that
* corresponds to the request type. Incidentally, the request type
* _is_ the method name, so that's easy.
*/
handleParcel: function handleParcel(request_type, length, options) {
let method = this[request_type];
if (typeof method == "function") {
if (DEBUG) debug("Handling parcel as " + method.name);
method.call(this, length, options);
}
},
setDebugEnabled: function setDebugEnabled(options) {
DEBUG = DEBUG_WORKER || options.enabled;
}
};
RIL.initRILState();
RIL[REQUEST_GET_SIM_STATUS] = function REQUEST_GET_SIM_STATUS(length, options) {
if (options.rilRequestError) {
return;
}
let iccStatus = {};
iccStatus.cardState = Buf.readUint32(); // CARD_STATE_*
iccStatus.universalPINState = Buf.readUint32(); // CARD_PINSTATE_*
iccStatus.gsmUmtsSubscriptionAppIndex = Buf.readUint32();
iccStatus.cdmaSubscriptionAppIndex = Buf.readUint32();
if (!RILQUIRKS_V5_LEGACY) {
iccStatus.imsSubscriptionAppIndex = Buf.readUint32();
}
let apps_length = Buf.readUint32();
if (apps_length > CARD_MAX_APPS) {
apps_length = CARD_MAX_APPS;
}
iccStatus.apps = [];
for (let i = 0 ; i < apps_length ; i++) {
iccStatus.apps.push({
app_type: Buf.readUint32(), // CARD_APPTYPE_*
app_state: Buf.readUint32(), // CARD_APPSTATE_*
perso_substate: Buf.readUint32(), // CARD_PERSOSUBSTATE_*
aid: Buf.readString(),
app_label: Buf.readString(),
pin1_replaced: Buf.readUint32(),
pin1: Buf.readUint32(),
pin2: Buf.readUint32()
});
if (RILQUIRKS_SIM_APP_STATE_EXTRA_FIELDS) {
Buf.readUint32();
Buf.readUint32();
Buf.readUint32();
Buf.readUint32();
}
}
if (DEBUG) debug("iccStatus: " + JSON.stringify(iccStatus));
this._processICCStatus(iccStatus);
};
RIL[REQUEST_ENTER_SIM_PIN] = function REQUEST_ENTER_SIM_PIN(length, options) {
this._processEnterAndChangeICCResponses(length, options);
};
RIL[REQUEST_ENTER_SIM_PUK] = function REQUEST_ENTER_SIM_PUK(length, options) {
this._processEnterAndChangeICCResponses(length, options);
};
RIL[REQUEST_ENTER_SIM_PIN2] = function REQUEST_ENTER_SIM_PIN2(length, options) {
this._processEnterAndChangeICCResponses(length, options);
};
RIL[REQUEST_ENTER_SIM_PUK2] = function REQUEST_ENTER_SIM_PUK(length, options) {
this._processEnterAndChangeICCResponses(length, options);
};
RIL[REQUEST_CHANGE_SIM_PIN] = function REQUEST_CHANGE_SIM_PIN(length, options) {
this._processEnterAndChangeICCResponses(length, options);
};
RIL[REQUEST_CHANGE_SIM_PIN2] = function REQUEST_CHANGE_SIM_PIN2(length, options) {
this._processEnterAndChangeICCResponses(length, options);
};
RIL[REQUEST_ENTER_NETWORK_DEPERSONALIZATION_CODE] =
function REQUEST_ENTER_NETWORK_DEPERSONALIZATION_CODE(length, options) {
this._processEnterAndChangeICCResponses(length, options);
};
RIL[REQUEST_GET_CURRENT_CALLS] = function REQUEST_GET_CURRENT_CALLS(length, options) {
if (options.rilRequestError) {
return;
}
let calls_length = 0;
// The RIL won't even send us the length integer if there are no active calls.
// So only read this integer if the parcel actually has it.
if (length) {
calls_length = Buf.readUint32();
}
if (!calls_length) {
this._processCalls(null);
return;
}
let calls = {};
for (let i = 0; i < calls_length; i++) {
let call = {};
call.state = Buf.readUint32(); // CALL_STATE_*
call.callIndex = Buf.readUint32(); // GSM index (1-based)
call.toa = Buf.readUint32();
call.isMpty = Boolean(Buf.readUint32());
call.isMT = Boolean(Buf.readUint32());
call.als = Buf.readUint32();
call.isVoice = Boolean(Buf.readUint32());
call.isVoicePrivacy = Boolean(Buf.readUint32());
if (RILQUIRKS_CALLSTATE_EXTRA_UINT32) {
Buf.readUint32();
}
call.number = Buf.readString(); //TODO munge with TOA
call.numberPresentation = Buf.readUint32(); // CALL_PRESENTATION_*
call.name = Buf.readString();
call.namePresentation = Buf.readUint32();
call.uusInfo = null;
let uusInfoPresent = Buf.readUint32();
if (uusInfoPresent == 1) {
call.uusInfo = {
type: Buf.readUint32(),
dcs: Buf.readUint32(),
userData: null //XXX TODO byte array?!?
};
}
calls[call.callIndex] = call;
}
this._processCalls(calls);
};
RIL[REQUEST_DIAL] = function REQUEST_DIAL(length, options) {
if (options.rilRequestError) {
// The connection is not established yet.
options.callIndex = -1;
this.getFailCauseCode(options);
return;
}
};
RIL[REQUEST_GET_IMSI] = function REQUEST_GET_IMSI(length, options) {
if (options.rilRequestError) {
return;
}
this.iccInfo.imsi = Buf.readString();
};
RIL[REQUEST_HANGUP] = function REQUEST_HANGUP(length, options) {
if (options.rilRequestError) {
return;
}
this.getCurrentCalls();
};
RIL[REQUEST_HANGUP_WAITING_OR_BACKGROUND] = function REQUEST_HANGUP_WAITING_OR_BACKGROUND(length, options) {
if (options.rilRequestError) {
return;
}
this.getCurrentCalls();
};
RIL[REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND] = function REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND(length, options) {
if (options.rilRequestError) {
return;
}
this.getCurrentCalls();
};
RIL[REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE] = function REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE(length, options) {
if (options.rilRequestError) {
return;
}
this.getCurrentCalls();
};
RIL[REQUEST_SWITCH_HOLDING_AND_ACTIVE] = function REQUEST_SWITCH_HOLDING_AND_ACTIVE(length, options) {
if (options.rilRequestError) {
return;
}
// XXX Normally we should get a UNSOLICITED_RESPONSE_CALL_STATE_CHANGED parcel
// notifying us of call state changes, but sometimes we don't (have no idea why).
// this.getCurrentCalls() helps update the call state actively.
this.getCurrentCalls();
};
RIL[REQUEST_CONFERENCE] = null;
RIL[REQUEST_UDUB] = null;
RIL[REQUEST_LAST_CALL_FAIL_CAUSE] = function REQUEST_LAST_CALL_FAIL_CAUSE(length, options) {
let num = 0;
if (length) {
num = Buf.readUint32();
}
if (!num) {
// No response of REQUEST_LAST_CALL_FAIL_CAUSE. Change the call state into
// 'disconnected' directly.
this._handleDisconnectedCall(options);
return;
}
let failCause = Buf.readUint32();
switch (failCause) {
case CALL_FAIL_NORMAL:
this._handleDisconnectedCall(options);
break;
case CALL_FAIL_BUSY:
options.state = CALL_STATE_BUSY;
this._handleChangedCallState(options);
this._handleDisconnectedCall(options);
break;
default:
options.rilMessageType = "callError";
options.error = RIL_CALL_FAILCAUSE_TO_GECKO_CALL_ERROR[failCause];
this.sendDOMMessage(options);
break;
}
};
RIL[REQUEST_SIGNAL_STRENGTH] = function REQUEST_SIGNAL_STRENGTH(length, options) {
if (options.rilRequestError) {
return;
}
let obj = {};
// GSM
// Valid values are (0-31, 99) as defined in TS 27.007 8.5.
let gsmSignalStrength = Buf.readUint32();
obj.gsmSignalStrength = gsmSignalStrength & 0xff;
// GSM bit error rate (0-7, 99) as defined in TS 27.007 8.5.
obj.gsmBitErrorRate = Buf.readUint32();
obj.gsmDBM = null;
obj.gsmRelative = null;
if (obj.gsmSignalStrength >= 0 && obj.gsmSignalStrength <= 31) {
obj.gsmDBM = -113 + obj.gsmSignalStrength * 2;
obj.gsmRelative = Math.floor(obj.gsmSignalStrength * 100 / 31);
}
// The SGS2 seems to compute the number of bars (0-4) for us and
// expose those instead of the actual signal strength. Since the RIL
// needs to be "warmed up" first for the quirk detection to work,
// we're detecting this ad-hoc and not upfront.
if (obj.gsmSignalStrength == 99) {
obj.gsmRelative = (gsmSignalStrength >> 8) * 25;
}
// CDMA
obj.cdmaDBM = Buf.readUint32();
// The CDMA EC/IO.
obj.cdmaECIO = Buf.readUint32();
// The EVDO RSSI value.
// EVDO
obj.evdoDBM = Buf.readUint32();
// The EVDO EC/IO.
obj.evdoECIO = Buf.readUint32();
// Signal-to-noise ratio. Valid values are 0 to 8.
obj.evdoSNR = Buf.readUint32();
// LTE
if (!RILQUIRKS_V5_LEGACY) {
// Valid values are (0-31, 99) as defined in TS 27.007 8.5.
obj.lteSignalStrength = Buf.readUint32();
// Reference signal receive power in dBm, multiplied by -1.
// Valid values are 44 to 140.
obj.lteRSRP = Buf.readUint32();
// Reference signal receive quality in dB, multiplied by -1.
// Valid values are 3 to 20.
obj.lteRSRQ = Buf.readUint32();
// Signal-to-noise ratio for the reference signal.
// Valid values are -200 (20.0 dB) to +300 (30 dB).
obj.lteRSSNR = Buf.readUint32();
// Channel Quality Indicator, valid values are 0 to 15.
obj.lteCQI = Buf.readUint32();
}
if (DEBUG) debug("Signal strength " + JSON.stringify(obj));
obj.rilMessageType = "signalstrengthchange";
this.sendDOMMessage(obj);
};
RIL[REQUEST_VOICE_REGISTRATION_STATE] = function REQUEST_VOICE_REGISTRATION_STATE(length, options) {
this._receivedNetworkInfo(NETWORK_INFO_VOICE_REGISTRATION_STATE);
if (options.rilRequestError) {
return;
}
let state = Buf.readStringList();
if (DEBUG) debug("voice registration state: " + state);
this._processVoiceRegistrationState(state);
};
RIL[REQUEST_DATA_REGISTRATION_STATE] = function REQUEST_DATA_REGISTRATION_STATE(length, options) {
this._receivedNetworkInfo(NETWORK_INFO_DATA_REGISTRATION_STATE);
if (options.rilRequestError) {
return;
}
let state = Buf.readStringList();
this._processDataRegistrationState(state);
};
RIL[REQUEST_OPERATOR] = function REQUEST_OPERATOR(length, options) {
this._receivedNetworkInfo(NETWORK_INFO_OPERATOR);
if (options.rilRequestError) {
return;
}
let operatorData = Buf.readStringList();
if (DEBUG) debug("Operator: " + operatorData);
this._processOperator(operatorData);
};
RIL[REQUEST_RADIO_POWER] = null;
RIL[REQUEST_DTMF] = null;
RIL[REQUEST_SEND_SMS] = function REQUEST_SEND_SMS(length, options) {
if (options.rilRequestError) {
if (DEBUG) debug("REQUEST_SEND_SMS: rilRequestError = " + options.rilRequestError);
switch (options.rilRequestError) {
case ERROR_SMS_SEND_FAIL_RETRY:
if (options.retryCount < SMS_RETRY_MAX) {
options.retryCount++;
// TODO: bug 736702 TP-MR, retry interval, retry timeout
this.sendSMS(options);
break;
}
// Fallback to default error handling if it meets max retry count.
default:
this.sendDOMMessage({
rilMessageType: "sms-send-failed",
envelopeId: options.envelopeId,
error: options.rilRequestError,
});
break;
}
return;
}
options.messageRef = Buf.readUint32();
options.ackPDU = Buf.readString();
options.errorCode = Buf.readUint32();
if ((options.segmentMaxSeq > 1)
&& (options.segmentSeq < options.segmentMaxSeq)) {
// Not last segment
this._processSentSmsSegment(options);
} else {
// Last segment sent with success.
if (options.requestStatusReport) {
if (DEBUG) debug("waiting SMS-STATUS-REPORT for messageRef " + options.messageRef);
this._pendingSentSmsMap[options.messageRef] = options;
}
this.sendDOMMessage({
rilMessageType: "sms-sent",
envelopeId: options.envelopeId,
});
}
};
RIL[REQUEST_SEND_SMS_EXPECT_MORE] = null;
RIL.readSetupDataCall_v5 = function readSetupDataCall_v5(options) {
if (!options) {
options = {};
}
let [cid, ifname, ipaddr, dns, gw] = Buf.readStringList();
options.cid = cid;
options.ifname = ifname;
options.ipaddr = ipaddr;
options.dns = dns;
options.gw = gw;
options.active = DATACALL_ACTIVE_UNKNOWN;
options.state = GECKO_NETWORK_STATE_CONNECTING;
return options;
};
RIL[REQUEST_SETUP_DATA_CALL] = function REQUEST_SETUP_DATA_CALL(length, options) {
if (options.rilRequestError) {
// On Data Call generic errors, we shall notify caller
this._sendDataCallError(options, options.rilRequestError);
return;
}
if (RILQUIRKS_V5_LEGACY) {
// Populate the `options` object with the data call information. That way
// we retain the APN and other info about how the data call was set up.
this.readSetupDataCall_v5(options);
this.currentDataCalls[options.cid] = options;
options.rilMessageType = "datacallstatechange";
this.sendDOMMessage(options);
// Let's get the list of data calls to ensure we know whether it's active
// or not.
this.getDataCallList();
return;
}
// Pass `options` along. That way we retain the APN and other info about
// how the data call was set up.
this[REQUEST_DATA_CALL_LIST](length, options);
};
RIL[REQUEST_SIM_IO] = function REQUEST_SIM_IO(length, options) {
if (!length) {
if (options.onerror) {
options.errorMsg = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError];
options.onerror(options);
}
return;
}
// Don't need to read rilRequestError since we can know error status from
// sw1 and sw2.
options.sw1 = Buf.readUint32();
options.sw2 = Buf.readUint32();
if (options.sw1 != ICC_STATUS_NORMAL_ENDING) {
// See GSM11.11, TS 51.011 clause 9.4, and ISO 7816-4 for the error
// description.
let msg = "ICC I/O Error EF id = " + options.fileId.toString(16) +
" command = " + options.command.toString(16) +
"(" + options.sw1.toString(16) + "/" + options.sw2.toString(16) + ")"
if (DEBUG) {
debug(msg);
}
if (options.onerror) {
options.errorMsg = msg;
options.onerror(options);
}
return;
}
ICCIOHelper.processICCIO(options);
};
RIL[REQUEST_SEND_USSD] = function REQUEST_SEND_USSD(length, options) {
if (DEBUG) {
debug("REQUEST_SEND_USSD " + JSON.stringify(options));
}
options.success = this._ussdSession = options.rilRequestError == 0;
options.errorMsg = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError];
this.sendDOMMessage(options);
};
RIL[REQUEST_CANCEL_USSD] = function REQUEST_CANCEL_USSD(length, options) {
if (DEBUG) {
debug("REQUEST_CANCEL_USSD" + JSON.stringify(options));
}
options.success = options.rilRequestError == 0;
this._ussdSession = !options.success;
options.errorMsg = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError];
this.sendDOMMessage(options);
};
RIL[REQUEST_GET_CLIR] = null;
RIL[REQUEST_SET_CLIR] = null;
RIL[REQUEST_QUERY_CALL_FORWARD_STATUS] =
function REQUEST_QUERY_CALL_FORWARD_STATUS(length, options) {
options.success = options.rilRequestError == 0;
if (!options.success) {
options.errorMsg = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError];
this.sendDOMMessage(options);
return;
}
let rulesLength = 0;
if (length) {
rulesLength = Buf.readUint32();
}
if (!rulesLength) {
options.success = false;
options.errorMsg =
"Invalid rule length while querying call forwarding status.";
this.sendDOMMessage(options);
return;
}
let rules = new Array(rulesLength);
for (let i = 0; i < rulesLength; i++) {
let rule = {};
rule.active = Buf.readUint32() == 1; // CALL_FORWARD_STATUS_*
rule.reason = Buf.readUint32(); // CALL_FORWARD_REASON_*
rule.serviceClass = Buf.readUint32();
rule.toa = Buf.readUint32();
rule.number = Buf.readString();
rule.timeSeconds = Buf.readUint32();
rules[i] = rule;
}
options.rules = rules;
this.sendDOMMessage(options);
};
RIL[REQUEST_SET_CALL_FORWARD] =
function REQUEST_SET_CALL_FORWARD(length, options) {
options.success = options.rilRequestError == 0;
if (!options.success) {
options.errorMsg = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError];
}
this.sendDOMMessage(options);
};
RIL[REQUEST_QUERY_CALL_WAITING] = null;
RIL[REQUEST_SET_CALL_WAITING] = function REQUEST_SET_CALL_WAITING(length, options) {
options.errorMsg = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError];
this.sendDOMMessage(options);
};
RIL[REQUEST_SMS_ACKNOWLEDGE] = null;
RIL[REQUEST_GET_IMEI] = function REQUEST_GET_IMEI(length, options) {
this.IMEI = Buf.readString();
// So far we only send the IMEI back to the DOM if it was requested via MMI.
if (!options.mmi) {
return;
}
options.rilMessageType = "sendMMI";
options.success = options.rilRequestError == 0;
options.errorMsg = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError];
if ((!options.success || this.IMEI == null) && !options.errorMsg) {
options.errorMsg = GECKO_ERROR_GENERIC_FAILURE;
}
options.result = this.IMEI;
this.sendDOMMessage(options);
};
RIL[REQUEST_GET_IMEISV] = function REQUEST_GET_IMEISV(length, options) {
if (options.rilRequestError) {
return;
}
this.IMEISV = Buf.readString();
};
RIL[REQUEST_ANSWER] = null;
RIL[REQUEST_DEACTIVATE_DATA_CALL] = function REQUEST_DEACTIVATE_DATA_CALL(length, options) {
if (options.rilRequestError) {
return;
}
let datacall = this.currentDataCalls[options.cid];
delete this.currentDataCalls[options.cid];
datacall.state = GECKO_NETWORK_STATE_UNKNOWN;
datacall.rilMessageType = "datacallstatechange";
this.sendDOMMessage(datacall);
};
RIL[REQUEST_QUERY_FACILITY_LOCK] = function REQUEST_QUERY_FACILITY_LOCK(length, options) {
options.success = options.rilRequestError == 0;
if (!options.success) {
options.errorMsg = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError];
}
if (length) {
options.enabled = Buf.readUint32List()[0] == 0 ? false : true;
}
this.sendDOMMessage(options);
};
RIL[REQUEST_SET_FACILITY_LOCK] = function REQUEST_SET_FACILITY_LOCK(length, options) {
options.success = options.rilRequestError == 0;
if (!options.success) {
options.errorMsg = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError];
}
options.retryCount = length ? Buf.readUint32List()[0] : -1;
this.sendDOMMessage(options);
};
RIL[REQUEST_CHANGE_BARRING_PASSWORD] = null;
RIL[REQUEST_QUERY_NETWORK_SELECTION_MODE] = function REQUEST_QUERY_NETWORK_SELECTION_MODE(length, options) {
this._receivedNetworkInfo(NETWORK_INFO_NETWORK_SELECTION_MODE);
if (options.rilRequestError) {
options.error = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError];
this.sendDOMMessage(options);
return;
}
let mode = Buf.readUint32List();
let selectionMode;
switch (mode[0]) {
case NETWORK_SELECTION_MODE_AUTOMATIC:
selectionMode = GECKO_NETWORK_SELECTION_AUTOMATIC;
break;
case NETWORK_SELECTION_MODE_MANUAL:
selectionMode = GECKO_NETWORK_SELECTION_MANUAL;
break;
default:
selectionMode = GECKO_NETWORK_SELECTION_UNKNOWN;
break;
}
if (this.networkSelectionMode != selectionMode) {
this.networkSelectionMode = options.mode = selectionMode;
options.rilMessageType = "networkselectionmodechange";
this._sendNetworkInfoMessage(NETWORK_INFO_NETWORK_SELECTION_MODE, options);
}
};
RIL[REQUEST_SET_NETWORK_SELECTION_AUTOMATIC] = function REQUEST_SET_NETWORK_SELECTION_AUTOMATIC(length, options) {
if (options.rilRequestError) {
options.error = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError];
this.sendDOMMessage(options);
return;
}
this.sendDOMMessage(options);
};
RIL[REQUEST_SET_NETWORK_SELECTION_MANUAL] = function REQUEST_SET_NETWORK_SELECTION_MANUAL(length, options) {
if (options.rilRequestError) {
options.error = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError];
this.sendDOMMessage(options);
return;
}
this.sendDOMMessage(options);
};
RIL[REQUEST_QUERY_AVAILABLE_NETWORKS] = function REQUEST_QUERY_AVAILABLE_NETWORKS(length, options) {
if (options.rilRequestError) {
options.error = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError];
this.sendDOMMessage(options);
return;
}
options.networks = this._processNetworks();
this.sendDOMMessage(options);
};
RIL[REQUEST_DTMF_START] = null;
RIL[REQUEST_DTMF_STOP] = null;
RIL[REQUEST_BASEBAND_VERSION] = function REQUEST_BASEBAND_VERSION(length, options) {
if (options.rilRequestError) {
return;
}
this.basebandVersion = Buf.readString();
if (DEBUG) debug("Baseband version: " + this.basebandVersion);
};
RIL[REQUEST_SEPARATE_CONNECTION] = null;
RIL[REQUEST_SET_MUTE] = null;
RIL[REQUEST_GET_MUTE] = null;
RIL[REQUEST_QUERY_CLIP] = null;
RIL[REQUEST_LAST_DATA_CALL_FAIL_CAUSE] = null;
RIL.readDataCall_v5 = function readDataCall_v5(options) {
if (!options) {
options = {};
}
options.cid = Buf.readUint32().toString();
options.active = Buf.readUint32(); // DATACALL_ACTIVE_*
options.type = Buf.readString();
options.apn = Buf.readString();
options.address = Buf.readString();
return options;
};
RIL.readDataCall_v6 = function readDataCall_v6(options) {
if (!options) {
options = {};
}
options.status = Buf.readUint32(); // DATACALL_FAIL_*
options.suggestedRetryTime = Buf.readUint32();
options.cid = Buf.readUint32().toString();
options.active = Buf.readUint32(); // DATACALL_ACTIVE_*
options.type = Buf.readString();
options.ifname = Buf.readString();
options.ipaddr = Buf.readString();
options.dns = Buf.readString();
options.gw = Buf.readString();
if (options.dns) {
options.dns = options.dns.split(" ");
}
//TODO for now we only support one address and gateway
if (options.ipaddr) {
options.ipaddr = options.ipaddr.split(" ")[0];
}
if (options.gw) {
options.gw = options.gw.split(" ")[0];
}
options.ip = null;
options.netmask = null;
options.broadcast = null;
if (options.ipaddr) {
options.ip = options.ipaddr.split("/")[0];
let ip_value = netHelpers.stringToIP(options.ip);
let prefix_len = options.ipaddr.split("/")[1];
let mask_value = netHelpers.makeMask(prefix_len);
options.netmask = netHelpers.ipToString(mask_value);
options.broadcast = netHelpers.ipToString((ip_value & mask_value) + ~mask_value);
}
return options;
};
RIL[REQUEST_DATA_CALL_LIST] = function REQUEST_DATA_CALL_LIST(length, options) {
if (options.rilRequestError) {
return;
}
if (!length) {
this._processDataCallList(null);
return;
}
let version = 0;
if (!RILQUIRKS_V5_LEGACY) {
version = Buf.readUint32();
}
let num = num = Buf.readUint32();
let datacalls = {};
for (let i = 0; i < num; i++) {
let datacall;
if (version < 6) {
datacall = this.readDataCall_v5();
} else {
datacall = this.readDataCall_v6();
}
datacalls[datacall.cid] = datacall;
}
let newDataCallOptions = null;
if (options.rilRequestType == REQUEST_SETUP_DATA_CALL) {
newDataCallOptions = options;
}
this._processDataCallList(datacalls, newDataCallOptions);
};
RIL[REQUEST_RESET_RADIO] = null;
RIL[REQUEST_OEM_HOOK_RAW] = null;
RIL[REQUEST_OEM_HOOK_STRINGS] = null;
RIL[REQUEST_SCREEN_STATE] = null;
RIL[REQUEST_SET_SUPP_SVC_NOTIFICATION] = null;
RIL[REQUEST_WRITE_SMS_TO_SIM] = function REQUEST_WRITE_SMS_TO_SIM(length, options) {
if (options.rilRequestError) {
// `The MS shall return a "protocol error, unspecified" error message if
// the short message cannot be stored in the (U)SIM, and there is other
// message storage available at the MS` ~ 3GPP TS 23.038 section 4. Here
// we assume we always have indexed db as another storage.
this.acknowledgeSMS(false, PDU_FCS_PROTOCOL_ERROR);
} else {
this.acknowledgeSMS(true, PDU_FCS_OK);
}
};
RIL[REQUEST_DELETE_SMS_ON_SIM] = null;
RIL[REQUEST_SET_BAND_MODE] = null;
RIL[REQUEST_QUERY_AVAILABLE_BAND_MODE] = null;
RIL[REQUEST_STK_GET_PROFILE] = null;
RIL[REQUEST_STK_SET_PROFILE] = null;
RIL[REQUEST_STK_SEND_ENVELOPE_COMMAND] = null;
RIL[REQUEST_STK_SEND_TERMINAL_RESPONSE] = null;
RIL[REQUEST_STK_HANDLE_CALL_SETUP_REQUESTED_FROM_SIM] = null;
RIL[REQUEST_EXPLICIT_CALL_TRANSFER] = null;
RIL[REQUEST_SET_PREFERRED_NETWORK_TYPE] = function REQUEST_SET_PREFERRED_NETWORK_TYPE(length, options) {
if (options.networkType == null) {
// The request was made by ril_worker itself automatically. Don't report.
return;
}
this.sendDOMMessage({
rilMessageType: "setPreferredNetworkType",
networkType: options.networkType,
success: options.rilRequestError == ERROR_SUCCESS
});
};
RIL[REQUEST_GET_PREFERRED_NETWORK_TYPE] = function REQUEST_GET_PREFERRED_NETWORK_TYPE(length, options) {
let networkType;
if (!options.rilRequestError) {
networkType = RIL_PREFERRED_NETWORK_TYPE_TO_GECKO.indexOf(GECKO_PREFERRED_NETWORK_TYPE_DEFAULT);
let responseLen = Buf.readUint32(); // Number of INT32 responsed.
if (responseLen) {
this.preferredNetworkType = networkType = Buf.readUint32();
}
}
this.sendDOMMessage({
rilMessageType: "getPreferredNetworkType",
networkType: networkType,
success: options.rilRequestError == ERROR_SUCCESS
});
};
RIL[REQUEST_GET_NEIGHBORING_CELL_IDS] = null;
RIL[REQUEST_SET_LOCATION_UPDATES] = null;
RIL[REQUEST_CDMA_SET_SUBSCRIPTION_SOURCE] = null;
RIL[REQUEST_CDMA_SET_ROAMING_PREFERENCE] = null;
RIL[REQUEST_CDMA_QUERY_ROAMING_PREFERENCE] = null;
RIL[REQUEST_SET_TTY_MODE] = null;
RIL[REQUEST_QUERY_TTY_MODE] = null;
RIL[REQUEST_CDMA_SET_PREFERRED_VOICE_PRIVACY_MODE] = null;
RIL[REQUEST_CDMA_QUERY_PREFERRED_VOICE_PRIVACY_MODE] = null;
RIL[REQUEST_CDMA_FLASH] = null;
RIL[REQUEST_CDMA_BURST_DTMF] = null;
RIL[REQUEST_CDMA_VALIDATE_AND_WRITE_AKEY] = null;
RIL[REQUEST_CDMA_SEND_SMS] = null;
RIL[REQUEST_CDMA_SMS_ACKNOWLEDGE] = null;
RIL[REQUEST_GSM_GET_BROADCAST_SMS_CONFIG] = null;
RIL[REQUEST_GSM_SET_BROADCAST_SMS_CONFIG] = function REQUEST_GSM_SET_BROADCAST_SMS_CONFIG(length, options) {
if (options.rilRequestError == ERROR_SUCCESS) {
this.setGsmSmsBroadcastActivation(true);
}
};
RIL[REQUEST_GSM_SMS_BROADCAST_ACTIVATION] = null;
RIL[REQUEST_CDMA_GET_BROADCAST_SMS_CONFIG] = null;
RIL[REQUEST_CDMA_SET_BROADCAST_SMS_CONFIG] = null;
RIL[REQUEST_CDMA_SMS_BROADCAST_ACTIVATION] = null;
RIL[REQUEST_CDMA_SUBSCRIPTION] = null;
RIL[REQUEST_CDMA_WRITE_SMS_TO_RUIM] = null;
RIL[REQUEST_CDMA_DELETE_SMS_ON_RUIM] = null;
RIL[REQUEST_DEVICE_IDENTITY] = function REQUEST_DEVICE_IDENTITY(length, options) {
if (options.rilRequestError) {
return;
}
let result = Buf.readStringList();
// The result[0] is for IMEI. (Already be handled in REQUEST_GET_IMEI)
// The result[1] is for IMEISV. (Already be handled in REQUEST_GET_IMEISV)
// They are both ignored.
this.ESN = result[2];
this.MEID = result[3];
};
RIL[REQUEST_EXIT_EMERGENCY_CALLBACK_MODE] = null;
RIL[REQUEST_GET_SMSC_ADDRESS] = function REQUEST_GET_SMSC_ADDRESS(length, options) {
if (options.rilRequestError) {
return;
}
this.SMSC = Buf.readString();
};
RIL[REQUEST_SET_SMSC_ADDRESS] = null;
RIL[REQUEST_REPORT_SMS_MEMORY_STATUS] = null;
RIL[REQUEST_REPORT_STK_SERVICE_IS_RUNNING] = null;
RIL[REQUEST_ACKNOWLEDGE_INCOMING_GSM_SMS_WITH_PDU] = null;
RIL[REQUEST_STK_SEND_ENVELOPE_WITH_STATUS] = function REQUEST_STK_SEND_ENVELOPE_WITH_STATUS(length, options) {
if (options.rilRequestError) {
this.acknowledgeSMS(false, PDU_FCS_UNSPECIFIED);
return;
}
let sw1 = Buf.readUint32();
let sw2 = Buf.readUint32();
if ((sw1 == ICC_STATUS_SAT_BUSY) && (sw2 == 0x00)) {
this.acknowledgeSMS(false, PDU_FCS_USAT_BUSY);
return;
}
let success = ((sw1 == ICC_STATUS_NORMAL_ENDING) && (sw2 == 0x00))
|| (sw1 == ICC_STATUS_NORMAL_ENDING_WITH_EXTRA);
let messageStringLength = Buf.readUint32(); // In semi-octets
let responsePduLen = messageStringLength / 2; // In octets
if (!responsePduLen) {
this.acknowledgeSMS(success, success ? PDU_FCS_OK
: PDU_FCS_USIM_DATA_DOWNLOAD_ERROR);
return;
}
this.acknowledgeIncomingGsmSmsWithPDU(success, responsePduLen, options);
};
RIL[UNSOLICITED_RESPONSE_RADIO_STATE_CHANGED] = function UNSOLICITED_RESPONSE_RADIO_STATE_CHANGED() {
let radioState = Buf.readUint32();
// Ensure radio state at boot time.
if (this._isInitialRadioState) {
this._isInitialRadioState = false;
if (radioState != RADIO_STATE_OFF) {
this.setRadioPower({on: false});
return;
}
}
let newState;
if (radioState == RADIO_STATE_UNAVAILABLE) {
newState = GECKO_RADIOSTATE_UNAVAILABLE;
} else if (radioState == RADIO_STATE_OFF) {
newState = GECKO_RADIOSTATE_OFF;
} else {
newState = GECKO_RADIOSTATE_READY;
}
if (DEBUG) {
debug("Radio state changed from '" + this.radioState +
"' to '" + newState + "'");
}
if (this.radioState == newState) {
return;
}
// TODO hardcoded for now (see bug 726098)
let cdma = false;
if ((this.radioState == GECKO_RADIOSTATE_UNAVAILABLE ||
this.radioState == GECKO_RADIOSTATE_OFF) &&
newState == GECKO_RADIOSTATE_READY) {
// The radio became available, let's get its info.
if (cdma) {
this.getDeviceIdentity();
} else {
this.getIMEI();
this.getIMEISV();
}
this.getBasebandVersion();
this.updateCellBroadcastConfig();
}
this.radioState = newState;
this.sendDOMMessage({
rilMessageType: "radiostatechange",
radioState: newState
});
// If the radio is up and on, so let's query the card state.
// On older RILs only if the card is actually ready, though.
if (radioState == RADIO_STATE_UNAVAILABLE ||
radioState == RADIO_STATE_OFF) {
return;
}
this.getICCStatus();
};
RIL[UNSOLICITED_RESPONSE_CALL_STATE_CHANGED] = function UNSOLICITED_RESPONSE_CALL_STATE_CHANGED() {
this.getCurrentCalls();
};
RIL[UNSOLICITED_RESPONSE_VOICE_NETWORK_STATE_CHANGED] = function UNSOLICITED_RESPONSE_VOICE_NETWORK_STATE_CHANGED() {
if (DEBUG) debug("Network state changed, re-requesting phone state and ICC status");
this.getICCStatus();
this.requestNetworkInfo();
};
RIL[UNSOLICITED_RESPONSE_NEW_SMS] = function UNSOLICITED_RESPONSE_NEW_SMS(length) {
let result = this._processSmsDeliver(length);
if (result != PDU_FCS_RESERVED) {
// Not reserved FCS values, send ACK now.
this.acknowledgeSMS(result == PDU_FCS_OK, result);
}
};
RIL[UNSOLICITED_RESPONSE_NEW_SMS_STATUS_REPORT] = function UNSOLICITED_RESPONSE_NEW_SMS_STATUS_REPORT(length) {
let result = this._processSmsStatusReport(length);
this.acknowledgeSMS(result == PDU_FCS_OK, result);
};
RIL[UNSOLICITED_RESPONSE_NEW_SMS_ON_SIM] = function UNSOLICITED_RESPONSE_NEW_SMS_ON_SIM(length) {
let info = Buf.readUint32List();
//TODO
};
RIL[UNSOLICITED_ON_USSD] = function UNSOLICITED_ON_USSD() {
let [typeCode, message] = Buf.readStringList();
if (DEBUG) {
debug("On USSD. Type Code: " + typeCode + " Message: " + message);
}
this._ussdSession = (typeCode != "0" && typeCode != "2");
this.sendDOMMessage({rilMessageType: "USSDReceived",
message: message,
sessionEnded: !this._ussdSession});
};
RIL[UNSOLICITED_NITZ_TIME_RECEIVED] = function UNSOLICITED_NITZ_TIME_RECEIVED() {
let dateString = Buf.readString();
// The data contained in the NITZ message is
// in the form "yy/mm/dd,hh:mm:ss(+/-)tz,dt"
// for example: 12/02/16,03:36:08-20,00,310410
// Always print the NITZ info so we can collection what different providers
// send down the pipe (see bug XXX).
// TODO once data is collected, add in |if (DEBUG)|
debug("DateTimeZone string " + dateString);
let now = Date.now();
let year = parseInt(dateString.substr(0, 2), 10);
let month = parseInt(dateString.substr(3, 2), 10);
let day = parseInt(dateString.substr(6, 2), 10);
let hours = parseInt(dateString.substr(9, 2), 10);
let minutes = parseInt(dateString.substr(12, 2), 10);
let seconds = parseInt(dateString.substr(15, 2), 10);
// Note that |tz| is in 15-min units.
let tz = parseInt(dateString.substr(17, 3), 10);
// Note that |dst| is in 1-hour units and is already applied in |tz|.
let dst = parseInt(dateString.substr(21, 2), 10);
let timeInMS = Date.UTC(year + PDU_TIMESTAMP_YEAR_OFFSET, month - 1, day,
hours, minutes, seconds);
if (isNaN(timeInMS)) {
if (DEBUG) debug("NITZ failed to convert date");
return;
}
this.sendDOMMessage({rilMessageType: "nitzTime",
networkTimeInMS: timeInMS,
networkTimeZoneInMinutes: -(tz * 15),
networkDSTInMinutes: -(dst * 60),
receiveTimeInMS: now});
};
RIL[UNSOLICITED_SIGNAL_STRENGTH] = function UNSOLICITED_SIGNAL_STRENGTH(length) {
this[REQUEST_SIGNAL_STRENGTH](length, {rilRequestError: ERROR_SUCCESS});
};
RIL[UNSOLICITED_DATA_CALL_LIST_CHANGED] = function UNSOLICITED_DATA_CALL_LIST_CHANGED(length) {
if (RILQUIRKS_V5_LEGACY) {
this.getDataCallList();
return;
}
this[REQUEST_DATA_CALL_LIST](length, {rilRequestError: ERROR_SUCCESS});
};
RIL[UNSOLICITED_SUPP_SVC_NOTIFICATION] = null;
RIL[UNSOLICITED_STK_SESSION_END] = function UNSOLICITED_STK_SESSION_END() {
this.sendDOMMessage({rilMessageType: "stksessionend"});
};
RIL[UNSOLICITED_STK_PROACTIVE_COMMAND] = function UNSOLICITED_STK_PROACTIVE_COMMAND() {
this.processStkProactiveCommand();
};
RIL[UNSOLICITED_STK_EVENT_NOTIFY] = function UNSOLICITED_STK_EVENT_NOTIFY() {
this.processStkProactiveCommand();
};
RIL[UNSOLICITED_STK_CALL_SETUP] = null;
RIL[UNSOLICITED_SIM_SMS_STORAGE_FULL] = null;
RIL[UNSOLICITED_SIM_REFRESH] = null;
RIL[UNSOLICITED_CALL_RING] = function UNSOLICITED_CALL_RING() {
let info = {rilMessageType: "callRing"};
let isCDMA = false; //XXX TODO hard-code this for now
if (isCDMA) {
info.isPresent = Buf.readUint32();
info.signalType = Buf.readUint32();
info.alertPitch = Buf.readUint32();
info.signal = Buf.readUint32();
}
// At this point we don't know much other than the fact there's an incoming
// call, but that's enough to bring up the Phone app already. We'll know
// details once we get a call state changed notification and can then
// dispatch DOM events etc.
this.sendDOMMessage(info);
};
RIL[UNSOLICITED_RESPONSE_SIM_STATUS_CHANGED] = function UNSOLICITED_RESPONSE_SIM_STATUS_CHANGED() {
this.getICCStatus();
};
RIL[UNSOLICITED_RESPONSE_CDMA_NEW_SMS] = null;
RIL[UNSOLICITED_RESPONSE_NEW_BROADCAST_SMS] = function UNSOLICITED_RESPONSE_NEW_BROADCAST_SMS(length) {
let message;
try {
message = GsmPDUHelper.readCbMessage(Buf.readUint32());
} catch (e) {
if (DEBUG) {
debug("Failed to parse Cell Broadcast message: " + JSON.stringify(e));
}
return;
}
message = this._processReceivedSmsCbPage(message);
if (!message) {
return;
}
message.rilMessageType = "cellbroadcast-received";
this.sendDOMMessage(message);
};
RIL[UNSOLICITED_CDMA_RUIM_SMS_STORAGE_FULL] = null;
RIL[UNSOLICITED_RESTRICTED_STATE_CHANGED] = null;
RIL[UNSOLICITED_ENTER_EMERGENCY_CALLBACK_MODE] = null;
RIL[UNSOLICITED_CDMA_CALL_WAITING] = null;
RIL[UNSOLICITED_CDMA_OTA_PROVISION_STATUS] = null;
RIL[UNSOLICITED_CDMA_INFO_REC] = null;
RIL[UNSOLICITED_OEM_HOOK_RAW] = null;
RIL[UNSOLICITED_RINGBACK_TONE] = null;
RIL[UNSOLICITED_RESEND_INCALL_MUTE] = null;
RIL[UNSOLICITED_RIL_CONNECTED] = function UNSOLICITED_RIL_CONNECTED(length) {
// Prevent response id collision between UNSOLICITED_RIL_CONNECTED and
// UNSOLICITED_VOICE_RADIO_TECH_CHANGED for Akami on gingerbread branch.
if (!length) {
return;
}
let version = Buf.readUint32List()[0];
RILQUIRKS_V5_LEGACY = (version < 5);
if (DEBUG) {
debug("Detected RIL version " + version);
debug("RILQUIRKS_V5_LEGACY is " + RILQUIRKS_V5_LEGACY);
}
this.initRILState();
this.setPreferredNetworkType();
};
/**
* This object exposes the functionality to parse and serialize PDU strings
*
* A PDU is a string containing a series of hexadecimally encoded octets
* or nibble-swapped binary-coded decimals (BCDs). It contains not only the
* message text but information about the sender, the SMS service center,
* timestamp, etc.
*/
let GsmPDUHelper = {
/**
* Read one character (2 bytes) from a RIL string and decode as hex.
*
* @return the nibble as a number.
*/
readHexNibble: function readHexNibble() {
let nibble = Buf.readUint16();
if (nibble >= 48 && nibble <= 57) {
nibble -= 48; // ASCII '0'..'9'
} else if (nibble >= 65 && nibble <= 70) {
nibble -= 55; // ASCII 'A'..'F'
} else if (nibble >= 97 && nibble <= 102) {
nibble -= 87; // ASCII 'a'..'f'
} else {
throw "Found invalid nibble during PDU parsing: " +
String.fromCharCode(nibble);
}
return nibble;
},
/**
* Encode a nibble as one hex character in a RIL string (2 bytes).
*
* @param nibble
* The nibble to encode (represented as a number)
*/
writeHexNibble: function writeHexNibble(nibble) {
nibble &= 0x0f;
if (nibble < 10) {
nibble += 48; // ASCII '0'
} else {
nibble += 55; // ASCII 'A'
}
Buf.writeUint16(nibble);
},
/**
* Read a hex-encoded octet (two nibbles).
*
* @return the octet as a number.
*/
readHexOctet: function readHexOctet() {
return (this.readHexNibble() << 4) | this.readHexNibble();
},
/**
* Write an octet as two hex-encoded nibbles.
*
* @param octet
* The octet (represented as a number) to encode.
*/
writeHexOctet: function writeHexOctet(octet) {
this.writeHexNibble(octet >> 4);
this.writeHexNibble(octet);
},
/**
* Read an array of hex-encoded octets.
*/
readHexOctetArray: function readHexOctetArray(length) {
let array = new Uint8Array(length);
for (let i = 0; i < length; i++) {
array[i] = this.readHexOctet();
}
return array;
},
/**
* Convert an octet (number) to a BCD number.
*
* Any nibbles that are not in the BCD range count as 0.
*
* @param octet
* The octet (a number, as returned by getOctet())
*
* @return the corresponding BCD number.
*/
octetToBCD: function octetToBCD(octet) {
return ((octet & 0xf0) <= 0x90) * ((octet >> 4) & 0x0f) +
((octet & 0x0f) <= 0x09) * (octet & 0x0f) * 10;
},
/**
* Convert a BCD number to an octet (number)
*
* Only take two digits with absolute value.
*
* @param bcd
*
* @return the corresponding octet.
*/
BCDToOctet: function BCDToOctet(bcd) {
bcd = Math.abs(bcd);
return ((bcd % 10) << 4) + (Math.floor(bcd / 10) % 10);
},
/**
* Convert a semi-octet (number) to a GSM BCD char.
*/
bcdChars: "0123456789*#,;",
semiOctetToBcdChar: function semiOctetToBcdChar(semiOctet) {
if (semiOctet >= 14) {
throw new RangeError();
}
return this.bcdChars.charAt(semiOctet);
},
/**
* Read a *swapped nibble* binary coded decimal (BCD)
*
* @param pairs
* Number of nibble *pairs* to read.
*
* @return the decimal as a number.
*/
readSwappedNibbleBcdNum: function readSwappedNibbleBcdNum(pairs) {
let number = 0;
for (let i = 0; i < pairs; i++) {
let octet = this.readHexOctet();
// Ignore 'ff' octets as they're often used as filler.
if (octet == 0xff) {
continue;
}
// If the first nibble is an "F" , only the second nibble is to be taken
// into account.
if ((octet & 0xf0) == 0xf0) {
number *= 10;
number += octet & 0x0f;
continue;
}
number *= 100;
number += this.octetToBCD(octet);
}
return number;
},
/**
* Read a *swapped nibble* binary coded string (BCD)
*
* @param pairs
* Number of nibble *pairs* to read.
*
* @return The BCD string.
*/
readSwappedNibbleBcdString: function readSwappedNibbleBcdString(pairs) {
let str = "";
for (let i = 0; i < pairs; i++) {
let nibbleH = this.readHexNibble();
let nibbleL = this.readHexNibble();
if (nibbleL == 0x0F) {
break;
}
str += this.semiOctetToBcdChar(nibbleL);
if (nibbleH != 0x0F) {
str += this.semiOctetToBcdChar(nibbleH);
}
}
return str;
},
/**
* Write numerical data as swapped nibble BCD.
*
* @param data
* Data to write (as a string or a number)
*/
writeSwappedNibbleBCD: function writeSwappedNibbleBCD(data) {
data = data.toString();
if (data.length % 2) {
data += "F";
}
for (let i = 0; i < data.length; i += 2) {
Buf.writeUint16(data.charCodeAt(i + 1));
Buf.writeUint16(data.charCodeAt(i));
}
},
/**
* Write numerical data as swapped nibble BCD.
* If the number of digit of data is even, add '0' at the beginning.
*
* @param data
* Data to write (as a string or a number)
*/
writeSwappedNibbleBCDNum: function writeSwappedNibbleBCDNum(data) {
data = data.toString();
if (data.length % 2) {
data = "0" + data;
}
for (let i = 0; i < data.length; i += 2) {
Buf.writeUint16(data.charCodeAt(i + 1));
Buf.writeUint16(data.charCodeAt(i));
}
},
/**
* Read user data, convert to septets, look up relevant characters in a
* 7-bit alphabet, and construct string.
*
* @param length
* Number of septets to read (*not* octets)
* @param paddingBits
* Number of padding bits in the first byte of user data.
* @param langIndex
* Table index used for normal 7-bit encoded character lookup.
* @param langShiftIndex
* Table index used for escaped 7-bit encoded character lookup.
*
* @return a string.
*/
readSeptetsToString: function readSeptetsToString(length, paddingBits, langIndex, langShiftIndex) {
let ret = "";
let byteLength = Math.ceil((length * 7 + paddingBits) / 8);
/**
* |<- last byte in header ->|
* |<- incompleteBits ->|<- last header septet->|
* +===7===|===6===|===5===|===4===|===3===|===2===|===1===|===0===|
*
* |<- 1st byte in user data ->|
* |<- data septet 1 ->|<-paddingBits->|
* +===7===|===6===|===5===|===4===|===3===|===2===|===1===|===0===|
*
* |<- 2nd byte in user data ->|
* |<- data spetet 2 ->|<-ds1->|
* +===7===|===6===|===5===|===4===|===3===|===2===|===1===|===0===|
*/
let data = 0;
let dataBits = 0;
if (paddingBits) {
data = this.readHexOctet() >> paddingBits;
dataBits = 8 - paddingBits;
--byteLength;
}
let escapeFound = false;
const langTable = PDU_NL_LOCKING_SHIFT_TABLES[langIndex];
const langShiftTable = PDU_NL_SINGLE_SHIFT_TABLES[langShiftIndex];
do {
// Read as much as fits in 32bit word
let bytesToRead = Math.min(byteLength, dataBits ? 3 : 4);
for (let i = 0; i < bytesToRead; i++) {
data |= this.readHexOctet() << dataBits;
dataBits += 8;
--byteLength;
}
// Consume available full septets
for (; dataBits >= 7; dataBits -= 7) {
let septet = data & 0x7F;
data >>>= 7;
if (escapeFound) {
escapeFound = false;
if (septet == PDU_NL_EXTENDED_ESCAPE) {
// According to 3GPP TS 23.038, section 6.2.1.1, NOTE 1, "On
// receipt of this code, a receiving entity shall display a space
// until another extensiion table is defined."
ret += " ";
} else if (septet == PDU_NL_RESERVED_CONTROL) {
// According to 3GPP TS 23.038 B.2, "This code represents a control
// character and therefore must not be used for language specific
// characters."
ret += " ";
} else {
ret += langShiftTable[septet];
}
} else if (septet == PDU_NL_EXTENDED_ESCAPE) {
escapeFound = true;
// <escape> is not an effective character
--length;
} else {
ret += langTable[septet];
}
}
} while (byteLength);
if (ret.length != length) {
/**
* If num of effective characters does not equal to the length of read
* string, cut the tail off. This happens when the last octet of user
* data has following layout:
*
* |<- penultimate octet in user data ->|
* |<- data septet N ->|<- dsN-1 ->|
* +===7===|===6===|===5===|===4===|===3===|===2===|===1===|===0===|
*
* |<- last octet in user data ->|
* |<- fill bits ->|<-dsN->|
* +===7===|===6===|===5===|===4===|===3===|===2===|===1===|===0===|
*
* The fill bits in the last octet may happen to form a full septet and
* be appended at the end of result string.
*/
ret = ret.slice(0, length);
}
return ret;
},
writeStringAsSeptets: function writeStringAsSeptets(message, paddingBits, langIndex, langShiftIndex) {
const langTable = PDU_NL_LOCKING_SHIFT_TABLES[langIndex];
const langShiftTable = PDU_NL_SINGLE_SHIFT_TABLES[langShiftIndex];
let dataBits = paddingBits;
let data = 0;
for (let i = 0; i < message.length; i++) {
let c = message.charAt(i);
let septet = langTable.indexOf(c);
if (septet == PDU_NL_EXTENDED_ESCAPE) {
continue;
}
if (septet >= 0) {
data |= septet << dataBits;
dataBits += 7;
} else {
septet = langShiftTable.indexOf(c);
if (septet == -1) {
throw new Error("'" + c + "' is not in 7 bit alphabet "
+ langIndex + ":" + langShiftIndex + "!");
}
if (septet == PDU_NL_RESERVED_CONTROL) {
continue;
}
data |= PDU_NL_EXTENDED_ESCAPE << dataBits;
dataBits += 7;
data |= septet << dataBits;
dataBits += 7;
}
for (; dataBits >= 8; dataBits -= 8) {
this.writeHexOctet(data & 0xFF);
data >>>= 8;
}
}
if (dataBits != 0) {
this.writeHexOctet(data & 0xFF);
}
},
/**
* Read GSM 8-bit unpacked octets,
* which are SMS default 7-bit alphabets with bit 8 set to 0.
*
* @param numOctets
* Number of octets to be read.
*/
read8BitUnpackedToString: function read8BitUnpackedToString(numOctets) {
let ret = "";
let escapeFound = false;
let i;
const langTable = PDU_NL_LOCKING_SHIFT_TABLES[PDU_NL_IDENTIFIER_DEFAULT];
const langShiftTable = PDU_NL_SINGLE_SHIFT_TABLES[PDU_NL_IDENTIFIER_DEFAULT];
for(i = 0; i < numOctets; i++) {
let octet = this.readHexOctet();
if (octet == 0xff) {
i++;
break;
}
if (escapeFound) {
escapeFound = false;
if (octet == PDU_NL_EXTENDED_ESCAPE) {
// According to 3GPP TS 23.038, section 6.2.1.1, NOTE 1, "On
// receipt of this code, a receiving entity shall display a space
// until another extensiion table is defined."
ret += " ";
} else if (octet == PDU_NL_RESERVED_CONTROL) {
// According to 3GPP TS 23.038 B.2, "This code represents a control
// character and therefore must not be used for language specific
// characters."
ret += " ";
} else {
ret += langShiftTable[octet];
}
} else if (octet == PDU_NL_EXTENDED_ESCAPE) {
escapeFound = true;
} else {
ret += langTable[octet];
}
}
Buf.seekIncoming((numOctets - i) * PDU_HEX_OCTET_SIZE);
return ret;
},
/**
* Write GSM 8-bit unpacked octets.
*
* @param numOctets Number of total octets to be writen, including trailing
* 0xff.
* @param str String to be written. Could be null.
*/
writeStringTo8BitUnpacked: function writeStringTo8BitUnpacked(numOctets, str) {
const langTable = PDU_NL_LOCKING_SHIFT_TABLES[PDU_NL_IDENTIFIER_DEFAULT];
const langShiftTable = PDU_NL_SINGLE_SHIFT_TABLES[PDU_NL_IDENTIFIER_DEFAULT];
// If the character is GSM extended alphabet, two octets will be written.
// So we need to keep track of number of octets to be written.
let i, j;
let len = str ? str.length : 0;
for (i = 0, j = 0; i < len && j < numOctets; i++) {
let c = str.charAt(i);
let octet = langTable.indexOf(c);
if (octet == -1) {
// Make sure we still have enough space to write two octets.
if (j + 2 > numOctets) {
break;
}
octet = langShiftTable.indexOf(c);
if (octet == -1) {
// Fallback to ASCII space.
octet = langTable.indexOf(' ');
}
this.writeHexOctet(PDU_NL_EXTENDED_ESCAPE);
j++;
}
this.writeHexOctet(octet);
j++;
}
// trailing 0xff
while (j++ < numOctets) {
this.writeHexOctet(0xff);
}
},
/**
* Read user data and decode as a UCS2 string.
*
* @param numOctets
* Number of octets to be read as UCS2 string.
*
* @return a string.
*/
readUCS2String: function readUCS2String(numOctets) {
let str = "";
let length = numOctets / 2;
for (let i = 0; i < length; ++i) {
let code = (this.readHexOctet() << 8) | this.readHexOctet();
str += String.fromCharCode(code);
}
if (DEBUG) debug("Read UCS2 string: " + str);
return str;
},
/**
* Write user data as a UCS2 string.
*
* @param message
* Message string to encode as UCS2 in hex-encoded octets.
*/
writeUCS2String: function writeUCS2String(message) {
for (let i = 0; i < message.length; ++i) {
let code = message.charCodeAt(i);
this.writeHexOctet((code >> 8) & 0xFF);
this.writeHexOctet(code & 0xFF);
}
},
/**
* Read UCS2 String on UICC.
*
* @see TS 101.221, Annex A.
* @param scheme
* Coding scheme for UCS2 on UICC. One of 0x80, 0x81 or 0x82.
* @param numOctets
* Number of octets to be read as UCS2 string.
*/
readICCUCS2String: function readICCUCS2String(scheme, numOctets) {
let str = "";
switch (scheme) {
/**
* +------+---------+---------+---------+---------+------+------+
* | 0x80 | Ch1_msb | Ch1_lsb | Ch2_msb | Ch2_lsb | 0xff | 0xff |
* +------+---------+---------+---------+---------+------+------+
*/
case 0x80:
let isOdd = numOctets % 2;
let i;
for (i = 0; i < numOctets - isOdd; i += 2) {
let code = (this.readHexOctet() << 8) | this.readHexOctet();
if (code == 0xffff) {
i += 2;
break;
}
str += String.fromCharCode(code);
}
// Skip trailing 0xff
Buf.seekIncoming((numOctets - i) * PDU_HEX_OCTET_SIZE);
break;
case 0x81: // Fall through
case 0x82:
/**
* +------+-----+--------+-----+-----+-----+--------+------+
* | 0x81 | len | offset | Ch1 | Ch2 | ... | Ch_len | 0xff |
* +------+-----+--------+-----+-----+-----+--------+------+
*
* len : The length of characters.
* offset : 0hhh hhhh h000 0000
* Ch_n: bit 8 = 0
* GSM default alphabets
* bit 8 = 1
* UCS2 character whose char code is (Ch_n & 0x7f) + offset
*
* +------+-----+------------+------------+-----+-----+-----+--------+
* | 0x82 | len | offset_msb | offset_lsb | Ch1 | Ch2 | ... | Ch_len |
* +------+-----+------------+------------+-----+-----+-----+--------+
*
* len : The length of characters.
* offset_msb, offset_lsn: offset
* Ch_n: bit 8 = 0
* GSM default alphabets
* bit 8 = 1
* UCS2 character whose char code is (Ch_n & 0x7f) + offset
*/
let len = this.readHexOctet();
let offset, headerLen;
if (scheme == 0x81) {
offset = this.readHexOctet() << 7;
headerLen = 2;
} else {
offset = (this.readHexOctet() << 8) | this.readHexOctet();
headerLen = 3;
}
for (let i = 0; i < len; i++) {
let ch = this.readHexOctet();
if (ch & 0x80) {
// UCS2
str += String.fromCharCode((ch & 0x7f) + offset);
} else {
// GSM 8bit
let count = 0, gotUCS2 = 0;
while ((i + count + 1 < len)) {
count++;
if (this.readHexOctet() & 0x80) {
gotUCS2 = 1;
break;
};
}
// Unread.
// +1 for the GSM alphabet indexed at i,
Buf.seekIncoming(-1 * (count + 1) * PDU_HEX_OCTET_SIZE);
str += this.read8BitUnpackedToString(count + 1 - gotUCS2);
i += count - gotUCS2;
}
}
// Skipping trailing 0xff
Buf.seekIncoming((numOctets - len - headerLen) * PDU_HEX_OCTET_SIZE);
break;
}
return str;
},
/**
* Read 1 + UDHL octets and construct user data header.
*
* @param msg
* message object for output.
*
* @see 3GPP TS 23.040 9.2.3.24
*/
readUserDataHeader: function readUserDataHeader(msg) {
/**
* A header object with properties contained in received message.
* The properties set include:
*
* length: totoal length of the header, default 0.
* langIndex: used locking shift table index, default
* PDU_NL_IDENTIFIER_DEFAULT.
* langShiftIndex: used locking shift table index, default
* PDU_NL_IDENTIFIER_DEFAULT.
*
*/
let header = {
length: 0,
langIndex: PDU_NL_IDENTIFIER_DEFAULT,
langShiftIndex: PDU_NL_IDENTIFIER_DEFAULT
};
header.length = this.readHexOctet();
if (DEBUG) debug("Read UDH length: " + header.length);
let dataAvailable = header.length;
while (dataAvailable >= 2) {
let id = this.readHexOctet();
let length = this.readHexOctet();
if (DEBUG) debug("Read UDH id: " + id + ", length: " + length);
dataAvailable -= 2;
switch (id) {
case PDU_IEI_CONCATENATED_SHORT_MESSAGES_8BIT: {
let ref = this.readHexOctet();
let max = this.readHexOctet();
let seq = this.readHexOctet();
dataAvailable -= 3;
if (max && seq && (seq <= max)) {
header.segmentRef = ref;
header.segmentMaxSeq = max;
header.segmentSeq = seq;
}
break;
}
case PDU_IEI_APPLICATION_PORT_ADDRESSING_SCHEME_8BIT: {
let dstp = this.readHexOctet();
let orip = this.readHexOctet();
dataAvailable -= 2;
if ((dstp < PDU_APA_RESERVED_8BIT_PORTS)
|| (orip < PDU_APA_RESERVED_8BIT_PORTS)) {
// 3GPP TS 23.040 clause 9.2.3.24.3: "A receiving entity shall
// ignore any information element where the value of the
// Information-Element-Data is Reserved or not supported"
break;
}
header.destinationPort = dstp;
header.originatorPort = orip;
break;
}
case PDU_IEI_APPLICATION_PORT_ADDRESSING_SCHEME_16BIT: {
let dstp = (this.readHexOctet() << 8) | this.readHexOctet();
let orip = (this.readHexOctet() << 8) | this.readHexOctet();
dataAvailable -= 4;
// 3GPP TS 23.040 clause 9.2.3.24.4: "A receiving entity shall
// ignore any information element where the value of the
// Information-Element-Data is Reserved or not supported"
if ((dstp < PDU_APA_VALID_16BIT_PORTS)
&& (orip < PDU_APA_VALID_16BIT_PORTS)) {
header.destinationPort = dstp;
header.originatorPort = orip;
}
break;
}
case PDU_IEI_CONCATENATED_SHORT_MESSAGES_16BIT: {
let ref = (this.readHexOctet() << 8) | this.readHexOctet();
let max = this.readHexOctet();
let seq = this.readHexOctet();
dataAvailable -= 4;
if (max && seq && (seq <= max)) {
header.segmentRef = ref;
header.segmentMaxSeq = max;
header.segmentSeq = seq;
}
break;
}
case PDU_IEI_NATIONAL_LANGUAGE_SINGLE_SHIFT:
let langShiftIndex = this.readHexOctet();
--dataAvailable;
if (langShiftIndex < PDU_NL_SINGLE_SHIFT_TABLES.length) {
header.langShiftIndex = langShiftIndex;
}
break;
case PDU_IEI_NATIONAL_LANGUAGE_LOCKING_SHIFT:
let langIndex = this.readHexOctet();
--dataAvailable;
if (langIndex < PDU_NL_LOCKING_SHIFT_TABLES.length) {
header.langIndex = langIndex;
}
break;
case PDU_IEI_SPECIAL_SMS_MESSAGE_INDICATION:
let msgInd = this.readHexOctet() & 0xFF;
let msgCount = this.readHexOctet();
dataAvailable -= 2;
/*
* TS 23.040 V6.8.1 Sec 9.2.3.24.2
* bits 1 0 : basic message indication type
* bits 4 3 2 : extended message indication type
* bits 6 5 : Profile id
* bit 7 : storage type
*/
let storeType = msgInd & PDU_MWI_STORE_TYPE_BIT;
let mwi = msg.mwi;
if (!mwi) {
mwi = msg.mwi = {};
}
if (storeType == PDU_MWI_STORE_TYPE_STORE) {
// Store message because TP_UDH indicates so, note this may override
// the setting in DCS, but that is expected
mwi.discard = false;
} else if (mwi.discard === undefined) {
// storeType == PDU_MWI_STORE_TYPE_DISCARD
// only override mwi.discard here if it hasn't already been set
mwi.discard = true;
}
mwi.msgCount = msgCount & 0xFF;
mwi.active = mwi.msgCount > 0;
if (DEBUG) debug("MWI in TP_UDH received: " + JSON.stringify(mwi));
break;
default:
if (DEBUG) {
debug("readUserDataHeader: unsupported IEI(" + id
+ "), " + length + " bytes.");
}
// Read out unsupported data
if (length) {
let octets;
if (DEBUG) octets = new Uint8Array(length);
for (let i = 0; i < length; i++) {
let octet = this.readHexOctet();
if (DEBUG) octets[i] = octet;
}
dataAvailable -= length;
if (DEBUG) debug("readUserDataHeader: " + Array.slice(octets));
}
break;
}
}
if (dataAvailable != 0) {
throw new Error("Illegal user data header found!");
}
msg.header = header;
},
/**
* Write out user data header.
*
* @param options
* Options containing information for user data header write-out. The
* `userDataHeaderLength` property must be correctly pre-calculated.
*/
writeUserDataHeader: function writeUserDataHeader(options) {
this.writeHexOctet(options.userDataHeaderLength);
if (options.segmentMaxSeq > 1) {
if (options.segmentRef16Bit) {
this.writeHexOctet(PDU_IEI_CONCATENATED_SHORT_MESSAGES_16BIT);
this.writeHexOctet(4);
this.writeHexOctet((options.segmentRef >> 8) & 0xFF);
} else {
this.writeHexOctet(PDU_IEI_CONCATENATED_SHORT_MESSAGES_8BIT);
this.writeHexOctet(3);
}
this.writeHexOctet(options.segmentRef & 0xFF);
this.writeHexOctet(options.segmentMaxSeq & 0xFF);
this.writeHexOctet(options.segmentSeq & 0xFF);
}
if (options.dcs == PDU_DCS_MSG_CODING_7BITS_ALPHABET) {
if (options.langIndex != PDU_NL_IDENTIFIER_DEFAULT) {
this.writeHexOctet(PDU_IEI_NATIONAL_LANGUAGE_LOCKING_SHIFT);
this.writeHexOctet(1);
this.writeHexOctet(options.langIndex);
}
if (options.langShiftIndex != PDU_NL_IDENTIFIER_DEFAULT) {
this.writeHexOctet(PDU_IEI_NATIONAL_LANGUAGE_SINGLE_SHIFT);
this.writeHexOctet(1);
this.writeHexOctet(options.langShiftIndex);
}
}
},
/**
* Read SM-TL Address.
*
* @param len
* Length of useful semi-octets within the Address-Value field. For
* example, the lenth of "12345" should be 5, and 4 for "1234".
*
* @see 3GPP TS 23.040 9.1.2.5
*/
readAddress: function readAddress(len) {
// Address Length
if (!len || (len < 0)) {
if (DEBUG) debug("PDU error: invalid sender address length: " + len);
return null;
}
if (len % 2 == 1) {
len += 1;
}
if (DEBUG) debug("PDU: Going to read address: " + len);
// Type-of-Address
let toa = this.readHexOctet();
let addr = "";
if ((toa & 0xF0) == PDU_TOA_ALPHANUMERIC) {
addr = this.readSeptetsToString(Math.floor(len * 4 / 7), 0,
PDU_NL_IDENTIFIER_DEFAULT , PDU_NL_IDENTIFIER_DEFAULT );
return addr;
}
addr = this.readSwappedNibbleBcdString(len / 2);
if (addr.length <= 0) {
if (DEBUG) debug("PDU error: no number provided");
return null;
}
if ((toa & 0xF0) == (PDU_TOA_INTERNATIONAL)) {
addr = '+' + addr;
}
return addr;
},
/**
* Read Alpha Id and Dialling number from TS TS 151.011 clause 10.5.1
*
* @param recordSize The size of linear fixed record.
*/
readAlphaIdDiallingNumber: function readAlphaIdDiallingNumber(recordSize) {
let length = Buf.readUint32();
let alphaLen = recordSize - ADN_FOOTER_SIZE_BYTES;
let alphaId = this.readAlphaIdentifier(alphaLen);
let number;
let numLen = this.readHexOctet();
if (numLen != 0xff) {
if (numLen > ADN_MAX_BCD_NUMBER_BYTES) {
throw new Error("invalid length of BCD number/SSC contents - " + numLen);
}
number = this.readDiallingNumber(numLen);
Buf.seekIncoming((ADN_MAX_BCD_NUMBER_BYTES - numLen) * PDU_HEX_OCTET_SIZE);
} else {
Buf.seekIncoming(ADN_MAX_BCD_NUMBER_BYTES * PDU_HEX_OCTET_SIZE);
}
// Skip 2 unused octets, CCP and EXT1.
Buf.seekIncoming(2 * PDU_HEX_OCTET_SIZE);
Buf.readStringDelimiter(length);
let contact = null;
if (alphaId || number) {
contact = {alphaId: alphaId,
number: number};
}
return contact;
},
/**
* Write Alpha Identifier and Dialling number from TS 151.011 clause 10.5.1
*
* @param recordSize The size of linear fixed record.
* @param alphaId Alpha Identifier to be written.
* @param number Dialling Number to be written.
*/
writeAlphaIdDiallingNumber: function writeAlphaIdDiallingNumber(recordSize,
alphaId,
number) {
// Write String length
let length = recordSize * 2;
Buf.writeUint32(length);
let alphaLen = recordSize - ADN_FOOTER_SIZE_BYTES;
this.writeAlphaIdentifier(alphaLen, alphaId);
if (number) {
let numStart = number[0] == "+" ? 1 : 0;
let numDigits = number.length - numStart;
if (numDigits > ADN_MAX_NUMBER_DIGITS) {
number = number.substring(0, ADN_MAX_NUMBER_DIGITS + numStart);
numDigits = number.length - numStart;
}
// +1 for TON/NPI
let numLen = Math.ceil(numDigits / 2) + 1;
this.writeHexOctet(numLen);
this.writeDiallingNumber(number);
// Write trailing 0xff of Dialling Number.
for (let i = 0; i < ADN_MAX_BCD_NUMBER_BYTES - numLen; i++) {
this.writeHexOctet(0xff);
}
} else {
// +1 for numLen
for (let i = 0; i < ADN_MAX_BCD_NUMBER_BYTES + 1; i++) {
this.writeHexOctet(0xff);
}
}
// Write unused octets 0xff, CCP and EXT1.
this.writeHexOctet(0xff);
this.writeHexOctet(0xff);
Buf.writeStringDelimiter(length);
},
/**
* Read Alpha Identifier.
*
* @see TS 131.102
*
* @param numOctets
* Number of octets to be read.
*
* It uses either
* 1. SMS default 7-bit alphabet with bit 8 set to 0.
* 2. UCS2 string.
*
* Unused bytes should be set to 0xff.
*/
readAlphaIdentifier: function readAlphaIdentifier(numOctets) {
if (numOctets === 0) {
return "";
}
let temp;
// Read the 1st octet to determine the encoding.
if ((temp = GsmPDUHelper.readHexOctet()) == 0x80 ||
temp == 0x81 ||
temp == 0x82) {
numOctets--;
return this.readICCUCS2String(temp, numOctets);
} else {
Buf.seekIncoming(-1 * PDU_HEX_OCTET_SIZE);
return this.read8BitUnpackedToString(numOctets);
}
},
/**
* Write Alpha Identifier.
*
* @param numOctets
* Total number of octets to be written. This includes the length of
* alphaId and the length of trailing unused octets(0xff).
* @param alphaId
* Alpha Identifier to be written.
*
* Unused octets will be written as 0xff.
*/
writeAlphaIdentifier: function writeAlphaIdentifier(numOctets, alphaId) {
if (numOctets === 0) {
return;
}
// If alphaId is empty or it's of GSM 8 bit.
if (!alphaId || ICCUtilsHelper.isGsm8BitAlphabet(alphaId)) {
this.writeStringTo8BitUnpacked(numOctets, alphaId);
} else {
// Currently only support UCS2 coding scheme 0x80.
this.writeHexOctet(0x80);
numOctets--;
// Now the alphaId is UCS2 string, each character will take 2 octets.
if (alphaId.length * 2 > numOctets) {
alphaId = alphaId.substring(0, Math.floor(numOctets / 2));
}
this.writeUCS2String(alphaId);
for (let i = alphaId.length * 2; i < numOctets; i++) {
this.writeHexOctet(0xff);
}
}
},
/**
* Read Dialling number.
*
* @see TS 131.102
*
* @param len
* The Length of BCD number.
*
* From TS 131.102, in EF_ADN, EF_FDN, the field 'Length of BCD number'
* means the total bytes should be allocated to store the TON/NPI and
* the dialing number.
* For example, if the dialing number is 1234567890,
* and the TON/NPI is 0x81,
* The field 'Length of BCD number' should be 06, which is
* 1 byte to store the TON/NPI, 0x81
* 5 bytes to store the BCD number 2143658709.
*
* Here the definition of the length is different from SMS spec,
* TS 23.040 9.1.2.5, which the length means
* "number of useful semi-octets within the Address-Value field".
*/
readDiallingNumber: function readDiallingNumber(len) {
if (DEBUG) debug("PDU: Going to read Dialling number: " + len);
// TOA = TON + NPI
let toa = this.readHexOctet();
let number = this.readSwappedNibbleBcdString(len - 1).toString();
if (number.length <= 0) {
if (DEBUG) debug("PDU error: no number provided");
return null;
}
if ((toa >> 4) == (PDU_TOA_INTERNATIONAL >> 4)) {
number = '+' + number;
}
return number;
},
/**
* Write Dialling Number.
*
* @param number The Dialling number
*/
writeDiallingNumber: function writeDiallingNumber(number) {
let toa = PDU_TOA_ISDN; // 81
if (number[0] == '+') {
toa = PDU_TOA_INTERNATIONAL | PDU_TOA_ISDN; // 91
number = number.substring(1);
}
this.writeHexOctet(toa);
this.writeSwappedNibbleBCD(number);
},
/**
* Read TP-Protocol-Indicator(TP-PID).
*
* @param msg
* message object for output.
*
* @see 3GPP TS 23.040 9.2.3.9
*/
readProtocolIndicator: function readProtocolIndicator(msg) {
// `The MS shall interpret reserved, obsolete, or unsupported values as the
// value 00000000 but shall store them exactly as received.`
msg.pid = this.readHexOctet();
msg.epid = msg.pid;
switch (msg.epid & 0xC0) {
case 0x40:
// Bit 7..0 = 01xxxxxx
switch (msg.epid) {
case PDU_PID_SHORT_MESSAGE_TYPE_0:
case PDU_PID_ANSI_136_R_DATA:
case PDU_PID_USIM_DATA_DOWNLOAD:
return;
case PDU_PID_RETURN_CALL_MESSAGE:
// Level 1 of message waiting indication:
// Only a return call message is provided
let mwi = msg.mwi = {};
// TODO: When should we de-activate the level 1 indicator?
mwi.active = true;
mwi.discard = false;
mwi.msgCount = GECKO_VOICEMAIL_MESSAGE_COUNT_UNKNOWN;
if (DEBUG) debug("TP-PID got return call message: " + msg.sender);
return;
}
break;
}
msg.epid = PDU_PID_DEFAULT;
},
/**
* Read TP-Data-Coding-Scheme(TP-DCS)
*
* @param msg
* message object for output.
*
* @see 3GPP TS 23.040 9.2.3.10, 3GPP TS 23.038 4.
*/
readDataCodingScheme: function readDataCodingScheme(msg) {
let dcs = this.readHexOctet();
if (DEBUG) debug("PDU: read SMS dcs: " + dcs);
// No message class by default.
let messageClass = PDU_DCS_MSG_CLASS_NORMAL;
// 7 bit is the default fallback encoding.
let encoding = PDU_DCS_MSG_CODING_7BITS_ALPHABET;
switch (dcs & PDU_DCS_CODING_GROUP_BITS) {
case 0x40: // bits 7..4 = 01xx
case 0x50:
case 0x60:
case 0x70:
// Bit 5..0 are coded exactly the same as Group 00xx
case 0x00: // bits 7..4 = 00xx
case 0x10:
case 0x20:
case 0x30:
if (dcs & 0x10) {
messageClass = dcs & PDU_DCS_MSG_CLASS_BITS;
}
switch (dcs & 0x0C) {
case 0x4:
encoding = PDU_DCS_MSG_CODING_8BITS_ALPHABET;
break;
case 0x8:
encoding = PDU_DCS_MSG_CODING_16BITS_ALPHABET;
break;
}
break;
case 0xE0: // bits 7..4 = 1110
encoding = PDU_DCS_MSG_CODING_16BITS_ALPHABET;
// Bit 3..0 are coded exactly the same as Message Waiting Indication
// Group 1101.
case 0xC0: // bits 7..4 = 1100
case 0xD0: // bits 7..4 = 1101
// Indiciates voicemail indicator set or clear
let active = (dcs & PDU_DCS_MWI_ACTIVE_BITS) == PDU_DCS_MWI_ACTIVE_VALUE;
// If TP-UDH is present, these values will be overwritten
switch (dcs & PDU_DCS_MWI_TYPE_BITS) {
case PDU_DCS_MWI_TYPE_VOICEMAIL:
let mwi = msg.mwi;
if (!mwi) {
mwi = msg.mwi = {};
}
mwi.active = active;
mwi.discard = (dcs & PDU_DCS_CODING_GROUP_BITS) == 0xC0;
mwi.msgCount = active ? GECKO_VOICEMAIL_MESSAGE_COUNT_UNKNOWN : 0;
if (DEBUG) {
debug("MWI in DCS received for voicemail: " + JSON.stringify(mwi));
}
break;
case PDU_DCS_MWI_TYPE_FAX:
if (DEBUG) debug("MWI in DCS received for fax");
break;
case PDU_DCS_MWI_TYPE_EMAIL:
if (DEBUG) debug("MWI in DCS received for email");
break;
default:
if (DEBUG) debug("MWI in DCS received for \"other\"");
break;
}
break;
case 0xF0: // bits 7..4 = 1111
if (dcs & 0x04) {
encoding = PDU_DCS_MSG_CODING_8BITS_ALPHABET;
}
messageClass = dcs & PDU_DCS_MSG_CLASS_BITS;
break;
default:
// Falling back to default encoding.
break;
}
msg.dcs = dcs;
msg.encoding = encoding;
msg.messageClass = GECKO_SMS_MESSAGE_CLASSES[messageClass];
if (DEBUG) debug("PDU: message encoding is " + encoding + " bit.");
},
/**
* Read GSM TP-Service-Centre-Time-Stamp(TP-SCTS).
*
* @see 3GPP TS 23.040 9.2.3.11
*/
readTimestamp: function readTimestamp() {
let year = this.readSwappedNibbleBcdNum(1) + PDU_TIMESTAMP_YEAR_OFFSET;
let month = this.readSwappedNibbleBcdNum(1) - 1;
let day = this.readSwappedNibbleBcdNum(1);
let hour = this.readSwappedNibbleBcdNum(1);
let minute = this.readSwappedNibbleBcdNum(1);
let second = this.readSwappedNibbleBcdNum(1);
let timestamp = Date.UTC(year, month, day, hour, minute, second);
// If the most significant bit of the least significant nibble is 1,
// the timezone offset is negative (fourth bit from the right => 0x08):
// localtime = UTC + tzOffset
// therefore
// UTC = localtime - tzOffset
let tzOctet = this.readHexOctet();
let tzOffset = this.octetToBCD(tzOctet & ~0x08) * 15 * 60 * 1000;
tzOffset = (tzOctet & 0x08) ? -tzOffset : tzOffset;
timestamp -= tzOffset;
return timestamp;
},
/**
* Write GSM TP-Service-Centre-Time-Stamp(TP-SCTS).
*
* @see 3GPP TS 23.040 9.2.3.11
*/
writeTimestamp: function writeTimestamp(date) {
this.writeSwappedNibbleBCDNum(date.getFullYear() - PDU_TIMESTAMP_YEAR_OFFSET);
// The value returned by getMonth() is an integer between 0 and 11.
// 0 is corresponds to January, 1 to February, and so on.
this.writeSwappedNibbleBCDNum(date.getMonth() + 1);
this.writeSwappedNibbleBCDNum(date.getDate());
this.writeSwappedNibbleBCDNum(date.getHours());
this.writeSwappedNibbleBCDNum(date.getMinutes());
this.writeSwappedNibbleBCDNum(date.getSeconds());
// the value returned by getTimezoneOffset() is the difference,
// in minutes, between UTC and local time.
// For example, if your time zone is UTC+10 (Australian Eastern Standard Time),
// -600 will be returned.
// In TS 23.040 9.2.3.11, the Time Zone field of TP-SCTS indicates
// the different between the local time and GMT.
// And expressed in quarters of an hours. (so need to divid by 15)
let zone = date.getTimezoneOffset() / 15;
let octet = this.BCDToOctet(zone);
// the bit3 of the Time Zone field represents the algebraic sign.
// (0: positive, 1: negative).
// For example, if the time zone is -0800 GMT,
// 480 will be returned by getTimezoneOffset().
// In this case, need to mark sign bit as 1. => 0x08
if (zone > 0) {
octet = octet | 0x08;
}
this.writeHexOctet(octet);
},
/**
* User data can be 7 bit (default alphabet) data, 8 bit data, or 16 bit
* (UCS2) data.
*
* @param msg
* message object for output.
* @param length
* length of user data to read in octets.
*/
readUserData: function readUserData(msg, length) {
if (DEBUG) {
debug("Reading " + length + " bytes of user data.");
}
let paddingBits = 0;
if (msg.udhi) {
this.readUserDataHeader(msg);
if (msg.encoding == PDU_DCS_MSG_CODING_7BITS_ALPHABET) {
let headerBits = (msg.header.length + 1) * 8;
let headerSeptets = Math.ceil(headerBits / 7);
length -= headerSeptets;
paddingBits = headerSeptets * 7 - headerBits;
} else {
length -= (msg.header.length + 1);
}
}
if (DEBUG) debug("After header, " + length + " septets left of user data");
msg.body = null;
msg.data = null;
switch (msg.encoding) {
case PDU_DCS_MSG_CODING_7BITS_ALPHABET:
// 7 bit encoding allows 140 octets, which means 160 characters
// ((140x8) / 7 = 160 chars)
if (length > PDU_MAX_USER_DATA_7BIT) {
if (DEBUG) debug("PDU error: user data is too long: " + length);
break;
}
let langIndex = msg.udhi ? msg.header.langIndex : PDU_NL_IDENTIFIER_DEFAULT;
let langShiftIndex = msg.udhi ? msg.header.langShiftIndex : PDU_NL_IDENTIFIER_DEFAULT;
msg.body = this.readSeptetsToString(length, paddingBits, langIndex,
langShiftIndex);
break;
case PDU_DCS_MSG_CODING_8BITS_ALPHABET:
msg.data = this.readHexOctetArray(length);
break;
case PDU_DCS_MSG_CODING_16BITS_ALPHABET:
msg.body = this.readUCS2String(length);
break;
}
},
/**
* Read extra parameters if TP-PI is set.
*
* @param msg
* message object for output.
*/
readExtraParams: function readExtraParams(msg) {
// Because each PDU octet is converted to two UCS2 char2, we should always
// get even messageStringLength in this#_processReceivedSms(). So, we'll
// always need two delimitors at the end.
if (Buf.readAvailable <= 4) {
return;
}
// TP-Parameter-Indicator
let pi;
do {
// `The most significant bit in octet 1 and any other TP-PI octets which
// may be added later is reserved as an extension bit which when set to a
// 1 shall indicate that another TP-PI octet follows immediately
// afterwards.` ~ 3GPP TS 23.040 9.2.3.27
pi = this.readHexOctet();
} while (pi & PDU_PI_EXTENSION);
// `If the TP-UDL bit is set to "1" but the TP-DCS bit is set to "0" then
// the receiving entity shall for TP-DCS assume a value of 0x00, i.e. the
// 7bit default alphabet.` ~ 3GPP 23.040 9.2.3.27
msg.dcs = 0;
msg.encoding = PDU_DCS_MSG_CODING_7BITS_ALPHABET;
// TP-Protocol-Identifier
if (pi & PDU_PI_PROTOCOL_IDENTIFIER) {
this.readProtocolIndicator(msg);
}
// TP-Data-Coding-Scheme
if (pi & PDU_PI_DATA_CODING_SCHEME) {
this.readDataCodingScheme(msg);
}
// TP-User-Data-Length
if (pi & PDU_PI_USER_DATA_LENGTH) {
let userDataLength = this.readHexOctet();
this.readUserData(msg, userDataLength);
}
},
/**
* Read and decode a PDU-encoded message from the stream.
*
* TODO: add some basic sanity checks like:
* - do we have the minimum number of chars available
*/
readMessage: function readMessage() {
// An empty message object. This gets filled below and then returned.
let msg = {
// D:DELIVER, DR:DELIVER-REPORT, S:SUBMIT, SR:SUBMIT-REPORT,
// ST:STATUS-REPORT, C:COMMAND
// M:Mandatory, O:Optional, X:Unavailable
// D DR S SR ST C
SMSC: null, // M M M M M M
mti: null, // M M M M M M
udhi: null, // M M O M M M
sender: null, // M X X X X X
recipient: null, // X X M X M M
pid: null, // M O M O O M
epid: null, // M O M O O M
dcs: null, // M O M O O X
mwi: null, // O O O O O O
replace: false, // O O O O O O
header: null, // M M O M M M
body: null, // M O M O O O
data: null, // M O M O O O
timestamp: null, // M X X X X X
status: null, // X X X X M X
scts: null, // X X X M M X
dt: null, // X X X X M X
};
// SMSC info
let smscLength = this.readHexOctet();
if (smscLength > 0) {
let smscTypeOfAddress = this.readHexOctet();
// Subtract the type-of-address octet we just read from the length.
msg.SMSC = this.readSwappedNibbleBcdString(smscLength - 1);
if ((smscTypeOfAddress >> 4) == (PDU_TOA_INTERNATIONAL >> 4)) {
msg.SMSC = '+' + msg.SMSC;
}
}
// First octet of this SMS-DELIVER or SMS-SUBMIT message
let firstOctet = this.readHexOctet();
// Message Type Indicator
msg.mti = firstOctet & 0x03;
// User data header indicator
msg.udhi = firstOctet & PDU_UDHI;
switch (msg.mti) {
case PDU_MTI_SMS_RESERVED:
// `If an MS receives a TPDU with a "Reserved" value in the TP-MTI it
// shall process the message as if it were an "SMS-DELIVER" but store
// the message exactly as received.` ~ 3GPP TS 23.040 9.2.3.1
case PDU_MTI_SMS_DELIVER:
return this.readDeliverMessage(msg);
case PDU_MTI_SMS_STATUS_REPORT:
return this.readStatusReportMessage(msg);
default:
return null;
}
},
/**
* Read and decode a SMS-DELIVER PDU.
*
* @param msg
* message object for output.
*/
readDeliverMessage: function readDeliverMessage(msg) {
// - Sender Address info -
let senderAddressLength = this.readHexOctet();
msg.sender = this.readAddress(senderAddressLength);
// - TP-Protocolo-Identifier -
this.readProtocolIndicator(msg);
// - TP-Data-Coding-Scheme -
this.readDataCodingScheme(msg);
// - TP-Service-Center-Time-Stamp -
msg.timestamp = this.readTimestamp();
// - TP-User-Data-Length -
let userDataLength = this.readHexOctet();
// - TP-User-Data -
if (userDataLength > 0) {
this.readUserData(msg, userDataLength);
}
return msg;
},
/**
* Read and decode a SMS-STATUS-REPORT PDU.
*
* @param msg
* message object for output.
*/
readStatusReportMessage: function readStatusReportMessage(msg) {
// TP-Message-Reference
msg.messageRef = this.readHexOctet();
// TP-Recipient-Address
let recipientAddressLength = this.readHexOctet();
msg.recipient = this.readAddress(recipientAddressLength);
// TP-Service-Centre-Time-Stamp
msg.scts = this.readTimestamp();
// TP-Discharge-Time
msg.dt = this.readTimestamp();
// TP-Status
msg.status = this.readHexOctet();
this.readExtraParams(msg);
return msg;
},
/**
* Serialize a SMS-SUBMIT PDU message and write it to the output stream.
*
* This method expects that a data coding scheme has been chosen already
* and that the length of the user data payload in that encoding is known,
* too. Both go hand in hand together anyway.
*
* @param address
* String containing the address (number) of the SMS receiver
* @param userData
* String containing the message to be sent as user data
* @param dcs
* Data coding scheme. One of the PDU_DCS_MSG_CODING_*BITS_ALPHABET
* constants.
* @param userDataHeaderLength
* Length of embedded user data header, in bytes. The whole header
* size will be userDataHeaderLength + 1; 0 for no header.
* @param encodedBodyLength
* Length of the user data when encoded with the given DCS. For UCS2,
* in bytes; for 7-bit, in septets.
* @param langIndex
* Table index used for normal 7-bit encoded character lookup.
* @param langShiftIndex
* Table index used for escaped 7-bit encoded character lookup.
* @param requestStatusReport
* Request status report.
*/
writeMessage: function writeMessage(options) {
if (DEBUG) {
debug("writeMessage: " + JSON.stringify(options));
}
let address = options.number;
let body = options.body;
let dcs = options.dcs;
let userDataHeaderLength = options.userDataHeaderLength;
let encodedBodyLength = options.encodedBodyLength;
let langIndex = options.langIndex;
let langShiftIndex = options.langShiftIndex;
// SMS-SUBMIT Format:
//
// PDU Type - 1 octet
// Message Reference - 1 octet
// DA - Destination Address - 2 to 12 octets
// PID - Protocol Identifier - 1 octet
// DCS - Data Coding Scheme - 1 octet
// VP - Validity Period - 0, 1 or 7 octets
// UDL - User Data Length - 1 octet
// UD - User Data - 140 octets
let addressFormat = PDU_TOA_ISDN; // 81
if (address[0] == '+') {
addressFormat = PDU_TOA_INTERNATIONAL | PDU_TOA_ISDN; // 91
address = address.substring(1);
}
//TODO validity is unsupported for now
let validity = 0;
let headerOctets = (userDataHeaderLength ? userDataHeaderLength + 1 : 0);
let paddingBits;
let userDataLengthInSeptets;
let userDataLengthInOctets;
if (dcs == PDU_DCS_MSG_CODING_7BITS_ALPHABET) {
let headerSeptets = Math.ceil(headerOctets * 8 / 7);
userDataLengthInSeptets = headerSeptets + encodedBodyLength;
userDataLengthInOctets = Math.ceil(userDataLengthInSeptets * 7 / 8);
paddingBits = headerSeptets * 7 - headerOctets * 8;
} else {
userDataLengthInOctets = headerOctets + encodedBodyLength;
paddingBits = 0;
}
let pduOctetLength = 4 + // PDU Type, Message Ref, address length + format
Math.ceil(address.length / 2) +
3 + // PID, DCS, UDL
userDataLengthInOctets;
if (validity) {
//TODO: add more to pduOctetLength
}
// Start the string. Since octets are represented in hex, we will need
// twice as many characters as octets.
Buf.writeUint32(pduOctetLength * 2);
// - PDU-TYPE-
// +--------+----------+---------+---------+--------+---------+
// | RP (1) | UDHI (1) | SRR (1) | VPF (2) | RD (1) | MTI (2) |
// +--------+----------+---------+---------+--------+---------+
// RP: 0 Reply path parameter is not set
// 1 Reply path parameter is set
// UDHI: 0 The UD Field contains only the short message
// 1 The beginning of the UD field contains a header in addition
// of the short message
// SRR: 0 A status report is not requested
// 1 A status report is requested
// VPF: bit4 bit3
// 0 0 VP field is not present
// 0 1 Reserved
// 1 0 VP field present an integer represented (relative)
// 1 1 VP field present a semi-octet represented (absolute)
// RD: Instruct the SMSC to accept(0) or reject(1) an SMS-SUBMIT
// for a short message still held in the SMSC which has the same
// MR and DA as a previously submitted short message from the
// same OA
// MTI: bit1 bit0 Message Type
// 0 0 SMS-DELIVER (SMSC ==> MS)
// 0 1 SMS-SUBMIT (MS ==> SMSC)
// PDU type. MTI is set to SMS-SUBMIT
let firstOctet = PDU_MTI_SMS_SUBMIT;
// Status-Report-Request
if (options.requestStatusReport) {
firstOctet |= PDU_SRI_SRR;
}
// Validity period
if (validity) {
//TODO: not supported yet, OR with one of PDU_VPF_*
}
// User data header indicator
if (headerOctets) {
firstOctet |= PDU_UDHI;
}
this.writeHexOctet(firstOctet);
// Message reference 00
this.writeHexOctet(0x00);
// - Destination Address -
this.writeHexOctet(address.length);
this.writeHexOctet(addressFormat);
this.writeSwappedNibbleBCD(address);
// - Protocol Identifier -
this.writeHexOctet(0x00);
// - Data coding scheme -
// For now it assumes bits 7..4 = 1111 except for the 16 bits use case
this.writeHexOctet(dcs);
// - Validity Period -
if (validity) {
this.writeHexOctet(validity);
}
// - User Data -
if (dcs == PDU_DCS_MSG_CODING_7BITS_ALPHABET) {
this.writeHexOctet(userDataLengthInSeptets);
} else {
this.writeHexOctet(userDataLengthInOctets);
}
if (headerOctets) {
this.writeUserDataHeader(options);
}
switch (dcs) {
case PDU_DCS_MSG_CODING_7BITS_ALPHABET:
this.writeStringAsSeptets(body, paddingBits, langIndex, langShiftIndex);
break;
case PDU_DCS_MSG_CODING_8BITS_ALPHABET:
// Unsupported.
break;
case PDU_DCS_MSG_CODING_16BITS_ALPHABET:
this.writeUCS2String(body);
break;
}
// End of the string. The string length is always even by definition, so
// we write two \0 delimiters.
Buf.writeUint16(0);
Buf.writeUint16(0);
},
/**
* Read GSM CBS message serial number.
*
* @param msg
* message object for output.
*
* @see 3GPP TS 23.041 section 9.4.1.2.1
*/
readCbSerialNumber: function readCbSerialNumber(msg) {
msg.serial = Buf.readUint8() << 8 | Buf.readUint8();
msg.geographicalScope = (msg.serial >>> 14) & 0x03;
msg.messageCode = (msg.serial >>> 4) & 0x03FF;
msg.updateNumber = msg.serial & 0x0F;
},
/**
* Read GSM CBS message message identifier.
*
* @param msg
* message object for output.
*
* @see 3GPP TS 23.041 section 9.4.1.2.2
*/
readCbMessageIdentifier: function readCbMessageIdentifier(msg) {
msg.messageId = Buf.readUint8() << 8 | Buf.readUint8();
if ((msg.format != CB_FORMAT_ETWS)
&& (msg.messageId >= CB_GSM_MESSAGEID_ETWS_BEGIN)
&& (msg.messageId <= CB_GSM_MESSAGEID_ETWS_END)) {
// `In the case of transmitting CBS message for ETWS, a part of
// Message Code can be used to command mobile terminals to activate
// emergency user alert and message popup in order to alert the users.`
msg.etws = {
emergencyUserAlert: msg.messageCode & 0x0200 ? true : false,
popup: msg.messageCode & 0x0100 ? true : false
};
let warningType = msg.messageId - CB_GSM_MESSAGEID_ETWS_BEGIN;
if (warningType < CB_ETWS_WARNING_TYPE_NAMES.length) {
msg.etws.warningType = warningType;
}
}
},
/**
* Read CBS Data Coding Scheme.
*
* @param msg
* message object for output.
*
* @see 3GPP TS 23.038 section 5.
*/
readCbDataCodingScheme: function readCbDataCodingScheme(msg) {
let dcs = Buf.readUint8();
if (DEBUG) debug("PDU: read CBS dcs: " + dcs);
let language = null, hasLanguageIndicator = false;
// `Any reserved codings shall be assumed to be the GSM 7bit default
// alphabet.`
let encoding = PDU_DCS_MSG_CODING_7BITS_ALPHABET;
let messageClass = PDU_DCS_MSG_CLASS_NORMAL;
switch (dcs & PDU_DCS_CODING_GROUP_BITS) {
case 0x00: // 0000
language = CB_DCS_LANG_GROUP_1[dcs & 0x0F];
break;
case 0x10: // 0001
switch (dcs & 0x0F) {
case 0x00:
hasLanguageIndicator = true;
break;
case 0x01:
encoding = PDU_DCS_MSG_CODING_16BITS_ALPHABET;
hasLanguageIndicator = true;
break;
}
break;
case 0x20: // 0010
language = CB_DCS_LANG_GROUP_2[dcs & 0x0F];
break;
case 0x40: // 01xx
case 0x50:
//case 0x60: Text Compression, not supported
//case 0x70: Text Compression, not supported
case 0x90: // 1001
encoding = (dcs & 0x0C);
if (encoding == 0x0C) {
encoding = PDU_DCS_MSG_CODING_7BITS_ALPHABET;
}
messageClass = (dcs & PDU_DCS_MSG_CLASS_BITS);
break;
case 0xF0:
encoding = (dcs & 0x04) ? PDU_DCS_MSG_CODING_8BITS_ALPHABET
: PDU_DCS_MSG_CODING_7BITS_ALPHABET;
switch(dcs & PDU_DCS_MSG_CLASS_BITS) {
case 0x01: messageClass = PDU_DCS_MSG_CLASS_USER_1; break;
case 0x02: messageClass = PDU_DCS_MSG_CLASS_USER_2; break;
case 0x03: messageClass = PDU_DCS_MSG_CLASS_3; break;
}
break;
case 0x30: // 0011 (Reserved)
case 0x80: // 1000 (Reserved)
case 0xA0: // 1010..1100 (Reserved)
case 0xB0:
case 0xC0:
break;
default:
throw new Error("Unsupported CBS data coding scheme: " + dcs);
}
msg.dcs = dcs;
msg.encoding = encoding;
msg.language = language;
msg.messageClass = GECKO_SMS_MESSAGE_CLASSES[messageClass];
msg.hasLanguageIndicator = hasLanguageIndicator;
},
/**
* Read GSM CBS message page parameter.
*
* @param msg
* message object for output.
*
* @see 3GPP TS 23.041 section 9.4.1.2.4
*/
readCbPageParameter: function readCbPageParameter(msg) {
let octet = Buf.readUint8();
msg.pageIndex = (octet >>> 4) & 0x0F;
msg.numPages = octet & 0x0F;
if (!msg.pageIndex || !msg.numPages) {
// `If a mobile receives the code 0000 in either the first field or the
// second field then it shall treat the CBS message exactly the same as a
// CBS message with page parameter 0001 0001 (i.e. a single page message).`
msg.pageIndex = msg.numPages = 1;
}
},
/**
* Read ETWS Primary Notification message warning type.
*
* @param msg
* message object for output.
*
* @see 3GPP TS 23.041 section 9.3.24
*/
readCbWarningType: function readCbWarningType(msg) {
let word = Buf.readUint8() << 8 | Buf.readUint8();
msg.etws = {
warningType: (word >>> 9) & 0x7F,
popup: word & 0x80 ? true : false,
emergencyUserAlert: word & 0x100 ? true : false
};
},
/**
* Read CBS-Message-Information-Page
*
* @param msg
* message object for output.
* @param length
* length of cell broadcast data to read in octets.
*
* @see 3GPP TS 23.041 section 9.3.19
*/
readGsmCbData: function readGsmCbData(msg, length) {
let bufAdapter = {
readHexOctet: function readHexOctet() {
return Buf.readUint8();
}
};
msg.body = null;
msg.data = null;
switch (msg.encoding) {
case PDU_DCS_MSG_CODING_7BITS_ALPHABET:
msg.body = this.readSeptetsToString.call(bufAdapter,
(length * 8 / 7), 0,
PDU_NL_IDENTIFIER_DEFAULT,
PDU_NL_IDENTIFIER_DEFAULT);
if (msg.hasLanguageIndicator) {
msg.language = msg.body.substring(0, 2);
msg.body = msg.body.substring(3);
}
break;
case PDU_DCS_MSG_CODING_8BITS_ALPHABET:
msg.data = Buf.readUint8Array(length);
break;
case PDU_DCS_MSG_CODING_16BITS_ALPHABET:
if (msg.hasLanguageIndicator) {
msg.language = this.readSeptetsToString.call(bufAdapter, 2, 0,
PDU_NL_IDENTIFIER_DEFAULT,
PDU_NL_IDENTIFIER_DEFAULT);
length -= 2;
}
msg.body = this.readUCS2String.call(bufAdapter, length);
break;
}
},
/**
* Read Cell GSM/ETWS/UMTS Broadcast Message.
*
* @param pduLength
* total length of the incoming PDU in octets.
*/
readCbMessage: function readCbMessage(pduLength) {
// Validity GSM ETWS UMTS
let msg = {
// Internally used in ril_worker:
serial: null, // O O O
updateNumber: null, // O O O
format: null, // O O O
dcs: 0x0F, // O X O
encoding: PDU_DCS_MSG_CODING_7BITS_ALPHABET, // O X O
hasLanguageIndicator: false, // O X O
data: null, // O X O
body: null, // O X O
pageIndex: 1, // O X X
numPages: 1, // O X X
// DOM attributes:
geographicalScope: null, // O O O
messageCode: null, // O O O
messageId: null, // O O O
language: null, // O X O
fullBody: null, // O X O
fullData: null, // O X O
messageClass: GECKO_SMS_MESSAGE_CLASSES[PDU_DCS_MSG_CLASS_NORMAL], // O x O
etws: null // ? O ?
/*{
warningType: null, // X O X
popup: false, // X O X
emergencyUserAlert: false, // X O X
}*/
};
if (pduLength <= CB_MESSAGE_SIZE_ETWS) {
msg.format = CB_FORMAT_ETWS;
return this.readEtwsCbMessage(msg);
}
if (pduLength <= CB_MESSAGE_SIZE_GSM) {
msg.format = CB_FORMAT_GSM;
return this.readGsmCbMessage(msg, pduLength);
}
return null;
},
/**
* Read GSM Cell Broadcast Message.
*
* @param msg
* message object for output.
* @param pduLength
* total length of the incomint PDU in octets.
*
* @see 3GPP TS 23.041 clause 9.4.1.2
*/
readGsmCbMessage: function readGsmCbMessage(msg, pduLength) {
this.readCbSerialNumber(msg);
this.readCbMessageIdentifier(msg);
this.readCbDataCodingScheme(msg);
this.readCbPageParameter(msg);
// GSM CB message header takes 6 octets.
this.readGsmCbData(msg, pduLength - 6);
return msg;
},
/**
* Read ETWS Primary Notification Message.
*
* @param msg
* message object for output.
*
* @see 3GPP TS 23.041 clause 9.4.1.3
*/
readEtwsCbMessage: function readEtwsCbMessage(msg) {
this.readCbSerialNumber(msg);
this.readCbMessageIdentifier(msg);
this.readCbWarningType(msg);
// Octet 7..56 is Warning Security Information. However, according to
// section 9.4.1.3.6, `The UE shall ignore this parameter.` So we just skip
// processing it here.
return msg;
},
/**
* Read network name.
*
* @param len Length of the information element.
* @return
* {
* networkName: network name.
* shouldIncludeCi: Should Country's initials included in text string.
* }
* @see TS 24.008 clause 10.5.3.5a.
*/
readNetworkName: function readNetworkName(len) {
// According to TS 24.008 Sec. 10.5.3.5a, the first octet is:
// bit 8: must be 1.
// bit 5-7: Text encoding.
// 000 - GSM default alphabet.
// 001 - UCS2 (16 bit).
// else - reserved.
// bit 4: MS should add the letters for Country's Initials and a space
// to the text string if this bit is true.
// bit 1-3: number of spare bits in last octet.
let codingInfo = GsmPDUHelper.readHexOctet();
if (!(codingInfo & 0x80)) {
return null;
}
let textEncoding = (codingInfo & 0x70) >> 4,
shouldIncludeCountryInitials = !!(codingInfo & 0x08),
spareBits = codingInfo & 0x07;
let resultString;
switch (textEncoding) {
case 0:
// GSM Default alphabet.
resultString = GsmPDUHelper.readSeptetsToString(
((len - 1) * 8 - spareBits) / 7, 0,
PDU_NL_IDENTIFIER_DEFAULT,
PDU_NL_IDENTIFIER_DEFAULT);
break;
case 1:
// UCS2 encoded.
resultString = this.readUCS2String(len - 1);
break;
default:
// Not an available text coding.
return null;
}
// TODO - Bug 820286: According to shouldIncludeCountryInitials, add
// country initials to the resulting string.
return resultString;
}
};
let StkCommandParamsFactory = {
createParam: function createParam(cmdDetails, ctlvs) {
let param;
switch (cmdDetails.typeOfCommand) {
case STK_CMD_REFRESH:
param = this.processRefresh(cmdDetails, ctlvs);
break;
case STK_CMD_POLL_INTERVAL:
param = this.processPollInterval(cmdDetails, ctlvs);
break;
case STK_CMD_POLL_OFF:
param = this.processPollOff(cmdDetails, ctlvs);
break;
case STK_CMD_PROVIDE_LOCAL_INFO:
param = this.processProvideLocalInfo(cmdDetails, ctlvs);
break;
case STK_CMD_SET_UP_EVENT_LIST:
param = this.processSetUpEventList(cmdDetails, ctlvs);
break;
case STK_CMD_SET_UP_MENU:
case STK_CMD_SELECT_ITEM:
param = this.processSelectItem(cmdDetails, ctlvs);
break;
case STK_CMD_DISPLAY_TEXT:
param = this.processDisplayText(cmdDetails, ctlvs);
break;
case STK_CMD_SET_UP_IDLE_MODE_TEXT:
param = this.processSetUpIdleModeText(cmdDetails, ctlvs);
break;
case STK_CMD_GET_INKEY:
param = this.processGetInkey(cmdDetails, ctlvs);
break;
case STK_CMD_GET_INPUT:
param = this.processGetInput(cmdDetails, ctlvs);
break;
case STK_CMD_SEND_SS:
case STK_CMD_SEND_USSD:
case STK_CMD_SEND_SMS:
case STK_CMD_SEND_DTMF:
param = this.processEventNotify(cmdDetails, ctlvs);
break;
case STK_CMD_SET_UP_CALL:
param = this.processSetupCall(cmdDetails, ctlvs);
break;
case STK_CMD_LAUNCH_BROWSER:
param = this.processLaunchBrowser(cmdDetails, ctlvs);
break;
case STK_CMD_PLAY_TONE:
param = this.processPlayTone(cmdDetails, ctlvs);
break;
case STK_CMD_TIMER_MANAGEMENT:
param = this.processTimerManagement(cmdDetails, ctlvs);
break;
default:
debug("unknown proactive command");
break;
}
return param;
},
/**
* Construct a param for Refresh.
*
* @param cmdDetails
* The value object of CommandDetails TLV.
* @param ctlvs
* The all TLVs in this proactive command.
*/
processRefresh: function processRefresh(cmdDetails, ctlvs) {
let refreshType = cmdDetails.commandQualifier;
switch (refreshType) {
case STK_REFRESH_FILE_CHANGE:
case STK_REFRESH_NAA_INIT_AND_FILE_CHANGE:
let ctlv = StkProactiveCmdHelper.searchForTag(
COMPREHENSIONTLV_TAG_FILE_LIST, ctlvs);
if (ctlv) {
let list = ctlv.value.fileList;
if (DEBUG) {
debug("Refresh, list = " + list);
}
ICCRecordHelper.fetchICCRecords();
}
break;
}
return null;
},
/**
* Construct a param for Poll Interval.
*
* @param cmdDetails
* The value object of CommandDetails TLV.
* @param ctlvs
* The all TLVs in this proactive command.
*/
processPollInterval: function processPollInterval(cmdDetails, ctlvs) {
let ctlv = StkProactiveCmdHelper.searchForTag(
COMPREHENSIONTLV_TAG_DURATION, ctlvs);
if (!ctlv) {
RIL.sendStkTerminalResponse({
command: cmdDetails,
resultCode: STK_RESULT_REQUIRED_VALUES_MISSING});
throw new Error("Stk Poll Interval: Required value missing : Duration");
}
return ctlv.value;
},
/**
* Construct a param for Poll Off.
*
* @param cmdDetails
* The value object of CommandDetails TLV.
* @param ctlvs
* The all TLVs in this proactive command.
*/
processPollOff: function processPollOff(cmdDetails, ctlvs) {
return null;
},
/**
* Construct a param for Set Up Event list.
*
* @param cmdDetails
* The value object of CommandDetails TLV.
* @param ctlvs
* The all TLVs in this proactive command.
*/
processSetUpEventList: function processSetUpEventList(cmdDetails, ctlvs) {
let ctlv = StkProactiveCmdHelper.searchForTag(
COMPREHENSIONTLV_TAG_EVENT_LIST, ctlvs);
if (!ctlv) {
RIL.sendStkTerminalResponse({
command: cmdDetails,
resultCode: STK_RESULT_REQUIRED_VALUES_MISSING});
throw new Error("Stk Event List: Required value missing : Event List");
}
return ctlv.value || {eventList: null};
},
/**
* Construct a param for Select Item.
*
* @param cmdDetails
* The value object of CommandDetails TLV.
* @param ctlvs
* The all TLVs in this proactive command.
*/
processSelectItem: function processSelectItem(cmdDetails, ctlvs) {
let menu = {};
let ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_ALPHA_ID, ctlvs);
if (ctlv) {
menu.title = ctlv.value.identifier;
}
menu.items = [];
for (let i = 0; i < ctlvs.length; i++) {
let ctlv = ctlvs[i];
if (ctlv.tag == COMPREHENSIONTLV_TAG_ITEM) {
menu.items.push(ctlv.value);
}
}
if (menu.items.length == 0) {
RIL.sendStkTerminalResponse({
command: cmdDetails,
resultCode: STK_RESULT_REQUIRED_VALUES_MISSING});
throw new Error("Stk Menu: Required value missing : items");
}
ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_ITEM_ID, ctlvs);
if (ctlv) {
menu.defaultItem = ctlv.value.identifier - 1;
}
// The 1st bit and 2nd bit determines the presentation type.
menu.presentationType = cmdDetails.commandQualifier & 0x03;
// Help information available.
if (cmdDetails.commandQualifier & 0x80) {
menu.isHelpAvailable = true;
}
return menu;
},
processDisplayText: function processDisplayText(cmdDetails, ctlvs) {
let textMsg = {};
let ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_TEXT_STRING, ctlvs);
if (!ctlv) {
RIL.sendStkTerminalResponse({
command: cmdDetails,
resultCode: STK_RESULT_REQUIRED_VALUES_MISSING});
throw new Error("Stk Display Text: Required value missing : Text String");
}
textMsg.text = ctlv.value.textString;
ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_IMMEDIATE_RESPONSE, ctlvs);
if (ctlv) {
textMsg.responseNeeded = true;
}
// High priority.
if (cmdDetails.commandQualifier & 0x01) {
textMsg.isHighPriority = true;
}
// User clear.
if (cmdDetails.commandQualifier & 0x80) {
textMsg.userClear = true;
}
return textMsg;
},
processSetUpIdleModeText: function processSetUpIdleModeText(cmdDetails, ctlvs) {
let textMsg = {};
let ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_TEXT_STRING, ctlvs);
if (!ctlv) {
RIL.sendStkTerminalResponse({
command: cmdDetails,
resultCode: STK_RESULT_REQUIRED_VALUES_MISSING});
throw new Error("Stk Set Up Idle Text: Required value missing : Text String");
}
textMsg.text = ctlv.value.textString;
return textMsg;
},
processGetInkey: function processGetInkey(cmdDetails, ctlvs) {
let input = {};
let ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_TEXT_STRING, ctlvs);
if (!ctlv) {
RIL.sendStkTerminalResponse({
command: cmdDetails,
resultCode: STK_RESULT_REQUIRED_VALUES_MISSING});
throw new Error("Stk Get InKey: Required value missing : Text String");
}
input.text = ctlv.value.textString;
input.minLength = 1;
input.maxLength = 1;
// isAlphabet
if (cmdDetails.commandQualifier & 0x01) {
input.isAlphabet = true;
}
// UCS2
if (cmdDetails.commandQualifier & 0x02) {
input.isUCS2 = true;
}
// Character sets defined in bit 1 and bit 2 are disable and
// the YES/NO reponse is required.
if (cmdDetails.commandQualifier & 0x04) {
input.isYesNoRequested = true;
}
// Help information available.
if (cmdDetails.commandQualifier & 0x80) {
input.isHelpAvailable = true;
}
return input;
},
processGetInput: function processGetInput(cmdDetails, ctlvs) {
let input = {};
let ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_TEXT_STRING, ctlvs);
if (!ctlv) {
RIL.sendStkTerminalResponse({
command: cmdDetails,
resultCode: STK_RESULT_REQUIRED_VALUES_MISSING});
throw new Error("Stk Get Input: Required value missing : Text String");
}
input.text = ctlv.value.textString;
ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_RESPONSE_LENGTH, ctlvs);
if (ctlv) {
input.minLength = ctlv.value.minLength;
input.maxLength = ctlv.value.maxLength;
}
ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_DEFAULT_TEXT, ctlvs);
if (ctlv) {
input.defaultText = ctlv.value.textString;
}
// Alphabet only
if (cmdDetails.commandQualifier & 0x01) {
input.isAlphabet = true;
}
// UCS2
if (cmdDetails.commandQualifier & 0x02) {
input.isUCS2 = true;
}
// User input shall not be revealed
if (cmdDetails.commandQualifier & 0x04) {
input.hideInput = true;
}
// User input in SMS packed format
if (cmdDetails.commandQualifier & 0x08) {
input.isPacked = true;
}
// Help information available.
if (cmdDetails.commandQualifier & 0x80) {
input.isHelpAvailable = true;
}
return input;
},
processEventNotify: function processEventNotify(cmdDetails, ctlvs) {
let textMsg = {};
let ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_ALPHA_ID, ctlvs);
if (!ctlv) {
RIL.sendStkTerminalResponse({
command: cmdDetails,
resultCode: STK_RESULT_REQUIRED_VALUES_MISSING});
throw new Error("Stk Event Notfiy: Required value missing : Alpha ID");
}
textMsg.text = ctlv.value.identifier;
return textMsg;
},
processSetupCall: function processSetupCall(cmdDetails, ctlvs) {
let call = {};
for (let i = 0; i < ctlvs.length; i++) {
let ctlv = ctlvs[i];
if (ctlv.tag == COMPREHENSIONTLV_TAG_ALPHA_ID) {
if (!call.confirmMessage) {
call.confirmMessage = ctlv.value.identifier;
} else {
call.callMessge = ctlv.value.identifier;
break;
}
}
}
let ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_ADDRESS, ctlvs);
if (!ctlv) {
RIL.sendStkTerminalResponse({
command: cmdDetails,
resultCode: STK_RESULT_REQUIRED_VALUES_MISSING});
throw new Error("Stk Set Up Call: Required value missing : Adress");
}
call.address = ctlv.value.number;
return call;
},
processLaunchBrowser: function processLaunchBrowser(cmdDetails, ctlvs) {
let browser = {};
let ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_URL, ctlvs);
if (!ctlv) {
RIL.sendStkTerminalResponse({
command: cmdDetails,
resultCode: STK_RESULT_REQUIRED_VALUES_MISSING});
throw new Error("Stk Launch Browser: Required value missing : URL");
}
browser.url = ctlv.value.url;
ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_ALPHA_ID, ctlvs)
if (ctlv) {
browser.confirmMessage = ctlv.value.identifier;
}
browser.mode = cmdDetails.commandQualifier & 0x03;
return browser;
},
processPlayTone: function processPlayTone(cmdDetails, ctlvs) {
let playTone = {};
let ctlv = StkProactiveCmdHelper.searchForTag(
COMPREHENSIONTLV_TAG_ALPHA_ID, ctlvs);
if (ctlv) {
playTone.text = ctlv.value.identifier;
}
ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_TONE, ctlvs);
if (ctlv) {
playTone.tone = ctlv.value.tone;
}
ctlv = StkProactiveCmdHelper.searchForTag(
COMPREHENSIONTLV_TAG_DURATION, ctlvs);
if (ctlv) {
playTone.duration = ctlv.value;
}
// vibrate is only defined in TS 102.223
playTone.isVibrate = (cmdDetails.commandQualifier & 0x01) != 0x00;
return playTone;
},
/**
* Construct a param for Provide Local Information
*
* @param cmdDetails
* The value object of CommandDetails TLV.
* @param ctlvs
* The all TLVs in this proactive command.
*/
processProvideLocalInfo: function processProvideLocalInfo(cmdDetails, ctlvs) {
let provideLocalInfo = {
localInfoType: cmdDetails.commandQualifier
};
return provideLocalInfo;
},
processTimerManagement: function processTimerManagement(cmdDetails, ctlvs) {
let timer = {
timerAction: cmdDetails.commandQualifier
};
let ctlv = StkProactiveCmdHelper.searchForTag(
COMPREHENSIONTLV_TAG_TIMER_IDENTIFIER, ctlvs);
if (ctlv) {
timer.timerId = ctlv.value.timerId;
}
ctlv = StkProactiveCmdHelper.searchForTag(
COMPREHENSIONTLV_TAG_TIMER_VALUE, ctlvs);
if (ctlv) {
timer.timerValue = ctlv.value.timerValue;
}
return timer;
}
};
let StkProactiveCmdHelper = {
retrieve: function retrieve(tag, length) {
switch (tag) {
case COMPREHENSIONTLV_TAG_COMMAND_DETAILS:
return this.retrieveCommandDetails(length);
case COMPREHENSIONTLV_TAG_DEVICE_ID:
return this.retrieveDeviceId(length);
case COMPREHENSIONTLV_TAG_ALPHA_ID:
return this.retrieveAlphaId(length);
case COMPREHENSIONTLV_TAG_DURATION:
return this.retrieveDuration(length);
case COMPREHENSIONTLV_TAG_ADDRESS:
return this.retrieveAddress(length);
case COMPREHENSIONTLV_TAG_TEXT_STRING:
return this.retrieveTextString(length);
case COMPREHENSIONTLV_TAG_TONE:
return this.retrieveTone(length);
case COMPREHENSIONTLV_TAG_ITEM:
return this.retrieveItem(length);
case COMPREHENSIONTLV_TAG_ITEM_ID:
return this.retrieveItemId(length);
case COMPREHENSIONTLV_TAG_RESPONSE_LENGTH:
return this.retrieveResponseLength(length);
case COMPREHENSIONTLV_TAG_FILE_LIST:
return this.retrieveFileList(length);
case COMPREHENSIONTLV_TAG_DEFAULT_TEXT:
return this.retrieveDefaultText(length);
case COMPREHENSIONTLV_TAG_EVENT_LIST:
return this.retrieveEventList(length);
case COMPREHENSIONTLV_TAG_TIMER_IDENTIFIER:
return this.retrieveTimerId(length);
case COMPREHENSIONTLV_TAG_TIMER_VALUE:
return this.retrieveTimerValue(length);
case COMPREHENSIONTLV_TAG_IMMEDIATE_RESPONSE:
return this.retrieveImmediaResponse(length);
case COMPREHENSIONTLV_TAG_URL:
return this.retrieveUrl(length);
default:
debug("StkProactiveCmdHelper: unknown tag " + tag.toString(16));
Buf.seekIncoming(length * PDU_HEX_OCTET_SIZE);
return null;
}
},
/**
* Command Details.
*
* | Byte | Description | Length |
* | 1 | Command details Tag | 1 |
* | 2 | Length = 03 | 1 |
* | 3 | Command number | 1 |
* | 4 | Type of Command | 1 |
* | 5 | Command Qualifier | 1 |
*/
retrieveCommandDetails: function retrieveCommandDetails(length) {
let cmdDetails = {
commandNumber: GsmPDUHelper.readHexOctet(),
typeOfCommand: GsmPDUHelper.readHexOctet(),
commandQualifier: GsmPDUHelper.readHexOctet()
};
return cmdDetails;
},
/**
* Device Identities.
*
* | Byte | Description | Length |
* | 1 | Device Identity Tag | 1 |
* | 2 | Length = 02 | 1 |
* | 3 | Source device Identity | 1 |
* | 4 | Destination device Id | 1 |
*/
retrieveDeviceId: function retrieveDeviceId(length) {
let deviceId = {
sourceId: GsmPDUHelper.readHexOctet(),
destinationId: GsmPDUHelper.readHexOctet()
};
return deviceId;
},
/**
* Alpha Identifier.
*
* | Byte | Description | Length |
* | 1 | Alpha Identifier Tag | 1 |
* | 2 ~ (Y-1)+2 | Length (X) | Y |
* | (Y-1)+3 ~ | Alpha identfier | X |
* | (Y-1)+X+2 | | |
*/
retrieveAlphaId: function retrieveAlphaId(length) {
let alphaId = {
identifier: GsmPDUHelper.readAlphaIdentifier(length)
};
return alphaId;
},
/**
* Duration.
*
* | Byte | Description | Length |
* | 1 | Response Length Tag | 1 |
* | 2 | Lenth = 02 | 1 |
* | 3 | Time unit | 1 |
* | 4 | Time interval | 1 |
*/
retrieveDuration: function retrieveDuration(length) {
let duration = {
timeUnit: GsmPDUHelper.readHexOctet(),
timeInterval: GsmPDUHelper.readHexOctet(),
};
return duration;
},
/**
* Address.
*
* | Byte | Description | Length |
* | 1 | Alpha Identifier Tag | 1 |
* | 2 ~ (Y-1)+2 | Length (X) | Y |
* | (Y-1)+3 | TON and NPI | 1 |
* | (Y-1)+4 ~ | Dialling number | X |
* | (Y-1)+X+2 | | |
*/
retrieveAddress: function retrieveAddress(length) {
let address = {
number : GsmPDUHelper.readDiallingNumber(length)
};
return address;
},
/**
* Text String.
*
* | Byte | Description | Length |
* | 1 | Text String Tag | 1 |
* | 2 ~ (Y-1)+2 | Length (X) | Y |
* | (Y-1)+3 | Data coding scheme | 1 |
* | (Y-1)+4~ | Text String | X |
* | (Y-1)+X+2 | | |
*/
retrieveTextString: function retrieveTextString(length) {
if (!length) {
// null string.
return {textString: null};
}
let text = {
codingScheme: GsmPDUHelper.readHexOctet()
};
length--; // -1 for the codingScheme.
switch (text.codingScheme & 0x0f) {
case STK_TEXT_CODING_GSM_7BIT_PACKED:
text.textString = GsmPDUHelper.readSeptetsToString(length * 8 / 7, 0, 0, 0);
break;
case STK_TEXT_CODING_GSM_8BIT:
text.textString = GsmPDUHelper.read8BitUnpackedToString(length);
break;
case STK_TEXT_CODING_UCS2:
text.textString = GsmPDUHelper.readUCS2String(length);
break;
}
return text;
},
/**
* Tone.
*
* | Byte | Description | Length |
* | 1 | Tone Tag | 1 |
* | 2 | Lenth = 01 | 1 |
* | 3 | Tone | 1 |
*/
retrieveTone: function retrieveTone(length) {
let tone = {
tone: GsmPDUHelper.readHexOctet(),
};
return tone;
},
/**
* Item.
*
* | Byte | Description | Length |
* | 1 | Item Tag | 1 |
* | 2 ~ (Y-1)+2 | Length (X) | Y |
* | (Y-1)+3 | Identifier of item | 1 |
* | (Y-1)+4 ~ | Text string of item | X |
* | (Y-1)+X+2 | | |
*/
retrieveItem: function retrieveItem(length) {
// TS 102.223 ,clause 6.6.7 SET-UP MENU
// If the "Item data object for item 1" is a null data object
// (i.e. length = '00' and no value part), this is an indication to the ME
// to remove the existing menu from the menu system in the ME.
if (!length) {
return null;
}
let item = {
identifier: GsmPDUHelper.readHexOctet(),
text: GsmPDUHelper.readAlphaIdentifier(length - 1)
};
return item;
},
/**
* Item Identifier.
*
* | Byte | Description | Length |
* | 1 | Item Identifier Tag | 1 |
* | 2 | Lenth = 01 | 1 |
* | 3 | Identifier of Item chosen | 1 |
*/
retrieveItemId: function retrieveItemId(length) {
let itemId = {
identifier: GsmPDUHelper.readHexOctet()
};
return itemId;
},
/**
* Response Length.
*
* | Byte | Description | Length |
* | 1 | Response Length Tag | 1 |
* | 2 | Lenth = 02 | 1 |
* | 3 | Minimum length of response | 1 |
* | 4 | Maximum length of response | 1 |
*/
retrieveResponseLength: function retrieveResponseLength(length) {
let rspLength = {
minLength : GsmPDUHelper.readHexOctet(),
maxLength : GsmPDUHelper.readHexOctet()
};
return rspLength;
},
/**
* File List.
*
* | Byte | Description | Length |
* | 1 | File List Tag | 1 |
* | 2 ~ (Y-1)+2 | Length (X) | Y |
* | (Y-1)+3 | Number of files | 1 |
* | (Y-1)+4 ~ | Files | X |
* | (Y-1)+X+2 | | |
*/
retrieveFileList: function retrieveFileList(length) {
let num = GsmPDUHelper.readHexOctet();
let fileList = "";
length--; // -1 for the num octet.
for (let i = 0; i < 2 * length; i++) {
// Didn't use readHexOctet here,
// otherwise 0x00 will be "0", not "00"
fileList += String.fromCharCode(Buf.readUint16());
}
return {
fileList: fileList
};
},
/**
* Default Text.
*
* Same as Text String.
*/
retrieveDefaultText: function retrieveDefaultText(length) {
return this.retrieveTextString(length);
},
/**
* Event List.
*/
retrieveEventList: function retrieveEventList(length) {
if (!length) {
// null means an indication to ME to remove the existing list of events
// in ME.
return null;
}
let eventList = [];
for (let i = 0; i < length; i++) {
eventList.push(GsmPDUHelper.readHexOctet());
}
return {
eventList: eventList
};
},
/**
* Timer Identifier.
*
* | Byte | Description | Length |
* | 1 | Timer Identifier Tag | 1 |
* | 2 | Length = 01 | 1 |
* | 3 | Timer Identifier | 1 |
*/
retrieveTimerId: function retrieveTimerId(length) {
let id = {
timerId: GsmPDUHelper.readHexOctet()
};
return id;
},
/**
* Timer Value.
*
* | Byte | Description | Length |
* | 1 | Timer Value Tag | 1 |
* | 2 | Length = 03 | 1 |
* | 3 | Hour | 1 |
* | 4 | Minute | 1 |
* | 5 | Second | 1 |
*/
retrieveTimerValue: function retrieveTimerValue(length) {
let value = {
timerValue: (GsmPDUHelper.readSwappedNibbleBcdNum(1) * 60 * 60) +
(GsmPDUHelper.readSwappedNibbleBcdNum(1) * 60) +
(GsmPDUHelper.readSwappedNibbleBcdNum(1))
};
return value;
},
/**
* Immediate Response.
*
* | Byte | Description | Length |
* | 1 | Immediate Response Tag | 1 |
* | 2 | Length = 00 | 1 |
*/
retrieveImmediaResponse: function retrieveImmediaResponse(length) {
return {};
},
/**
* URL
*
* | Byte | Description | Length |
* | 1 | URL Tag | 1 |
* | 2 ~ (Y+1) | Length(X) | Y |
* | (Y+2) ~ | URL | X |
* | (Y+1+X) | | |
*/
retrieveUrl: function retrieveUrl(length) {
let s = "";
for (let i = 0; i < length; i++) {
s += String.fromCharCode(GsmPDUHelper.readHexOctet());
}
return {url: s};
},
searchForTag: function searchForTag(tag, ctlvs) {
for (let i = 0; i < ctlvs.length; i++) {
let ctlv = ctlvs[i];
if ((ctlv.tag & ~COMPREHENSIONTLV_FLAG_CR) == tag) {
return ctlv;
}
}
return null;
},
};
let ComprehensionTlvHelper = {
/**
* Decode raw data to a Comprehension-TLV.
*/
decode: function decode() {
let hlen = 0; // For header(tag field + length field) length.
let temp = GsmPDUHelper.readHexOctet();
hlen++;
// TS 101.220, clause 7.1.1
let tag, tagValue, cr;
switch (temp) {
// TS 101.220, clause 7.1.1
case 0x0: // Not used.
case 0xff: // Not used.
case 0x80: // Reserved for future use.
RIL.sendStkTerminalResponse({
resultCode: STK_RESULT_CMD_DATA_NOT_UNDERSTOOD});
throw new Error("Invalid octet when parsing Comprehension TLV :" + temp);
break;
case 0x7f: // Tag is three byte format.
// TS 101.220 clause 7.1.1.2.
// | Byte 1 | Byte 2 | Byte 3 |
// | | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | |
// | 0x7f |CR | Tag Value |
tag = (GsmPDUHelper.readHexOctet() << 8) | GsmPDUHelper.readHexOctet();
hlen += 2;
cr = (tag & 0x8000) != 0;
tag &= ~0x8000;
break;
default: // Tag is single byte format.
tag = temp;
// TS 101.220 clause 7.1.1.1.
// | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
// |CR | Tag Value |
cr = (tag & 0x80) != 0;
tag &= ~0x80;
}
// TS 101.220 clause 7.1.2, Length Encoding.
// Length | Byte 1 | Byte 2 | Byte 3 | Byte 4 |
// 0 - 127 | 00 - 7f | N/A | N/A | N/A |
// 128-255 | 81 | 80 - ff| N/A | N/A |
// 256-65535| 82 | 0100 - ffff | N/A |
// 65536- | 83 | 010000 - ffffff |
// 16777215
//
// Length errors: TS 11.14, clause 6.10.6
let length; // Data length.
temp = GsmPDUHelper.readHexOctet();
hlen++;
if (temp < 0x80) {
length = temp;
} else if (temp == 0x81) {
length = GsmPDUHelper.readHexOctet();
hlen++;
if (length < 0x80) {
RIL.sendStkTerminalResponse({
resultCode: STK_RESULT_CMD_DATA_NOT_UNDERSTOOD});
throw new Error("Invalid length in Comprehension TLV :" + length);
}
} else if (temp == 0x82) {
length = (GsmPDUHelper.readHexOctet() << 8) | GsmPDUHelper.readHexOctet();
hlen += 2;
if (lenth < 0x0100) {
RIL.sendStkTerminalResponse({
resultCode: STK_RESULT_CMD_DATA_NOT_UNDERSTOOD});
throw new Error("Invalid length in 3-byte Comprehension TLV :" + length);
}
} else if (temp == 0x83) {
length = (GsmPDUHelper.readHexOctet() << 16) |
(GsmPDUHelper.readHexOctet() << 8) |
GsmPDUHelper.readHexOctet();
hlen += 3;
if (length < 0x010000) {
RIL.sendStkTerminalResponse({
resultCode: STK_RESULT_CMD_DATA_NOT_UNDERSTOOD});
throw new Error("Invalid length in 4-byte Comprehension TLV :" + length);
}
} else {
RIL.sendStkTerminalResponse({
resultCode: STK_RESULT_CMD_DATA_NOT_UNDERSTOOD});
throw new Error("Invalid octet in Comprehension TLV :" + length);
}
let ctlv = {
tag: tag,
length: length,
value: StkProactiveCmdHelper.retrieve(tag, length),
cr: cr,
hlen: hlen
};
return ctlv;
},
decodeChunks: function decodeChunks(length) {
let chunks = [];
let index = 0;
while (index < length) {
let tlv = this.decode();
chunks.push(tlv);
index += tlv.length;
index += tlv.hlen;
}
return chunks;
},
/**
* Write Location Info Comprehension TLV.
*
* @param loc location Information.
*/
writeLocationInfoTlv: function writeLocationInfoTlv(loc) {
GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_LOCATION_INFO |
COMPREHENSIONTLV_FLAG_CR);
GsmPDUHelper.writeHexOctet(loc.gsmCellId > 0xffff ? 9 : 7);
// From TS 11.14, clause 12.19
// "The mobile country code (MCC), the mobile network code (MNC),
// the location area code (LAC) and the cell ID are
// coded as in TS 04.08."
// And from TS 04.08 and TS 24.008,
// the format is as follows:
//
// MCC = MCC_digit_1 + MCC_digit_2 + MCC_digit_3
//
// 8 7 6 5 4 3 2 1
// +-------------+-------------+
// | MCC digit 2 | MCC digit 1 | octet 2
// | MNC digit 3 | MCC digit 3 | octet 3
// | MNC digit 2 | MNC digit 1 | octet 4
// +-------------+-------------+
//
// Also in TS 24.008
// "However a network operator may decide to
// use only two digits in the MNC in the LAI over the
// radio interface. In this case, bits 5 to 8 of octet 3
// shall be coded as '1111'".
// MCC & MNC, 3 octets
let mcc = loc.mcc.toString();
let mnc = loc.mnc.toString();
if (mnc.length == 1) {
mnc = "F0" + mnc;
} else if (mnc.length == 2) {
mnc = "F" + mnc;
} else {
mnc = mnc[2] + mnc[0] + mnc[1];
}
GsmPDUHelper.writeSwappedNibbleBCD(mcc + mnc);
// LAC, 2 octets
GsmPDUHelper.writeHexOctet((loc.gsmLocationAreaCode >> 8) & 0xff);
GsmPDUHelper.writeHexOctet(loc.gsmLocationAreaCode & 0xff);
// Cell Id
if (loc.gsmCellId > 0xffff) {
// UMTS/WCDMA, gsmCellId is 28 bits.
GsmPDUHelper.writeHexOctet((loc.gsmCellId >> 24) & 0xff);
GsmPDUHelper.writeHexOctet((loc.gsmCellId >> 16) & 0xff);
GsmPDUHelper.writeHexOctet((loc.gsmCellId >> 8) & 0xff);
GsmPDUHelper.writeHexOctet(loc.gsmCellId & 0xff);
} else {
// GSM, gsmCellId is 16 bits.
GsmPDUHelper.writeHexOctet((loc.gsmCellId >> 8) & 0xff);
GsmPDUHelper.writeHexOctet(loc.gsmCellId & 0xff);
}
},
/**
* Given a geckoError string, this function translates it into cause value
* and write the value into buffer.
*
* @param geckoError Error string that is passed to gecko.
*/
writeCauseTlv: function writeCauseTlv(geckoError) {
let cause = -1;
for (let errorNo in RIL_ERROR_TO_GECKO_ERROR) {
if (geckoError == RIL_ERROR_TO_GECKO_ERROR[errorNo]) {
cause = errorNo;
break;
}
}
cause = (cause == -1) ? ERROR_SUCCESS : cause;
GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_CAUSE |
COMPREHENSIONTLV_FLAG_CR);
GsmPDUHelper.writeHexOctet(2); // For single cause value.
// TS 04.08, clause 10.5.4.11: National standard code + user location.
GsmPDUHelper.writeHexOctet(0x60);
// TS 04.08, clause 10.5.4.11: ext bit = 1 + 7 bits for cause.
// +-----------------+----------------------------------+
// | Ext = 1 (1 bit) | Cause (7 bits) |
// +-----------------+----------------------------------+
GsmPDUHelper.writeHexOctet(0x80 | cause);
},
writeDateTimeZoneTlv: function writeDataTimeZoneTlv(date) {
GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_DATE_TIME_ZONE);
GsmPDUHelper.writeHexOctet(7);
GsmPDUHelper.writeTimestamp(date);
},
writeLanguageTlv: function writeLanguageTlv(language) {
GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_LANGUAGE);
GsmPDUHelper.writeHexOctet(2);
// ISO 639-1, Alpha-2 code
// TS 123.038, clause 6.2.1, GSM 7 bit Default Alphabet
GsmPDUHelper.writeHexOctet(
PDU_NL_LOCKING_SHIFT_TABLES[PDU_NL_IDENTIFIER_DEFAULT].indexOf(language[0]));
GsmPDUHelper.writeHexOctet(
PDU_NL_LOCKING_SHIFT_TABLES[PDU_NL_IDENTIFIER_DEFAULT].indexOf(language[1]));
},
/**
* Write Timer Value Comprehension TLV.
*
* @param seconds length of time during of the timer.
* @param cr Comprehension Required or not
*/
writeTimerValueTlv: function writeTimerValueTlv(seconds, cr) {
GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_TIMER_VALUE |
(cr ? COMPREHENSIONTLV_FLAG_CR : 0));
GsmPDUHelper.writeHexOctet(3);
// TS 102.223, clause 8.38
// +----------------+------------------+-------------------+
// | hours (1 byte) | minutes (1 btye) | secounds (1 byte) |
// +----------------+------------------+-------------------+
GsmPDUHelper.writeSwappedNibbleBCDNum(Math.floor(seconds / 60 / 60));
GsmPDUHelper.writeSwappedNibbleBCDNum(Math.floor(seconds / 60) % 60);
GsmPDUHelper.writeSwappedNibbleBCDNum(seconds % 60);
},
getSizeOfLengthOctets: function getSizeOfLengthOctets(length) {
if (length >= 0x10000) {
return 4; // 0x83, len_1, len_2, len_3
} else if (length >= 0x100) {
return 3; // 0x82, len_1, len_2
} else if (length >= 0x80) {
return 2; // 0x81, len
} else {
return 1; // len
}
},
writeLength: function writeLength(length) {
// TS 101.220 clause 7.1.2, Length Encoding.
// Length | Byte 1 | Byte 2 | Byte 3 | Byte 4 |
// 0 - 127 | 00 - 7f | N/A | N/A | N/A |
// 128-255 | 81 | 80 - ff| N/A | N/A |
// 256-65535| 82 | 0100 - ffff | N/A |
// 65536- | 83 | 010000 - ffffff |
// 16777215
if (length < 0x80) {
GsmPDUHelper.writeHexOctet(length);
} else if (0x80 <= length && length < 0x100) {
GsmPDUHelper.writeHexOctet(0x81);
GsmPDUHelper.writeHexOctet(length);
} else if (0x100 <= length && length < 0x10000) {
GsmPDUHelper.writeHexOctet(0x82);
GsmPDUHelper.writeHexOctet((length >> 8) & 0xff);
GsmPDUHelper.writeHexOctet(length & 0xff);
} else if (0x10000 <= length && length < 0x1000000) {
GsmPDUHelper.writeHexOctet(0x83);
GsmPDUHelper.writeHexOctet((length >> 16) & 0xff);
GsmPDUHelper.writeHexOctet((length >> 8) & 0xff);
GsmPDUHelper.writeHexOctet(length & 0xff);
} else {
throw new Error("Invalid length value :" + length);
}
},
};
let BerTlvHelper = {
/**
* Decode Ber TLV.
*
* @param dataLen
* The length of data in bytes.
*/
decode: function decode(dataLen) {
// See TS 11.14, Annex D for BerTlv.
let hlen = 0;
let tag = GsmPDUHelper.readHexOctet();
hlen++;
// Length | Byte 1 | Byte 2
// 0 - 127 | length ('00' to '7f') | N/A
// 128 - 255 | '81' | length ('80' to 'ff')
let length;
if (tag == BER_PROACTIVE_COMMAND_TAG) {
let temp = GsmPDUHelper.readHexOctet();
hlen++;
if (temp < 0x80) {
length = temp;
} else if(temp == 0x81) {
length = GsmPDUHelper.readHexOctet();
if (length < 0x80) {
RIL.sendStkTerminalResponse({
resultCode: STK_RESULT_CMD_DATA_NOT_UNDERSTOOD});
throw new Error("Invalid length " + length);
}
} else {
RIL.sendStkTerminalResponse({
resultCode: STK_RESULT_CMD_DATA_NOT_UNDERSTOOD});
throw new Error("Invalid length octet " + temp);
}
} else {
RIL.sendStkTerminalResponse({
resultCode: STK_RESULT_CMD_DATA_NOT_UNDERSTOOD});
throw new Error("Unknown BER tag");
}
// If the value length of the BerTlv is larger than remaining value on Parcel.
if (dataLen - hlen < length) {
RIL.sendStkTerminalResponse({
resultCode: STK_RESULT_CMD_DATA_NOT_UNDERSTOOD});
throw new Error("BerTlvHelper value length too long!!");
return;
}
let ctlvs = ComprehensionTlvHelper.decodeChunks(length);
let berTlv = {
tag: tag,
length: length,
value: ctlvs
};
return berTlv;
}
};
/**
* ICC Helper for getting EF path.
*/
let ICCFileHelper = {
/**
* This function handles only EFs that are common to RUIM, SIM, USIM
* and other types of ICC cards.
*/
getCommonEFPath: function getCommonEFPath(fileId) {
switch (fileId) {
case ICC_EF_ICCID:
return EF_PATH_MF_SIM;
case ICC_EF_ADN:
return EF_PATH_MF_SIM + EF_PATH_DF_TELECOM;
case ICC_EF_PBR:
return EF_PATH_MF_SIM + EF_PATH_DF_TELECOM + EF_PATH_DF_PHONEBOOK;
}
return null;
},
/**
* This function handles EFs for SIM.
*/
getSimEFPath: function getSimEFPath(fileId) {
switch (fileId) {
case ICC_EF_FDN:
case ICC_EF_MSISDN:
return EF_PATH_MF_SIM + EF_PATH_DF_TELECOM;
case ICC_EF_AD:
case ICC_EF_MBDN:
case ICC_EF_PLMNsel:
case ICC_EF_SPN:
case ICC_EF_SPDI:
case ICC_EF_SST:
case ICC_EF_PHASE:
case ICC_EF_CBMI:
case ICC_EF_CBMIR:
case ICC_EF_OPL:
case ICC_EF_PNN:
return EF_PATH_MF_SIM + EF_PATH_DF_GSM;
default:
return null
}
},
/**
* This function handles EFs for USIM.
*/
getUSimEFPath: function getUSimEFPath(fileId) {
switch (fileId) {
case ICC_EF_AD:
case ICC_EF_FDN:
case ICC_EF_MBDN:
case ICC_EF_UST:
case ICC_EF_MSISDN:
case ICC_EF_SPN:
case ICC_EF_SPDI:
case ICC_EF_CBMI:
case ICC_EF_CBMIR:
case ICC_EF_OPL:
case ICC_EF_PNN:
return EF_PATH_MF_SIM + EF_PATH_ADF_USIM;
default:
// The file ids in USIM phone book entries are decided by the
// card manufacturer. So if we don't match any of the cases
// above and if its a USIM return the phone book path.
return EF_PATH_MF_SIM + EF_PATH_DF_TELECOM + EF_PATH_DF_PHONEBOOK;
}
},
/**
* Helper function for getting the pathId for the specific ICC record
* depeding on which type of ICC card we are using.
*
* @param fileId
* File id.
* @return The pathId or null in case of an error or invalid input.
*/
getEFPath: function getEFPath(fileId) {
// TODO: Bug 726098, change to use cdmaSubscriptionAppIndex when in CDMA.
let index = RIL.iccStatus.gsmUmtsSubscriptionAppIndex;
if (index == -1) {
return null;
}
let app = RIL.iccStatus.apps[index];
if (!app) {
return null;
}
let path = this.getCommonEFPath(fileId);
if (path) {
return path;
}
switch (app.app_type) {
case CARD_APPTYPE_SIM:
return this.getSimEFPath(fileId);
case CARD_APPTYPE_USIM:
return this.getUSimEFPath(fileId);
default:
return null;
}
},
};
/**
* Helper for ICC IO functionalities.
*/
let ICCIOHelper = {
/**
* Load EF with type 'Linear Fixed'.
*
* @param fileId
* The file to operate on, one of the ICC_EF_* constants.
* @param recordNumber [optional]
* The number of the record shall be loaded.
* @param callback [optional]
* The callback function shall be called when the record(s) is read.
* @param this [optional]
* The 'this' object when the callback is called.
* @param onerror [optional]
* The callback function shall be called when failure.
*/
loadLinearFixedEF: function loadLinearFixedEF(options) {
options.type = EF_TYPE_LINEAR_FIXED;
let cb = options.callback;
options.callback = function callback(options) {
options.callback = cb;
options.command = ICC_COMMAND_READ_RECORD;
options.p1 = options.recordNumber || 1; // Record number
options.p2 = READ_RECORD_ABSOLUTE_MODE;
options.p3 = options.recordSize;
RIL.iccIO(options);
}.bind(this);
this.getResponse(options);
},
/**
* Load next record from current record Id.
*/
loadNextRecord: function loadNextRecord(options) {
options.p1++;
RIL.iccIO(options);
},
/**
* Load EF with type 'Transparent'.
*
* @param fileId
* The file to operate on, one of the ICC_EF_* constants.
* @param callback [optional]
* The callback function shall be called when the record(s) is read.
* @param onerror [optional]
* The callback function shall be called when failure.
*/
loadTransparentEF: function loadTransparentEF(options) {
options.type = EF_TYPE_TRANSPARENT;
let cb = options.callback;
options.callback = function callback(options) {
options.callback = cb;
options.command = ICC_COMMAND_READ_BINARY;
options.p3 = options.fileSize;
RIL.iccIO(options);
}.bind(this);
this.getResponse(options);
},
/**
* Use ICC_COMMAND_GET_RESPONSE to query the EF.
*
* @param fileId
* The file to operate on, one of the ICC_EF_* constants.
*/
getResponse: function getResponse(options) {
options.command = ICC_COMMAND_GET_RESPONSE;
options.pathId = ICCFileHelper.getEFPath(options.fileId);
if (!options.pathId) {
throw new Error("Unknown pathId for " + options.fileId.toString(16));
}
options.p1 = 0; // For GET_RESPONSE, p1 = 0
options.p2 = 0; // For GET_RESPONSE, p2 = 0
options.p3 = GET_RESPONSE_EF_SIZE_BYTES;
RIL.iccIO(options);
},
/**
* Process ICC I/O response.
*/
processICCIO: function processICCIO(options) {
let func = this[options.command];
func.call(this, options);
},
/**
* Process a ICC_COMMAND_GET_RESPONSE type command for REQUEST_SIM_IO.
*/
processICCIOGetResponse: function processICCIOGetResponse(options) {
let length = Buf.readUint32();
// The format is from TS 51.011, clause 9.2.1
// Skip RFU, data[0] data[1]
Buf.seekIncoming(2 * PDU_HEX_OCTET_SIZE);
// File size, data[2], data[3]
options.fileSize = (GsmPDUHelper.readHexOctet() << 8) |
GsmPDUHelper.readHexOctet();
// 2 bytes File id. data[4], data[5]
let fileId = (GsmPDUHelper.readHexOctet() << 8) |
GsmPDUHelper.readHexOctet();
if (fileId != options.fileId) {
throw new Error("Expected file ID " + options.fileId.toString(16) +
" but read " + fileId.toString(16));
}
// Type of file, data[6]
let fileType = GsmPDUHelper.readHexOctet();
if (fileType != TYPE_EF) {
throw new Error("Unexpected file type " + fileType);
}
// Skip 1 byte RFU, data[7],
// 3 bytes Access conditions, data[8] data[9] data[10],
// 1 byte File status, data[11],
// 1 byte Length of the following data, data[12].
Buf.seekIncoming(((RESPONSE_DATA_STRUCTURE - RESPONSE_DATA_FILE_TYPE - 1) *
PDU_HEX_OCTET_SIZE));
// Read Structure of EF, data[13]
let efType = GsmPDUHelper.readHexOctet();
if (efType != options.type) {
throw new Error("Expected EF type " + options.type + " but read " + efType);
}
// Length of a record, data[14].
// Only available for LINEAR_FIXED and CYCLIC.
if (efType == EF_TYPE_LINEAR_FIXED || efType == EF_TYPE_CYCLIC) {
options.recordSize = GsmPDUHelper.readHexOctet();
options.totalRecords = options.fileSize / options.recordSize;
} else {
Buf.seekIncoming(1 * PDU_HEX_OCTET_SIZE);
}
Buf.readStringDelimiter(length);
if (options.callback) {
options.callback(options);
}
},
/**
* Process a ICC_COMMAND_READ_RECORD type command for REQUEST_SIM_IO.
*/
processICCIOReadRecord: function processICCIOReadRecord(options) {
if (options.callback) {
options.callback(options);
}
},
/**
* Process a ICC_COMMAND_READ_BINARY type command for REQUEST_SIM_IO.
*/
processICCIOReadBinary: function processICCIOReadBinary(options) {
if (options.callback) {
options.callback(options);
}
},
};
ICCIOHelper[ICC_COMMAND_SEEK] = null;
ICCIOHelper[ICC_COMMAND_READ_BINARY] = function ICC_COMMAND_READ_BINARY(options) {
this.processICCIOReadBinary(options);
};
ICCIOHelper[ICC_COMMAND_READ_RECORD] = function ICC_COMMAND_READ_RECORD(options) {
this.processICCIOReadRecord(options);
};
ICCIOHelper[ICC_COMMAND_GET_RESPONSE] = function ICC_COMMAND_GET_RESPONSE(options) {
this.processICCIOGetResponse(options);
};
ICCIOHelper[ICC_COMMAND_UPDATE_BINARY] = null;
ICCIOHelper[ICC_COMMAND_UPDATE_RECORD] = null;
/**
* Helper for ICC records.
*/
let ICCRecordHelper = {
/**
* Fetch ICC records.
*/
fetchICCRecords: function fetchICCRecords() {
this.getICCID();
RIL.getIMSI();
this.getMSISDN();
this.getAD();
this.getSST();
this.getMBDN();
},
/**
* Get EF_phase.
* This EF is only available in SIM.
*/
getICCPhase: function getICCPhase() {
function callback() {
let length = Buf.readUint32();
let phase = GsmPDUHelper.readHexOctet();
// If EF_phase is coded '03' or greater, an ME supporting STK shall
// perform the PROFILE DOWNLOAD procedure.
if (phase >= ICC_PHASE_2_PROFILE_DOWNLOAD_REQUIRED) {
RIL.sendStkTerminalProfile(STK_SUPPORTED_TERMINAL_PROFILE);
}
Buf.readStringDelimiter(length);
}
ICCIOHelper.loadTransparentEF({fileId: ICC_EF_PHASE,
callback: callback.bind(this)});
},
/**
* Read the ICCID.
*/
getICCID: function getICCID() {
function callback() {
let length = Buf.readUint32();
RIL.iccInfo.iccid = GsmPDUHelper.readSwappedNibbleBcdString(length / 2);
Buf.readStringDelimiter(length);
if (DEBUG) debug("ICCID: " + RIL.iccInfo.iccid);
if (RIL.iccInfo.iccid) {
ICCUtilsHelper.handleICCInfoChange();
}
}
ICCIOHelper.loadTransparentEF({fileId: ICC_EF_ICCID,
callback: callback.bind(this)});
},
/**
* Read the MSISDN from the ICC.
*/
getMSISDN: function getMSISDN() {
function callback(options) {
let contact = GsmPDUHelper.readAlphaIdDiallingNumber(options.recordSize);
if (!contact || RIL.iccInfo.msisdn === contact.number) {
return;
}
RIL.iccInfo.msisdn = contact.number;
if (DEBUG) debug("MSISDN: " + RIL.iccInfo.msisdn);
ICCUtilsHelper.handleICCInfoChange();
}
ICCIOHelper.loadLinearFixedEF({fileId: ICC_EF_MSISDN,
callback: callback.bind(this)});
},
/**
* Read the AD (Administrative Data) from the ICC.
*/
getAD: function getAD() {
function callback() {
let length = Buf.readUint32();
// Each octet is encoded into two chars.
let len = length / 2;
RIL.iccInfo.ad = GsmPDUHelper.readHexOctetArray(len);
Buf.readStringDelimiter(length);
if (DEBUG) {
let str = "";
for (let i = 0; i < RIL.iccInfo.ad.length; i++) {
str += RIL.iccInfo.ad[i] + ", ";
}
debug("AD: " + str);
}
if (RIL.iccInfo.imsi) {
// MCC is the first 3 digits of IMSI.
RIL.iccInfo.mcc = parseInt(RIL.iccInfo.imsi.substr(0,3));
// The 4th byte of the response is the length of MNC.
RIL.iccInfo.mnc = parseInt(RIL.iccInfo.imsi.substr(3, RIL.iccInfo.ad[3]));
if (DEBUG) debug("MCC: " + RIL.iccInfo.mcc + " MNC: " + RIL.iccInfo.mnc);
ICCUtilsHelper.handleICCInfoChange();
}
}
ICCIOHelper.loadTransparentEF({fileId: ICC_EF_AD,
callback: callback.bind(this)});
},
/**
* Read the SPN (Service Provider Name) from the ICC.
*/
getSPN: function getSPN() {
function callback() {
let length = Buf.readUint32();
// Each octet is encoded into two chars.
// Minus 1 because the first octet is used to store display condition.
let len = (length / 2) - 1;
let spnDisplayCondition = GsmPDUHelper.readHexOctet();
let spn = GsmPDUHelper.readAlphaIdentifier(len);
Buf.readStringDelimiter(length);
if (DEBUG) {
debug("SPN: spn = " + spn +
", spnDisplayCondition = " + spnDisplayCondition);
}
RIL.iccInfoPrivate.SPN = {
spn : spn,
spnDisplayCondition : spnDisplayCondition,
};
RIL.iccInfo.spn = spn;
ICCUtilsHelper.updateDisplayCondition();
ICCUtilsHelper.handleICCInfoChange();
}
ICCIOHelper.loadTransparentEF({fileId: ICC_EF_SPN,
callback: callback.bind(this)});
},
/**
* Read the (U)SIM Service Table from the ICC.
*/
getSST: function getSST() {
function callback() {
let length = Buf.readUint32();
// Each octet is encoded into two chars.
let len = length / 2;
RIL.iccInfo.sst = GsmPDUHelper.readHexOctetArray(len);
Buf.readStringDelimiter(length);
if (DEBUG) {
let str = "";
for (let i = 0; i < RIL.iccInfo.sst.length; i++) {
str += RIL.iccInfo.sst[i] + ", ";
}
debug("SST: " + str);
}
// Fetch SPN and PLMN list, if some of them are available.
if (ICCUtilsHelper.isICCServiceAvailable("SPN")) {
if (DEBUG) debug("SPN: SPN is available");
this.getSPN();
} else {
if (DEBUG) debug("SPN: SPN service is not available");
}
if (ICCUtilsHelper.isICCServiceAvailable("SPDI")) {
if (DEBUG) debug("SPDI: SPDI available.");
this.getSPDI();
} else {
if (DEBUG) debug("SPDI: SPDI service is not available");
}
if (ICCUtilsHelper.isICCServiceAvailable("PNN")) {
if (DEBUG) debug("PNN: PNN is available");
this.getPNN();
} else {
if (DEBUG) debug("PNN: PNN is not available");
}
if (ICCUtilsHelper.isICCServiceAvailable("OPL")) {
if (DEBUG) debug("OPL: OPL is available");
this.getOPL();
} else {
if (DEBUG) debug("OPL: OPL is not available");
}
if (ICCUtilsHelper.isICCServiceAvailable("CBMI")) {
this.getCBMI();
} else {
RIL.cellBroadcastConfigs.CBMI = null;
}
if (ICCUtilsHelper.isICCServiceAvailable("CBMIR")) {
this.getCBMIR();
} else {
RIL.cellBroadcastConfigs.CBMIR = null;
}
RIL._mergeAllCellBroadcastConfigs();
}
// ICC_EF_UST has the same value with ICC_EF_SST.
ICCIOHelper.loadTransparentEF({fileId: ICC_EF_SST,
callback: callback.bind(this)});
},
/**
* Get ICC FDN.
*
* @param requestId
* Request id from RadioInterfaceLayer.
*/
getFDN: function getFDN(options) {
function callback(options) {
let contact = GsmPDUHelper.readAlphaIdDiallingNumber(options.recordSize);
if (contact) {
RIL.iccInfo.fdn.push(contact);
}
if (options.p1 < options.totalRecords) {
ICCIOHelper.loadNextRecord(options);
} else {
if (DEBUG) {
for (let i = 0; i < RIL.iccInfo.fdn.length; i++) {
debug("FDN[" + i + "] alphaId = " + RIL.iccInfo.fdn[i].alphaId +
" number = " + RIL.iccInfo.fdn[i].number);
}
}
// To prevent DataCloneError when sending parcels, we need to delete
// those properties which are not 'Structured Clone Data', in this case,
// those callback functions.
delete options.callback;
delete options.onerror;
options.rilMessageType = "icccontacts";
options.contacts = RIL.iccInfo.fdn;
RIL.sendDOMMessage(options);
}
}
RIL.iccInfo.fdn = [];
options.fileId = ICC_EF_FDN;
options.callback = callback.bind(this);
ICCIOHelper.loadLinearFixedEF(options);
},
/**
* Get ICC ADN.
*
* @param fileId
* EF id of the ADN.
* @param requestId
* Request id from RadioInterfaceLayer.
*/
getADN: function getADN(options) {
function callback(options) {
let contact = GsmPDUHelper.readAlphaIdDiallingNumber(options.recordSize);
if (contact) {
RIL.iccInfo.adn.push(contact);
}
if (options.p1 < options.totalRecords) {
ICCIOHelper.loadNextRecord(options);
} else {
if (DEBUG) {
for (let i = 0; i < RIL.iccInfo.adn.length; i++) {
debug("ADN[" + i + "] " + JSON.stringify(RIL.iccInfo.adn[i]));
}
}
// To prevent DataCloneError when sending parcels, we need to delete
// those properties which are not 'Structured Clone Data', in this case,
// those callback functions.
delete options.callback;
delete options.onerror;
options.rilMessageType = "icccontacts";
options.contacts = RIL.iccInfo.adn;
RIL.sendDOMMessage(options);
}
}
function error(options) {
delete options.callback;
delete options.onerror;
options.rilMessageType = "icccontacts";
RIL.sendDOMMessage(options);
}
RIL.iccInfo.adn = [];
options.callback = callback.bind(this);
options.onerror = error.bind(this);
ICCIOHelper.loadLinearFixedEF(options);
},
/**
* Get ICC MBDN. (Mailbox Dialling Number)
*
* @see TS 131.102, clause 4.2.60
*/
getMBDN: function getMBDN() {
function callback(options) {
let contact = GsmPDUHelper.readAlphaIdDiallingNumber(options.recordSize);
if (!contact || RIL.iccInfo.mbdn === contact.number){
return;
}
RIL.iccInfo.mbdn = contact.number;
if (DEBUG) {
debug("MBDN, alphaId="+contact.alphaId+" number="+contact.number);
}
contact.rilMessageType = "iccmbdn";
RIL.sendDOMMessage(contact);
}
ICCIOHelper.loadLinearFixedEF({fileId: ICC_EF_MBDN,
callback: callback.bind(this)});
},
/**
* Get USIM Phonebook.
*
* @param requestId
* Request id from RadioInterfaceLayer.
*/
getPBR: function getPBR(options) {
function callback(options) {
let bufLen = Buf.readUint32();
let tag = GsmPDUHelper.readHexOctet();
let length = GsmPDUHelper.readHexOctet();
let value = ICCUtilsHelper.decodeSimTlvs(length);
let adn = ICCUtilsHelper.searchForIccUsimTag(value, ICC_USIM_EFADN_TAG);
options.fileId = (adn.value[0] << 8) | adn.value[1];
Buf.readStringDelimiter(bufLen);
this.getADN(options);
}
function error(options) {
delete options.callback;
delete options.onerror;
options.rilMessageType = "icccontacts";
RIL.sendDOMMessage(options);
}
options.fileId = ICC_EF_PBR;
options.callback = callback.bind(this);
options.onerror = error.bind(this);
ICCIOHelper.loadLinearFixedEF(options);
},
/**
* Read the PLMNsel (Public Land Mobile Network) from the ICC.
*
* See ETSI TS 100.977 section 10.3.4 EF_PLMNsel
*/
getPLMNSelector: function getPLMNSelector() {
function callback() {
if (DEBUG) debug("PLMN Selector: Process PLMN Selector");
let length = Buf.readUint32();
RIL.iccInfoPrivate.PLMN = this.readPLMNEntries(length/3);
Buf.readStringDelimiter(length);
if (DEBUG) debug("PLMN Selector: " + JSON.stringify(RIL.iccInfoPrivate.PLMN));
if (RIL.updateDisplayCondition()) {
this.handleICCInfoChange();
}
}
// PLMN List is Service 7 in SIM, EF_PLMNsel
ICCIOHelper.loadTransparentEF({fileId: ICC_EF_PLMNsel,
callback: callback.bind(this)});
},
/**
* Read the SPDI (Service Provider Display Information) from the ICC.
*
* See TS 131.102 section 4.2.66 for USIM and TS 51.011 section 10.3.50
* for SIM.
*/
getSPDI: function getSPDI() {
function callback() {
let length = Buf.readUint32();
let readLen = 0;
let endLoop = false;
RIL.iccInfoPrivate.SPDI = null;
while ((readLen < length / 2) && !endLoop) {
let tlvTag = GsmPDUHelper.readHexOctet();
let tlvLen = GsmPDUHelper.readHexOctet();
readLen += 2; // For tag and length fields.
switch (tlvTag) {
case SPDI_TAG_SPDI:
// The value part itself is a TLV.
continue;
case SPDI_TAG_PLMN_LIST:
// This PLMN list is what we want.
RIL.iccInfoPrivate.SPDI = this.readPLMNEntries(tlvLen / 3);
readLen += tlvLen;
endLoop = true;
break;
default:
// We don't care about its content if its tag is not SPDI nor
// PLMN_LIST.
endLoop = true;
break;
}
}
// Consume unread octets.
Buf.seekIncoming((length / 2 - readLen) * PDU_HEX_OCTET_SIZE);
Buf.readStringDelimiter(length);
if (DEBUG) debug("SPDI: " + JSON.stringify(RIL.iccInfoPrivate.SPDI));
if (ICCUtilsHelper.updateDisplayCondition()) {
ICCUtilsHelper.handleICCInfoChange();
}
}
// PLMN List is Servive 51 in USIM, EF_SPDI
ICCIOHelper.loadTransparentEF({fileId: ICC_EF_SPDI,
callback: callback.bind(this)});
},
/**
* Read EFcbmi (Cell Broadcast Message Identifier selection)
*
* @see 3GPP TS 31.102 v110.02.0 section 4.2.14 EFcbmi
*/
getCBMI: function getCBMI() {
function callback() {
let strLength = Buf.readUint32();
// Each Message Identifier takes two octets and each octet is encoded
// into two chars.
let numIds = strLength / 4, list = null;
if (numIds) {
list = [];
for (let i = 0, id; i < numIds; i++) {
id = GsmPDUHelper.readHexOctet() << 8 | GsmPDUHelper.readHexOctet();
// `Unused entries shall be set to 'FF FF'.`
if (id != 0xFFFF) {
list.push(id);
list.push(id + 1);
}
}
}
if (DEBUG) {
debug("CBMI: " + JSON.stringify(list));
}
Buf.readStringDelimiter(strLength);
RIL.cellBroadcastConfigs.CBMI = list;
RIL._mergeAllCellBroadcastConfigs();
}
function onerror() {
RIL.cellBroadcastConfigs.CBMI = null;
RIL._mergeAllCellBroadcastConfigs();
}
ICCIOHelper.loadTransparentEF({fileId: ICC_EF_CBMI,
callback: callback.bind(this),
onerror: onerror.bind(this)});
},
/**
* Read EFcbmir (Cell Broadcast Message Identifier Range selection)
*
* @see 3GPP TS 31.102 v110.02.0 section 4.2.22 EFcbmir
*/
getCBMIR: function getCBMIR() {
function callback() {
let strLength = Buf.readUint32();
// Each Message Identifier range takes four octets and each octet is
// encoded into two chars.
let numIds = strLength / 8, list = null;
if (numIds) {
list = [];
for (let i = 0, from, to; i < numIds; i++) {
// `Bytes one and two of each range identifier equal the lower value
// of a cell broadcast range, bytes three and four equal the upper
// value of a cell broadcast range.`
from = GsmPDUHelper.readHexOctet() << 8 | GsmPDUHelper.readHexOctet();
to = GsmPDUHelper.readHexOctet() << 8 | GsmPDUHelper.readHexOctet();
// `Unused entries shall be set to 'FF FF'.`
if ((from != 0xFFFF) && (to != 0xFFFF)) {
list.push(from);
list.push(to + 1);
}
}
}
if (DEBUG) {
debug("CBMIR: " + JSON.stringify(list));
}
Buf.readStringDelimiter(strLength);
RIL.cellBroadcastConfigs.CBMIR = list;
RIL._mergeAllCellBroadcastConfigs();
}
function onerror() {
RIL.cellBroadcastConfigs.CBMIR = null;
RIL._mergeAllCellBroadcastConfigs();
}
ICCIOHelper.loadTransparentEF({fileId: ICC_EF_CBMIR,
callback: callback.bind(this),
onerror: onerror.bind(this)});
},
/**
* Read OPL (Operator PLMN List) from USIM.
*
* See 3GPP TS 31.102 Sec. 4.2.59 for USIM
* 3GPP TS 51.011 Sec. 10.3.42 for SIM.
*/
getOPL: function getOPL() {
let opl = [];
function callback(options) {
let len = Buf.readUint32();
// The first 7 bytes are LAI (for UMTS) and the format of LAI is defined
// in 3GPP TS 23.003, Sec 4.1
// +-------------+---------+
// | Octet 1 - 3 | MCC/MNC |
// +-------------+---------+
// | Octet 4 - 7 | LAC |
// +-------------+---------+
let mccMnc = [GsmPDUHelper.readHexOctet(),
GsmPDUHelper.readHexOctet(),
GsmPDUHelper.readHexOctet()];
if (mccMnc[0] != 0xFF || mccMnc[1] != 0xFF || mccMnc[2] != 0xFF) {
let oplElement = {};
let semiOctets = [];
for (let i = 0; i < mccMnc.length; i++) {
semiOctets.push((mccMnc[i] & 0xf0) >> 4);
semiOctets.push(mccMnc[i] & 0x0f);
}
let reformat = [semiOctets[1], semiOctets[0], semiOctets[3],
semiOctets[5], semiOctets[4], semiOctets[2]];
let buf = "";
for (let i = 0; i < reformat.length; i++) {
if (reformat[i] != 0xF) {
buf += GsmPDUHelper.semiOctetToBcdChar(reformat[i]);
}
if (i === 2) {
// 0-2: MCC
oplElement.mcc = parseInt(buf);
buf = "";
} else if (i === 5) {
// 3-5: MNC
oplElement.mnc = parseInt(buf);
}
}
// LAC/TAC
oplElement.lacTacStart =
(GsmPDUHelper.readHexOctet() << 8) | GsmPDUHelper.readHexOctet();
oplElement.lacTacEnd =
(GsmPDUHelper.readHexOctet() << 8) | GsmPDUHelper.readHexOctet();
// PLMN Network Name Record Identifier
oplElement.pnnRecordId = GsmPDUHelper.readHexOctet();
if (DEBUG) {
debug("OPL: [" + (opl.length + 1) + "]: " + JSON.stringify(oplElement));
}
opl.push(oplElement);
} else {
Buf.seekIncoming(5 * PDU_HEX_OCTET_SIZE);
}
Buf.readStringDelimiter(len);
if (options.p1 < options.totalRecords) {
ICCIOHelper.loadNextRecord(options);
} else {
RIL.iccInfoPrivate.OPL = opl;
}
}
ICCIOHelper.loadLinearFixedEF({fileId: ICC_EF_OPL,
callback: callback.bind(this)});
},
/**
* Read PNN (PLMN Network Name) from USIM.
*
* See 3GPP TS 31.102 Sec. 4.2.58 for USIM
* 3GPP TS 51.011 Sec. 10.3.41 for SIM.
*/
getPNN: function getPNN() {
let pnn = [];
function callback(options) {
let pnnElement = {
fullName: "",
shortName: ""
};
let len = Buf.readUint32();
let readLen = 0;
while (len > readLen) {
let tlvTag = GsmPDUHelper.readHexOctet();
readLen = readLen + 2; // 1 Hex octet
if (tlvTag == 0xFF) {
// Unused byte
continue;
}
let tlvLen = GsmPDUHelper.readHexOctet();
let name;
switch (tlvTag) {
case PNN_IEI_FULL_NETWORK_NAME:
pnnElement.fullName = GsmPDUHelper.readNetworkName(tlvLen);
break;
case PNN_IEI_SHORT_NETWORK_NAME:
pnnElement.shortName = GsmPDUHelper.readNetworkName(tlvLen);
break;
default:
Buf.seekIncoming(PDU_HEX_OCTET_SIZE * tlvLen);
}
readLen += (tlvLen * 2 + 2);
}
if (DEBUG) {
debug("PNN: [" + (pnn.length + 1) + "]: " + JSON.stringify(pnnElement));
}
Buf.readStringDelimiter(len);
pnn.push(pnnElement);
if (options.p1 < options.totalRecords) {
ICCIOHelper.loadNextRecord(options);
} else {
RIL.iccInfoPrivate.PNN = pnn;
}
}
ICCIOHelper.loadLinearFixedEF({fileId: ICC_EF_PNN,
callback: callback.bind(this)});
},
/**
* Read the list of PLMN (Public Land Mobile Network) entries
* We cannot directly rely on readSwappedNibbleBcdToString(),
* since it will no correctly handle some corner-cases that are
* not a problem in our case (0xFF 0xFF 0xFF).
*
* @param length The number of PLMN records.
* @return An array of string corresponding to the PLMNs.
*/
readPLMNEntries: function readPLMNEntries(length) {
let plmnList = [];
// Each PLMN entry has 3 bytes.
debug("readPLMNEntries: PLMN entries length = " + length);
let index = 0;
while (index < length) {
// Unused entries will be 0xFFFFFF, according to EF_SPDI
// specs (TS 131 102, section 4.2.66)
try {
let plmn = [GsmPDUHelper.readHexOctet(),
GsmPDUHelper.readHexOctet(),
GsmPDUHelper.readHexOctet()];
if (DEBUG) debug("readPLMNEntries: Reading PLMN entry: [" + index +
"]: '" + plmn + "'");
if (plmn[0] != 0xFF &&
plmn[1] != 0xFF &&
plmn[2] != 0xFF) {
let semiOctets = [];
for (let idx = 0; idx < plmn.length; idx++) {
semiOctets.push((plmn[idx] & 0xF0) >> 4);
semiOctets.push(plmn[idx] & 0x0F);
}
// According to TS 24.301, 9.9.3.12, the semi octets is arranged
// in format:
// Byte 1: MCC[2] | MCC[1]
// Byte 2: MNC[3] | MCC[3]
// Byte 3: MNC[2] | MNC[1]
// Therefore, we need to rearrange them.
let reformat = [semiOctets[1], semiOctets[0], semiOctets[3],
semiOctets[5], semiOctets[4], semiOctets[2]];
let buf = "";
let plmnEntry = {};
for (let i = 0; i < reformat.length; i++) {
if (reformat[i] != 0xF) {
buf += GsmPDUHelper.semiOctetToBcdChar(reformat[i]);
}
if (i === 2) {
// 0-2: MCC
plmnEntry.mcc = parseInt(buf);
buf = "";
} else if (i === 5) {
// 3-5: MNC
plmnEntry.mnc = parseInt(buf);
}
}
if (DEBUG) debug("readPLMNEntries: PLMN = " + plmnEntry.mcc + ", " + plmnEntry.mnc);
plmnList.push(plmnEntry);
}
} catch (e) {
if (DEBUG) debug("readPLMNEntries: PLMN entry " + index + " is invalid.");
break;
}
index ++;
}
return plmnList;
},
};
/**
* Helper functions for ICC utilities.
*/
let ICCUtilsHelper = {
/**
* This will compute the spnDisplay field of the network.
* See TS 22.101 Annex A and TS 51.011 10.3.11 for details.
*
* @return True if some of iccInfo is changed in by this function.
*/
updateDisplayCondition: function updateDisplayCondition() {
// If EFspn isn't existed in SIM or it haven't been read yet, we should
// just set isDisplayNetworkNameRequired = true and
// isDisplaySpnRequired = false
let iccInfo = RIL.iccInfo;
let iccInfoPriv = RIL.iccInfoPrivate;
let iccSpn = iccInfoPriv.SPN;
let origIsDisplayNetworkNameRequired = iccInfo.isDisplayNetworkNameRequired;
let origIsDisplaySPNRequired = iccInfo.isDisplaySpnRequired;
if (!iccSpn) {
iccInfo.isDisplayNetworkNameRequired = true;
iccInfo.isDisplaySpnRequired = false;
} else {
let operatorMnc = RIL.operator.mnc;
let operatorMcc = RIL.operator.mcc;
// First detect if we are on HPLMN or one of the PLMN
// specified by the SIM card.
let isOnMatchingPlmn = false;
// If the current network is the one defined as mcc/mnc
// in SIM card, it's okay.
if (iccInfo.mcc == operatorMcc && iccInfo.mnc == operatorMnc) {
isOnMatchingPlmn = true;
}
// Test to see if operator's mcc/mnc match mcc/mnc of PLMN.
if (!isOnMatchingPlmn && iccInfoPriv.SPDI) {
let iccSpdi = iccInfoPriv.SPDI; // PLMN list
for (let plmn in iccSpdi) {
let plmnMcc = iccSpdi[plmn].mcc;
let plmnMnc = iccSpdi[plmn].mnc;
isOnMatchingPlmn = (plmnMcc == operatorMcc) && (plmnMnc == operatorMnc);
if (isOnMatchingPlmn) {
break;
}
}
}
if (isOnMatchingPlmn) {
// The first bit of display condition tells us if we should display
// registered PLMN.
if (DEBUG) debug("updateDisplayCondition: PLMN is HPLMN or PLMN is in PLMN list");
// TS 31.102 Sec. 4.2.66 and TS 51.011 Sec. 10.3.50
// EF_SPDI contains a list of PLMNs in which the Service Provider Name
// shall be displayed.
iccInfo.isDisplaySpnRequired = true;
if (iccSpn.spnDisplayCondition & 0x01) {
iccInfo.isDisplayNetworkNameRequired = true;
} else {
iccInfo.isDisplayNetworkNameRequired = false;
}
} else {
// The second bit of display condition tells us if we should display
// registered PLMN.
if (DEBUG) debug("updateICCDisplayName: PLMN isn't HPLMN and PLMN isn't in PLMN list");
// We didn't found the requirement of displaying network name if
// current PLMN isn't HPLMN nor one of PLMN in SPDI. So we keep
// isDisplayNetworkNameRequired false.
if (iccSpn.spnDisplayCondition & 0x02) {
iccInfo.isDisplayNetworkNameRequired = false;
iccInfo.isDisplaySpnRequired = false;
} else {
iccInfo.isDisplayNetworkNameRequired = false;
iccInfo.isDisplaySpnRequired = true;
}
}
}
if (DEBUG) {
debug("updateDisplayCondition: isDisplayNetworkNameRequired = " + iccInfo.isDisplayNetworkNameRequired);
debug("updateDisplayCondition: isDisplaySpnRequired = " + iccInfo.isDisplaySpnRequired);
}
return ((origIsDisplayNetworkNameRequired !== iccInfo.isDisplayNetworkNameRequired) ||
(origIsDisplaySPNRequired !== iccInfo.isDisplaySpnRequired));
},
decodeSimTlvs: function decodeSimTlvs(tlvsLen) {
let index = 0;
let tlvs = [];
while (index < tlvsLen) {
let simTlv = {
tag : GsmPDUHelper.readHexOctet(),
length : GsmPDUHelper.readHexOctet(),
};
simTlv.value = GsmPDUHelper.readHexOctetArray(simTlv.length)
tlvs.push(simTlv);
index += simTlv.length + 2 /* The length of 'tag' and 'length' field */;
}
return tlvs;
},
searchForIccUsimTag: function searchForIccUsimTag(tlvs, tag) {
for (let i = 0; i < tlvs.length; i++) {
if (tlvs[i].tag == tag) {
return tlvs[i];
}
}
return null;
},
/**
* Update the ICC information to RadioInterfaceLayer.
*/
handleICCInfoChange: function handleICCInfoChange() {
RIL.iccInfo.rilMessageType = "iccinfochange";
RIL.sendDOMMessage(RIL.iccInfo);
},
/**
* Get whether specificed (U)SIM service is available.
*
* @param geckoService
* Service name like "ADN", "BDN", etc.
*
* @return true if the service is enabled, false otherwise.
*/
isICCServiceAvailable: function isICCServiceAvailable(geckoService) {
let serviceTable = RIL.iccInfo.sst;
let index, bitmask;
if (RIL.appType == CARD_APPTYPE_SIM) {
/**
* Service id is valid in 1..N, and 2 bits are used to code each service.
*
* +----+-- --+----+----+
* | b8 | ... | b2 | b1 |
* +----+-- --+----+----+
*
* b1 = 0, service not allocated.
* 1, service allocated.
* b2 = 0, service not activatd.
* 1, service allocated.
*
* @see 3GPP TS 51.011 10.3.7.
*/
let simService = GECKO_ICC_SERVICES.sim[geckoService];
if (!simService) {
return false;
}
simService -= 1;
index = Math.floor(simService / 4);
bitmask = 2 << ((simService % 4) << 1);
} else {
/**
* Service id is valid in 1..N, and 1 bit is used to code each service.
*
* +----+-- --+----+----+
* | b8 | ... | b2 | b1 |
* +----+-- --+----+----+
*
* b1 = 0, service not avaiable.
* 1, service available.
* b2 = 0, service not avaiable.
* 1, service available.
*
* @see 3GPP TS 31.102 4.2.8.
*/
let usimService = GECKO_ICC_SERVICES.usim[geckoService];
if (!usimService) {
return false;
}
usimService -= 1;
index = Math.floor(usimService / 8);
bitmask = 1 << ((usimService % 8) << 0);
}
return (serviceTable &&
(index < serviceTable.length) &&
(serviceTable[index] & bitmask)) != 0;
},
/**
* Check if the string is of GSM default 7-bit coded alphabets with bit 8
* set to 0.
*
* @param str String to be checked.
*/
isGsm8BitAlphabet: function isGsm8BitAlphabet(str) {
if (!str) {
return false;
}
const langTable = PDU_NL_LOCKING_SHIFT_TABLES[PDU_NL_IDENTIFIER_DEFAULT];
const langShiftTable = PDU_NL_SINGLE_SHIFT_TABLES[PDU_NL_IDENTIFIER_DEFAULT];
for (let i = 0; i < str.length; i++) {
let c = str.charAt(i);
let octet = langTable.indexOf(c);
if (octet == -1) {
octet = langShiftTable.indexOf(c);
if (octet == -1) {
return false;
}
}
}
return true;
},
};
/**
* Global stuff.
*/
if (!this.debug) {
// Debugging stub that goes nowhere.
this.debug = function debug(message) {
dump("RIL Worker: " + message + "\n");
};
}
// Initialize buffers. This is a separate function so that unit tests can
// re-initialize the buffers at will.
Buf.init();
function onRILMessage(data) {
Buf.processIncoming(data);
};
onmessage = function onmessage(event) {
RIL.handleDOMMessage(event.data);
};
onerror = function onerror(event) {
debug("RIL Worker error" + event.message + "\n");
};