mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
1431 lines
46 KiB
C++
1431 lines
46 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim:set ts=2 sw=2 sts=2 et cindent: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
#include "nsDebug.h"
|
|
#include "nsOggCodecState.h"
|
|
#include "nsOggDecoder.h"
|
|
#include <string.h>
|
|
#include "nsTraceRefcnt.h"
|
|
#include "VideoUtils.h"
|
|
#include "nsBuiltinDecoderReader.h"
|
|
|
|
#include "mozilla/StandardInteger.h"
|
|
#include "mozilla/Util.h" // DebugOnly
|
|
|
|
using namespace mozilla;
|
|
|
|
#ifdef PR_LOGGING
|
|
extern PRLogModuleInfo* gBuiltinDecoderLog;
|
|
#define LOG(type, msg) PR_LOG(gBuiltinDecoderLog, type, msg)
|
|
#else
|
|
#define LOG(type, msg)
|
|
#endif
|
|
|
|
// Reads a little-endian encoded unsigned 32bit integer at p.
|
|
static PRUint32 LEUint32(const unsigned char* p)
|
|
{
|
|
return p[0] +
|
|
(p[1] << 8) +
|
|
(p[2] << 16) +
|
|
(p[3] << 24);
|
|
}
|
|
|
|
// Reads a little-endian encoded 64bit integer at p.
|
|
static PRInt64 LEInt64(const unsigned char* p)
|
|
{
|
|
PRUint32 lo = LEUint32(p);
|
|
PRUint32 hi = LEUint32(p + 4);
|
|
return static_cast<PRInt64>(lo) | (static_cast<PRInt64>(hi) << 32);
|
|
}
|
|
|
|
// Reads a little-endian encoded unsigned 16bit integer at p.
|
|
static PRUint16 LEUint16(const unsigned char* p)
|
|
{
|
|
return p[0] + (p[1] << 8);
|
|
}
|
|
|
|
// Reads a little-endian encoded signed 16bit integer at p.
|
|
static PRInt16 LEInt16(const unsigned char* p)
|
|
{
|
|
return static_cast<PRInt16>(LEUint16(p));
|
|
}
|
|
|
|
/** Decoder base class for Ogg-encapsulated streams. */
|
|
nsOggCodecState*
|
|
nsOggCodecState::Create(ogg_page* aPage)
|
|
{
|
|
NS_ASSERTION(ogg_page_bos(aPage), "Only call on BOS page!");
|
|
nsAutoPtr<nsOggCodecState> codecState;
|
|
if (aPage->body_len > 6 && memcmp(aPage->body+1, "theora", 6) == 0) {
|
|
codecState = new nsTheoraState(aPage);
|
|
} else if (aPage->body_len > 6 && memcmp(aPage->body+1, "vorbis", 6) == 0) {
|
|
codecState = new nsVorbisState(aPage);
|
|
#ifdef MOZ_OPUS
|
|
} else if (aPage->body_len > 8 && memcmp(aPage->body, "OpusHead", 8) == 0) {
|
|
codecState = new nsOpusState(aPage);
|
|
#endif
|
|
} else if (aPage->body_len > 8 && memcmp(aPage->body, "fishead\0", 8) == 0) {
|
|
codecState = new nsSkeletonState(aPage);
|
|
} else {
|
|
codecState = new nsOggCodecState(aPage, false);
|
|
}
|
|
return codecState->nsOggCodecState::Init() ? codecState.forget() : nsnull;
|
|
}
|
|
|
|
nsOggCodecState::nsOggCodecState(ogg_page* aBosPage, bool aActive) :
|
|
mPacketCount(0),
|
|
mSerial(ogg_page_serialno(aBosPage)),
|
|
mActive(aActive),
|
|
mDoneReadingHeaders(!aActive)
|
|
{
|
|
MOZ_COUNT_CTOR(nsOggCodecState);
|
|
memset(&mState, 0, sizeof(ogg_stream_state));
|
|
}
|
|
|
|
nsOggCodecState::~nsOggCodecState() {
|
|
MOZ_COUNT_DTOR(nsOggCodecState);
|
|
Reset();
|
|
#ifdef DEBUG
|
|
int ret =
|
|
#endif
|
|
ogg_stream_clear(&mState);
|
|
NS_ASSERTION(ret == 0, "ogg_stream_clear failed");
|
|
}
|
|
|
|
nsresult nsOggCodecState::Reset() {
|
|
if (ogg_stream_reset(&mState) != 0) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
mPackets.Erase();
|
|
ClearUnstamped();
|
|
return NS_OK;
|
|
}
|
|
|
|
void nsOggCodecState::ClearUnstamped()
|
|
{
|
|
for (PRUint32 i = 0; i < mUnstamped.Length(); ++i) {
|
|
nsOggCodecState::ReleasePacket(mUnstamped[i]);
|
|
}
|
|
mUnstamped.Clear();
|
|
}
|
|
|
|
bool nsOggCodecState::Init() {
|
|
int ret = ogg_stream_init(&mState, mSerial);
|
|
return ret == 0;
|
|
}
|
|
|
|
void nsVorbisState::RecordVorbisPacketSamples(ogg_packet* aPacket,
|
|
long aSamples)
|
|
{
|
|
#ifdef VALIDATE_VORBIS_SAMPLE_CALCULATION
|
|
mVorbisPacketSamples[aPacket] = aSamples;
|
|
#endif
|
|
}
|
|
|
|
void nsVorbisState::ValidateVorbisPacketSamples(ogg_packet* aPacket,
|
|
long aSamples)
|
|
{
|
|
#ifdef VALIDATE_VORBIS_SAMPLE_CALCULATION
|
|
NS_ASSERTION(mVorbisPacketSamples[aPacket] == aSamples,
|
|
"Decoded samples for Vorbis packet don't match expected!");
|
|
mVorbisPacketSamples.erase(aPacket);
|
|
#endif
|
|
}
|
|
|
|
void nsVorbisState::AssertHasRecordedPacketSamples(ogg_packet* aPacket)
|
|
{
|
|
#ifdef VALIDATE_VORBIS_SAMPLE_CALCULATION
|
|
NS_ASSERTION(mVorbisPacketSamples.count(aPacket) == 1,
|
|
"Must have recorded packet samples");
|
|
#endif
|
|
}
|
|
|
|
static ogg_packet* Clone(ogg_packet* aPacket) {
|
|
ogg_packet* p = new ogg_packet();
|
|
memcpy(p, aPacket, sizeof(ogg_packet));
|
|
p->packet = new unsigned char[p->bytes];
|
|
memcpy(p->packet, aPacket->packet, p->bytes);
|
|
return p;
|
|
}
|
|
|
|
void nsOggCodecState::ReleasePacket(ogg_packet* aPacket) {
|
|
if (aPacket)
|
|
delete [] aPacket->packet;
|
|
delete aPacket;
|
|
}
|
|
|
|
void nsPacketQueue::Append(ogg_packet* aPacket) {
|
|
nsDeque::Push(aPacket);
|
|
}
|
|
|
|
ogg_packet* nsOggCodecState::PacketOut() {
|
|
if (mPackets.IsEmpty()) {
|
|
return nsnull;
|
|
}
|
|
return mPackets.PopFront();
|
|
}
|
|
|
|
nsresult nsOggCodecState::PageIn(ogg_page* aPage) {
|
|
if (!mActive)
|
|
return NS_OK;
|
|
NS_ASSERTION(static_cast<PRUint32>(ogg_page_serialno(aPage)) == mSerial,
|
|
"Page must be for this stream!");
|
|
if (ogg_stream_pagein(&mState, aPage) == -1)
|
|
return NS_ERROR_FAILURE;
|
|
int r;
|
|
do {
|
|
ogg_packet packet;
|
|
r = ogg_stream_packetout(&mState, &packet);
|
|
if (r == 1) {
|
|
mPackets.Append(Clone(&packet));
|
|
}
|
|
} while (r != 0);
|
|
if (ogg_stream_check(&mState)) {
|
|
NS_WARNING("Unrecoverable error in ogg_stream_packetout");
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult nsOggCodecState::PacketOutUntilGranulepos(bool& aFoundGranulepos) {
|
|
int r;
|
|
aFoundGranulepos = false;
|
|
// Extract packets from the sync state until either no more packets
|
|
// come out, or we get a data packet with non -1 granulepos.
|
|
do {
|
|
ogg_packet packet;
|
|
r = ogg_stream_packetout(&mState, &packet);
|
|
if (r == 1) {
|
|
ogg_packet* clone = Clone(&packet);
|
|
if (IsHeader(&packet)) {
|
|
// Header packets go straight into the packet queue.
|
|
mPackets.Append(clone);
|
|
} else {
|
|
// We buffer data packets until we encounter a granulepos. We'll
|
|
// then use the granulepos to figure out the granulepos of the
|
|
// preceeding packets.
|
|
mUnstamped.AppendElement(clone);
|
|
aFoundGranulepos = packet.granulepos > 0;
|
|
}
|
|
}
|
|
} while (r != 0 && !aFoundGranulepos);
|
|
if (ogg_stream_check(&mState)) {
|
|
NS_WARNING("Unrecoverable error in ogg_stream_packetout");
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
nsTheoraState::nsTheoraState(ogg_page* aBosPage) :
|
|
nsOggCodecState(aBosPage, true),
|
|
mSetup(0),
|
|
mCtx(0),
|
|
mPixelAspectRatio(0)
|
|
{
|
|
MOZ_COUNT_CTOR(nsTheoraState);
|
|
th_info_init(&mInfo);
|
|
th_comment_init(&mComment);
|
|
}
|
|
|
|
nsTheoraState::~nsTheoraState() {
|
|
MOZ_COUNT_DTOR(nsTheoraState);
|
|
th_setup_free(mSetup);
|
|
th_decode_free(mCtx);
|
|
th_comment_clear(&mComment);
|
|
th_info_clear(&mInfo);
|
|
}
|
|
|
|
bool nsTheoraState::Init() {
|
|
if (!mActive)
|
|
return false;
|
|
|
|
PRInt64 n = mInfo.aspect_numerator;
|
|
PRInt64 d = mInfo.aspect_denominator;
|
|
|
|
mPixelAspectRatio = (n == 0 || d == 0) ?
|
|
1.0f : static_cast<float>(n) / static_cast<float>(d);
|
|
|
|
// Ensure the frame and picture regions aren't larger than our prescribed
|
|
// maximum, or zero sized.
|
|
nsIntSize frame(mInfo.frame_width, mInfo.frame_height);
|
|
nsIntRect picture(mInfo.pic_x, mInfo.pic_y, mInfo.pic_width, mInfo.pic_height);
|
|
if (!nsVideoInfo::ValidateVideoRegion(frame, picture, frame)) {
|
|
return mActive = false;
|
|
}
|
|
|
|
mCtx = th_decode_alloc(&mInfo, mSetup);
|
|
if (mCtx == NULL) {
|
|
return mActive = false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
nsTheoraState::DecodeHeader(ogg_packet* aPacket)
|
|
{
|
|
nsAutoRef<ogg_packet> autoRelease(aPacket);
|
|
mPacketCount++;
|
|
int ret = th_decode_headerin(&mInfo,
|
|
&mComment,
|
|
&mSetup,
|
|
aPacket);
|
|
|
|
// We must determine when we've read the last header packet.
|
|
// th_decode_headerin() does not tell us when it's read the last header, so
|
|
// we must keep track of the headers externally.
|
|
//
|
|
// There are 3 header packets, the Identification, Comment, and Setup
|
|
// headers, which must be in that order. If they're out of order, the file
|
|
// is invalid. If we've successfully read a header, and it's the setup
|
|
// header, then we're done reading headers. The first byte of each packet
|
|
// determines it's type as follows:
|
|
// 0x80 -> Identification header
|
|
// 0x81 -> Comment header
|
|
// 0x82 -> Setup header
|
|
// See http://www.theora.org/doc/Theora.pdf Chapter 6, "Bitstream Headers",
|
|
// for more details of the Ogg/Theora containment scheme.
|
|
bool isSetupHeader = aPacket->bytes > 0 && aPacket->packet[0] == 0x82;
|
|
if (ret < 0 || mPacketCount > 3) {
|
|
// We've received an error, or the first three packets weren't valid
|
|
// header packets. Assume bad input.
|
|
// Our caller will deactivate the bitstream.
|
|
return false;
|
|
} else if (ret > 0 && isSetupHeader && mPacketCount == 3) {
|
|
// Successfully read the three header packets.
|
|
mDoneReadingHeaders = true;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
PRInt64
|
|
nsTheoraState::Time(PRInt64 granulepos) {
|
|
if (!mActive) {
|
|
return -1;
|
|
}
|
|
return nsTheoraState::Time(&mInfo, granulepos);
|
|
}
|
|
|
|
bool
|
|
nsTheoraState::IsHeader(ogg_packet* aPacket) {
|
|
return th_packet_isheader(aPacket);
|
|
}
|
|
|
|
# define TH_VERSION_CHECK(_info,_maj,_min,_sub) \
|
|
(((_info)->version_major>(_maj)||(_info)->version_major==(_maj))&& \
|
|
(((_info)->version_minor>(_min)||(_info)->version_minor==(_min))&& \
|
|
(_info)->version_subminor>=(_sub)))
|
|
|
|
PRInt64 nsTheoraState::Time(th_info* aInfo, PRInt64 aGranulepos)
|
|
{
|
|
if (aGranulepos < 0 || aInfo->fps_numerator == 0) {
|
|
return -1;
|
|
}
|
|
// Implementation of th_granule_frame inlined here to operate
|
|
// on the th_info structure instead of the theora_state.
|
|
int shift = aInfo->keyframe_granule_shift;
|
|
ogg_int64_t iframe = aGranulepos >> shift;
|
|
ogg_int64_t pframe = aGranulepos - (iframe << shift);
|
|
PRInt64 frameno = iframe + pframe - TH_VERSION_CHECK(aInfo, 3, 2, 1);
|
|
CheckedInt64 t = ((CheckedInt64(frameno) + 1) * USECS_PER_S) * aInfo->fps_denominator;
|
|
if (!t.isValid())
|
|
return -1;
|
|
t /= aInfo->fps_numerator;
|
|
return t.isValid() ? t.value() : -1;
|
|
}
|
|
|
|
PRInt64 nsTheoraState::StartTime(PRInt64 granulepos) {
|
|
if (granulepos < 0 || !mActive || mInfo.fps_numerator == 0) {
|
|
return -1;
|
|
}
|
|
CheckedInt64 t = (CheckedInt64(th_granule_frame(mCtx, granulepos)) * USECS_PER_S) * mInfo.fps_denominator;
|
|
if (!t.isValid())
|
|
return -1;
|
|
return t.value() / mInfo.fps_numerator;
|
|
}
|
|
|
|
PRInt64
|
|
nsTheoraState::MaxKeyframeOffset()
|
|
{
|
|
// Determine the maximum time in microseconds by which a key frame could
|
|
// offset for the theora bitstream. Theora granulepos encode time as:
|
|
// ((key_frame_number << granule_shift) + frame_offset).
|
|
// Therefore the maximum possible time by which any frame could be offset
|
|
// from a keyframe is the duration of (1 << granule_shift) - 1) frames.
|
|
PRInt64 frameDuration;
|
|
|
|
// Max number of frames keyframe could possibly be offset.
|
|
PRInt64 keyframeDiff = (1 << mInfo.keyframe_granule_shift) - 1;
|
|
|
|
// Length of frame in usecs.
|
|
frameDuration = (mInfo.fps_denominator * USECS_PER_S) / mInfo.fps_numerator;
|
|
|
|
// Total time in usecs keyframe can be offset from any given frame.
|
|
return frameDuration * keyframeDiff;
|
|
}
|
|
|
|
nsresult
|
|
nsTheoraState::PageIn(ogg_page* aPage)
|
|
{
|
|
if (!mActive)
|
|
return NS_OK;
|
|
NS_ASSERTION(static_cast<PRUint32>(ogg_page_serialno(aPage)) == mSerial,
|
|
"Page must be for this stream!");
|
|
if (ogg_stream_pagein(&mState, aPage) == -1)
|
|
return NS_ERROR_FAILURE;
|
|
bool foundGp;
|
|
nsresult res = PacketOutUntilGranulepos(foundGp);
|
|
if (NS_FAILED(res))
|
|
return res;
|
|
if (foundGp && mDoneReadingHeaders) {
|
|
// We've found a packet with a granulepos, and we've loaded our metadata
|
|
// and initialized our decoder. Determine granulepos of buffered packets.
|
|
ReconstructTheoraGranulepos();
|
|
for (PRUint32 i = 0; i < mUnstamped.Length(); ++i) {
|
|
ogg_packet* packet = mUnstamped[i];
|
|
#ifdef DEBUG
|
|
NS_ASSERTION(!IsHeader(packet), "Don't try to recover header packet gp");
|
|
NS_ASSERTION(packet->granulepos != -1, "Packet must have gp by now");
|
|
#endif
|
|
mPackets.Append(packet);
|
|
}
|
|
mUnstamped.Clear();
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
// Returns 1 if the Theora info struct is decoding a media of Theora
|
|
// version (maj,min,sub) or later, otherwise returns 0.
|
|
int
|
|
TheoraVersion(th_info* info,
|
|
unsigned char maj,
|
|
unsigned char min,
|
|
unsigned char sub)
|
|
{
|
|
ogg_uint32_t ver = (maj << 16) + (min << 8) + sub;
|
|
ogg_uint32_t th_ver = (info->version_major << 16) +
|
|
(info->version_minor << 8) +
|
|
info->version_subminor;
|
|
return (th_ver >= ver) ? 1 : 0;
|
|
}
|
|
|
|
void nsTheoraState::ReconstructTheoraGranulepos()
|
|
{
|
|
if (mUnstamped.Length() == 0) {
|
|
return;
|
|
}
|
|
ogg_int64_t lastGranulepos = mUnstamped[mUnstamped.Length() - 1]->granulepos;
|
|
NS_ASSERTION(lastGranulepos != -1, "Must know last granulepos");
|
|
|
|
// Reconstruct the granulepos (and thus timestamps) of the decoded
|
|
// frames. Granulepos are stored as ((keyframe<<shift)+offset). We
|
|
// know the granulepos of the last frame in the list, so we can infer
|
|
// the granulepos of the intermediate frames using their frame numbers.
|
|
ogg_int64_t shift = mInfo.keyframe_granule_shift;
|
|
ogg_int64_t version_3_2_1 = TheoraVersion(&mInfo,3,2,1);
|
|
ogg_int64_t lastFrame = th_granule_frame(mCtx,
|
|
lastGranulepos) + version_3_2_1;
|
|
ogg_int64_t firstFrame = lastFrame - mUnstamped.Length() + 1;
|
|
|
|
// Until we encounter a keyframe, we'll assume that the "keyframe"
|
|
// segment of the granulepos is the first frame, or if that causes
|
|
// the "offset" segment to overflow, we assume the required
|
|
// keyframe is maximumally offset. Until we encounter a keyframe
|
|
// the granulepos will probably be wrong, but we can't decode the
|
|
// frame anyway (since we don't have its keyframe) so it doesn't really
|
|
// matter.
|
|
ogg_int64_t keyframe = lastGranulepos >> shift;
|
|
|
|
// The lastFrame, firstFrame, keyframe variables, as well as the frame
|
|
// variable in the loop below, store the frame number for Theora
|
|
// version >= 3.2.1 streams, and store the frame index for Theora
|
|
// version < 3.2.1 streams.
|
|
for (PRUint32 i = 0; i < mUnstamped.Length() - 1; ++i) {
|
|
ogg_int64_t frame = firstFrame + i;
|
|
ogg_int64_t granulepos;
|
|
ogg_packet* packet = mUnstamped[i];
|
|
bool isKeyframe = th_packet_iskeyframe(packet) == 1;
|
|
|
|
if (isKeyframe) {
|
|
granulepos = frame << shift;
|
|
keyframe = frame;
|
|
} else if (frame >= keyframe &&
|
|
frame - keyframe < ((ogg_int64_t)1 << shift))
|
|
{
|
|
// (frame - keyframe) won't overflow the "offset" segment of the
|
|
// granulepos, so it's safe to calculate the granulepos.
|
|
granulepos = (keyframe << shift) + (frame - keyframe);
|
|
} else {
|
|
// (frame - keyframeno) will overflow the "offset" segment of the
|
|
// granulepos, so we take "keyframe" to be the max possible offset
|
|
// frame instead.
|
|
ogg_int64_t k = NS_MAX(frame - (((ogg_int64_t)1 << shift) - 1), version_3_2_1);
|
|
granulepos = (k << shift) + (frame - k);
|
|
}
|
|
// Theora 3.2.1+ granulepos store frame number [1..N], so granulepos
|
|
// should be > 0.
|
|
// Theora 3.2.0 granulepos store the frame index [0..(N-1)], so
|
|
// granulepos should be >= 0.
|
|
NS_ASSERTION(granulepos >= version_3_2_1,
|
|
"Invalid granulepos for Theora version");
|
|
|
|
// Check that the frame's granule number is one more than the
|
|
// previous frame's.
|
|
NS_ASSERTION(i == 0 ||
|
|
th_granule_frame(mCtx, granulepos) ==
|
|
th_granule_frame(mCtx, mUnstamped[i-1]->granulepos) + 1,
|
|
"Granulepos calculation is incorrect!");
|
|
|
|
packet->granulepos = granulepos;
|
|
}
|
|
|
|
// Check that the second to last frame's granule number is one less than
|
|
// the last frame's (the known granule number). If not our granulepos
|
|
// recovery missed a beat.
|
|
NS_ASSERTION(mUnstamped.Length() < 2 ||
|
|
th_granule_frame(mCtx, mUnstamped[mUnstamped.Length()-2]->granulepos) + 1 ==
|
|
th_granule_frame(mCtx, lastGranulepos),
|
|
"Granulepos recovery should catch up with packet->granulepos!");
|
|
}
|
|
|
|
nsresult nsVorbisState::Reset()
|
|
{
|
|
nsresult res = NS_OK;
|
|
if (mActive && vorbis_synthesis_restart(&mDsp) != 0) {
|
|
res = NS_ERROR_FAILURE;
|
|
}
|
|
if (NS_FAILED(nsOggCodecState::Reset())) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
mGranulepos = 0;
|
|
mPrevVorbisBlockSize = 0;
|
|
|
|
return res;
|
|
}
|
|
|
|
nsVorbisState::nsVorbisState(ogg_page* aBosPage) :
|
|
nsOggCodecState(aBosPage, true),
|
|
mPrevVorbisBlockSize(0),
|
|
mGranulepos(0)
|
|
{
|
|
MOZ_COUNT_CTOR(nsVorbisState);
|
|
vorbis_info_init(&mInfo);
|
|
vorbis_comment_init(&mComment);
|
|
memset(&mDsp, 0, sizeof(vorbis_dsp_state));
|
|
memset(&mBlock, 0, sizeof(vorbis_block));
|
|
}
|
|
|
|
nsVorbisState::~nsVorbisState() {
|
|
MOZ_COUNT_DTOR(nsVorbisState);
|
|
Reset();
|
|
vorbis_block_clear(&mBlock);
|
|
vorbis_dsp_clear(&mDsp);
|
|
vorbis_info_clear(&mInfo);
|
|
vorbis_comment_clear(&mComment);
|
|
}
|
|
|
|
bool nsVorbisState::DecodeHeader(ogg_packet* aPacket) {
|
|
nsAutoRef<ogg_packet> autoRelease(aPacket);
|
|
mPacketCount++;
|
|
int ret = vorbis_synthesis_headerin(&mInfo,
|
|
&mComment,
|
|
aPacket);
|
|
// We must determine when we've read the last header packet.
|
|
// vorbis_synthesis_headerin() does not tell us when it's read the last
|
|
// header, so we must keep track of the headers externally.
|
|
//
|
|
// There are 3 header packets, the Identification, Comment, and Setup
|
|
// headers, which must be in that order. If they're out of order, the file
|
|
// is invalid. If we've successfully read a header, and it's the setup
|
|
// header, then we're done reading headers. The first byte of each packet
|
|
// determines it's type as follows:
|
|
// 0x1 -> Identification header
|
|
// 0x3 -> Comment header
|
|
// 0x5 -> Setup header
|
|
// For more details of the Vorbis/Ogg containment scheme, see the Vorbis I
|
|
// Specification, Chapter 4, Codec Setup and Packet Decode:
|
|
// http://www.xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-580004
|
|
|
|
bool isSetupHeader = aPacket->bytes > 0 && aPacket->packet[0] == 0x5;
|
|
|
|
if (ret < 0 || mPacketCount > 3) {
|
|
// We've received an error, or the first three packets weren't valid
|
|
// header packets. Assume bad input. Our caller will deactivate the
|
|
// bitstream.
|
|
return false;
|
|
} else if (ret == 0 && isSetupHeader && mPacketCount == 3) {
|
|
// Successfully read the three header packets.
|
|
// The bitstream remains active.
|
|
mDoneReadingHeaders = true;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool nsVorbisState::Init()
|
|
{
|
|
if (!mActive)
|
|
return false;
|
|
|
|
int ret = vorbis_synthesis_init(&mDsp, &mInfo);
|
|
if (ret != 0) {
|
|
NS_WARNING("vorbis_synthesis_init() failed initializing vorbis bitstream");
|
|
return mActive = false;
|
|
}
|
|
ret = vorbis_block_init(&mDsp, &mBlock);
|
|
if (ret != 0) {
|
|
NS_WARNING("vorbis_block_init() failed initializing vorbis bitstream");
|
|
if (mActive) {
|
|
vorbis_dsp_clear(&mDsp);
|
|
}
|
|
return mActive = false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
PRInt64 nsVorbisState::Time(PRInt64 granulepos)
|
|
{
|
|
if (!mActive) {
|
|
return -1;
|
|
}
|
|
|
|
return nsVorbisState::Time(&mInfo, granulepos);
|
|
}
|
|
|
|
PRInt64 nsVorbisState::Time(vorbis_info* aInfo, PRInt64 aGranulepos)
|
|
{
|
|
if (aGranulepos == -1 || aInfo->rate == 0) {
|
|
return -1;
|
|
}
|
|
CheckedInt64 t = CheckedInt64(aGranulepos) * USECS_PER_S;
|
|
if (!t.isValid())
|
|
t = 0;
|
|
return t.value() / aInfo->rate;
|
|
}
|
|
|
|
bool
|
|
nsVorbisState::IsHeader(ogg_packet* aPacket)
|
|
{
|
|
// The first byte in each Vorbis header packet is either 0x01, 0x03, or 0x05,
|
|
// i.e. the first bit is odd. Audio data packets have their first bit as 0x0.
|
|
// Any packet with its first bit set cannot be a data packet, it's a
|
|
// (possibly invalid) header packet.
|
|
// See: http://xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-610004.2.1
|
|
return aPacket->bytes > 0 ? (aPacket->packet[0] & 0x1) : false;
|
|
}
|
|
|
|
nsresult
|
|
nsVorbisState::PageIn(ogg_page* aPage)
|
|
{
|
|
if (!mActive)
|
|
return NS_OK;
|
|
NS_ASSERTION(static_cast<PRUint32>(ogg_page_serialno(aPage)) == mSerial,
|
|
"Page must be for this stream!");
|
|
if (ogg_stream_pagein(&mState, aPage) == -1)
|
|
return NS_ERROR_FAILURE;
|
|
bool foundGp;
|
|
nsresult res = PacketOutUntilGranulepos(foundGp);
|
|
if (NS_FAILED(res))
|
|
return res;
|
|
if (foundGp && mDoneReadingHeaders) {
|
|
// We've found a packet with a granulepos, and we've loaded our metadata
|
|
// and initialized our decoder. Determine granulepos of buffered packets.
|
|
ReconstructVorbisGranulepos();
|
|
for (PRUint32 i = 0; i < mUnstamped.Length(); ++i) {
|
|
ogg_packet* packet = mUnstamped[i];
|
|
AssertHasRecordedPacketSamples(packet);
|
|
NS_ASSERTION(!IsHeader(packet), "Don't try to recover header packet gp");
|
|
NS_ASSERTION(packet->granulepos != -1, "Packet must have gp by now");
|
|
mPackets.Append(packet);
|
|
}
|
|
mUnstamped.Clear();
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult nsVorbisState::ReconstructVorbisGranulepos()
|
|
{
|
|
// The number of samples in a Vorbis packet is:
|
|
// window_blocksize(previous_packet)/4+window_blocksize(current_packet)/4
|
|
// See: http://xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-230001.3.2
|
|
// So we maintain mPrevVorbisBlockSize, the block size of the last packet
|
|
// encountered. We also maintain mGranulepos, which is the granulepos of
|
|
// the last encountered packet. This enables us to give granulepos to
|
|
// packets when the last packet in mUnstamped doesn't have a granulepos
|
|
// (for example if the stream was truncated).
|
|
//
|
|
// We validate our prediction of the number of samples decoded when
|
|
// VALIDATE_VORBIS_SAMPLE_CALCULATION is defined by recording the predicted
|
|
// number of samples, and verifing we extract that many when decoding
|
|
// each packet.
|
|
|
|
NS_ASSERTION(mUnstamped.Length() > 0, "Length must be > 0");
|
|
ogg_packet* last = mUnstamped[mUnstamped.Length()-1];
|
|
NS_ASSERTION(last->e_o_s || last->granulepos >= 0,
|
|
"Must know last granulepos!");
|
|
if (mUnstamped.Length() == 1) {
|
|
ogg_packet* packet = mUnstamped[0];
|
|
long blockSize = vorbis_packet_blocksize(&mInfo, packet);
|
|
if (blockSize < 0) {
|
|
// On failure vorbis_packet_blocksize returns < 0. If we've got
|
|
// a bad packet, we just assume that decode will have to skip this
|
|
// packet, i.e. assume 0 samples are decodable from this packet.
|
|
blockSize = 0;
|
|
mPrevVorbisBlockSize = 0;
|
|
}
|
|
long samples = mPrevVorbisBlockSize / 4 + blockSize / 4;
|
|
mPrevVorbisBlockSize = blockSize;
|
|
if (packet->granulepos == -1) {
|
|
packet->granulepos = mGranulepos + samples;
|
|
}
|
|
|
|
// Account for a partial last frame
|
|
if (packet->e_o_s && packet->granulepos >= mGranulepos) {
|
|
samples = packet->granulepos - mGranulepos;
|
|
}
|
|
|
|
mGranulepos = packet->granulepos;
|
|
RecordVorbisPacketSamples(packet, samples);
|
|
return NS_OK;
|
|
}
|
|
|
|
bool unknownGranulepos = last->granulepos == -1;
|
|
int totalSamples = 0;
|
|
for (PRInt32 i = mUnstamped.Length() - 1; i > 0; i--) {
|
|
ogg_packet* packet = mUnstamped[i];
|
|
ogg_packet* prev = mUnstamped[i-1];
|
|
ogg_int64_t granulepos = packet->granulepos;
|
|
NS_ASSERTION(granulepos != -1, "Must know granulepos!");
|
|
long prevBlockSize = vorbis_packet_blocksize(&mInfo, prev);
|
|
long blockSize = vorbis_packet_blocksize(&mInfo, packet);
|
|
|
|
if (blockSize < 0 || prevBlockSize < 0) {
|
|
// On failure vorbis_packet_blocksize returns < 0. If we've got
|
|
// a bad packet, we just assume that decode will have to skip this
|
|
// packet, i.e. assume 0 samples are decodable from this packet.
|
|
blockSize = 0;
|
|
prevBlockSize = 0;
|
|
}
|
|
|
|
long samples = prevBlockSize / 4 + blockSize / 4;
|
|
totalSamples += samples;
|
|
prev->granulepos = granulepos - samples;
|
|
RecordVorbisPacketSamples(packet, samples);
|
|
}
|
|
|
|
if (unknownGranulepos) {
|
|
for (PRUint32 i = 0; i < mUnstamped.Length(); i++) {
|
|
ogg_packet* packet = mUnstamped[i];
|
|
packet->granulepos += mGranulepos + totalSamples + 1;
|
|
}
|
|
}
|
|
|
|
ogg_packet* first = mUnstamped[0];
|
|
long blockSize = vorbis_packet_blocksize(&mInfo, first);
|
|
if (blockSize < 0) {
|
|
mPrevVorbisBlockSize = 0;
|
|
blockSize = 0;
|
|
}
|
|
|
|
long samples = (mPrevVorbisBlockSize == 0) ? 0 :
|
|
mPrevVorbisBlockSize / 4 + blockSize / 4;
|
|
PRInt64 start = first->granulepos - samples;
|
|
RecordVorbisPacketSamples(first, samples);
|
|
|
|
if (last->e_o_s && start < mGranulepos) {
|
|
// We've calculated that there are more samples in this page than its
|
|
// granulepos claims, and it's the last page in the stream. This is legal,
|
|
// and we will need to prune the trailing samples when we come to decode it.
|
|
// We must correct the timestamps so that they follow the last Vorbis page's
|
|
// samples.
|
|
PRInt64 pruned = mGranulepos - start;
|
|
for (PRUint32 i = 0; i < mUnstamped.Length() - 1; i++) {
|
|
mUnstamped[i]->granulepos += pruned;
|
|
}
|
|
#ifdef VALIDATE_VORBIS_SAMPLE_CALCULATION
|
|
mVorbisPacketSamples[last] -= pruned;
|
|
#endif
|
|
}
|
|
|
|
mPrevVorbisBlockSize = vorbis_packet_blocksize(&mInfo, last);
|
|
mPrevVorbisBlockSize = NS_MAX(static_cast<long>(0), mPrevVorbisBlockSize);
|
|
mGranulepos = last->granulepos;
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
#ifdef MOZ_OPUS
|
|
nsOpusState::nsOpusState(ogg_page* aBosPage) :
|
|
nsOggCodecState(aBosPage, true),
|
|
mRate(0),
|
|
mNominalRate(0),
|
|
mChannels(0),
|
|
mPreSkip(0),
|
|
#ifdef MOZ_SAMPLE_TYPE_FLOAT32
|
|
mGain(1.0f),
|
|
#else
|
|
mGain_Q16(65536),
|
|
#endif
|
|
mChannelMapping(0),
|
|
mStreams(0),
|
|
mDecoder(NULL),
|
|
mSkip(0),
|
|
mPrevPacketGranulepos(0),
|
|
mPrevPageGranulepos(0)
|
|
{
|
|
MOZ_COUNT_CTOR(nsOpusState);
|
|
}
|
|
|
|
nsOpusState::~nsOpusState() {
|
|
MOZ_COUNT_DTOR(nsOpusState);
|
|
Reset();
|
|
|
|
if (mDecoder) {
|
|
opus_decoder_destroy(mDecoder);
|
|
mDecoder = NULL;
|
|
}
|
|
}
|
|
|
|
nsresult nsOpusState::Reset()
|
|
{
|
|
return Reset(false);
|
|
}
|
|
|
|
nsresult nsOpusState::Reset(bool aStart)
|
|
{
|
|
nsresult res = NS_OK;
|
|
|
|
if (mActive && mDecoder) {
|
|
// Reset the decoder.
|
|
opus_decoder_ctl(mDecoder, OPUS_RESET_STATE);
|
|
// Let the seek logic handle pre-roll if we're not seeking to the start.
|
|
mSkip = aStart ? mPreSkip : 0;
|
|
// This lets us distinguish the first page being the last page vs. just
|
|
// not having processed the previous page when we encounter the last page.
|
|
mPrevPageGranulepos = aStart ? 0 : -1;
|
|
mPrevPacketGranulepos = aStart ? 0 : -1;
|
|
}
|
|
|
|
// Clear queued data.
|
|
if (NS_FAILED(nsOggCodecState::Reset())) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
LOG(PR_LOG_DEBUG, ("Opus decoder reset, to skip %d", mSkip));
|
|
|
|
return res;
|
|
}
|
|
|
|
bool nsOpusState::Init(void)
|
|
{
|
|
if (!mActive)
|
|
return false;
|
|
|
|
int error;
|
|
|
|
NS_ASSERTION(mDecoder == NULL, "leaking OpusDecoder");
|
|
|
|
mDecoder = opus_decoder_create(mRate, mChannels, &error);
|
|
mSkip = mPreSkip;
|
|
|
|
LOG(PR_LOG_DEBUG, ("Opus decoder init, to skip %d", mSkip));
|
|
|
|
return error == OPUS_OK;
|
|
}
|
|
|
|
bool nsOpusState::DecodeHeader(ogg_packet* aPacket)
|
|
{
|
|
nsAutoRef<ogg_packet> autoRelease(aPacket);
|
|
switch(mPacketCount++) {
|
|
// Parse the id header.
|
|
case 0: {
|
|
if (aPacket->bytes < 19 || memcmp(aPacket->packet, "OpusHead", 8)) {
|
|
LOG(PR_LOG_DEBUG, ("Invalid Opus file: unrecognized header"));
|
|
return false;
|
|
}
|
|
|
|
mRate = 48000; // The Opus decoder runs at 48 kHz regardless.
|
|
|
|
int version = aPacket->packet[8];
|
|
// Accept file format versions 0.x.
|
|
if ((version & 0xf0) != 0) {
|
|
LOG(PR_LOG_DEBUG, ("Rejecting unknown Opus file version %d", version));
|
|
return false;
|
|
}
|
|
|
|
mChannels= aPacket->packet[9];
|
|
mPreSkip = LEUint16(aPacket->packet + 10);
|
|
mNominalRate = LEUint32(aPacket->packet + 12);
|
|
double gain_dB = LEInt16(aPacket->packet + 16) / 256.0;
|
|
#ifdef MOZ_SAMPLE_TYPE_FLOAT32
|
|
mGain = static_cast<float>(pow(10,0.05*gain_dB));
|
|
#else
|
|
mGain_Q16 = static_cast<PRInt32>(NS_MIN(65536*pow(10,0.05*gain_dB)+0.5,
|
|
static_cast<double>(PR_INT32_MAX)));
|
|
#endif
|
|
mChannelMapping = aPacket->packet[18];
|
|
|
|
if (mChannelMapping == 0) {
|
|
mStreams = 1;
|
|
} else if (aPacket->bytes > 19) {
|
|
mStreams = aPacket->packet[19];
|
|
} else {
|
|
LOG(PR_LOG_DEBUG, ("Invalid Opus file: channel mapping %d,"
|
|
" but no channel mapping table", mChannelMapping));
|
|
return false;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
LOG(PR_LOG_DEBUG, ("Opus stream header:"));
|
|
LOG(PR_LOG_DEBUG, (" channels: %d", mChannels));
|
|
LOG(PR_LOG_DEBUG, (" preskip: %d", mPreSkip));
|
|
LOG(PR_LOG_DEBUG, (" original: %d Hz", mNominalRate));
|
|
LOG(PR_LOG_DEBUG, (" gain: %.2f dB", gain_dB));
|
|
LOG(PR_LOG_DEBUG, ("Channel Mapping:"));
|
|
LOG(PR_LOG_DEBUG, (" family: %d", mChannelMapping));
|
|
LOG(PR_LOG_DEBUG, (" streams: %d", mStreams));
|
|
#endif
|
|
}
|
|
break;
|
|
|
|
// Parse the metadata header.
|
|
case 1: {
|
|
if (aPacket->bytes < 16 || memcmp(aPacket->packet, "OpusTags", 8))
|
|
return false;
|
|
|
|
// We don't actually need any of the data here, but validating the
|
|
// contents helps reduce the propagation of broken files.
|
|
// This only checks for actual malicious content: too little data, too
|
|
// many comments, or comments that are too long.
|
|
// It does not ensure they are valid UTF-8, nor does it validate the
|
|
// required ASCII_TAG=value format of the user comments.
|
|
const unsigned char *buf = aPacket->packet + 8;
|
|
PRUint32 bytes = aPacket->bytes - 8;
|
|
PRUint32 len;
|
|
// Skip the vendor string.
|
|
len = LEUint32(buf);
|
|
buf += 4;
|
|
bytes -= 4;
|
|
if (len > bytes)
|
|
return false;
|
|
buf += len;
|
|
bytes -= len;
|
|
// Skip the user comments.
|
|
if (bytes < 4)
|
|
return false;
|
|
PRUint32 ncomments = LEUint32(buf);
|
|
buf += 4;
|
|
bytes -= 4;
|
|
// If there are so many comments even their length fields won't fit in
|
|
// the packet, stop reading now.
|
|
if (ncomments > (bytes>>2))
|
|
return false;
|
|
PRUint32 i;
|
|
for (i = 0; i < ncomments; i++) {
|
|
if (bytes < 4)
|
|
return false;
|
|
len = LEUint32(buf);
|
|
buf += 4;
|
|
bytes -= 4;
|
|
if (len > bytes)
|
|
return false;
|
|
buf += len;
|
|
bytes -= len;
|
|
}
|
|
}
|
|
break;
|
|
|
|
// We made it to the first data packet (which includes reconstructing
|
|
// timestamps for it in PageIn). Success!
|
|
default: {
|
|
mDoneReadingHeaders = true;
|
|
// Put it back on the queue so we can decode it.
|
|
mPackets.PushFront(autoRelease.disown());
|
|
}
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Return the timestamp (in microseconds) equivalent to a granulepos. */
|
|
PRInt64 nsOpusState::Time(PRInt64 aGranulepos)
|
|
{
|
|
if (!mActive)
|
|
return -1;
|
|
|
|
return Time(mPreSkip, aGranulepos);
|
|
}
|
|
|
|
PRInt64 nsOpusState::Time(int aPreSkip, PRInt64 aGranulepos)
|
|
{
|
|
if (aGranulepos < 0)
|
|
return -1;
|
|
|
|
// Ogg Opus always runs at a granule rate of 48 kHz.
|
|
CheckedInt64 t = CheckedInt64(aGranulepos - aPreSkip) * USECS_PER_S;
|
|
return t.isValid() ? t.value() / 48000 : -1;
|
|
}
|
|
|
|
bool nsOpusState::IsHeader(ogg_packet* aPacket)
|
|
{
|
|
return aPacket->bytes >= 16 &&
|
|
(!memcmp(aPacket->packet, "OpusHead", 8) ||
|
|
!memcmp(aPacket->packet, "OpusTags", 8));
|
|
}
|
|
|
|
nsresult nsOpusState::PageIn(ogg_page* aPage)
|
|
{
|
|
if (!mActive)
|
|
return NS_OK;
|
|
NS_ASSERTION(static_cast<PRUint32>(ogg_page_serialno(aPage)) == mSerial,
|
|
"Page must be for this stream!");
|
|
if (ogg_stream_pagein(&mState, aPage) == -1)
|
|
return NS_ERROR_FAILURE;
|
|
|
|
bool haveGranulepos;
|
|
nsresult rv = PacketOutUntilGranulepos(haveGranulepos);
|
|
if (NS_FAILED(rv) || !haveGranulepos || mPacketCount < 2)
|
|
return rv;
|
|
if(!ReconstructOpusGranulepos())
|
|
return NS_ERROR_FAILURE;
|
|
for (PRUint32 i = 0; i < mUnstamped.Length(); i++) {
|
|
ogg_packet* packet = mUnstamped[i];
|
|
NS_ASSERTION(!IsHeader(packet), "Don't try to play a header packet");
|
|
NS_ASSERTION(packet->granulepos != -1, "Packet should have a granulepos");
|
|
mPackets.Append(packet);
|
|
}
|
|
mUnstamped.Clear();
|
|
return NS_OK;
|
|
}
|
|
|
|
// Helper method to return the change in granule position due to an Opus packet
|
|
// (as distinct from the number of samples in the packet, which depends on the
|
|
// decoder rate). It should work with a multistream Opus file, and continue to
|
|
// work should we ever allow the decoder to decode at a rate other than 48 kHz.
|
|
// It even works before we've created the actual Opus decoder.
|
|
static int GetOpusDeltaGP(ogg_packet* packet)
|
|
{
|
|
int nframes;
|
|
nframes = opus_packet_get_nb_frames(packet->packet, packet->bytes);
|
|
if (nframes > 0) {
|
|
return nframes*opus_packet_get_samples_per_frame(packet->packet, 48000);
|
|
}
|
|
NS_WARNING("Invalid Opus packet.");
|
|
return nframes;
|
|
}
|
|
|
|
bool nsOpusState::ReconstructOpusGranulepos(void)
|
|
{
|
|
NS_ASSERTION(mUnstamped.Length() > 0, "Must have unstamped packets");
|
|
ogg_packet* last = mUnstamped[mUnstamped.Length()-1];
|
|
NS_ASSERTION(last->e_o_s || last->granulepos > 0,
|
|
"Must know last granulepos!");
|
|
PRInt64 gp;
|
|
// If this is the last page, and we've seen at least one previous page (or
|
|
// this is the first page)...
|
|
if (last->e_o_s) {
|
|
if (mPrevPageGranulepos != -1) {
|
|
// If this file only has one page and the final granule position is
|
|
// smaller than the pre-skip amount, we MUST reject the stream.
|
|
if (!mDoneReadingHeaders && last->granulepos < mPreSkip)
|
|
return false;
|
|
PRInt64 last_gp = last->granulepos;
|
|
gp = mPrevPageGranulepos;
|
|
// Loop through the packets forwards, adding the current packet's
|
|
// duration to the previous granulepos to get the value for the
|
|
// current packet.
|
|
for (PRUint32 i = 0; i < mUnstamped.Length() - 1; ++i) {
|
|
ogg_packet* packet = mUnstamped[i];
|
|
int offset = GetOpusDeltaGP(packet);
|
|
// Check for error (negative offset) and overflow.
|
|
if (offset >= 0 && gp <= PR_INT64_MAX - offset) {
|
|
gp += offset;
|
|
if (gp >= last_gp) {
|
|
NS_WARNING("Opus end trimming removed more than a full packet.");
|
|
// We were asked to remove a full packet's worth of data or more.
|
|
// Encoders SHOULD NOT produce streams like this, but we'll handle
|
|
// it for them anyway.
|
|
gp = last_gp;
|
|
for (PRUint32 j = i+1; j < mUnstamped.Length(); ++j) {
|
|
nsOggCodecState::ReleasePacket(mUnstamped[j]);
|
|
}
|
|
mUnstamped.RemoveElementsAt(i+1, mUnstamped.Length() - (i+1));
|
|
last = packet;
|
|
last->e_o_s = 1;
|
|
}
|
|
}
|
|
packet->granulepos = gp;
|
|
}
|
|
mPrevPageGranulepos = last_gp;
|
|
return true;
|
|
} else {
|
|
NS_WARNING("No previous granule position to use for Opus end trimming.");
|
|
// If we don't have a previous granule position, fall through.
|
|
// We simply won't trim any samples from the end.
|
|
// TODO: Are we guaranteed to have seen a previous page if there is one?
|
|
}
|
|
}
|
|
|
|
gp = last->granulepos;
|
|
// Loop through the packets backwards, subtracting the next
|
|
// packet's duration from its granulepos to get the value
|
|
// for the current packet.
|
|
for (PRUint32 i = mUnstamped.Length() - 1; i > 0; i--) {
|
|
int offset = GetOpusDeltaGP(mUnstamped[i]);
|
|
// Check for error (negative offset) and overflow.
|
|
if (offset >= 0) {
|
|
if (offset <= gp) {
|
|
gp -= offset;
|
|
} else {
|
|
// If the granule position of the first data page is smaller than the
|
|
// number of decodable audio samples on that page, then we MUST reject
|
|
// the stream.
|
|
if (!mDoneReadingHeaders)
|
|
return false;
|
|
// It's too late to reject the stream.
|
|
// If we get here, this almost certainly means the file has screwed-up
|
|
// timestamps somewhere after the first page.
|
|
NS_WARNING("Clamping negative Opus granulepos to zero.");
|
|
gp = 0;
|
|
}
|
|
}
|
|
mUnstamped[i - 1]->granulepos = gp;
|
|
}
|
|
|
|
// Check to make sure the first granule position is at least as large as the
|
|
// total number of samples decodable from the first page with completed
|
|
// packets. This requires looking at the duration of the first packet, too.
|
|
// We MUST reject such streams.
|
|
if (!mDoneReadingHeaders && GetOpusDeltaGP(mUnstamped[0]) > gp)
|
|
return false;
|
|
mPrevPageGranulepos = last->granulepos;
|
|
return true;
|
|
}
|
|
#endif /* MOZ_OPUS */
|
|
|
|
nsSkeletonState::nsSkeletonState(ogg_page* aBosPage) :
|
|
nsOggCodecState(aBosPage, true),
|
|
mVersion(0),
|
|
mPresentationTime(0),
|
|
mLength(0)
|
|
{
|
|
MOZ_COUNT_CTOR(nsSkeletonState);
|
|
}
|
|
|
|
nsSkeletonState::~nsSkeletonState()
|
|
{
|
|
MOZ_COUNT_DTOR(nsSkeletonState);
|
|
}
|
|
|
|
// Support for Ogg Skeleton 4.0, as per specification at:
|
|
// http://wiki.xiph.org/Ogg_Skeleton_4
|
|
|
|
// Minimum length in bytes of a Skeleton header packet.
|
|
static const long SKELETON_MIN_HEADER_LEN = 28;
|
|
static const long SKELETON_4_0_MIN_HEADER_LEN = 80;
|
|
|
|
// Minimum length in bytes of a Skeleton 4.0 index packet.
|
|
static const long SKELETON_4_0_MIN_INDEX_LEN = 42;
|
|
|
|
// Minimum possible size of a compressed index keypoint.
|
|
static const size_t MIN_KEY_POINT_SIZE = 2;
|
|
|
|
// Byte offset of the major and minor version numbers in the
|
|
// Ogg Skeleton 4.0 header packet.
|
|
static const size_t SKELETON_VERSION_MAJOR_OFFSET = 8;
|
|
static const size_t SKELETON_VERSION_MINOR_OFFSET = 10;
|
|
|
|
// Byte-offsets of the presentation time numerator and denominator
|
|
static const size_t SKELETON_PRESENTATION_TIME_NUMERATOR_OFFSET = 12;
|
|
static const size_t SKELETON_PRESENTATION_TIME_DENOMINATOR_OFFSET = 20;
|
|
|
|
// Byte-offsets of the length of file field in the Skeleton 4.0 header packet.
|
|
static const size_t SKELETON_FILE_LENGTH_OFFSET = 64;
|
|
|
|
// Byte-offsets of the fields in the Skeleton index packet.
|
|
static const size_t INDEX_SERIALNO_OFFSET = 6;
|
|
static const size_t INDEX_NUM_KEYPOINTS_OFFSET = 10;
|
|
static const size_t INDEX_TIME_DENOM_OFFSET = 18;
|
|
static const size_t INDEX_FIRST_NUMER_OFFSET = 26;
|
|
static const size_t INDEX_LAST_NUMER_OFFSET = 34;
|
|
static const size_t INDEX_KEYPOINT_OFFSET = 42;
|
|
|
|
static bool IsSkeletonBOS(ogg_packet* aPacket)
|
|
{
|
|
return aPacket->bytes >= SKELETON_MIN_HEADER_LEN &&
|
|
memcmp(reinterpret_cast<char*>(aPacket->packet), "fishead", 8) == 0;
|
|
}
|
|
|
|
static bool IsSkeletonIndex(ogg_packet* aPacket)
|
|
{
|
|
return aPacket->bytes >= SKELETON_4_0_MIN_INDEX_LEN &&
|
|
memcmp(reinterpret_cast<char*>(aPacket->packet), "index", 5) == 0;
|
|
}
|
|
|
|
// Reads a variable length encoded integer at p. Will not read
|
|
// past aLimit. Returns pointer to character after end of integer.
|
|
static const unsigned char* ReadVariableLengthInt(const unsigned char* p,
|
|
const unsigned char* aLimit,
|
|
PRInt64& n)
|
|
{
|
|
int shift = 0;
|
|
PRInt64 byte = 0;
|
|
n = 0;
|
|
while (p < aLimit &&
|
|
(byte & 0x80) != 0x80 &&
|
|
shift < 57)
|
|
{
|
|
byte = static_cast<PRInt64>(*p);
|
|
n |= ((byte & 0x7f) << shift);
|
|
shift += 7;
|
|
p++;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
bool nsSkeletonState::DecodeIndex(ogg_packet* aPacket)
|
|
{
|
|
NS_ASSERTION(aPacket->bytes >= SKELETON_4_0_MIN_INDEX_LEN,
|
|
"Index must be at least minimum size");
|
|
if (!mActive) {
|
|
return false;
|
|
}
|
|
|
|
PRUint32 serialno = LEUint32(aPacket->packet + INDEX_SERIALNO_OFFSET);
|
|
PRInt64 numKeyPoints = LEInt64(aPacket->packet + INDEX_NUM_KEYPOINTS_OFFSET);
|
|
|
|
PRInt64 endTime = 0, startTime = 0;
|
|
const unsigned char* p = aPacket->packet;
|
|
|
|
PRInt64 timeDenom = LEInt64(aPacket->packet + INDEX_TIME_DENOM_OFFSET);
|
|
if (timeDenom == 0) {
|
|
LOG(PR_LOG_DEBUG, ("Ogg Skeleton Index packet for stream %u has 0 "
|
|
"timestamp denominator.", serialno));
|
|
return (mActive = false);
|
|
}
|
|
|
|
// Extract the start time.
|
|
CheckedInt64 t = CheckedInt64(LEInt64(p + INDEX_FIRST_NUMER_OFFSET)) * USECS_PER_S;
|
|
if (!t.isValid()) {
|
|
return (mActive = false);
|
|
} else {
|
|
startTime = t.value() / timeDenom;
|
|
}
|
|
|
|
// Extract the end time.
|
|
t = LEInt64(p + INDEX_LAST_NUMER_OFFSET) * USECS_PER_S;
|
|
if (!t.isValid()) {
|
|
return (mActive = false);
|
|
} else {
|
|
endTime = t.value() / timeDenom;
|
|
}
|
|
|
|
// Check the numKeyPoints value read, ensure we're not going to run out of
|
|
// memory while trying to decode the index packet.
|
|
CheckedInt64 minPacketSize = (CheckedInt64(numKeyPoints) * MIN_KEY_POINT_SIZE) + INDEX_KEYPOINT_OFFSET;
|
|
if (!minPacketSize.isValid())
|
|
{
|
|
return (mActive = false);
|
|
}
|
|
|
|
PRInt64 sizeofIndex = aPacket->bytes - INDEX_KEYPOINT_OFFSET;
|
|
PRInt64 maxNumKeyPoints = sizeofIndex / MIN_KEY_POINT_SIZE;
|
|
if (aPacket->bytes < minPacketSize.value() ||
|
|
numKeyPoints > maxNumKeyPoints ||
|
|
numKeyPoints < 0)
|
|
{
|
|
// Packet size is less than the theoretical minimum size, or the packet is
|
|
// claiming to store more keypoints than it's capable of storing. This means
|
|
// that the numKeyPoints field is too large or small for the packet to
|
|
// possibly contain as many packets as it claims to, so the numKeyPoints
|
|
// field is possibly malicious. Don't try decoding this index, we may run
|
|
// out of memory.
|
|
LOG(PR_LOG_DEBUG, ("Possibly malicious number of key points reported "
|
|
"(%lld) in index packet for stream %u.",
|
|
numKeyPoints,
|
|
serialno));
|
|
return (mActive = false);
|
|
}
|
|
|
|
nsAutoPtr<nsKeyFrameIndex> keyPoints(new nsKeyFrameIndex(startTime, endTime));
|
|
|
|
p = aPacket->packet + INDEX_KEYPOINT_OFFSET;
|
|
const unsigned char* limit = aPacket->packet + aPacket->bytes;
|
|
PRInt64 numKeyPointsRead = 0;
|
|
CheckedInt64 offset = 0;
|
|
CheckedInt64 time = 0;
|
|
while (p < limit &&
|
|
numKeyPointsRead < numKeyPoints)
|
|
{
|
|
PRInt64 delta = 0;
|
|
p = ReadVariableLengthInt(p, limit, delta);
|
|
offset += delta;
|
|
if (p == limit ||
|
|
!offset.isValid() ||
|
|
offset.value() > mLength ||
|
|
offset.value() < 0)
|
|
{
|
|
return (mActive = false);
|
|
}
|
|
p = ReadVariableLengthInt(p, limit, delta);
|
|
time += delta;
|
|
if (!time.isValid() ||
|
|
time.value() > endTime ||
|
|
time.value() < startTime)
|
|
{
|
|
return (mActive = false);
|
|
}
|
|
CheckedInt64 timeUsecs = time * USECS_PER_S;
|
|
if (!timeUsecs.isValid())
|
|
return mActive = false;
|
|
timeUsecs /= timeDenom;
|
|
keyPoints->Add(offset.value(), timeUsecs.value());
|
|
numKeyPointsRead++;
|
|
}
|
|
|
|
PRInt32 keyPointsRead = keyPoints->Length();
|
|
if (keyPointsRead > 0) {
|
|
mIndex.Put(serialno, keyPoints.forget());
|
|
}
|
|
|
|
LOG(PR_LOG_DEBUG, ("Loaded %d keypoints for Skeleton on stream %u",
|
|
keyPointsRead, serialno));
|
|
return true;
|
|
}
|
|
|
|
nsresult nsSkeletonState::IndexedSeekTargetForTrack(PRUint32 aSerialno,
|
|
PRInt64 aTarget,
|
|
nsKeyPoint& aResult)
|
|
{
|
|
nsKeyFrameIndex* index = nsnull;
|
|
mIndex.Get(aSerialno, &index);
|
|
|
|
if (!index ||
|
|
index->Length() == 0 ||
|
|
aTarget < index->mStartTime ||
|
|
aTarget > index->mEndTime)
|
|
{
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
// Binary search to find the last key point with time less than target.
|
|
int start = 0;
|
|
int end = index->Length() - 1;
|
|
while (end > start) {
|
|
int mid = start + ((end - start + 1) >> 1);
|
|
if (index->Get(mid).mTime == aTarget) {
|
|
start = mid;
|
|
break;
|
|
} else if (index->Get(mid).mTime < aTarget) {
|
|
start = mid;
|
|
} else {
|
|
end = mid - 1;
|
|
}
|
|
}
|
|
|
|
aResult = index->Get(start);
|
|
NS_ASSERTION(aResult.mTime <= aTarget, "Result should have time <= target");
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult nsSkeletonState::IndexedSeekTarget(PRInt64 aTarget,
|
|
nsTArray<PRUint32>& aTracks,
|
|
nsSeekTarget& aResult)
|
|
{
|
|
if (!mActive || mVersion < SKELETON_VERSION(4,0)) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
// Loop over all requested tracks' indexes, and get the keypoint for that
|
|
// seek target. Record the keypoint with the lowest offset, this will be
|
|
// our seek result. User must seek to the one with lowest offset to ensure we
|
|
// pass "keyframes" on all tracks when we decode forwards to the seek target.
|
|
nsSeekTarget r;
|
|
for (PRUint32 i=0; i<aTracks.Length(); i++) {
|
|
nsKeyPoint k;
|
|
if (NS_SUCCEEDED(IndexedSeekTargetForTrack(aTracks[i], aTarget, k)) &&
|
|
k.mOffset < r.mKeyPoint.mOffset)
|
|
{
|
|
r.mKeyPoint = k;
|
|
r.mSerial = aTracks[i];
|
|
}
|
|
}
|
|
if (r.IsNull()) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
LOG(PR_LOG_DEBUG, ("Indexed seek target for time %lld is offset %lld",
|
|
aTarget, r.mKeyPoint.mOffset));
|
|
aResult = r;
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult nsSkeletonState::GetDuration(const nsTArray<PRUint32>& aTracks,
|
|
PRInt64& aDuration)
|
|
{
|
|
if (!mActive ||
|
|
mVersion < SKELETON_VERSION(4,0) ||
|
|
!HasIndex() ||
|
|
aTracks.Length() == 0)
|
|
{
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
PRInt64 endTime = INT64_MIN;
|
|
PRInt64 startTime = INT64_MAX;
|
|
for (PRUint32 i=0; i<aTracks.Length(); i++) {
|
|
nsKeyFrameIndex* index = nsnull;
|
|
mIndex.Get(aTracks[i], &index);
|
|
if (!index) {
|
|
// Can't get the timestamps for one of the required tracks, fail.
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
if (index->mEndTime > endTime) {
|
|
endTime = index->mEndTime;
|
|
}
|
|
if (index->mStartTime < startTime) {
|
|
startTime = index->mStartTime;
|
|
}
|
|
}
|
|
NS_ASSERTION(endTime > startTime, "Duration must be positive");
|
|
CheckedInt64 duration = CheckedInt64(endTime) - startTime;
|
|
aDuration = duration.isValid() ? duration.value() : 0;
|
|
return duration.isValid() ? NS_OK : NS_ERROR_FAILURE;
|
|
}
|
|
|
|
bool nsSkeletonState::DecodeHeader(ogg_packet* aPacket)
|
|
{
|
|
nsAutoRef<ogg_packet> autoRelease(aPacket);
|
|
if (IsSkeletonBOS(aPacket)) {
|
|
PRUint16 verMajor = LEUint16(aPacket->packet + SKELETON_VERSION_MAJOR_OFFSET);
|
|
PRUint16 verMinor = LEUint16(aPacket->packet + SKELETON_VERSION_MINOR_OFFSET);
|
|
|
|
// Read the presentation time. We read this before the version check as the
|
|
// presentation time exists in all versions.
|
|
PRInt64 n = LEInt64(aPacket->packet + SKELETON_PRESENTATION_TIME_NUMERATOR_OFFSET);
|
|
PRInt64 d = LEInt64(aPacket->packet + SKELETON_PRESENTATION_TIME_DENOMINATOR_OFFSET);
|
|
mPresentationTime = d == 0 ? 0 : (static_cast<float>(n) / static_cast<float>(d)) * USECS_PER_S;
|
|
|
|
mVersion = SKELETON_VERSION(verMajor, verMinor);
|
|
// We can only care to parse Skeleton version 4.0+.
|
|
if (mVersion < SKELETON_VERSION(4,0) ||
|
|
mVersion >= SKELETON_VERSION(5,0) ||
|
|
aPacket->bytes < SKELETON_4_0_MIN_HEADER_LEN)
|
|
return false;
|
|
|
|
// Extract the segment length.
|
|
mLength = LEInt64(aPacket->packet + SKELETON_FILE_LENGTH_OFFSET);
|
|
|
|
LOG(PR_LOG_DEBUG, ("Skeleton segment length: %lld", mLength));
|
|
|
|
// Initialize the serialno-to-index map.
|
|
mIndex.Init();
|
|
return true;
|
|
} else if (IsSkeletonIndex(aPacket) && mVersion >= SKELETON_VERSION(4,0)) {
|
|
return DecodeIndex(aPacket);
|
|
} else if (aPacket->e_o_s) {
|
|
mDoneReadingHeaders = true;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|