gecko/js/src/jsprf.cpp
2015-06-12 17:14:59 +02:00

1088 lines
27 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* Portable safe sprintf code.
*
* Author: Kipp E.B. Hickman
*/
#include "jsprf.h"
#include "mozilla/Snprintf.h"
#include "mozilla/Vector.h"
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "jsalloc.h"
#include "jspubtd.h"
#include "jsstr.h"
#include "jsutil.h"
using namespace js;
/*
* Note: on some platforms va_list is defined as an array,
* and requires array notation.
*/
#ifdef HAVE_VA_COPY
#define VARARGS_ASSIGN(foo, bar) VA_COPY(foo, bar)
#elif defined(HAVE_VA_LIST_AS_ARRAY)
#define VARARGS_ASSIGN(foo, bar) foo[0] = bar[0]
#else
#define VARARGS_ASSIGN(foo, bar) (foo) = (bar)
#endif
struct SprintfState
{
bool (*stuff)(SprintfState* ss, const char* sp, size_t len);
char* base;
char* cur;
size_t maxlen;
int (*func)(void* arg, const char* sp, uint32_t len);
void* arg;
};
/*
* Numbered Argument State
*/
struct NumArgState
{
int type; // type of the current ap
va_list ap; // point to the corresponding position on ap
};
typedef mozilla::Vector<NumArgState, 20, js::SystemAllocPolicy> NumArgStateVector;
#define TYPE_INT16 0
#define TYPE_UINT16 1
#define TYPE_INTN 2
#define TYPE_UINTN 3
#define TYPE_INT32 4
#define TYPE_UINT32 5
#define TYPE_INT64 6
#define TYPE_UINT64 7
#define TYPE_STRING 8
#define TYPE_DOUBLE 9
#define TYPE_INTSTR 10
#define TYPE_WSTRING 11
#define TYPE_UNKNOWN 20
#define FLAG_LEFT 0x1
#define FLAG_SIGNED 0x2
#define FLAG_SPACED 0x4
#define FLAG_ZEROS 0x8
#define FLAG_NEG 0x10
inline bool
generic_write(SprintfState* ss, const char* src, size_t srclen)
{
return (*ss->stuff)(ss, src, srclen);
}
inline bool
generic_write(SprintfState* ss, const char16_t* src, size_t srclen)
{
const size_t CHUNK_SIZE = 64;
char chunk[CHUNK_SIZE];
size_t j = 0;
size_t i = 0;
while (i < srclen) {
// FIXME: truncates characters to 8 bits
chunk[j++] = char(src[i++]);
if (j == CHUNK_SIZE || i == srclen) {
if (!(*ss->stuff)(ss, chunk, j))
return false;
j = 0;
}
}
return true;
}
// Fill into the buffer using the data in src
template <typename Char>
static bool
fill2(SprintfState* ss, const Char* src, int srclen, int width, int flags)
{
char space = ' ';
width -= srclen;
if (width > 0 && (flags & FLAG_LEFT) == 0) { // Right adjusting
if (flags & FLAG_ZEROS)
space = '0';
while (--width >= 0) {
if (!(*ss->stuff)(ss, &space, 1))
return false;
}
}
// Copy out the source data
if (!generic_write(ss, src, srclen))
return false;
if (width > 0 && (flags & FLAG_LEFT) != 0) { // Left adjusting
while (--width >= 0) {
if (!(*ss->stuff)(ss, &space, 1))
return false;
}
}
return true;
}
/*
* Fill a number. The order is: optional-sign zero-filling conversion-digits
*/
static bool
fill_n(SprintfState* ss, const char* src, int srclen, int width, int prec, int type, int flags)
{
int zerowidth = 0;
int precwidth = 0;
int signwidth = 0;
int leftspaces = 0;
int rightspaces = 0;
int cvtwidth;
char sign;
if ((type & 1) == 0) {
if (flags & FLAG_NEG) {
sign = '-';
signwidth = 1;
} else if (flags & FLAG_SIGNED) {
sign = '+';
signwidth = 1;
} else if (flags & FLAG_SPACED) {
sign = ' ';
signwidth = 1;
}
}
cvtwidth = signwidth + srclen;
if (prec > 0) {
if (prec > srclen) {
precwidth = prec - srclen; // Need zero filling
cvtwidth += precwidth;
}
}
if ((flags & FLAG_ZEROS) && (prec < 0)) {
if (width > cvtwidth) {
zerowidth = width - cvtwidth; // Zero filling
cvtwidth += zerowidth;
}
}
if (flags & FLAG_LEFT) {
if (width > cvtwidth) {
// Space filling on the right (i.e. left adjusting)
rightspaces = width - cvtwidth;
}
} else {
if (width > cvtwidth) {
// Space filling on the left (i.e. right adjusting)
leftspaces = width - cvtwidth;
}
}
while (--leftspaces >= 0) {
if (!(*ss->stuff)(ss, " ", 1))
return false;
}
if (signwidth) {
if (!(*ss->stuff)(ss, &sign, 1))
return false;
}
while (--precwidth >= 0) {
if (!(*ss->stuff)(ss, "0", 1))
return false;
}
while (--zerowidth >= 0) {
if (!(*ss->stuff)(ss, "0", 1))
return false;
}
if (!(*ss->stuff)(ss, src, uint32_t(srclen)))
return false;
while (--rightspaces >= 0) {
if (!(*ss->stuff)(ss, " ", 1))
return false;
}
return true;
}
/* Convert a long into its printable form. */
static bool cvt_l(SprintfState* ss, long num, int width, int prec, int radix,
int type, int flags, const char* hexp)
{
char cvtbuf[100];
char* cvt;
int digits;
// according to the man page this needs to happen
if ((prec == 0) && (num == 0))
return true;
// Converting decimal is a little tricky. In the unsigned case we
// need to stop when we hit 10 digits. In the signed case, we can
// stop when the number is zero.
cvt = cvtbuf + sizeof(cvtbuf);
digits = 0;
while (num) {
int digit = (((unsigned long)num) % radix) & 0xF;
*--cvt = hexp[digit];
digits++;
num = (long)(((unsigned long)num) / radix);
}
if (digits == 0) {
*--cvt = '0';
digits++;
}
// Now that we have the number converted without its sign, deal with
// the sign and zero padding.
return fill_n(ss, cvt, digits, width, prec, type, flags);
}
/* Convert a 64-bit integer into its printable form. */
static bool cvt_ll(SprintfState* ss, int64_t num, int width, int prec, int radix,
int type, int flags, const char* hexp)
{
// According to the man page, this needs to happen.
if (prec == 0 && num == 0)
return true;
// Converting decimal is a little tricky. In the unsigned case we
// need to stop when we hit 10 digits. In the signed case, we can
// stop when the number is zero.
int64_t rad = int64_t(radix);
char cvtbuf[100];
char* cvt = cvtbuf + sizeof(cvtbuf);
int digits = 0;
while (num != 0) {
int64_t quot = uint64_t(num) / rad;
int64_t rem = uint64_t(num) % rad;
int32_t digit = int32_t(rem);
*--cvt = hexp[digit & 0xf];
digits++;
num = quot;
}
if (digits == 0) {
*--cvt = '0';
digits++;
}
// Now that we have the number converted without its sign, deal with
// the sign and zero padding.
return fill_n(ss, cvt, digits, width, prec, type, flags);
}
/*
* Convert a double precision floating point number into its printable
* form.
*/
static bool cvt_f(SprintfState* ss, double d, const char* fmt0, const char* fmt1)
{
char fin[20];
char fout[300];
int amount = fmt1 - fmt0;
MOZ_ASSERT((amount > 0) && (amount < (int)sizeof(fin)));
if (amount >= (int)sizeof(fin)) {
// Totally bogus % command to sprintf. Just ignore it
return true;
}
js_memcpy(fin, fmt0, (size_t)amount);
fin[amount] = 0;
// Convert floating point using the native snprintf code
#ifdef DEBUG
{
const char* p = fin;
while (*p) {
MOZ_ASSERT(*p != 'L');
p++;
}
}
#endif
snprintf_literal(fout, fin, d);
return (*ss->stuff)(ss, fout, strlen(fout));
}
static inline const char* generic_null_str(const char*) { return "(null)"; }
static inline const char16_t* generic_null_str(const char16_t*) { return MOZ_UTF16("(null)"); }
static inline size_t generic_strlen(const char* s) { return strlen(s); }
static inline size_t generic_strlen(const char16_t* s) { return js_strlen(s); }
/*
* Convert a string into its printable form. "width" is the output
* width. "prec" is the maximum number of characters of "s" to output,
* where -1 means until NUL.
*/
template <typename Char>
static bool
cvt_s(SprintfState* ss, const Char* s, int width, int prec, int flags)
{
if (prec == 0)
return true;
if (!s)
s = generic_null_str(s);
// Limit string length by precision value
int slen = int(generic_strlen(s));
if (0 < prec && prec < slen)
slen = prec;
// and away we go
return fill2(ss, s, slen, width, flags);
}
/*
* BuildArgArray stands for Numbered Argument list Sprintf
* for example,
* fmp = "%4$i, %2$d, %3s, %1d";
* the number must start from 1, and no gap among them
*/
static bool
BuildArgArray(const char* fmt, va_list ap, NumArgStateVector& nas)
{
size_t number = 0, cn = 0, i;
const char* p;
char c;
// First pass:
// Detemine how many legal % I have got, then allocate space.
p = fmt;
i = 0;
while ((c = *p++) != 0) {
if (c != '%')
continue;
if ((c = *p++) == '%') // skip %% case
continue;
while (c != 0) {
if (c > '9' || c < '0') {
if (c == '$') { // numbered argument case
if (i > 0)
return false;
number++;
} else { // non-numbered argument case
if (number > 0)
return false;
i = 1;
}
break;
}
c = *p++;
}
}
if (number == 0)
return true;
if (!nas.growByUninitialized(number))
return false;
for (i = 0; i < number; i++)
nas[i].type = TYPE_UNKNOWN;
// Second pass:
// Set nas[].type.
p = fmt;
while ((c = *p++) != 0) {
if (c != '%')
continue;
c = *p++;
if (c == '%')
continue;
cn = 0;
while (c && c != '$') { // should improve error check later
cn = cn*10 + c - '0';
c = *p++;
}
if (!c || cn < 1 || cn > number)
return false;
// nas[cn] starts from 0, and make sure nas[cn].type is not assigned.
cn--;
if (nas[cn].type != TYPE_UNKNOWN)
continue;
c = *p++;
// width
if (c == '*') {
// not supported feature, for the argument is not numbered
return false;
}
while ((c >= '0') && (c <= '9')) {
c = *p++;
}
// precision
if (c == '.') {
c = *p++;
if (c == '*') {
// not supported feature, for the argument is not numbered
return false;
}
while ((c >= '0') && (c <= '9')) {
c = *p++;
}
}
// size
nas[cn].type = TYPE_INTN;
if (c == 'h') {
nas[cn].type = TYPE_INT16;
c = *p++;
} else if (c == 'L') {
// XXX not quite sure here
nas[cn].type = TYPE_INT64;
c = *p++;
} else if (c == 'l') {
nas[cn].type = TYPE_INT32;
c = *p++;
if (c == 'l') {
nas[cn].type = TYPE_INT64;
c = *p++;
}
} else if (c == 'z' || c == 'I') {
static_assert(sizeof(size_t) == sizeof(int32_t) || sizeof(size_t) == sizeof(int64_t),
"size_t is not one of the expected sizes");
nas[cn].type = sizeof(size_t) == sizeof(int64_t) ? TYPE_INT64 : TYPE_INT32;
c = *p++;
}
// format
switch (c) {
case 'd':
case 'c':
case 'i':
case 'o':
case 'u':
case 'x':
case 'X':
break;
case 'e':
case 'f':
case 'g':
nas[cn].type = TYPE_DOUBLE;
break;
case 'p':
// XXX should use cpp
if (sizeof(void*) == sizeof(int32_t)) {
nas[cn].type = TYPE_UINT32;
} else if (sizeof(void*) == sizeof(int64_t)) {
nas[cn].type = TYPE_UINT64;
} else if (sizeof(void*) == sizeof(int)) {
nas[cn].type = TYPE_UINTN;
} else {
nas[cn].type = TYPE_UNKNOWN;
}
break;
case 'C':
case 'S':
case 'E':
case 'G':
// XXX not supported I suppose
MOZ_ASSERT(0);
nas[cn].type = TYPE_UNKNOWN;
break;
case 's':
nas[cn].type = (nas[cn].type == TYPE_UINT16) ? TYPE_WSTRING : TYPE_STRING;
break;
case 'n':
nas[cn].type = TYPE_INTSTR;
break;
default:
MOZ_ASSERT(0);
nas[cn].type = TYPE_UNKNOWN;
break;
}
// get a legal para.
if (nas[cn].type == TYPE_UNKNOWN)
return false;
}
// Third pass:
// Fill nas[].ap.
cn = 0;
while (cn < number) {
if (nas[cn].type == TYPE_UNKNOWN) {
cn++;
continue;
}
VARARGS_ASSIGN(nas[cn].ap, ap);
switch (nas[cn].type) {
case TYPE_INT16:
case TYPE_UINT16:
case TYPE_INTN:
case TYPE_UINTN: (void) va_arg(ap, int); break;
case TYPE_INT32: (void) va_arg(ap, int32_t); break;
case TYPE_UINT32: (void) va_arg(ap, uint32_t); break;
case TYPE_INT64: (void) va_arg(ap, int64_t); break;
case TYPE_UINT64: (void) va_arg(ap, uint64_t); break;
case TYPE_STRING: (void) va_arg(ap, char*); break;
case TYPE_WSTRING: (void) va_arg(ap, char16_t*); break;
case TYPE_INTSTR: (void) va_arg(ap, int*); break;
case TYPE_DOUBLE: (void) va_arg(ap, double); break;
default: return false;
}
cn++;
}
return true;
}
/*
* The workhorse sprintf code.
*/
static bool
dosprintf(SprintfState* ss, const char* fmt, va_list ap)
{
char c;
int flags, width, prec, radix, type;
union {
char ch;
char16_t wch;
int i;
long l;
int64_t ll;
double d;
const char* s;
const char16_t* ws;
int* ip;
} u;
const char* fmt0;
static const char hex[] = "0123456789abcdef";
static const char HEX[] = "0123456789ABCDEF";
const char* hexp;
int i;
char pattern[20];
const char* dolPt = nullptr; // in "%4$.2f", dolPt will point to '.'
// Build an argument array, IF the fmt is numbered argument
// list style, to contain the Numbered Argument list pointers.
NumArgStateVector nas;
if (!BuildArgArray(fmt, ap, nas)) {
// the fmt contains error Numbered Argument format, jliu@netscape.com
MOZ_ASSERT(0);
return false;
}
while ((c = *fmt++) != 0) {
if (c != '%') {
if (!(*ss->stuff)(ss, fmt - 1, 1))
return false;
continue;
}
fmt0 = fmt - 1;
// Gobble up the % format string. Hopefully we have handled all
// of the strange cases!
flags = 0;
c = *fmt++;
if (c == '%') {
// quoting a % with %%
if (!(*ss->stuff)(ss, fmt - 1, 1))
return false;
continue;
}
if (!nas.empty()) {
// the fmt contains the Numbered Arguments feature
i = 0;
while (c && c != '$') { // should improve error check later
i = (i * 10) + (c - '0');
c = *fmt++;
}
if (nas[i - 1].type == TYPE_UNKNOWN)
return false;
ap = nas[i - 1].ap;
dolPt = fmt;
c = *fmt++;
}
// Examine optional flags. Note that we do not implement the
// '#' flag of sprintf(). The ANSI C spec. of the '#' flag is
// somewhat ambiguous and not ideal, which is perhaps why
// the various sprintf() implementations are inconsistent
// on this feature.
while ((c == '-') || (c == '+') || (c == ' ') || (c == '0')) {
if (c == '-') flags |= FLAG_LEFT;
if (c == '+') flags |= FLAG_SIGNED;
if (c == ' ') flags |= FLAG_SPACED;
if (c == '0') flags |= FLAG_ZEROS;
c = *fmt++;
}
if (flags & FLAG_SIGNED) flags &= ~FLAG_SPACED;
if (flags & FLAG_LEFT) flags &= ~FLAG_ZEROS;
// width
if (c == '*') {
c = *fmt++;
width = va_arg(ap, int);
} else {
width = 0;
while ((c >= '0') && (c <= '9')) {
width = (width * 10) + (c - '0');
c = *fmt++;
}
}
// precision
prec = -1;
if (c == '.') {
c = *fmt++;
if (c == '*') {
c = *fmt++;
prec = va_arg(ap, int);
} else {
prec = 0;
while ((c >= '0') && (c <= '9')) {
prec = (prec * 10) + (c - '0');
c = *fmt++;
}
}
}
// size
type = TYPE_INTN;
if (c == 'h') {
type = TYPE_INT16;
c = *fmt++;
} else if (c == 'L') {
// XXX not quite sure here
type = TYPE_INT64;
c = *fmt++;
} else if (c == 'l') {
type = TYPE_INT32;
c = *fmt++;
if (c == 'l') {
type = TYPE_INT64;
c = *fmt++;
}
} else if (c == 'z' || c == 'I') {
static_assert(sizeof(size_t) == sizeof(int32_t) || sizeof(size_t) == sizeof(int64_t),
"size_t is not one of the expected sizes");
type = sizeof(size_t) == sizeof(int64_t) ? TYPE_INT64 : TYPE_INT32;
c = *fmt++;
}
// format
hexp = hex;
switch (c) {
case 'd': case 'i': // decimal/integer
radix = 10;
goto fetch_and_convert;
case 'o': // octal
radix = 8;
type |= 1;
goto fetch_and_convert;
case 'u': // unsigned decimal
radix = 10;
type |= 1;
goto fetch_and_convert;
case 'x': // unsigned hex
radix = 16;
type |= 1;
goto fetch_and_convert;
case 'X': // unsigned HEX
radix = 16;
hexp = HEX;
type |= 1;
goto fetch_and_convert;
fetch_and_convert:
switch (type) {
case TYPE_INT16:
u.l = va_arg(ap, int);
if (u.l < 0) {
u.l = -u.l;
flags |= FLAG_NEG;
}
goto do_long;
case TYPE_UINT16:
u.l = va_arg(ap, int) & 0xffff;
goto do_long;
case TYPE_INTN:
u.l = va_arg(ap, int);
if (u.l < 0) {
u.l = -u.l;
flags |= FLAG_NEG;
}
goto do_long;
case TYPE_UINTN:
u.l = (long)va_arg(ap, unsigned int);
goto do_long;
case TYPE_INT32:
u.l = va_arg(ap, int32_t);
if (u.l < 0) {
u.l = -u.l;
flags |= FLAG_NEG;
}
goto do_long;
case TYPE_UINT32:
u.l = (long)va_arg(ap, uint32_t);
do_long:
if (!cvt_l(ss, u.l, width, prec, radix, type, flags, hexp))
return false;
break;
case TYPE_INT64:
u.ll = va_arg(ap, int64_t);
if (u.ll < 0) {
u.ll = -u.ll;
flags |= FLAG_NEG;
}
goto do_longlong;
case TYPE_UINT64:
u.ll = va_arg(ap, uint64_t);
do_longlong:
if (!cvt_ll(ss, u.ll, width, prec, radix, type, flags, hexp))
return false;
break;
}
break;
case 'e':
case 'E':
case 'f':
case 'g':
u.d = va_arg(ap, double);
if (!nas.empty()) {
i = fmt - dolPt;
if (i < int(sizeof(pattern))) {
pattern[0] = '%';
js_memcpy(&pattern[1], dolPt, size_t(i));
if (!cvt_f(ss, u.d, pattern, &pattern[i + 1]))
return false;
}
} else {
if (!cvt_f(ss, u.d, fmt0, fmt))
return false;
}
break;
case 'c':
if ((flags & FLAG_LEFT) == 0) {
while (width-- > 1) {
if (!(*ss->stuff)(ss, " ", 1))
return false;
}
}
switch (type) {
case TYPE_INT16:
case TYPE_INTN:
u.ch = va_arg(ap, int);
if (!(*ss->stuff)(ss, &u.ch, 1))
return false;
break;
}
if (flags & FLAG_LEFT) {
while (width-- > 1) {
if (!(*ss->stuff)(ss, " ", 1))
return false;
}
}
break;
case 'p':
if (sizeof(void*) == sizeof(int32_t)) {
type = TYPE_UINT32;
} else if (sizeof(void*) == sizeof(int64_t)) {
type = TYPE_UINT64;
} else if (sizeof(void*) == sizeof(int)) {
type = TYPE_UINTN;
} else {
MOZ_ASSERT(0);
break;
}
radix = 16;
goto fetch_and_convert;
#if 0
case 'C':
case 'S':
case 'E':
case 'G':
// XXX not supported I suppose
MOZ_ASSERT(0);
break;
#endif
case 's':
if(type == TYPE_INT16) {
u.ws = va_arg(ap, const char16_t*);
if (!cvt_s(ss, u.ws, width, prec, flags))
return false;
} else {
u.s = va_arg(ap, const char*);
if (!cvt_s(ss, u.s, width, prec, flags))
return false;
}
break;
case 'n':
u.ip = va_arg(ap, int*);
if (u.ip) {
*u.ip = ss->cur - ss->base;
}
break;
default:
// Not a % token after all... skip it
#if 0
MOZ_ASSERT(0);
#endif
if (!(*ss->stuff)(ss, "%", 1))
return false;
if (!(*ss->stuff)(ss, fmt - 1, 1))
return false;
}
}
// Stuff trailing NUL
if (!(*ss->stuff)(ss, "\0", 1))
return false;
return true;
}
/************************************************************************/
/*
* Stuff routine that automatically grows the js_malloc'd output buffer
* before it overflows.
*/
static bool
GrowStuff(SprintfState* ss, const char* sp, size_t len)
{
ptrdiff_t off;
char* newbase;
size_t newlen;
off = ss->cur - ss->base;
if (off + len >= ss->maxlen) {
/* Grow the buffer */
newlen = ss->maxlen + ((len > 32) ? len : 32);
newbase = static_cast<char*>(js_realloc(ss->base, newlen));
if (!newbase) {
/* Ran out of memory */
return false;
}
ss->base = newbase;
ss->maxlen = newlen;
ss->cur = ss->base + off;
}
/* Copy data */
while (len) {
--len;
*ss->cur++ = *sp++;
}
MOZ_ASSERT(size_t(ss->cur - ss->base) <= ss->maxlen);
return true;
}
/*
* sprintf into a js_malloc'd buffer
*/
JS_PUBLIC_API(char*)
JS_smprintf(const char* fmt, ...)
{
va_list ap;
char* rv;
va_start(ap, fmt);
rv = JS_vsmprintf(fmt, ap);
va_end(ap);
return rv;
}
/*
* Free memory allocated, for the caller, by JS_smprintf
*/
JS_PUBLIC_API(void)
JS_smprintf_free(char* mem)
{
js_free(mem);
}
JS_PUBLIC_API(char*)
JS_vsmprintf(const char* fmt, va_list ap)
{
SprintfState ss;
ss.stuff = GrowStuff;
ss.base = 0;
ss.cur = 0;
ss.maxlen = 0;
if (!dosprintf(&ss, fmt, ap)) {
js_free(ss.base);
return 0;
}
return ss.base;
}
/*
* Stuff routine that discards overflow data
*/
static bool
LimitStuff(SprintfState* ss, const char* sp, size_t len)
{
size_t limit = ss->maxlen - (ss->cur - ss->base);
if (len > limit)
len = limit;
while (len) {
--len;
*ss->cur++ = *sp++;
}
return true;
}
/*
* sprintf into a fixed size buffer. Make sure there is a NUL at the end
* when finished.
*/
JS_PUBLIC_API(uint32_t)
JS_snprintf(char* out, uint32_t outlen, const char* fmt, ...)
{
va_list ap;
int rv;
MOZ_ASSERT(int32_t(outlen) > 0);
if (int32_t(outlen) <= 0)
return 0;
va_start(ap, fmt);
rv = JS_vsnprintf(out, outlen, fmt, ap);
va_end(ap);
return rv;
}
JS_PUBLIC_API(uint32_t)
JS_vsnprintf(char* out, uint32_t outlen, const char* fmt, va_list ap)
{
SprintfState ss;
uint32_t n;
MOZ_ASSERT(int32_t(outlen) > 0);
if (int32_t(outlen) <= 0)
return 0;
ss.stuff = LimitStuff;
ss.base = out;
ss.cur = out;
ss.maxlen = outlen;
(void) dosprintf(&ss, fmt, ap);
/* If we added chars, and we didn't append a null, do it now. */
if (ss.cur != ss.base && ss.cur[-1] != '\0')
ss.cur[-1] = '\0';
n = ss.cur - ss.base;
return n ? n - 1 : n;
}
JS_PUBLIC_API(char*)
JS_sprintf_append(char* last, const char* fmt, ...)
{
va_list ap;
char* rv;
va_start(ap, fmt);
rv = JS_vsprintf_append(last, fmt, ap);
va_end(ap);
return rv;
}
JS_PUBLIC_API(char*)
JS_vsprintf_append(char* last, const char* fmt, va_list ap)
{
SprintfState ss;
ss.stuff = GrowStuff;
if (last) {
size_t lastlen = strlen(last);
ss.base = last;
ss.cur = last + lastlen;
ss.maxlen = lastlen;
} else {
ss.base = 0;
ss.cur = 0;
ss.maxlen = 0;
}
if (!dosprintf(&ss, fmt, ap)) {
js_free(ss.base);
return 0;
}
return ss.base;
}
#undef TYPE_INT16
#undef TYPE_UINT16
#undef TYPE_INTN
#undef TYPE_UINTN
#undef TYPE_INT32
#undef TYPE_UINT32
#undef TYPE_INT64
#undef TYPE_UINT64
#undef TYPE_STRING
#undef TYPE_DOUBLE
#undef TYPE_INTSTR
#undef TYPE_WSTRING
#undef TYPE_UNKNOWN
#undef FLAG_LEFT
#undef FLAG_SIGNED
#undef FLAG_SPACED
#undef FLAG_ZEROS
#undef FLAG_NEG