mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
cdfde43ff6
- Relevant spec text: - http://webaudio.github.io/web-audio-api/#widl-AudioContext-suspend-Promise - http://webaudio.github.io/web-audio-api/#widl-AudioContext-resume-Promise - http://webaudio.github.io/web-audio-api/#widl-AudioContext-close-Promise - http://webaudio.github.io/web-audio-api/#widl-AudioContext-state - http://webaudio.github.io/web-audio-api/#widl-AudioContext-onstatechange - In a couple words, the behavior we want: - Closed context cannot have new nodes created, but can do decodeAudioData, and create buffers, and such. - OfflineAudioContexts don't support those methods, transitions happen at startRendering and at the end of processing. onstatechange is used to make this observable. - (regular) AudioContexts support those methods. The promises and onstatechange should be resolved/called when the operation has actually completed on the rendering thread. Once a context has been closed, it cannot transition back to "running". An AudioContext switches to "running" when the audio callback start running, this allow authors to know how long the audio stack takes to start running. - MediaStreams that feed in/go out of a suspended graph should respectively not buffer at the graph input, and output silence - suspended context should not be doing much on the CPU, and we should try to pause audio streams if we can (this behaviour is the main reason we need this in the first place, for saving battery on mobile, and CPU on all platforms) - Now, the implementation: - AudioNodeStreams are now tagged with a context id, to be able to operate on all the streams of a given AudioContext on the Graph thread without having to go and lock everytime to touch the AudioContext. This happens in the AudioNodeStream ctor. IDs are of course constant for the lifetime of the node. - When an AudioContext goes into suspended mode, streams for this AudioContext are moved out of the mStreams array to a second array, mSuspendedStreams. Streams in mSuspendedStream are not ordered, and are not processed. - The MSG will automatically switch to a SystemClockDriver when it finds that there are no more AudioNodeStream/Stream with an audio track. This is how pausing the audio subsystem and saving battery works. Subsequently, when the MSG finds that there are only streams in mSuspendedStreams, it will go to sleep (block on a monitor), so we save CPU, but it does not shut itself down. This is mostly not a new behaviour (this is what the MSG does since the refactoring), but is important to note. - Promises are gripped (addref-ed) on the main thread, and then shepherd down other threads and to the GraphDriver, if needed (sometimes we can resolve them right away). They move between threads as void* to prevent calling methods on them, as they are not thread safe. Then, the driver executes the operation, and when it's done (initializing and closing audio streams can take some time), we send the promise back to the main thread, and resolve it, casting back to Promise* after asserting we're back on the main thread. This way, we can send them back on the main thread once an operation has complete (suspending an audio stream, starting it again on resume(), etc.), without having to do bookkeeping between suspend calls and their result. Promises are not thread safe, so we can't move them around AddRef-ed. - The stream destruction logic now takes into account that a stream can be destroyed while not being in mStreams. - A graph can now switch GraphDriver twice or more per iteration, for example if an author goes suspend()/resume()/suspend() in the same script. - Some operation have to be done on suspended stream, so we now use double for-loop around mSuspendedStreams and mStreams in some places in MediaStreamGraph.cpp. - A tricky part was making sure everything worked at AudioContext boundaries. TrackUnionStream that have one of their input stream suspended append null ticks instead. - The graph ordering algorithm had to be altered to not include suspended streams. - There are some edge cases (adding a stream on a suspended graph, calling suspend/resume when a graph has just been close()d).
299 lines
11 KiB
C++
299 lines
11 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-*/
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
|
|
* You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "MediaStreamGraphImpl.h"
|
|
#include "mozilla/MathAlgorithms.h"
|
|
#include "mozilla/unused.h"
|
|
|
|
#include "AudioSegment.h"
|
|
#include "VideoSegment.h"
|
|
#include "nsContentUtils.h"
|
|
#include "nsIAppShell.h"
|
|
#include "nsIObserver.h"
|
|
#include "nsPrintfCString.h"
|
|
#include "nsServiceManagerUtils.h"
|
|
#include "nsWidgetsCID.h"
|
|
#include "prerror.h"
|
|
#include "prlog.h"
|
|
#include "mozilla/Attributes.h"
|
|
#include "TrackUnionStream.h"
|
|
#include "ImageContainer.h"
|
|
#include "AudioChannelService.h"
|
|
#include "AudioNodeEngine.h"
|
|
#include "AudioNodeStream.h"
|
|
#include "AudioNodeExternalInputStream.h"
|
|
#include "webaudio/MediaStreamAudioDestinationNode.h"
|
|
#include <algorithm>
|
|
#include "DOMMediaStream.h"
|
|
#include "GeckoProfiler.h"
|
|
#ifdef MOZ_WEBRTC
|
|
#include "AudioOutputObserver.h"
|
|
#endif
|
|
|
|
using namespace mozilla::layers;
|
|
using namespace mozilla::dom;
|
|
using namespace mozilla::gfx;
|
|
|
|
namespace mozilla {
|
|
|
|
#ifdef STREAM_LOG
|
|
#undef STREAM_LOG
|
|
#endif
|
|
|
|
#ifdef PR_LOGGING
|
|
PRLogModuleInfo* gTrackUnionStreamLog;
|
|
#define STREAM_LOG(type, msg) PR_LOG(gTrackUnionStreamLog, type, msg)
|
|
#else
|
|
#define STREAM_LOG(type, msg)
|
|
#endif
|
|
|
|
TrackUnionStream::TrackUnionStream(DOMMediaStream* aWrapper) :
|
|
ProcessedMediaStream(aWrapper)
|
|
{
|
|
#ifdef PR_LOGGING
|
|
if (!gTrackUnionStreamLog) {
|
|
gTrackUnionStreamLog = PR_NewLogModule("TrackUnionStream");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void TrackUnionStream::RemoveInput(MediaInputPort* aPort)
|
|
{
|
|
for (int32_t i = mTrackMap.Length() - 1; i >= 0; --i) {
|
|
if (mTrackMap[i].mInputPort == aPort) {
|
|
EndTrack(i);
|
|
mTrackMap.RemoveElementAt(i);
|
|
}
|
|
}
|
|
ProcessedMediaStream::RemoveInput(aPort);
|
|
}
|
|
void TrackUnionStream::ProcessInput(GraphTime aFrom, GraphTime aTo, uint32_t aFlags)
|
|
{
|
|
if (IsFinishedOnGraphThread()) {
|
|
return;
|
|
}
|
|
nsAutoTArray<bool,8> mappedTracksFinished;
|
|
nsAutoTArray<bool,8> mappedTracksWithMatchingInputTracks;
|
|
for (uint32_t i = 0; i < mTrackMap.Length(); ++i) {
|
|
mappedTracksFinished.AppendElement(true);
|
|
mappedTracksWithMatchingInputTracks.AppendElement(false);
|
|
}
|
|
bool allFinished = !mInputs.IsEmpty();
|
|
bool allHaveCurrentData = !mInputs.IsEmpty();
|
|
for (uint32_t i = 0; i < mInputs.Length(); ++i) {
|
|
MediaStream* stream = mInputs[i]->GetSource();
|
|
if (!stream->IsFinishedOnGraphThread()) {
|
|
// XXX we really should check whether 'stream' has finished within time aTo,
|
|
// not just that it's finishing when all its queued data eventually runs
|
|
// out.
|
|
allFinished = false;
|
|
}
|
|
if (!stream->HasCurrentData()) {
|
|
allHaveCurrentData = false;
|
|
}
|
|
bool trackAdded = false;
|
|
for (StreamBuffer::TrackIter tracks(stream->GetStreamBuffer());
|
|
!tracks.IsEnded(); tracks.Next()) {
|
|
bool found = false;
|
|
for (uint32_t j = 0; j < mTrackMap.Length(); ++j) {
|
|
TrackMapEntry* map = &mTrackMap[j];
|
|
if (map->mInputPort == mInputs[i] && map->mInputTrackID == tracks->GetID()) {
|
|
bool trackFinished;
|
|
StreamBuffer::Track* outputTrack = mBuffer.FindTrack(map->mOutputTrackID);
|
|
if (!outputTrack || outputTrack->IsEnded()) {
|
|
trackFinished = true;
|
|
} else {
|
|
CopyTrackData(tracks.get(), j, aFrom, aTo, &trackFinished);
|
|
}
|
|
mappedTracksFinished[j] = trackFinished;
|
|
mappedTracksWithMatchingInputTracks[j] = true;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
bool trackFinished = false;
|
|
trackAdded = true;
|
|
uint32_t mapIndex = AddTrack(mInputs[i], tracks.get(), aFrom);
|
|
CopyTrackData(tracks.get(), mapIndex, aFrom, aTo, &trackFinished);
|
|
mappedTracksFinished.AppendElement(trackFinished);
|
|
mappedTracksWithMatchingInputTracks.AppendElement(true);
|
|
}
|
|
}
|
|
if (trackAdded) {
|
|
for (MediaStreamListener* l : mListeners) {
|
|
l->NotifyFinishedTrackCreation(Graph());
|
|
}
|
|
}
|
|
}
|
|
for (int32_t i = mTrackMap.Length() - 1; i >= 0; --i) {
|
|
if (mappedTracksFinished[i]) {
|
|
EndTrack(i);
|
|
} else {
|
|
allFinished = false;
|
|
}
|
|
if (!mappedTracksWithMatchingInputTracks[i]) {
|
|
mTrackMap.RemoveElementAt(i);
|
|
}
|
|
}
|
|
if (allFinished && mAutofinish && (aFlags & ALLOW_FINISH)) {
|
|
// All streams have finished and won't add any more tracks, and
|
|
// all our tracks have actually finished and been removed from our map,
|
|
// so we're finished now.
|
|
FinishOnGraphThread();
|
|
} else {
|
|
mBuffer.AdvanceKnownTracksTime(GraphTimeToStreamTime(aTo));
|
|
}
|
|
if (allHaveCurrentData) {
|
|
// We can make progress if we're not blocked
|
|
mHasCurrentData = true;
|
|
}
|
|
}
|
|
|
|
// Forward SetTrackEnabled(output_track_id, enabled) to the Source MediaStream,
|
|
// translating the output track ID into the correct ID in the source.
|
|
void TrackUnionStream::ForwardTrackEnabled(TrackID aOutputID, bool aEnabled)
|
|
{
|
|
for (int32_t i = mTrackMap.Length() - 1; i >= 0; --i) {
|
|
if (mTrackMap[i].mOutputTrackID == aOutputID) {
|
|
mTrackMap[i].mInputPort->GetSource()->
|
|
SetTrackEnabled(mTrackMap[i].mInputTrackID, aEnabled);
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t TrackUnionStream::AddTrack(MediaInputPort* aPort, StreamBuffer::Track* aTrack,
|
|
GraphTime aFrom)
|
|
{
|
|
// Use the ID of the source track if it's not already assigned to a track,
|
|
// otherwise allocate a new unique ID.
|
|
TrackID id = aTrack->GetID();
|
|
TrackID maxTrackID = 0;
|
|
for (uint32_t i = 0; i < mTrackMap.Length(); ++i) {
|
|
TrackID outID = mTrackMap[i].mOutputTrackID;
|
|
maxTrackID = std::max(maxTrackID, outID);
|
|
}
|
|
// Note: we might have removed it here, but it might still be in the
|
|
// StreamBuffer if the TrackUnionStream sees its input stream flip from
|
|
// A to B, where both A and B have a track with the same ID
|
|
while (1) {
|
|
// search until we find one not in use here, and not in mBuffer
|
|
if (!mBuffer.FindTrack(id)) {
|
|
break;
|
|
}
|
|
id = ++maxTrackID;
|
|
}
|
|
|
|
// Round up the track start time so the track, if anything, starts a
|
|
// little later than the true time. This means we'll have enough
|
|
// samples in our input stream to go just beyond the destination time.
|
|
StreamTime outputStart = GraphTimeToStreamTime(aFrom);
|
|
|
|
nsAutoPtr<MediaSegment> segment;
|
|
segment = aTrack->GetSegment()->CreateEmptyClone();
|
|
for (uint32_t j = 0; j < mListeners.Length(); ++j) {
|
|
MediaStreamListener* l = mListeners[j];
|
|
l->NotifyQueuedTrackChanges(Graph(), id, outputStart,
|
|
MediaStreamListener::TRACK_EVENT_CREATED,
|
|
*segment);
|
|
}
|
|
segment->AppendNullData(outputStart);
|
|
StreamBuffer::Track* track =
|
|
&mBuffer.AddTrack(id, outputStart, segment.forget());
|
|
STREAM_LOG(PR_LOG_DEBUG, ("TrackUnionStream %p adding track %d for input stream %p track %d, start ticks %lld",
|
|
this, id, aPort->GetSource(), aTrack->GetID(),
|
|
(long long)outputStart));
|
|
|
|
TrackMapEntry* map = mTrackMap.AppendElement();
|
|
map->mEndOfConsumedInputTicks = 0;
|
|
map->mEndOfLastInputIntervalInInputStream = -1;
|
|
map->mEndOfLastInputIntervalInOutputStream = -1;
|
|
map->mInputPort = aPort;
|
|
map->mInputTrackID = aTrack->GetID();
|
|
map->mOutputTrackID = track->GetID();
|
|
map->mSegment = aTrack->GetSegment()->CreateEmptyClone();
|
|
return mTrackMap.Length() - 1;
|
|
}
|
|
|
|
void TrackUnionStream::EndTrack(uint32_t aIndex)
|
|
{
|
|
StreamBuffer::Track* outputTrack = mBuffer.FindTrack(mTrackMap[aIndex].mOutputTrackID);
|
|
if (!outputTrack || outputTrack->IsEnded())
|
|
return;
|
|
for (uint32_t j = 0; j < mListeners.Length(); ++j) {
|
|
MediaStreamListener* l = mListeners[j];
|
|
StreamTime offset = outputTrack->GetSegment()->GetDuration();
|
|
nsAutoPtr<MediaSegment> segment;
|
|
segment = outputTrack->GetSegment()->CreateEmptyClone();
|
|
l->NotifyQueuedTrackChanges(Graph(), outputTrack->GetID(), offset,
|
|
MediaStreamListener::TRACK_EVENT_ENDED,
|
|
*segment);
|
|
}
|
|
outputTrack->SetEnded();
|
|
}
|
|
|
|
void TrackUnionStream::CopyTrackData(StreamBuffer::Track* aInputTrack,
|
|
uint32_t aMapIndex, GraphTime aFrom, GraphTime aTo,
|
|
bool* aOutputTrackFinished)
|
|
{
|
|
TrackMapEntry* map = &mTrackMap[aMapIndex];
|
|
StreamBuffer::Track* outputTrack = mBuffer.FindTrack(map->mOutputTrackID);
|
|
MOZ_ASSERT(outputTrack && !outputTrack->IsEnded(), "Can't copy to ended track");
|
|
|
|
MediaSegment* segment = map->mSegment;
|
|
MediaStream* source = map->mInputPort->GetSource();
|
|
|
|
GraphTime next;
|
|
*aOutputTrackFinished = false;
|
|
for (GraphTime t = aFrom; t < aTo; t = next) {
|
|
MediaInputPort::InputInterval interval = map->mInputPort->GetNextInputInterval(t);
|
|
interval.mEnd = std::min(interval.mEnd, aTo);
|
|
StreamTime inputEnd = source->GraphTimeToStreamTime(interval.mEnd);
|
|
StreamTime inputTrackEndPoint = STREAM_TIME_MAX;
|
|
|
|
if (aInputTrack->IsEnded() &&
|
|
aInputTrack->GetEnd() <= inputEnd) {
|
|
inputTrackEndPoint = aInputTrack->GetEnd();
|
|
*aOutputTrackFinished = true;
|
|
}
|
|
|
|
if (interval.mStart >= interval.mEnd) {
|
|
break;
|
|
}
|
|
StreamTime ticks = interval.mEnd - interval.mStart;
|
|
next = interval.mEnd;
|
|
|
|
StreamTime outputStart = outputTrack->GetEnd();
|
|
|
|
if (interval.mInputIsBlocked) {
|
|
// Maybe the input track ended?
|
|
segment->AppendNullData(ticks);
|
|
STREAM_LOG(PR_LOG_DEBUG+1, ("TrackUnionStream %p appending %lld ticks of null data to track %d",
|
|
this, (long long)ticks, outputTrack->GetID()));
|
|
} else if (InMutedCycle()) {
|
|
segment->AppendNullData(ticks);
|
|
} else {
|
|
if (GraphImpl()->StreamSuspended(source)) {
|
|
segment->AppendNullData(aTo - aFrom);
|
|
} else {
|
|
MOZ_ASSERT(outputTrack->GetEnd() == GraphTimeToStreamTime(interval.mStart),
|
|
"Samples missing");
|
|
StreamTime inputStart = source->GraphTimeToStreamTime(interval.mStart);
|
|
segment->AppendSlice(*aInputTrack->GetSegment(),
|
|
std::min(inputTrackEndPoint, inputStart),
|
|
std::min(inputTrackEndPoint, inputEnd));
|
|
}
|
|
}
|
|
ApplyTrackDisabling(outputTrack->GetID(), segment);
|
|
for (uint32_t j = 0; j < mListeners.Length(); ++j) {
|
|
MediaStreamListener* l = mListeners[j];
|
|
l->NotifyQueuedTrackChanges(Graph(), outputTrack->GetID(),
|
|
outputStart, 0, *segment);
|
|
}
|
|
outputTrack->GetSegment()->AppendFrom(segment);
|
|
}
|
|
}
|
|
}
|