gecko/dom/animation/Animation.cpp
Nicholas Nethercote 6ee3666899 Bug 1127201 (attempt 2, part 1) - Replace most NS_ABORT_IF_FALSE calls with MOZ_ASSERT. r=Waldo.
--HG--
extra : rebase_source : 488e401ff87e31a2074c4108c4df0572d9536667
2015-02-09 14:34:50 -08:00

352 lines
12 KiB
C++

/* vim: set shiftwidth=2 tabstop=8 autoindent cindent expandtab: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/dom/Animation.h"
#include "mozilla/dom/AnimationBinding.h"
#include "mozilla/dom/AnimationEffect.h"
#include "mozilla/FloatingPoint.h"
#include "AnimationCommon.h"
#include "nsCSSPropertySet.h"
namespace mozilla {
void
ComputedTimingFunction::Init(const nsTimingFunction &aFunction)
{
mType = aFunction.mType;
if (mType == nsTimingFunction::Function) {
mTimingFunction.Init(aFunction.mFunc.mX1, aFunction.mFunc.mY1,
aFunction.mFunc.mX2, aFunction.mFunc.mY2);
} else {
mSteps = aFunction.mSteps;
}
}
static inline double
StepEnd(uint32_t aSteps, double aPortion)
{
MOZ_ASSERT(0.0 <= aPortion && aPortion <= 1.0, "out of range");
uint32_t step = uint32_t(aPortion * aSteps); // floor
return double(step) / double(aSteps);
}
double
ComputedTimingFunction::GetValue(double aPortion) const
{
switch (mType) {
case nsTimingFunction::Function:
return mTimingFunction.GetSplineValue(aPortion);
case nsTimingFunction::StepStart:
// There are diagrams in the spec that seem to suggest this check
// and the bounds point should not be symmetric with StepEnd, but
// should actually step up at rather than immediately after the
// fraction points. However, we rely on rounding negative values
// up to zero, so we can't do that. And it's not clear the spec
// really meant it.
return 1.0 - StepEnd(mSteps, 1.0 - aPortion);
default:
MOZ_ASSERT(false, "bad type");
// fall through
case nsTimingFunction::StepEnd:
return StepEnd(mSteps, aPortion);
}
}
// In the Web Animations model, the time fraction can be outside the range
// [0.0, 1.0] but it shouldn't be Infinity.
const double ComputedTiming::kNullTimeFraction = PositiveInfinity<double>();
namespace dom {
NS_IMPL_CYCLE_COLLECTION_WRAPPERCACHE(Animation, mDocument, mTarget)
NS_IMPL_CYCLE_COLLECTION_ROOT_NATIVE(Animation, AddRef)
NS_IMPL_CYCLE_COLLECTION_UNROOT_NATIVE(Animation, Release)
JSObject*
Animation::WrapObject(JSContext* aCx)
{
return AnimationBinding::Wrap(aCx, this);
}
already_AddRefed<AnimationEffect>
Animation::GetEffect()
{
nsRefPtr<AnimationEffect> effect = new AnimationEffect(this);
return effect.forget();
}
void
Animation::SetParentTime(Nullable<TimeDuration> aParentTime)
{
mParentTime = aParentTime;
}
ComputedTiming
Animation::GetComputedTimingAt(const Nullable<TimeDuration>& aLocalTime,
const AnimationTiming& aTiming)
{
const TimeDuration zeroDuration;
// Currently we expect negative durations to be picked up during CSS
// parsing but when we start receiving timing parameters from other sources
// we will need to clamp negative durations here.
// For now, if we're hitting this it probably means we're overflowing
// integer arithmetic in mozilla::TimeStamp.
MOZ_ASSERT(aTiming.mIterationDuration >= zeroDuration,
"Expecting iteration duration >= 0");
// Always return the same object to benefit from return-value optimization.
ComputedTiming result;
result.mActiveDuration = ActiveDuration(aTiming);
// The default constructor for ComputedTiming sets all other members to
// values consistent with an animation that has not been sampled.
if (aLocalTime.IsNull()) {
return result;
}
const TimeDuration& localTime = aLocalTime.Value();
// When we finish exactly at the end of an iteration we need to report
// the end of the final iteration and not the start of the next iteration
// so we set up a flag for that case.
bool isEndOfFinalIteration = false;
// Get the normalized time within the active interval.
StickyTimeDuration activeTime;
if (localTime >= aTiming.mDelay + result.mActiveDuration) {
result.mPhase = ComputedTiming::AnimationPhase_After;
if (!aTiming.FillsForwards()) {
// The animation isn't active or filling at this time.
result.mTimeFraction = ComputedTiming::kNullTimeFraction;
return result;
}
activeTime = result.mActiveDuration;
// Note that infinity == floor(infinity) so this will also be true when we
// have finished an infinitely repeating animation of zero duration.
isEndOfFinalIteration =
aTiming.mIterationCount != 0.0 &&
aTiming.mIterationCount == floor(aTiming.mIterationCount);
} else if (localTime < aTiming.mDelay) {
result.mPhase = ComputedTiming::AnimationPhase_Before;
if (!aTiming.FillsBackwards()) {
// The animation isn't active or filling at this time.
result.mTimeFraction = ComputedTiming::kNullTimeFraction;
return result;
}
// activeTime is zero
} else {
MOZ_ASSERT(result.mActiveDuration != zeroDuration,
"How can we be in the middle of a zero-duration interval?");
result.mPhase = ComputedTiming::AnimationPhase_Active;
activeTime = localTime - aTiming.mDelay;
}
// Get the position within the current iteration.
StickyTimeDuration iterationTime;
if (aTiming.mIterationDuration != zeroDuration) {
iterationTime = isEndOfFinalIteration
? StickyTimeDuration(aTiming.mIterationDuration)
: activeTime % aTiming.mIterationDuration;
} /* else, iterationTime is zero */
// Determine the 0-based index of the current iteration.
if (isEndOfFinalIteration) {
result.mCurrentIteration =
aTiming.mIterationCount == NS_IEEEPositiveInfinity()
? UINT64_MAX // FIXME: When we return this via the API we'll need
// to make sure it ends up being infinity.
: static_cast<uint64_t>(aTiming.mIterationCount) - 1;
} else if (activeTime == zeroDuration) {
// If the active time is zero we're either in the first iteration
// (including filling backwards) or we have finished an animation with an
// iteration duration of zero that is filling forwards (but we're not at
// the exact end of an iteration since we deal with that above).
result.mCurrentIteration =
result.mPhase == ComputedTiming::AnimationPhase_After
? static_cast<uint64_t>(aTiming.mIterationCount) // floor
: 0;
} else {
result.mCurrentIteration =
static_cast<uint64_t>(activeTime / aTiming.mIterationDuration); // floor
}
// Normalize the iteration time into a fraction of the iteration duration.
if (result.mPhase == ComputedTiming::AnimationPhase_Before) {
result.mTimeFraction = 0.0;
} else if (result.mPhase == ComputedTiming::AnimationPhase_After) {
result.mTimeFraction = isEndOfFinalIteration
? 1.0
: fmod(aTiming.mIterationCount, 1.0f);
} else {
// We are in the active phase so the iteration duration can't be zero.
MOZ_ASSERT(aTiming.mIterationDuration != zeroDuration,
"In the active phase of a zero-duration animation?");
result.mTimeFraction =
aTiming.mIterationDuration == TimeDuration::Forever()
? 0.0
: iterationTime / aTiming.mIterationDuration;
}
bool thisIterationReverse = false;
switch (aTiming.mDirection) {
case NS_STYLE_ANIMATION_DIRECTION_NORMAL:
thisIterationReverse = false;
break;
case NS_STYLE_ANIMATION_DIRECTION_REVERSE:
thisIterationReverse = true;
break;
case NS_STYLE_ANIMATION_DIRECTION_ALTERNATE:
thisIterationReverse = (result.mCurrentIteration & 1) == 1;
break;
case NS_STYLE_ANIMATION_DIRECTION_ALTERNATE_REVERSE:
thisIterationReverse = (result.mCurrentIteration & 1) == 0;
break;
}
if (thisIterationReverse) {
result.mTimeFraction = 1.0 - result.mTimeFraction;
}
return result;
}
StickyTimeDuration
Animation::ActiveDuration(const AnimationTiming& aTiming)
{
if (aTiming.mIterationCount == mozilla::PositiveInfinity<float>()) {
// An animation that repeats forever has an infinite active duration
// unless its iteration duration is zero, in which case it has a zero
// active duration.
const StickyTimeDuration zeroDuration;
return aTiming.mIterationDuration == zeroDuration
? zeroDuration
: StickyTimeDuration::Forever();
}
return StickyTimeDuration(
aTiming.mIterationDuration.MultDouble(aTiming.mIterationCount));
}
bool
Animation::IsCurrent() const
{
if (IsFinishedTransition()) {
return false;
}
ComputedTiming computedTiming = GetComputedTiming();
return computedTiming.mPhase == ComputedTiming::AnimationPhase_Before ||
computedTiming.mPhase == ComputedTiming::AnimationPhase_Active;
}
bool
Animation::IsInEffect() const
{
if (IsFinishedTransition()) {
return false;
}
ComputedTiming computedTiming = GetComputedTiming();
return computedTiming.mTimeFraction != ComputedTiming::kNullTimeFraction;
}
bool
Animation::HasAnimationOfProperty(nsCSSProperty aProperty) const
{
for (size_t propIdx = 0, propEnd = mProperties.Length();
propIdx != propEnd; ++propIdx) {
if (aProperty == mProperties[propIdx].mProperty) {
return true;
}
}
return false;
}
void
Animation::ComposeStyle(nsRefPtr<css::AnimValuesStyleRule>& aStyleRule,
nsCSSPropertySet& aSetProperties)
{
ComputedTiming computedTiming = GetComputedTiming();
// If the time fraction is null, we don't have fill data for the current
// time so we shouldn't animate.
if (computedTiming.mTimeFraction == ComputedTiming::kNullTimeFraction) {
return;
}
MOZ_ASSERT(0.0 <= computedTiming.mTimeFraction &&
computedTiming.mTimeFraction <= 1.0,
"timing fraction should be in [0-1]");
for (size_t propIdx = 0, propEnd = mProperties.Length();
propIdx != propEnd; ++propIdx)
{
const AnimationProperty& prop = mProperties[propIdx];
MOZ_ASSERT(prop.mSegments[0].mFromKey == 0.0, "incorrect first from key");
MOZ_ASSERT(prop.mSegments[prop.mSegments.Length() - 1].mToKey == 1.0,
"incorrect last to key");
if (aSetProperties.HasProperty(prop.mProperty)) {
// Animations are composed by AnimationPlayerCollection by iterating
// from the last animation to first. For animations targetting the
// same property, the later one wins. So if this property is already set,
// we should not override it.
return;
}
aSetProperties.AddProperty(prop.mProperty);
MOZ_ASSERT(prop.mSegments.Length() > 0,
"property should not be in animations if it has no segments");
// FIXME: Maybe cache the current segment?
const AnimationPropertySegment *segment = prop.mSegments.Elements(),
*segmentEnd = segment + prop.mSegments.Length();
while (segment->mToKey < computedTiming.mTimeFraction) {
MOZ_ASSERT(segment->mFromKey < segment->mToKey, "incorrect keys");
++segment;
if (segment == segmentEnd) {
MOZ_ASSERT_UNREACHABLE("incorrect time fraction");
break; // in order to continue in outer loop (just below)
}
MOZ_ASSERT(segment->mFromKey == (segment-1)->mToKey, "incorrect keys");
}
if (segment == segmentEnd) {
continue;
}
MOZ_ASSERT(segment->mFromKey < segment->mToKey, "incorrect keys");
MOZ_ASSERT(segment >= prop.mSegments.Elements() &&
size_t(segment - prop.mSegments.Elements()) <
prop.mSegments.Length(),
"out of array bounds");
if (!aStyleRule) {
// Allocate the style rule now that we know we have animation data.
aStyleRule = new css::AnimValuesStyleRule();
}
double positionInSegment =
(computedTiming.mTimeFraction - segment->mFromKey) /
(segment->mToKey - segment->mFromKey);
double valuePosition =
segment->mTimingFunction.GetValue(positionInSegment);
StyleAnimationValue *val = aStyleRule->AddEmptyValue(prop.mProperty);
#ifdef DEBUG
bool result =
#endif
StyleAnimationValue::Interpolate(prop.mProperty,
segment->mFromValue,
segment->mToValue,
valuePosition, *val);
MOZ_ASSERT(result, "interpolate must succeed now");
}
}
} // namespace dom
} // namespace mozilla