gecko/gfx/layers/composite/AsyncCompositionManager.cpp

1159 lines
48 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set sw=2 ts=2 et tw=80 : */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/layers/AsyncCompositionManager.h"
#include <stdint.h> // for uint32_t
#include "apz/src/AsyncPanZoomController.h"
#include "FrameMetrics.h" // for FrameMetrics
#include "LayerManagerComposite.h" // for LayerManagerComposite, etc
#include "Layers.h" // for Layer, ContainerLayer, etc
#include "gfxPoint.h" // for gfxPoint, gfxSize
#include "mozilla/StyleAnimationValue.h" // for StyleAnimationValue, etc
#include "mozilla/WidgetUtils.h" // for ComputeTransformForRotation
#include "mozilla/dom/KeyframeEffect.h" // for KeyframeEffectReadOnly
#include "mozilla/gfx/BaseRect.h" // for BaseRect
#include "mozilla/gfx/Point.h" // for RoundedToInt, PointTyped
#include "mozilla/gfx/Rect.h" // for RoundedToInt, RectTyped
#include "mozilla/gfx/ScaleFactor.h" // for ScaleFactor
#include "mozilla/layers/Compositor.h" // for Compositor
#include "mozilla/layers/CompositorParent.h" // for CompositorParent, etc
#include "mozilla/layers/LayerMetricsWrapper.h" // for LayerMetricsWrapper
#include "nsCoord.h" // for NSAppUnitsToFloatPixels, etc
#include "nsDebug.h" // for NS_ASSERTION, etc
#include "nsDeviceContext.h" // for nsDeviceContext
#include "nsDisplayList.h" // for nsDisplayTransform, etc
#include "nsMathUtils.h" // for NS_round
#include "nsPoint.h" // for nsPoint
#include "nsRect.h" // for mozilla::gfx::IntRect
#include "nsRegion.h" // for nsIntRegion
#include "nsTArray.h" // for nsTArray, nsTArray_Impl, etc
#include "nsTArrayForwardDeclare.h" // for InfallibleTArray
#include "UnitTransforms.h" // for TransformTo
#if defined(MOZ_WIDGET_ANDROID)
# include <android/log.h>
# include "AndroidBridge.h"
#endif
#include "GeckoProfiler.h"
struct nsCSSValueSharedList;
namespace mozilla {
namespace layers {
using namespace mozilla::gfx;
enum Op { Resolve, Detach };
static bool
IsSameDimension(dom::ScreenOrientation o1, dom::ScreenOrientation o2)
{
bool isO1portrait = (o1 == dom::eScreenOrientation_PortraitPrimary || o1 == dom::eScreenOrientation_PortraitSecondary);
bool isO2portrait = (o2 == dom::eScreenOrientation_PortraitPrimary || o2 == dom::eScreenOrientation_PortraitSecondary);
return !(isO1portrait ^ isO2portrait);
}
static bool
ContentMightReflowOnOrientationChange(const IntRect& rect)
{
return rect.width != rect.height;
}
template<Op OP>
static void
WalkTheTree(Layer* aLayer,
bool& aReady,
const TargetConfig& aTargetConfig)
{
if (RefLayer* ref = aLayer->AsRefLayer()) {
if (const CompositorParent::LayerTreeState* state = CompositorParent::GetIndirectShadowTree(ref->GetReferentId())) {
if (Layer* referent = state->mRoot) {
if (!ref->GetVisibleRegion().IsEmpty()) {
dom::ScreenOrientation chromeOrientation = aTargetConfig.orientation();
dom::ScreenOrientation contentOrientation = state->mTargetConfig.orientation();
if (!IsSameDimension(chromeOrientation, contentOrientation) &&
ContentMightReflowOnOrientationChange(aTargetConfig.naturalBounds())) {
aReady = false;
}
}
if (OP == Resolve) {
ref->ConnectReferentLayer(referent);
} else {
ref->DetachReferentLayer(referent);
WalkTheTree<OP>(referent, aReady, aTargetConfig);
}
}
}
}
for (Layer* child = aLayer->GetFirstChild();
child; child = child->GetNextSibling()) {
WalkTheTree<OP>(child, aReady, aTargetConfig);
}
}
void
AsyncCompositionManager::ResolveRefLayers()
{
if (!mLayerManager->GetRoot()) {
return;
}
mReadyForCompose = true;
WalkTheTree<Resolve>(mLayerManager->GetRoot(),
mReadyForCompose,
mTargetConfig);
}
void
AsyncCompositionManager::DetachRefLayers()
{
if (!mLayerManager->GetRoot()) {
return;
}
WalkTheTree<Detach>(mLayerManager->GetRoot(),
mReadyForCompose,
mTargetConfig);
}
void
AsyncCompositionManager::ComputeRotation()
{
if (!mTargetConfig.naturalBounds().IsEmpty()) {
mWorldTransform =
ComputeTransformForRotation(mTargetConfig.naturalBounds(),
mTargetConfig.rotation());
}
}
static bool
GetBaseTransform2D(Layer* aLayer, Matrix* aTransform)
{
// Start with the animated transform if there is one
return (aLayer->AsLayerComposite()->GetShadowTransformSetByAnimation() ?
aLayer->GetLocalTransform() : aLayer->GetTransform()).Is2D(aTransform);
}
static void
TransformClipRect(Layer* aLayer,
const Matrix4x4& aTransform)
{
const Maybe<ParentLayerIntRect>& clipRect = aLayer->AsLayerComposite()->GetShadowClipRect();
if (clipRect) {
ParentLayerIntRect transformed = TransformTo<ParentLayerPixel>(aTransform, *clipRect);
aLayer->AsLayerComposite()->SetShadowClipRect(Some(transformed));
}
}
/**
* Set the given transform as the shadow transform on the layer, assuming
* that the given transform already has the pre- and post-scales applied.
* That is, this function cancels out the pre- and post-scales from aTransform
* before setting it as the shadow transform on the layer, so that when
* the layer's effective transform is computed, the pre- and post-scales will
* only be applied once.
*/
static void
SetShadowTransform(Layer* aLayer, Matrix4x4 aTransform)
{
if (ContainerLayer* c = aLayer->AsContainerLayer()) {
aTransform.PreScale(1.0f / c->GetPreXScale(),
1.0f / c->GetPreYScale(),
1);
}
aTransform.PostScale(1.0f / aLayer->GetPostXScale(),
1.0f / aLayer->GetPostYScale(),
1);
aLayer->AsLayerComposite()->SetShadowTransform(aTransform);
}
static void
TranslateShadowLayer2D(Layer* aLayer,
const gfxPoint& aTranslation,
bool aAdjustClipRect)
{
// This layer might also be a scrollable layer and have an async transform.
// To make sure we don't clobber that, we start with the shadow transform.
// (i.e. GetLocalTransform() instead of GetTransform()).
// Note that the shadow transform is reset on every frame of composition so
// we don't have to worry about the adjustments compounding over successive
// frames.
Matrix layerTransform;
if (!aLayer->GetLocalTransform().Is2D(&layerTransform)) {
return;
}
// Apply the 2D translation to the layer transform.
layerTransform._31 += aTranslation.x;
layerTransform._32 += aTranslation.y;
SetShadowTransform(aLayer, Matrix4x4::From2D(layerTransform));
aLayer->AsLayerComposite()->SetShadowTransformSetByAnimation(false);
if (aAdjustClipRect) {
TransformClipRect(aLayer, Matrix4x4::Translation(aTranslation.x, aTranslation.y, 0));
}
// If a fixed- or sticky-position layer has a mask layer, that mask should
// move along with the layer, so apply the translation to the mask layer too.
if (Layer* maskLayer = aLayer->GetMaskLayer()) {
TranslateShadowLayer2D(maskLayer, aTranslation, false);
}
}
static bool
AccumulateLayerTransforms2D(Layer* aLayer,
Layer* aAncestor,
Matrix& aMatrix)
{
// Accumulate the transforms between this layer and the subtree root layer.
for (Layer* l = aLayer; l && l != aAncestor; l = l->GetParent()) {
Matrix l2D;
if (!GetBaseTransform2D(l, &l2D)) {
return false;
}
aMatrix *= l2D;
}
return true;
}
static LayerPoint
GetLayerFixedMarginsOffset(Layer* aLayer,
const LayerMargin& aFixedLayerMargins)
{
// Work out the necessary translation, in root scrollable layer space.
// Because fixed layer margins are stored relative to the root scrollable
// layer, we can just take the difference between these values.
LayerPoint translation;
const LayerPoint& anchor = aLayer->GetFixedPositionAnchor();
const LayerMargin& fixedMargins = aLayer->GetFixedPositionMargins();
if (fixedMargins.left >= 0) {
if (anchor.x > 0) {
translation.x -= aFixedLayerMargins.right - fixedMargins.right;
} else {
translation.x += aFixedLayerMargins.left - fixedMargins.left;
}
}
if (fixedMargins.top >= 0) {
if (anchor.y > 0) {
translation.y -= aFixedLayerMargins.bottom - fixedMargins.bottom;
} else {
translation.y += aFixedLayerMargins.top - fixedMargins.top;
}
}
return translation;
}
static gfxFloat
IntervalOverlap(gfxFloat aTranslation, gfxFloat aMin, gfxFloat aMax)
{
// Determine the amount of overlap between the 1D vector |aTranslation|
// and the interval [aMin, aMax].
if (aTranslation > 0) {
return std::max(0.0, std::min(aMax, aTranslation) - std::max(aMin, 0.0));
} else {
return std::min(0.0, std::max(aMin, aTranslation) - std::min(aMax, 0.0));
}
}
void
AsyncCompositionManager::AlignFixedAndStickyLayers(Layer* aLayer,
Layer* aTransformedSubtreeRoot,
FrameMetrics::ViewID aTransformScrollId,
const Matrix4x4& aPreviousTransformForRoot,
const Matrix4x4& aCurrentTransformForRoot,
const LayerMargin& aFixedLayerMargins)
{
// If aLayer == aTransformedSubtreeRoot, then treat aLayer as fixed relative
// to the ancestor scrollable layer rather than relative to itself.
bool isRootFixed = aLayer->GetIsFixedPosition() &&
aLayer != aTransformedSubtreeRoot &&
!aLayer->GetParent()->GetIsFixedPosition();
bool isStickyForSubtree = aLayer->GetIsStickyPosition() &&
aLayer->GetStickyScrollContainerId() == aTransformScrollId;
bool isFixedOrSticky = (isRootFixed || isStickyForSubtree);
// We want to process all the fixed and sticky children of
// aTransformedSubtreeRoot. Also, once we do encounter such a child, we don't
// need to recurse any deeper because the fixed layers are relative to their
// nearest scrollable layer.
if (!isFixedOrSticky) {
// ApplyAsyncContentTransformToTree will call this function again for
// nested scrollable layers, so we don't need to recurse if the layer is
// scrollable.
if (aLayer == aTransformedSubtreeRoot || !aLayer->HasScrollableFrameMetrics()) {
for (Layer* child = aLayer->GetFirstChild(); child; child = child->GetNextSibling()) {
AlignFixedAndStickyLayers(child, aTransformedSubtreeRoot, aTransformScrollId,
aPreviousTransformForRoot,
aCurrentTransformForRoot, aFixedLayerMargins);
}
}
return;
}
// Insert a translation so that the position of the anchor point is the same
// before and after the change to the transform of aTransformedSubtreeRoot.
// This currently only works for fixed layers with 2D transforms.
// Accumulate the transforms between this layer and the subtree root layer.
Matrix ancestorTransform;
if (!AccumulateLayerTransforms2D(aLayer->GetParent(), aTransformedSubtreeRoot,
ancestorTransform)) {
return;
}
Matrix oldRootTransform;
Matrix newRootTransform;
if (!aPreviousTransformForRoot.Is2D(&oldRootTransform) ||
!aCurrentTransformForRoot.Is2D(&newRootTransform)) {
return;
}
// Calculate the cumulative transforms between the subtree root with the
// old transform and the current transform.
Matrix oldCumulativeTransform = ancestorTransform * oldRootTransform;
Matrix newCumulativeTransform = ancestorTransform * newRootTransform;
if (newCumulativeTransform.IsSingular()) {
return;
}
Matrix newCumulativeTransformInverse = newCumulativeTransform.Inverse();
// Now work out the translation necessary to make sure the layer doesn't
// move given the new sub-tree root transform.
Matrix layerTransform;
if (!GetBaseTransform2D(aLayer, &layerTransform)) {
return;
}
// Calculate any offset necessary, in previous transform sub-tree root
// space. This is used to make sure fixed position content respects
// content document fixed position margins.
LayerPoint offsetInOldSubtreeLayerSpace = GetLayerFixedMarginsOffset(aLayer, aFixedLayerMargins);
// Add the above offset to the anchor point so we can offset the layer by
// and amount that's specified in old subtree layer space.
const LayerPoint& anchorInOldSubtreeLayerSpace = aLayer->GetFixedPositionAnchor();
LayerPoint offsetAnchorInOldSubtreeLayerSpace = anchorInOldSubtreeLayerSpace + offsetInOldSubtreeLayerSpace;
// Add the local layer transform to the two points to make the equation
// below this section more convenient.
Point anchor(anchorInOldSubtreeLayerSpace.x, anchorInOldSubtreeLayerSpace.y);
Point offsetAnchor(offsetAnchorInOldSubtreeLayerSpace.x, offsetAnchorInOldSubtreeLayerSpace.y);
Point locallyTransformedAnchor = layerTransform * anchor;
Point locallyTransformedOffsetAnchor = layerTransform * offsetAnchor;
// Transforming the locallyTransformedAnchor by oldCumulativeTransform
// returns the layer's anchor point relative to the parent of
// aTransformedSubtreeRoot, before the new transform was applied.
// Then, applying newCumulativeTransformInverse maps that point relative
// to the layer's parent, which is the same coordinate space as
// locallyTransformedAnchor again, allowing us to subtract them and find
// out the offset necessary to make sure the layer stays stationary.
Point oldAnchorPositionInNewSpace =
newCumulativeTransformInverse * (oldCumulativeTransform * locallyTransformedOffsetAnchor);
Point translation = oldAnchorPositionInNewSpace - locallyTransformedAnchor;
if (aLayer->GetIsStickyPosition()) {
// For sticky positioned layers, the difference between the two rectangles
// defines a pair of translation intervals in each dimension through which
// the layer should not move relative to the scroll container. To
// accomplish this, we limit each dimension of the |translation| to that
// part of it which overlaps those intervals.
const LayerRect& stickyOuter = aLayer->GetStickyScrollRangeOuter();
const LayerRect& stickyInner = aLayer->GetStickyScrollRangeInner();
translation.y = IntervalOverlap(translation.y, stickyOuter.y, stickyOuter.YMost()) -
IntervalOverlap(translation.y, stickyInner.y, stickyInner.YMost());
translation.x = IntervalOverlap(translation.x, stickyOuter.x, stickyOuter.XMost()) -
IntervalOverlap(translation.x, stickyInner.x, stickyInner.XMost());
}
// Finally, apply the 2D translation to the layer transform. Note that in
// general we need to apply the same translation to the layer's clip rect, so
// that the effective transform on the clip rect takes it back to where it was
// originally, had there been no async scroll. In the case where the
// fixed/sticky layer is the same as aTransformedSubtreeRoot, then the clip
// rect is not affected by the scroll-induced async scroll transform anyway
// (since the clip is applied post-transform) so we don't need to make the
// adjustment.
TranslateShadowLayer2D(aLayer, ThebesPoint(translation), aLayer != aTransformedSubtreeRoot);
}
static void
SampleValue(float aPortion, Animation& aAnimation, StyleAnimationValue& aStart,
StyleAnimationValue& aEnd, Animatable* aValue)
{
StyleAnimationValue interpolatedValue;
NS_ASSERTION(aStart.GetUnit() == aEnd.GetUnit() ||
aStart.GetUnit() == StyleAnimationValue::eUnit_None ||
aEnd.GetUnit() == StyleAnimationValue::eUnit_None,
"Must have same unit");
StyleAnimationValue::Interpolate(aAnimation.property(), aStart, aEnd,
aPortion, interpolatedValue);
if (aAnimation.property() == eCSSProperty_opacity) {
*aValue = interpolatedValue.GetFloatValue();
return;
}
nsCSSValueSharedList* interpolatedList =
interpolatedValue.GetCSSValueSharedListValue();
TransformData& data = aAnimation.data().get_TransformData();
nsPoint origin = data.origin();
// we expect all our transform data to arrive in device pixels
Point3D transformOrigin = data.transformOrigin();
Point3D perspectiveOrigin = data.perspectiveOrigin();
nsDisplayTransform::FrameTransformProperties props(interpolatedList,
transformOrigin,
perspectiveOrigin,
data.perspective());
gfx3DMatrix transform =
nsDisplayTransform::GetResultingTransformMatrix(props, origin,
data.appUnitsPerDevPixel(),
&data.bounds());
Point3D scaledOrigin =
Point3D(NS_round(NSAppUnitsToFloatPixels(origin.x, data.appUnitsPerDevPixel())),
NS_round(NSAppUnitsToFloatPixels(origin.y, data.appUnitsPerDevPixel())),
0.0f);
transform.Translate(scaledOrigin);
InfallibleTArray<TransformFunction> functions;
functions.AppendElement(TransformMatrix(ToMatrix4x4(transform)));
*aValue = functions;
}
static bool
SampleAnimations(Layer* aLayer, TimeStamp aPoint)
{
AnimationArray& animations = aLayer->GetAnimations();
InfallibleTArray<AnimData>& animationData = aLayer->GetAnimationData();
bool activeAnimations = false;
// Process in order, since later animations override earlier ones.
for (size_t i = 0, iEnd = animations.Length(); i < iEnd; ++i) {
Animation& animation = animations[i];
AnimData& animData = animationData[i];
activeAnimations = true;
MOZ_ASSERT(!animation.startTime().IsNull(),
"Failed to resolve start time of pending animations");
TimeDuration elapsedDuration = aPoint - animation.startTime();
// Skip animations that are yet to start.
//
// Currently, this should only happen when the refresh driver is under test
// control and is made to produce a time in the past or is restored from
// test control causing it to jump backwards in time.
//
// Since activeAnimations is true, this could mean we keep compositing
// unnecessarily during the delay, but so long as this only happens while
// the refresh driver is under test control that should be ok.
if (elapsedDuration.ToSeconds() < 0) {
continue;
}
AnimationTiming timing;
timing.mIterationDuration = animation.duration();
// Currently animations run on the compositor have their delay factored
// into their start time, hence the delay is effectively zero.
timing.mDelay = TimeDuration(0);
timing.mIterationCount = animation.iterationCount();
timing.mDirection = animation.direction();
// Animations typically only run on the compositor during their active
// interval but if we end up sampling them outside that range (for
// example, while they are waiting to be removed) we currently just
// assume that we should fill.
timing.mFillMode = NS_STYLE_ANIMATION_FILL_MODE_BOTH;
ComputedTiming computedTiming =
dom::KeyframeEffectReadOnly::GetComputedTimingAt(
Nullable<TimeDuration>(elapsedDuration), timing);
MOZ_ASSERT(0.0 <= computedTiming.mProgress &&
computedTiming.mProgress <= 1.0,
"iteration progress should be in [0-1]");
int segmentIndex = 0;
AnimationSegment* segment = animation.segments().Elements();
while (segment->endPortion() < computedTiming.mProgress) {
++segment;
++segmentIndex;
}
double positionInSegment =
(computedTiming.mProgress - segment->startPortion()) /
(segment->endPortion() - segment->startPortion());
double portion =
animData.mFunctions[segmentIndex]->GetValue(positionInSegment);
// interpolate the property
Animatable interpolatedValue;
SampleValue(portion, animation, animData.mStartValues[segmentIndex],
animData.mEndValues[segmentIndex], &interpolatedValue);
LayerComposite* layerComposite = aLayer->AsLayerComposite();
switch (animation.property()) {
case eCSSProperty_opacity:
{
layerComposite->SetShadowOpacity(interpolatedValue.get_float());
break;
}
case eCSSProperty_transform:
{
Matrix4x4 matrix = interpolatedValue.get_ArrayOfTransformFunction()[0].get_TransformMatrix().value();
if (ContainerLayer* c = aLayer->AsContainerLayer()) {
matrix.PostScale(c->GetInheritedXScale(), c->GetInheritedYScale(), 1);
}
layerComposite->SetShadowTransform(matrix);
layerComposite->SetShadowTransformSetByAnimation(true);
break;
}
default:
NS_WARNING("Unhandled animated property");
}
}
for (Layer* child = aLayer->GetFirstChild(); child;
child = child->GetNextSibling()) {
activeAnimations |= SampleAnimations(child, aPoint);
}
return activeAnimations;
}
static bool
SampleAPZAnimations(const LayerMetricsWrapper& aLayer, TimeStamp aSampleTime)
{
bool activeAnimations = false;
for (LayerMetricsWrapper child = aLayer.GetFirstChild(); child;
child = child.GetNextSibling()) {
activeAnimations |= SampleAPZAnimations(child, aSampleTime);
}
if (AsyncPanZoomController* apzc = aLayer.GetApzc()) {
activeAnimations |= apzc->AdvanceAnimations(aSampleTime);
}
return activeAnimations;
}
Matrix4x4
AdjustForClip(const Matrix4x4& asyncTransform, Layer* aLayer)
{
Matrix4x4 result = asyncTransform;
// Container layers start at the origin, but they are clipped to where they
// actually have content on the screen. The tree transform is meant to apply
// to the clipped area. If the tree transform includes a scale component,
// then applying it to container as-is will produce incorrect results. To
// avoid this, translate the layer so that the clip rect starts at the origin,
// apply the tree transform, and translate back.
if (const Maybe<ParentLayerIntRect>& shadowClipRect = aLayer->AsLayerComposite()->GetShadowClipRect()) {
if (shadowClipRect->TopLeft() != ParentLayerIntPoint()) { // avoid a gratuitous change of basis
result.ChangeBasis(shadowClipRect->x, shadowClipRect->y, 0);
}
}
return result;
}
bool
AsyncCompositionManager::ApplyAsyncContentTransformToTree(Layer *aLayer)
{
bool appliedTransform = false;
for (Layer* child = aLayer->GetFirstChild();
child; child = child->GetNextSibling()) {
appliedTransform |=
ApplyAsyncContentTransformToTree(child);
}
Matrix4x4 oldTransform = aLayer->GetTransform();
Matrix4x4 combinedAsyncTransformWithoutOverscroll;
Matrix4x4 combinedAsyncTransform;
bool hasAsyncTransform = false;
LayerMargin fixedLayerMargins(0, 0, 0, 0);
Maybe<ParentLayerIntRect> clipRect = aLayer->AsLayerComposite()->GetShadowClipRect();
for (uint32_t i = 0; i < aLayer->GetFrameMetricsCount(); i++) {
AsyncPanZoomController* controller = aLayer->GetAsyncPanZoomController(i);
if (!controller) {
continue;
}
hasAsyncTransform = true;
ViewTransform asyncTransformWithoutOverscroll;
ParentLayerPoint scrollOffset;
controller->SampleContentTransformForFrame(&asyncTransformWithoutOverscroll,
scrollOffset);
Matrix4x4 overscrollTransform = controller->GetOverscrollTransform();
if (!aLayer->IsScrollInfoLayer()) {
controller->MarkAsyncTransformAppliedToContent();
}
const FrameMetrics& metrics = aLayer->GetFrameMetrics(i);
ScreenPoint offset(0, 0);
// TODO: When we enable APZ on Fennec, we'll need to call SyncFrameMetrics here.
// When doing so, it might be useful to look at how it was called here before
// bug 1036967 removed the (dead) call.
#if defined(MOZ_ANDROID_APZ)
if (mIsFirstPaint) {
CSSToLayerScale geckoZoom = metrics.LayersPixelsPerCSSPixel().ToScaleFactor();
LayerIntPoint scrollOffsetLayerPixels = RoundedToInt(metrics.GetScrollOffset() * geckoZoom);
mContentRect = metrics.GetScrollableRect();
SetFirstPaintViewport(scrollOffsetLayerPixels,
geckoZoom,
mContentRect);
}
#endif
mIsFirstPaint = false;
mLayersUpdated = false;
// Apply the render offset
mLayerManager->GetCompositor()->SetScreenRenderOffset(offset);
combinedAsyncTransformWithoutOverscroll *= asyncTransformWithoutOverscroll;
combinedAsyncTransform *= (Matrix4x4(asyncTransformWithoutOverscroll) * overscrollTransform);
if (i > 0 && clipRect) {
// The clip rect Layout calculates is the intersection of the composition
// bounds of all the scroll frames at the time of the paint (when there
// are no async transforms).
// An async transform on a scroll frame does not affect the composition
// bounds of *that* scroll frame, but it does affect the composition
// bounds of the scroll frames *below* it.
// Therefore, if we have multiple scroll frames associated with this
// layer, the clip rect needs to be adjusted for the async transforms of
// the scroll frames other than the bottom-most one.
// To make this adjustment, we start with the Layout-provided clip rect,
// and at each level other than the bottom, transform it by the async
// transform at that level, and then re-intersect it with the composition
// bounds at that level.
ParentLayerRect transformed = TransformTo<ParentLayerPixel>(
(Matrix4x4(asyncTransformWithoutOverscroll) * overscrollTransform),
ParentLayerRect(*clipRect));
clipRect = Some(RoundedOut(transformed.Intersect(metrics.GetCompositionBounds())));
}
}
if (hasAsyncTransform) {
if (clipRect) {
aLayer->AsLayerComposite()->SetShadowClipRect(clipRect);
}
// Apply the APZ transform on top of GetLocalTransform() here (rather than
// GetTransform()) in case the OMTA code in SampleAnimations already set a
// shadow transform; in that case we want to apply ours on top of that one
// rather than clobber it.
SetShadowTransform(aLayer,
aLayer->GetLocalTransform() * AdjustForClip(combinedAsyncTransform, aLayer));
const FrameMetrics& bottom = LayerMetricsWrapper::BottommostScrollableMetrics(aLayer);
MOZ_ASSERT(bottom.IsScrollable()); // must be true because hasAsyncTransform is true
// For the purpose of aligning fixed and sticky layers, we disregard
// the overscroll transform as well as any OMTA transform when computing the
// 'aCurrentTransformForRoot' parameter. This ensures that the overscroll
// and OMTA transforms are not unapplied, and therefore that the visual
// effects apply to fixed and sticky layers. We do this by using
// GetTransform() as the base transform rather than GetLocalTransform(),
// which would include those factors.
Matrix4x4 transformWithoutOverscrollOrOmta = aLayer->GetTransform() *
AdjustForClip(combinedAsyncTransformWithoutOverscroll, aLayer);
// Since fixed/sticky layers are relative to their nearest scrolling ancestor,
// we use the ViewID from the bottommost scrollable metrics here.
AlignFixedAndStickyLayers(aLayer, aLayer, bottom.GetScrollId(), oldTransform,
transformWithoutOverscrollOrOmta, fixedLayerMargins);
appliedTransform = true;
}
if (aLayer->GetScrollbarDirection() != Layer::NONE) {
ApplyAsyncTransformToScrollbar(aLayer);
}
return appliedTransform;
}
static bool
LayerIsScrollbarTarget(const LayerMetricsWrapper& aTarget, Layer* aScrollbar)
{
AsyncPanZoomController* apzc = aTarget.GetApzc();
if (!apzc) {
return false;
}
const FrameMetrics& metrics = aTarget.Metrics();
if (metrics.GetScrollId() != aScrollbar->GetScrollbarTargetContainerId()) {
return false;
}
return !aTarget.IsScrollInfoLayer();
}
static void
ApplyAsyncTransformToScrollbarForContent(Layer* aScrollbar,
const LayerMetricsWrapper& aContent,
bool aScrollbarIsDescendant)
{
// We only apply the transform if the scroll-target layer has non-container
// children (i.e. when it has some possibly-visible content). This is to
// avoid moving scroll-bars in the situation that only a scroll information
// layer has been built for a scroll frame, as this would result in a
// disparity between scrollbars and visible content.
if (aContent.IsScrollInfoLayer()) {
return;
}
const FrameMetrics& metrics = aContent.Metrics();
AsyncPanZoomController* apzc = aContent.GetApzc();
Matrix4x4 asyncTransform = apzc->GetCurrentAsyncTransform();
// |asyncTransform| represents the amount by which we have scrolled and
// zoomed since the last paint. Because the scrollbar was sized and positioned based
// on the painted content, we need to adjust it based on asyncTransform so that
// it reflects what the user is actually seeing now.
Matrix4x4 scrollbarTransform;
if (aScrollbar->GetScrollbarDirection() == Layer::VERTICAL) {
const ParentLayerCoord asyncScrollY = asyncTransform._42;
const float asyncZoomY = asyncTransform._22;
// The scroll thumb needs to be scaled in the direction of scrolling by the
// inverse of the async zoom. This is because zooming in decreases the
// fraction of the whole srollable rect that is in view.
const float yScale = 1.f / asyncZoomY;
// Note: |metrics.GetZoom()| doesn't yet include the async zoom.
const CSSToParentLayerScale effectiveZoom(metrics.GetZoom().yScale * asyncZoomY);
// Here we convert the scrollbar thumb ratio into a true unitless ratio by
// dividing out the conversion factor from the scrollframe's parent's space
// to the scrollframe's space.
const float ratio = aScrollbar->GetScrollbarThumbRatio() /
(metrics.GetPresShellResolution() * asyncZoomY);
// The scroll thumb needs to be translated in opposite direction of the
// async scroll. This is because scrolling down, which translates the layer
// content up, should result in moving the scroll thumb down.
ParentLayerCoord yTranslation = -asyncScrollY * ratio;
// The scroll thumb additionally needs to be translated to compensate for
// the scale applied above. The origin with respect to which the scale is
// applied is the origin of the entire scrollbar, rather than the origin of
// the scroll thumb (meaning, for a vertical scrollbar it's at the top of
// the composition bounds). This means that empty space above the thumb
// is scaled too, effectively translating the thumb. We undo that
// translation here.
// (One can think of the adjustment being done to the translation here as
// a change of basis. We have a method to help with that,
// Matrix4x4::ChangeBasis(), but it wouldn't necessarily make the code
// cleaner in this case).
const CSSCoord thumbOrigin = (metrics.GetScrollOffset().y * ratio);
const CSSCoord thumbOriginScaled = thumbOrigin * yScale;
const CSSCoord thumbOriginDelta = thumbOriginScaled - thumbOrigin;
const ParentLayerCoord thumbOriginDeltaPL = thumbOriginDelta * effectiveZoom;
yTranslation -= thumbOriginDeltaPL;
if (metrics.IsRootScrollable()) {
// Scrollbar for the root are painted at the same resolution as the
// content. Since the coordinate space we apply this transform in includes
// the resolution, we need to adjust for it as well here. Note that in
// another metrics.IsRootScrollable() hunk below we apply a
// resolution-cancelling transform which ensures the scroll thumb isn't
// actually rendered at a larger scale.
yTranslation *= metrics.GetPresShellResolution();
}
scrollbarTransform.PostScale(1.f, yScale, 1.f);
scrollbarTransform.PostTranslate(0, yTranslation, 0);
}
if (aScrollbar->GetScrollbarDirection() == Layer::HORIZONTAL) {
// See detailed comments under the VERTICAL case.
const ParentLayerCoord asyncScrollX = asyncTransform._41;
const float asyncZoomX = asyncTransform._11;
const float xScale = 1.f / asyncZoomX;
const CSSToParentLayerScale effectiveZoom(metrics.GetZoom().xScale * asyncZoomX);
const float ratio = aScrollbar->GetScrollbarThumbRatio() /
(metrics.GetPresShellResolution() * asyncZoomX);
ParentLayerCoord xTranslation = -asyncScrollX * ratio;
const CSSCoord thumbOrigin = (metrics.GetScrollOffset().x * ratio);
const CSSCoord thumbOriginScaled = thumbOrigin * xScale;
const CSSCoord thumbOriginDelta = thumbOriginScaled - thumbOrigin;
const ParentLayerCoord thumbOriginDeltaPL = thumbOriginDelta * effectiveZoom;
xTranslation -= thumbOriginDeltaPL;
if (metrics.IsRootScrollable()) {
xTranslation *= metrics.GetPresShellResolution();
}
scrollbarTransform.PostScale(xScale, 1.f, 1.f);
scrollbarTransform.PostTranslate(xTranslation, 0, 0);
}
Matrix4x4 transform = aScrollbar->GetLocalTransform() * scrollbarTransform;
Matrix4x4 compensation;
// If the scrollbar layer is for the root then the content's resolution
// applies to the scrollbar as well. Since we don't actually want the scroll
// thumb's size to vary with the zoom (other than its length reflecting the
// fraction of the scrollable length that's in view, which is taken care of
// above), we apply a transform to cancel out this resolution.
if (metrics.IsRootScrollable()) {
compensation =
Matrix4x4::Scaling(metrics.GetPresShellResolution(),
metrics.GetPresShellResolution(),
1.0f).Inverse();
}
// If the scrollbar layer is a child of the content it is a scrollbar for,
// then we need to adjust for any async transform (including an overscroll
// transform) on the content. This needs to be cancelled out because layout
// positions and sizes the scrollbar on the assumption that there is no async
// transform, and without this adjustment the scrollbar will end up in the
// wrong place.
//
// Note that since the async transform is applied on top of the content's
// regular transform, we need to make sure to unapply the async transform in
// the same coordinate space. This requires applying the content transform
// and then unapplying it after unapplying the async transform.
if (aScrollbarIsDescendant) {
Matrix4x4 asyncUntransform = (asyncTransform * apzc->GetOverscrollTransform()).Inverse();
Matrix4x4 contentTransform = aContent.GetTransform();
Matrix4x4 contentUntransform = contentTransform.Inverse();
Matrix4x4 asyncCompensation = contentTransform
* asyncUntransform
* contentUntransform;
compensation = compensation * asyncCompensation;
// We also need to make a corresponding change on the clip rect of all the
// layers on the ancestor chain from the scrollbar layer up to but not
// including the layer with the async transform. Otherwise the scrollbar
// shifts but gets clipped and so appears to flicker.
for (Layer* ancestor = aScrollbar; ancestor != aContent.GetLayer(); ancestor = ancestor->GetParent()) {
TransformClipRect(ancestor, asyncCompensation);
}
}
transform = transform * compensation;
SetShadowTransform(aScrollbar, transform);
}
static LayerMetricsWrapper
FindScrolledLayerRecursive(Layer* aScrollbar, const LayerMetricsWrapper& aSubtreeRoot)
{
if (LayerIsScrollbarTarget(aSubtreeRoot, aScrollbar)) {
return aSubtreeRoot;
}
for (LayerMetricsWrapper child = aSubtreeRoot.GetFirstChild();
child;
child = child.GetNextSibling())
{
// Do not recurse into RefLayers, since our initial aSubtreeRoot is the
// root (or RefLayer root) of a single layer space to search.
if (child.AsRefLayer()) {
continue;
}
LayerMetricsWrapper target = FindScrolledLayerRecursive(aScrollbar, child);
if (target) {
return target;
}
}
return LayerMetricsWrapper();
}
static LayerMetricsWrapper
FindScrolledLayerForScrollbar(Layer* aScrollbar, bool* aOutIsAncestor)
{
// First check if the scrolled layer is an ancestor of the scrollbar layer.
LayerMetricsWrapper root(aScrollbar->Manager()->GetRoot());
LayerMetricsWrapper prevAncestor(aScrollbar);
for (LayerMetricsWrapper ancestor(aScrollbar); ancestor; ancestor = ancestor.GetParent()) {
// Don't walk into remote layer trees; the scrollbar will always be in
// the same layer space.
if (ancestor.AsRefLayer()) {
root = prevAncestor;
break;
}
prevAncestor = ancestor;
if (LayerIsScrollbarTarget(ancestor, aScrollbar)) {
*aOutIsAncestor = true;
return ancestor;
}
}
// Search the entire layer space of the scrollbar.
return FindScrolledLayerRecursive(aScrollbar, root);
}
void
AsyncCompositionManager::ApplyAsyncTransformToScrollbar(Layer* aLayer)
{
// If this layer corresponds to a scrollbar, then there should be a layer that
// is a previous sibling or a parent that has a matching ViewID on its FrameMetrics.
// That is the content that this scrollbar is for. We pick up the transient
// async transform from that layer and use it to update the scrollbar position.
// Note that it is possible that the content layer is no longer there; in
// this case we don't need to do anything because there can't be an async
// transform on the content.
bool isAncestor = false;
const LayerMetricsWrapper& scrollTarget = FindScrolledLayerForScrollbar(aLayer, &isAncestor);
if (scrollTarget) {
ApplyAsyncTransformToScrollbarForContent(aLayer, scrollTarget, isAncestor);
}
}
void
AsyncCompositionManager::TransformScrollableLayer(Layer* aLayer)
{
FrameMetrics metrics = LayerMetricsWrapper::TopmostScrollableMetrics(aLayer);
if (!metrics.IsScrollable()) {
// On Fennec it's possible that the there is no scrollable layer in the
// tree, and this function just gets called with the root layer. In that
// case TopmostScrollableMetrics will return an empty FrameMetrics but we
// still want to use the actual non-scrollable metrics from the layer.
metrics = LayerMetricsWrapper::BottommostMetrics(aLayer);
}
// We must apply the resolution scale before a pan/zoom transform, so we call
// GetTransform here.
Matrix4x4 oldTransform = aLayer->GetTransform();
CSSToLayerScale geckoZoom = metrics.LayersPixelsPerCSSPixel().ToScaleFactor();
LayerIntPoint scrollOffsetLayerPixels = RoundedToInt(metrics.GetScrollOffset() * geckoZoom);
if (mIsFirstPaint) {
mContentRect = metrics.GetScrollableRect();
SetFirstPaintViewport(scrollOffsetLayerPixels,
geckoZoom,
mContentRect);
mIsFirstPaint = false;
} else if (!metrics.GetScrollableRect().IsEqualEdges(mContentRect)) {
mContentRect = metrics.GetScrollableRect();
SetPageRect(mContentRect);
}
// We synchronise the viewport information with Java after sending the above
// notifications, so that Java can take these into account in its response.
// Calculate the absolute display port to send to Java
LayerIntRect displayPort = RoundedToInt(
(metrics.GetCriticalDisplayPort().IsEmpty()
? metrics.GetDisplayPort()
: metrics.GetCriticalDisplayPort()
) * geckoZoom);
displayPort += scrollOffsetLayerPixels;
LayerMargin fixedLayerMargins(0, 0, 0, 0);
ScreenPoint offset(0, 0);
// Ideally we would initialize userZoom to AsyncPanZoomController::CalculateResolution(metrics)
// but this causes a reftest-ipc test to fail (see bug 883646 comment 27). The reason for this
// appears to be that metrics.mZoom is poorly initialized in some scenarios. In these scenarios,
// however, we can assume there is no async zooming in progress and so the following statement
// works fine.
CSSToParentLayerScale userZoom(metrics.GetDevPixelsPerCSSPixel()
// This function only applies to the root scrollable frame,
// for which we can assume that x and y scales are equal.
* metrics.GetCumulativeResolution().ToScaleFactor()
* LayerToParentLayerScale(1));
ParentLayerPoint userScroll = metrics.GetScrollOffset() * userZoom;
SyncViewportInfo(displayPort, geckoZoom, mLayersUpdated,
userScroll, userZoom, fixedLayerMargins,
offset);
mLayersUpdated = false;
// Apply the render offset
mLayerManager->GetCompositor()->SetScreenRenderOffset(offset);
// Handle transformations for asynchronous panning and zooming. We determine the
// zoom used by Gecko from the transformation set on the root layer, and we
// determine the scroll offset used by Gecko from the frame metrics of the
// primary scrollable layer. We compare this to the user zoom and scroll
// offset in the view transform we obtained from Java in order to compute the
// transformation we need to apply.
ParentLayerPoint geckoScroll(0, 0);
if (metrics.IsScrollable()) {
geckoScroll = metrics.GetScrollOffset() * userZoom;
}
LayerToParentLayerScale asyncZoom = userZoom / metrics.LayersPixelsPerCSSPixel().ToScaleFactor();
ParentLayerPoint translation = userScroll - geckoScroll;
Matrix4x4 treeTransform = ViewTransform(asyncZoom, -translation);
// Apply the tree transform on top of GetLocalTransform() here (rather than
// GetTransform()) in case the OMTA code in SampleAnimations already set a
// shadow transform; in that case we want to apply ours on top of that one
// rather than clobber it.
SetShadowTransform(aLayer, aLayer->GetLocalTransform() * treeTransform);
// Make sure that overscroll and under-zoom are represented in the old
// transform so that fixed position content moves and scales accordingly.
// These calculations will effectively scale and offset fixed position layers
// in screen space when the compensatory transform is performed in
// AlignFixedAndStickyLayers.
ParentLayerRect contentScreenRect = mContentRect * userZoom;
Point3D overscrollTranslation;
if (userScroll.x < contentScreenRect.x) {
overscrollTranslation.x = contentScreenRect.x - userScroll.x;
} else if (userScroll.x + metrics.GetCompositionBounds().width > contentScreenRect.XMost()) {
overscrollTranslation.x = contentScreenRect.XMost() -
(userScroll.x + metrics.GetCompositionBounds().width);
}
if (userScroll.y < contentScreenRect.y) {
overscrollTranslation.y = contentScreenRect.y - userScroll.y;
} else if (userScroll.y + metrics.GetCompositionBounds().height > contentScreenRect.YMost()) {
overscrollTranslation.y = contentScreenRect.YMost() -
(userScroll.y + metrics.GetCompositionBounds().height);
}
oldTransform.PreTranslate(overscrollTranslation.x,
overscrollTranslation.y,
overscrollTranslation.z);
gfx::Size underZoomScale(1.0f, 1.0f);
if (mContentRect.width * userZoom.scale < metrics.GetCompositionBounds().width) {
underZoomScale.width = (mContentRect.width * userZoom.scale) /
metrics.GetCompositionBounds().width;
}
if (mContentRect.height * userZoom.scale < metrics.GetCompositionBounds().height) {
underZoomScale.height = (mContentRect.height * userZoom.scale) /
metrics.GetCompositionBounds().height;
}
oldTransform.PreScale(underZoomScale.width, underZoomScale.height, 1);
// Make sure fixed position layers don't move away from their anchor points
// when we're asynchronously panning or zooming
AlignFixedAndStickyLayers(aLayer, aLayer, metrics.GetScrollId(), oldTransform,
aLayer->GetLocalTransform(), fixedLayerMargins);
}
bool
AsyncCompositionManager::TransformShadowTree(TimeStamp aCurrentFrame,
TransformsToSkip aSkip)
{
PROFILER_LABEL("AsyncCompositionManager", "TransformShadowTree",
js::ProfileEntry::Category::GRAPHICS);
Layer* root = mLayerManager->GetRoot();
if (!root) {
return false;
}
// First, compute and set the shadow transforms from OMT animations.
// NB: we must sample animations *before* sampling pan/zoom
// transforms.
bool wantNextFrame = SampleAnimations(root, aCurrentFrame);
if (!(aSkip & TransformsToSkip::APZ)) {
// FIXME/bug 775437: unify this interface with the ~native-fennec
// derived code
//
// Attempt to apply an async content transform to any layer that has
// an async pan zoom controller (which means that it is rendered
// async using Gecko). If this fails, fall back to transforming the
// primary scrollable layer. "Failing" here means that we don't
// find a frame that is async scrollable. Note that the fallback
// code also includes Fennec which is rendered async. Fennec uses
// its own platform-specific async rendering that is done partially
// in Gecko and partially in Java.
wantNextFrame |= SampleAPZAnimations(LayerMetricsWrapper(root), aCurrentFrame);
if (!ApplyAsyncContentTransformToTree(root)) {
nsAutoTArray<Layer*,1> scrollableLayers;
#ifdef MOZ_WIDGET_ANDROID
mLayerManager->GetRootScrollableLayers(scrollableLayers);
#else
mLayerManager->GetScrollableLayers(scrollableLayers);
#endif
for (uint32_t i = 0; i < scrollableLayers.Length(); i++) {
if (scrollableLayers[i]) {
TransformScrollableLayer(scrollableLayers[i]);
}
}
}
}
LayerComposite* rootComposite = root->AsLayerComposite();
gfx::Matrix4x4 trans = rootComposite->GetShadowTransform();
trans *= gfx::Matrix4x4::From2D(mWorldTransform);
rootComposite->SetShadowTransform(trans);
return wantNextFrame;
}
void
AsyncCompositionManager::SetFirstPaintViewport(const LayerIntPoint& aOffset,
const CSSToLayerScale& aZoom,
const CSSRect& aCssPageRect)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SetFirstPaintViewport(aOffset, aZoom, aCssPageRect);
#endif
}
void
AsyncCompositionManager::SetPageRect(const CSSRect& aCssPageRect)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SetPageRect(aCssPageRect);
#endif
}
void
AsyncCompositionManager::SyncViewportInfo(const LayerIntRect& aDisplayPort,
const CSSToLayerScale& aDisplayResolution,
bool aLayersUpdated,
ParentLayerPoint& aScrollOffset,
CSSToParentLayerScale& aScale,
LayerMargin& aFixedLayerMargins,
ScreenPoint& aOffset)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SyncViewportInfo(aDisplayPort,
aDisplayResolution,
aLayersUpdated,
aScrollOffset,
aScale,
aFixedLayerMargins,
aOffset);
#endif
}
void
AsyncCompositionManager::SyncFrameMetrics(const ParentLayerPoint& aScrollOffset,
float aZoom,
const CSSRect& aCssPageRect,
bool aLayersUpdated,
const CSSRect& aDisplayPort,
const CSSToLayerScale& aDisplayResolution,
bool aIsFirstPaint,
LayerMargin& aFixedLayerMargins,
ScreenPoint& aOffset)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SyncFrameMetrics(aScrollOffset, aZoom, aCssPageRect,
aLayersUpdated, aDisplayPort,
aDisplayResolution, aIsFirstPaint,
aFixedLayerMargins, aOffset);
#endif
}
} // namespace layers
} // namespace mozilla