gecko/xpcom/base/nsCycleCollector.cpp

3159 lines
86 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* vim: set cindent tabstop=4 expandtab shiftwidth=4: */
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is mozilla.org code.
*
* The Initial Developer of the Original Code is
* The Mozilla Foundation.
* Portions created by the Initial Developer are Copyright (C) 2006
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* L. David Baron <dbaron@dbaron.org>, Mozilla Corporation
*
* Alternatively, the contents of this file may be used under the terms of
* either of the GNU General Public License Version 2 or later (the "GPL"),
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
//
// This file implements a garbage-cycle collector based on the paper
//
// Concurrent Cycle Collection in Reference Counted Systems
// Bacon & Rajan (2001), ECOOP 2001 / Springer LNCS vol 2072
//
// We are not using the concurrent or acyclic cases of that paper; so
// the green, red and orange colors are not used.
//
// The collector is based on tracking pointers of four colors:
//
// Black nodes are definitely live. If we ever determine a node is
// black, it's ok to forget about, drop from our records.
//
// White nodes are definitely garbage cycles. Once we finish with our
// scanning, we unlink all the white nodes and expect that by
// unlinking them they will self-destruct (since a garbage cycle is
// only keeping itself alive with internal links, by definition).
//
// Grey nodes are being scanned. Nodes that turn grey will turn
// either black if we determine that they're live, or white if we
// determine that they're a garbage cycle. After the main collection
// algorithm there should be no grey nodes.
//
// Purple nodes are *candidates* for being scanned. They are nodes we
// haven't begun scanning yet because they're not old enough, or we're
// still partway through the algorithm.
//
// XPCOM objects participating in garbage-cycle collection are obliged
// to inform us when they ought to turn purple; that is, when their
// refcount transitions from N+1 -> N, for nonzero N. Furthermore we
// require that *after* an XPCOM object has informed us of turning
// purple, they will tell us when they either transition back to being
// black (incremented refcount) or are ultimately deleted.
// Safety:
//
// An XPCOM object is either scan-safe or scan-unsafe, purple-safe or
// purple-unsafe.
//
// An object is scan-safe if:
//
// - It can be QI'ed to |nsXPCOMCycleCollectionParticipant|, though this
// operation loses ISupports identity (like nsIClassInfo).
// - The operation |traverse| on the resulting
// nsXPCOMCycleCollectionParticipant does not cause *any* refcount
// adjustment to occur (no AddRef / Release calls).
//
// An object is purple-safe if it satisfies the following properties:
//
// - The object is scan-safe.
// - If the object calls |nsCycleCollector::suspect(this)|,
// it will eventually call |nsCycleCollector::forget(this)|,
// exactly once per call to |suspect|, before being destroyed.
//
// When we receive a pointer |ptr| via
// |nsCycleCollector::suspect(ptr)|, we assume it is purple-safe. We
// can check the scan-safety, but have no way to ensure the
// purple-safety; objects must obey, or else the entire system falls
// apart. Don't involve an object in this scheme if you can't
// guarantee its purple-safety.
//
// When we have a scannable set of purple nodes ready, we begin
// our walks. During the walks, the nodes we |traverse| should only
// feed us more scan-safe nodes, and should not adjust the refcounts
// of those nodes.
//
// We do not |AddRef| or |Release| any objects during scanning. We
// rely on purple-safety of the roots that call |suspect| and
// |forget| to hold, such that we will forget about a purple pointer
// before it is destroyed. The pointers that are merely scan-safe,
// we hold only for the duration of scanning, and there should be no
// objects released from the scan-safe set during the scan (there
// should be no threads involved).
//
// We *do* call |AddRef| and |Release| on every white object, on
// either side of the calls to |Unlink|. This keeps the set of white
// objects alive during the unlinking.
//
#if !defined(__MINGW32__) && !defined(WINCE)
#ifdef WIN32
#include <crtdbg.h>
#include <errno.h>
#endif
#endif
#include "nsCycleCollectionParticipant.h"
#include "nsIProgrammingLanguage.h"
#include "nsBaseHashtable.h"
#include "nsHashKeys.h"
#include "nsDeque.h"
#include "nsCycleCollector.h"
#include "nsThreadUtils.h"
#include "prenv.h"
#include "prprf.h"
#include "plstr.h"
#include "prtime.h"
#include "nsPrintfCString.h"
#include "nsTArray.h"
#include "nsIObserverService.h"
#include "nsIConsoleService.h"
#include "nsServiceManagerUtils.h"
#include "nsThreadUtils.h"
#include "nsTPtrArray.h"
#include "nsTArray.h"
#include <stdio.h>
#include <string.h>
#ifdef WIN32
#include <io.h>
#include <process.h>
#endif
#ifdef DEBUG_CC
#define IF_DEBUG_CC_PARAM(_p) , _p
#define IF_DEBUG_CC_ONLY_PARAM(_p) _p
#else
#define IF_DEBUG_CC_PARAM(_p)
#define IF_DEBUG_CC_ONLY_PARAM(_p)
#endif
#define DEFAULT_SHUTDOWN_COLLECTIONS 5
#ifdef DEBUG_CC
#define SHUTDOWN_COLLECTIONS(params) params.mShutdownCollections
#else
#define SHUTDOWN_COLLECTIONS(params) DEFAULT_SHUTDOWN_COLLECTIONS
#endif
// Various parameters of this collector can be tuned using environment
// variables.
struct nsCycleCollectorParams
{
PRBool mDoNothing;
#ifdef DEBUG_CC
PRBool mReportStats;
PRBool mHookMalloc;
PRBool mDrawGraphs;
PRBool mFaultIsFatal;
PRBool mLogPointers;
PRUint32 mShutdownCollections;
#endif
nsCycleCollectorParams() :
#ifdef DEBUG_CC
mDoNothing (PR_GetEnv("XPCOM_CC_DO_NOTHING") != NULL),
mReportStats (PR_GetEnv("XPCOM_CC_REPORT_STATS") != NULL),
mHookMalloc (PR_GetEnv("XPCOM_CC_HOOK_MALLOC") != NULL),
mDrawGraphs (PR_GetEnv("XPCOM_CC_DRAW_GRAPHS") != NULL),
mFaultIsFatal (PR_GetEnv("XPCOM_CC_FAULT_IS_FATAL") != NULL),
mLogPointers (PR_GetEnv("XPCOM_CC_LOG_POINTERS") != NULL),
mShutdownCollections(DEFAULT_SHUTDOWN_COLLECTIONS)
#else
mDoNothing (PR_FALSE)
#endif
{
#ifdef DEBUG_CC
char *s = PR_GetEnv("XPCOM_CC_SHUTDOWN_COLLECTIONS");
if (s)
PR_sscanf(s, "%d", &mShutdownCollections);
#endif
}
};
#ifdef DEBUG_CC
// Various operations involving the collector are recorded in a
// statistics table. These are for diagnostics.
struct nsCycleCollectorStats
{
PRUint32 mFailedQI;
PRUint32 mSuccessfulQI;
PRUint32 mVisitedNode;
PRUint32 mWalkedGraph;
PRUint32 mCollectedBytes;
PRUint32 mFreeCalls;
PRUint32 mFreedBytes;
PRUint32 mSetColorGrey;
PRUint32 mSetColorBlack;
PRUint32 mSetColorWhite;
PRUint32 mFailedUnlink;
PRUint32 mCollectedNode;
PRUint32 mSuspectNode;
PRUint32 mForgetNode;
PRUint32 mFreedWhilePurple;
PRUint32 mCollection;
nsCycleCollectorStats()
{
memset(this, 0, sizeof(nsCycleCollectorStats));
}
void Dump()
{
fprintf(stderr, "\f\n");
#define DUMP(entry) fprintf(stderr, "%30.30s: %-20.20d\n", #entry, entry)
DUMP(mFailedQI);
DUMP(mSuccessfulQI);
DUMP(mVisitedNode);
DUMP(mWalkedGraph);
DUMP(mCollectedBytes);
DUMP(mFreeCalls);
DUMP(mFreedBytes);
DUMP(mSetColorGrey);
DUMP(mSetColorBlack);
DUMP(mSetColorWhite);
DUMP(mFailedUnlink);
DUMP(mCollectedNode);
DUMP(mSuspectNode);
DUMP(mForgetNode);
DUMP(mFreedWhilePurple);
DUMP(mCollection);
#undef DUMP
}
};
#endif
#ifdef DEBUG_CC
static PRBool nsCycleCollector_shouldSuppress(nsISupports *s);
static void InitMemHook(void);
#endif
////////////////////////////////////////////////////////////////////////
// Base types
////////////////////////////////////////////////////////////////////////
struct PtrInfo;
class EdgePool
{
public:
// EdgePool allocates arrays of void*, primarily to hold PtrInfo*.
// However, at the end of a block, the last two pointers are a null
// and then a void** pointing to the next block. This allows
// EdgePool::Iterators to be a single word but still capable of crossing
// block boundaries.
EdgePool()
{
mSentinelAndBlocks[0].block = nsnull;
mSentinelAndBlocks[1].block = nsnull;
}
~EdgePool()
{
NS_ASSERTION(!mSentinelAndBlocks[0].block &&
!mSentinelAndBlocks[1].block,
"Didn't call Clear()?");
}
void Clear()
{
Block *b = Blocks();
while (b) {
Block *next = b->Next();
delete b;
b = next;
}
mSentinelAndBlocks[0].block = nsnull;
mSentinelAndBlocks[1].block = nsnull;
}
private:
struct Block;
union PtrInfoOrBlock {
// Use a union to avoid reinterpret_cast and the ensuing
// potential aliasing bugs.
PtrInfo *ptrInfo;
Block *block;
};
struct Block {
enum { BlockSize = 64 * 1024 };
PtrInfoOrBlock mPointers[BlockSize];
Block() {
mPointers[BlockSize - 2].block = nsnull; // sentinel
mPointers[BlockSize - 1].block = nsnull; // next block pointer
}
Block*& Next()
{ return mPointers[BlockSize - 1].block; }
PtrInfoOrBlock* Start()
{ return &mPointers[0]; }
PtrInfoOrBlock* End()
{ return &mPointers[BlockSize - 2]; }
};
// Store the null sentinel so that we can have valid iterators
// before adding any edges and without adding any blocks.
PtrInfoOrBlock mSentinelAndBlocks[2];
Block*& Blocks() { return mSentinelAndBlocks[1].block; }
public:
class Iterator
{
public:
Iterator() : mPointer(nsnull) {}
Iterator(PtrInfoOrBlock *aPointer) : mPointer(aPointer) {}
Iterator(const Iterator& aOther) : mPointer(aOther.mPointer) {}
Iterator& operator++()
{
if (mPointer->ptrInfo == nsnull) {
// Null pointer is a sentinel for link to the next block.
mPointer = (mPointer + 1)->block->mPointers;
}
++mPointer;
return *this;
}
PtrInfo* operator*() const
{
if (mPointer->ptrInfo == nsnull) {
// Null pointer is a sentinel for link to the next block.
return (mPointer + 1)->block->mPointers->ptrInfo;
}
return mPointer->ptrInfo;
}
PRBool operator==(const Iterator& aOther) const
{ return mPointer == aOther.mPointer; }
PRBool operator!=(const Iterator& aOther) const
{ return mPointer != aOther.mPointer; }
private:
PtrInfoOrBlock *mPointer;
};
class Builder;
friend class Builder;
class Builder {
public:
Builder(EdgePool &aPool)
: mCurrent(&aPool.mSentinelAndBlocks[0]),
mBlockEnd(&aPool.mSentinelAndBlocks[0]),
mNextBlockPtr(&aPool.Blocks())
{
}
Iterator Mark() { return Iterator(mCurrent); }
void Add(PtrInfo* aEdge) {
if (mCurrent == mBlockEnd) {
Block *b = new Block();
if (!b) {
// This means we just won't collect (some) cycles.
NS_NOTREACHED("out of memory, ignoring edges");
return;
}
*mNextBlockPtr = b;
mCurrent = b->Start();
mBlockEnd = b->End();
mNextBlockPtr = &b->Next();
}
(mCurrent++)->ptrInfo = aEdge;
}
private:
// mBlockEnd points to space for null sentinel
PtrInfoOrBlock *mCurrent, *mBlockEnd;
Block **mNextBlockPtr;
};
};
#ifdef DEBUG_CC
struct ReversedEdge {
PtrInfo *mTarget;
nsCString *mEdgeName;
ReversedEdge *mNext;
};
#endif
enum NodeColor { black, white, grey };
// This structure should be kept as small as possible; we may expect
// a million of them to be allocated and touched repeatedly during
// each cycle collection.
struct PtrInfo
{
void *mPointer;
nsCycleCollectionParticipant *mParticipant;
PRUint32 mColor : 2;
PRUint32 mInternalRefs : 30;
PRUint32 mRefCount;
EdgePool::Iterator mFirstChild; // first
EdgePool::Iterator mLastChild; // one after last
#ifdef DEBUG_CC
size_t mBytes;
char *mName;
PRUint32 mLangID;
// For finding roots in ExplainLiveExpectedGarbage (when there are
// missing calls to suspect or failures to unlink).
PRUint32 mSCCIndex; // strongly connected component
// For finding roots in ExplainLiveExpectedGarbage (when nodes
// expected to be garbage are black).
ReversedEdge* mReversedEdges; // linked list
PtrInfo* mShortestPathToExpectedGarbage;
nsCString* mShortestPathToExpectedGarbageEdgeName;
nsTArray<nsCString> mEdgeNames;
#endif
PtrInfo(void *aPointer, nsCycleCollectionParticipant *aParticipant
IF_DEBUG_CC_PARAM(PRUint32 aLangID)
)
: mPointer(aPointer),
mParticipant(aParticipant),
mColor(grey),
mInternalRefs(0),
mRefCount(0),
mFirstChild(),
mLastChild()
#ifdef DEBUG_CC
, mBytes(0),
mName(nsnull),
mLangID(aLangID),
mSCCIndex(0),
mReversedEdges(nsnull),
mShortestPathToExpectedGarbage(nsnull),
mShortestPathToExpectedGarbageEdgeName(nsnull)
#endif
{
}
#ifdef DEBUG_CC
void Destroy() {
PL_strfree(mName);
mEdgeNames.~nsTArray<nsCString>();
}
#endif
// Allow NodePool::Block's constructor to compile.
PtrInfo() {
NS_NOTREACHED("should never be called");
}
};
/**
* A structure designed to be used like a linked list of PtrInfo, except
* that allocates the PtrInfo 32K-at-a-time.
*/
class NodePool
{
private:
enum { BlockSize = 32 * 1024 }; // could be int template parameter
struct Block {
// We create and destroy Block using NS_Alloc/NS_Free rather
// than new and delete to avoid calling its constructor and
// destructor.
Block() { NS_NOTREACHED("should never be called"); }
~Block() { NS_NOTREACHED("should never be called"); }
Block* mNext;
PtrInfo mEntries[BlockSize];
};
public:
NodePool()
: mBlocks(nsnull),
mLast(nsnull)
{
}
~NodePool()
{
NS_ASSERTION(!mBlocks, "Didn't call Clear()?");
}
void Clear()
{
#ifdef DEBUG_CC
{
Enumerator queue(*this);
while (!queue.IsDone()) {
queue.GetNext()->Destroy();
}
}
#endif
Block *b = mBlocks;
while (b) {
Block *n = b->mNext;
NS_Free(b);
b = n;
}
mBlocks = nsnull;
mLast = nsnull;
}
class Builder;
friend class Builder;
class Builder {
public:
Builder(NodePool& aPool)
: mNextBlock(&aPool.mBlocks),
mNext(aPool.mLast),
mBlockEnd(nsnull)
{
NS_ASSERTION(aPool.mBlocks == nsnull && aPool.mLast == nsnull,
"pool not empty");
}
PtrInfo *Add(void *aPointer, nsCycleCollectionParticipant *aParticipant
IF_DEBUG_CC_PARAM(PRUint32 aLangID)
)
{
if (mNext == mBlockEnd) {
Block *block;
if (!(*mNextBlock = block =
static_cast<Block*>(NS_Alloc(sizeof(Block)))))
return nsnull;
mNext = block->mEntries;
mBlockEnd = block->mEntries + BlockSize;
block->mNext = nsnull;
mNextBlock = &block->mNext;
}
return new (mNext++) PtrInfo(aPointer, aParticipant
IF_DEBUG_CC_PARAM(aLangID)
);
}
private:
Block **mNextBlock;
PtrInfo *&mNext;
PtrInfo *mBlockEnd;
};
class Enumerator;
friend class Enumerator;
class Enumerator {
public:
Enumerator(NodePool& aPool)
: mFirstBlock(aPool.mBlocks),
mCurBlock(nsnull),
mNext(nsnull),
mBlockEnd(nsnull),
mLast(aPool.mLast)
{
}
PRBool IsDone() const
{
return mNext == mLast;
}
PtrInfo* GetNext()
{
NS_ASSERTION(!IsDone(), "calling GetNext when done");
if (mNext == mBlockEnd) {
Block *nextBlock = mCurBlock ? mCurBlock->mNext : mFirstBlock;
mNext = nextBlock->mEntries;
mBlockEnd = mNext + BlockSize;
mCurBlock = nextBlock;
}
return mNext++;
}
private:
Block *mFirstBlock, *mCurBlock;
// mNext is the next value we want to return, unless mNext == mBlockEnd
// NB: mLast is a reference to allow enumerating while building!
PtrInfo *mNext, *mBlockEnd, *&mLast;
};
private:
Block *mBlocks;
PtrInfo *mLast;
};
class GCGraphBuilder;
struct GCGraph
{
NodePool mNodes;
EdgePool mEdges;
PRUint32 mRootCount;
#ifdef DEBUG_CC
ReversedEdge *mReversedEdges;
#endif
GCGraph() : mRootCount(0) {
}
~GCGraph() {
}
};
// XXX Would be nice to have an nsHashSet<KeyType> API that has
// Add/Remove/Has rather than PutEntry/RemoveEntry/GetEntry.
typedef nsTHashtable<nsVoidPtrHashKey> PointerSet;
#ifdef DEBUG_CC
static void
WriteGraph(FILE *stream, GCGraph &graph, const void *redPtr);
#endif
static inline void
ToParticipant(nsISupports *s, nsXPCOMCycleCollectionParticipant **cp);
struct nsPurpleBuffer
{
private:
struct Block {
Block *mNext;
nsPurpleBufferEntry mEntries[128];
Block() : mNext(nsnull) {}
};
public:
// This class wraps a linked list of the elements in the purple
// buffer.
nsCycleCollectorParams &mParams;
PRUint32 mCount;
Block mFirstBlock;
nsPurpleBufferEntry *mFreeList;
// For objects compiled against Gecko 1.9 and 1.9.1.
PointerSet mCompatObjects;
#ifdef DEBUG_CC
PointerSet mNormalObjects; // duplicates our blocks
nsCycleCollectorStats &mStats;
#endif
#ifdef DEBUG_CC
nsPurpleBuffer(nsCycleCollectorParams &params,
nsCycleCollectorStats &stats)
: mParams(params),
mStats(stats)
{
InitBlocks();
mNormalObjects.Init();
mCompatObjects.Init();
}
#else
nsPurpleBuffer(nsCycleCollectorParams &params)
: mParams(params)
{
InitBlocks();
mCompatObjects.Init();
}
#endif
~nsPurpleBuffer()
{
FreeBlocks();
}
void InitBlocks()
{
mCount = 0;
mFreeList = nsnull;
StartBlock(&mFirstBlock);
}
void StartBlock(Block *aBlock)
{
NS_ABORT_IF_FALSE(!mFreeList, "should not have free list");
// Put all the entries in the block on the free list.
nsPurpleBufferEntry *entries = aBlock->mEntries;
mFreeList = entries;
for (PRUint32 i = 1; i < NS_ARRAY_LENGTH(aBlock->mEntries); ++i) {
entries[i - 1].mNextInFreeList =
(nsPurpleBufferEntry*)(PRUword(entries + i) | 1);
}
entries[NS_ARRAY_LENGTH(aBlock->mEntries) - 1].mNextInFreeList =
(nsPurpleBufferEntry*)1;
}
void FreeBlocks()
{
if (mCount > 0)
UnmarkRemainingPurple(&mFirstBlock);
Block *b = mFirstBlock.mNext;
while (b) {
if (mCount > 0)
UnmarkRemainingPurple(b);
Block *next = b->mNext;
delete b;
b = next;
}
mFirstBlock.mNext = nsnull;
}
void UnmarkRemainingPurple(Block *b)
{
for (nsPurpleBufferEntry *e = b->mEntries,
*eEnd = e + NS_ARRAY_LENGTH(b->mEntries);
e != eEnd; ++e) {
if (!(PRUword(e->mObject) & PRUword(1))) {
// This is a real entry (rather than something on the
// free list).
nsXPCOMCycleCollectionParticipant *cp;
ToParticipant(e->mObject, &cp);
cp->UnmarkPurple(e->mObject);
if (--mCount == 0)
break;
}
}
}
void SelectPointers(GCGraphBuilder &builder);
#ifdef DEBUG_CC
void NoteAll(GCGraphBuilder &builder);
PRBool Exists(void *p) const
{
return mNormalObjects.GetEntry(p) || mCompatObjects.GetEntry(p);
}
#endif
nsPurpleBufferEntry* NewEntry()
{
if (!mFreeList) {
Block *b = new Block;
if (!b) {
return nsnull;
}
StartBlock(b);
// Add the new block as the second block in the list.
b->mNext = mFirstBlock.mNext;
mFirstBlock.mNext = b;
}
nsPurpleBufferEntry *e = mFreeList;
mFreeList = (nsPurpleBufferEntry*)
(PRUword(mFreeList->mNextInFreeList) & ~PRUword(1));
return e;
}
nsPurpleBufferEntry* Put(nsISupports *p)
{
nsPurpleBufferEntry *e = NewEntry();
if (!e) {
return nsnull;
}
++mCount;
e->mObject = p;
#ifdef DEBUG_CC
mNormalObjects.PutEntry(p);
#endif
// Caller is responsible for filling in result's mRefCnt.
return e;
}
void Remove(nsPurpleBufferEntry *e)
{
NS_ASSERTION(mCount != 0, "must have entries");
#ifdef DEBUG_CC
mNormalObjects.RemoveEntry(e->mObject);
#endif
e->mNextInFreeList =
(nsPurpleBufferEntry*)(PRUword(mFreeList) | PRUword(1));
mFreeList = e;
--mCount;
}
PRBool PutCompatObject(nsISupports *p)
{
++mCount;
return !!mCompatObjects.PutEntry(p);
}
void RemoveCompatObject(nsISupports *p)
{
--mCount;
mCompatObjects.RemoveEntry(p);
}
PRUint32 Count() const
{
return mCount;
}
};
struct CallbackClosure
{
CallbackClosure(nsPurpleBuffer *aPurpleBuffer, GCGraphBuilder &aBuilder)
: mPurpleBuffer(aPurpleBuffer),
mBuilder(aBuilder)
{
}
nsPurpleBuffer *mPurpleBuffer;
GCGraphBuilder &mBuilder;
};
static PRBool
AddPurpleRoot(GCGraphBuilder &builder, nsISupports *root);
static PLDHashOperator
selectionCallback(nsVoidPtrHashKey* key, void* userArg)
{
CallbackClosure *closure = static_cast<CallbackClosure*>(userArg);
if (AddPurpleRoot(closure->mBuilder,
static_cast<nsISupports *>(
const_cast<void*>(key->GetKey()))))
return PL_DHASH_REMOVE;
return PL_DHASH_NEXT;
}
void
nsPurpleBuffer::SelectPointers(GCGraphBuilder &aBuilder)
{
#ifdef DEBUG_CC
NS_ABORT_IF_FALSE(mCompatObjects.Count() + mNormalObjects.Count() ==
mCount,
"count out of sync");
#endif
if (mCompatObjects.Count()) {
mCount -= mCompatObjects.Count();
CallbackClosure closure(this, aBuilder);
mCompatObjects.EnumerateEntries(selectionCallback, &closure);
mCount += mCompatObjects.Count(); // in case of allocation failure
}
// Walk through all the blocks.
for (Block *b = &mFirstBlock; b; b = b->mNext) {
for (nsPurpleBufferEntry *e = b->mEntries,
*eEnd = e + NS_ARRAY_LENGTH(b->mEntries);
e != eEnd; ++e) {
if (!(PRUword(e->mObject) & PRUword(1))) {
// This is a real entry (rather than something on the
// free list).
if (AddPurpleRoot(aBuilder, e->mObject)) {
#ifdef DEBUG_CC
mNormalObjects.RemoveEntry(e->mObject);
#endif
--mCount;
// Put this entry on the free list in case some
// call to AddPurpleRoot fails and we don't rebuild
// the free list below.
e->mNextInFreeList = (nsPurpleBufferEntry*)
(PRUword(mFreeList) | PRUword(1));
mFreeList = e;
}
}
}
}
NS_WARN_IF_FALSE(mCount == 0, "AddPurpleRoot failed");
if (mCount == 0) {
FreeBlocks();
InitBlocks();
}
}
////////////////////////////////////////////////////////////////////////
// Implement the LanguageRuntime interface for C++/XPCOM
////////////////////////////////////////////////////////////////////////
struct nsCycleCollectionXPCOMRuntime :
public nsCycleCollectionLanguageRuntime
{
nsresult BeginCycleCollection(nsCycleCollectionTraversalCallback &cb)
{
return NS_OK;
}
nsresult FinishCycleCollection()
{
return NS_OK;
}
inline nsCycleCollectionParticipant *ToParticipant(void *p);
#ifdef DEBUG_CC
virtual void PrintAllReferencesTo(void *p) {}
#endif
};
struct nsCycleCollector
{
PRBool mCollectionInProgress;
PRBool mScanInProgress;
PRBool mFollowupCollection;
PRUint32 mCollectedObjects;
nsCycleCollectionLanguageRuntime *mRuntimes[nsIProgrammingLanguage::MAX+1];
nsCycleCollectionXPCOMRuntime mXPCOMRuntime;
GCGraph mGraph;
nsCycleCollectorParams mParams;
nsTPtrArray<PtrInfo> *mWhiteNodes;
PRUint32 mWhiteNodeCount;
nsPurpleBuffer mPurpleBuf;
void RegisterRuntime(PRUint32 langID,
nsCycleCollectionLanguageRuntime *rt);
nsCycleCollectionLanguageRuntime * GetRuntime(PRUint32 langID);
void ForgetRuntime(PRUint32 langID);
void SelectPurple(GCGraphBuilder &builder);
void MarkRoots(GCGraphBuilder &builder);
void ScanRoots();
void RootWhite();
PRBool CollectWhite(); // returns whether anything was collected
nsCycleCollector();
~nsCycleCollector();
// The first pair of Suspect and Forget functions are only used by
// old XPCOM binary components.
PRBool Suspect(nsISupports *n);
PRBool Forget(nsISupports *n);
nsPurpleBufferEntry* Suspect2(nsISupports *n);
PRBool Forget2(nsPurpleBufferEntry *e);
PRUint32 Collect(PRUint32 aTryCollections = 1);
PRBool BeginCollection();
PRBool FinishCollection();
PRUint32 SuspectedCount();
void Shutdown();
void ClearGraph()
{
mGraph.mNodes.Clear();
mGraph.mEdges.Clear();
mGraph.mRootCount = 0;
}
#ifdef DEBUG_CC
nsCycleCollectorStats mStats;
FILE *mPtrLog;
void MaybeDrawGraphs();
void Allocated(void *n, size_t sz);
void Freed(void *n);
void ExplainLiveExpectedGarbage();
PRBool CreateReversedEdges();
void DestroyReversedEdges();
void ShouldBeFreed(nsISupports *n);
void WasFreed(nsISupports *n);
PointerSet mExpectedGarbage;
#endif
};
class GraphWalker
{
private:
void DoWalk(nsDeque &aQueue);
public:
void Walk(PtrInfo *s0);
void WalkFromRoots(GCGraph &aGraph);
// Provided by concrete walker subtypes.
virtual PRBool ShouldVisitNode(PtrInfo const *pi) = 0;
virtual void VisitNode(PtrInfo *pi) = 0;
};
////////////////////////////////////////////////////////////////////////
// The static collector object
////////////////////////////////////////////////////////////////////////
static nsCycleCollector *sCollector = nsnull;
////////////////////////////////////////////////////////////////////////
// Utility functions
////////////////////////////////////////////////////////////////////////
class CCRunnableFaultReport : public nsRunnable {
public:
CCRunnableFaultReport(const nsCString& report)
{
CopyUTF8toUTF16(report, mReport);
}
NS_IMETHOD Run() {
nsCOMPtr<nsIObserverService> obs =
do_GetService(NS_OBSERVERSERVICE_CONTRACTID);
if (obs) {
obs->NotifyObservers(nsnull, "cycle-collector-fault",
mReport.get());
}
nsCOMPtr<nsIConsoleService> cons =
do_GetService(NS_CONSOLESERVICE_CONTRACTID);
if (cons) {
cons->LogStringMessage(mReport.get());
}
return NS_OK;
}
private:
nsString mReport;
};
static void
Fault(const char *msg, const void *ptr=nsnull)
{
#ifdef DEBUG_CC
// This should be nearly impossible, but just in case.
if (!sCollector)
return;
if (sCollector->mParams.mFaultIsFatal) {
if (ptr)
printf("Fatal fault in cycle collector: %s (ptr: %p)\n", msg, ptr);
else
printf("Fatal fault in cycle collector: %s\n", msg);
if (sCollector->mGraph.mRootCount > 0) {
FILE *stream;
#ifdef WIN32
const char fname[] = "c:\\fault-graph.dot";
#else
const char fname[] = "/tmp/fault-graph.dot";
#endif
printf("depositing faulting cycle-collection graph in %s\n", fname);
stream = fopen(fname, "w+");
WriteGraph(stream, sCollector->mGraph, ptr);
fclose(stream);
}
exit(1);
}
#endif
nsPrintfCString str(256, "Fault in cycle collector: %s (ptr: %p)\n",
msg, ptr);
NS_NOTREACHED(str.get());
// When faults are not fatal, we assume we're running in a
// production environment and we therefore want to disable the
// collector on a fault. This will unfortunately cause the browser
// to leak pretty fast wherever creates cyclical garbage, but it's
// probably a better user experience than crashing. Besides, we
// *should* never hit a fault.
sCollector->mParams.mDoNothing = PR_TRUE;
// Report to observers off an event so we don't run JS under GC
// (which is where we might be right now).
nsCOMPtr<nsIRunnable> ev = new CCRunnableFaultReport(str);
NS_DispatchToCurrentThread(ev);
}
#ifdef DEBUG_CC
static void
Fault(const char *msg, PtrInfo *pi)
{
printf("Fault in cycle collector: %s\n"
" while operating on pointer %p %s\n",
msg, pi->mPointer, pi->mName);
if (pi->mInternalRefs) {
printf(" which has internal references from:\n");
NodePool::Enumerator queue(sCollector->mGraph.mNodes);
while (!queue.IsDone()) {
PtrInfo *ppi = queue.GetNext();
for (EdgePool::Iterator e = ppi->mFirstChild, e_end = ppi->mLastChild;
e != e_end; ++e) {
if (*e == pi) {
printf(" %p %s\n", ppi->mPointer, ppi->mName);
}
}
}
}
Fault(msg, pi->mPointer);
}
#else
inline void
Fault(const char *msg, PtrInfo *pi)
{
Fault(msg, pi->mPointer);
}
#endif
static nsISupports *
canonicalize(nsISupports *in)
{
nsCOMPtr<nsISupports> child;
in->QueryInterface(NS_GET_IID(nsCycleCollectionISupports),
getter_AddRefs(child));
return child.get();
}
static inline void
ToParticipant(nsISupports *s, nsXPCOMCycleCollectionParticipant **cp)
{
// We use QI to move from an nsISupports to an
// nsXPCOMCycleCollectionParticipant, which is a per-class singleton helper
// object that implements traversal and unlinking logic for the nsISupports
// in question.
CallQueryInterface(s, cp);
#ifdef DEBUG_CC
if (cp)
++sCollector->mStats.mSuccessfulQI;
else
++sCollector->mStats.mFailedQI;
#endif
}
nsCycleCollectionParticipant *
nsCycleCollectionXPCOMRuntime::ToParticipant(void *p)
{
nsXPCOMCycleCollectionParticipant *cp;
::ToParticipant(static_cast<nsISupports*>(p), &cp);
return cp;
}
void
GraphWalker::Walk(PtrInfo *s0)
{
nsDeque queue;
queue.Push(s0);
DoWalk(queue);
}
void
GraphWalker::WalkFromRoots(GCGraph& aGraph)
{
nsDeque queue;
NodePool::Enumerator etor(aGraph.mNodes);
for (PRUint32 i = 0; i < aGraph.mRootCount; ++i) {
queue.Push(etor.GetNext());
}
DoWalk(queue);
}
void
GraphWalker::DoWalk(nsDeque &aQueue)
{
// Use a aQueue to match the breadth-first traversal used when we
// built the graph, for hopefully-better locality.
while (aQueue.GetSize() > 0) {
PtrInfo *pi = static_cast<PtrInfo*>(aQueue.PopFront());
if (this->ShouldVisitNode(pi)) {
this->VisitNode(pi);
for (EdgePool::Iterator child = pi->mFirstChild,
child_end = pi->mLastChild;
child != child_end; ++child) {
aQueue.Push(*child);
}
}
};
#ifdef DEBUG_CC
sCollector->mStats.mWalkedGraph++;
#endif
}
////////////////////////////////////////////////////////////////////////
// Bacon & Rajan's |MarkRoots| routine.
////////////////////////////////////////////////////////////////////////
struct PtrToNodeEntry : public PLDHashEntryHdr
{
// The key is mNode->mPointer
PtrInfo *mNode;
};
static PRBool
PtrToNodeMatchEntry(PLDHashTable *table,
const PLDHashEntryHdr *entry,
const void *key)
{
const PtrToNodeEntry *n = static_cast<const PtrToNodeEntry*>(entry);
return n->mNode->mPointer == key;
}
static PLDHashTableOps PtrNodeOps = {
PL_DHashAllocTable,
PL_DHashFreeTable,
PL_DHashVoidPtrKeyStub,
PtrToNodeMatchEntry,
PL_DHashMoveEntryStub,
PL_DHashClearEntryStub,
PL_DHashFinalizeStub,
nsnull
};
class GCGraphBuilder : public nsCycleCollectionTraversalCallback
{
private:
NodePool::Builder mNodeBuilder;
EdgePool::Builder mEdgeBuilder;
PLDHashTable mPtrToNodeMap;
PtrInfo *mCurrPi;
nsCycleCollectionLanguageRuntime **mRuntimes; // weak, from nsCycleCollector
#ifdef DEBUG_CC
nsCString mNextEdgeName;
#endif
public:
GCGraphBuilder(GCGraph &aGraph,
nsCycleCollectionLanguageRuntime **aRuntimes);
~GCGraphBuilder();
PRUint32 Count() const { return mPtrToNodeMap.entryCount; }
#ifdef DEBUG_CC
PtrInfo* AddNode(void *s, nsCycleCollectionParticipant *aParticipant,
PRUint32 aLangID);
#else
PtrInfo* AddNode(void *s, nsCycleCollectionParticipant *aParticipant);
PtrInfo* AddNode(void *s, nsCycleCollectionParticipant *aParticipant,
PRUint32 aLangID)
{
return AddNode(s, aParticipant);
}
#endif
void Traverse(PtrInfo* aPtrInfo);
// nsCycleCollectionTraversalCallback methods.
NS_IMETHOD_(void) NoteXPCOMRoot(nsISupports *root);
private:
NS_IMETHOD_(void) DescribeNode(CCNodeType type, nsrefcnt refCount,
size_t objSz, const char *objName);
NS_IMETHOD_(void) NoteRoot(PRUint32 langID, void *child,
nsCycleCollectionParticipant* participant);
NS_IMETHOD_(void) NoteXPCOMChild(nsISupports *child);
NS_IMETHOD_(void) NoteNativeChild(void *child,
nsCycleCollectionParticipant *participant);
NS_IMETHOD_(void) NoteScriptChild(PRUint32 langID, void *child);
NS_IMETHOD_(void) NoteNextEdgeName(const char* name);
};
GCGraphBuilder::GCGraphBuilder(GCGraph &aGraph,
nsCycleCollectionLanguageRuntime **aRuntimes)
: mNodeBuilder(aGraph.mNodes),
mEdgeBuilder(aGraph.mEdges),
mRuntimes(aRuntimes)
{
if (!PL_DHashTableInit(&mPtrToNodeMap, &PtrNodeOps, nsnull,
sizeof(PtrToNodeEntry), 32768))
mPtrToNodeMap.ops = nsnull;
#ifdef DEBUG_CC
// Do we need to set these all the time?
mFlags |= nsCycleCollectionTraversalCallback::WANT_DEBUG_INFO |
nsCycleCollectionTraversalCallback::WANT_ALL_TRACES;
#endif
}
GCGraphBuilder::~GCGraphBuilder()
{
if (mPtrToNodeMap.ops)
PL_DHashTableFinish(&mPtrToNodeMap);
}
PtrInfo*
GCGraphBuilder::AddNode(void *s, nsCycleCollectionParticipant *aParticipant
IF_DEBUG_CC_PARAM(PRUint32 aLangID)
)
{
PtrToNodeEntry *e = static_cast<PtrToNodeEntry*>(PL_DHashTableOperate(&mPtrToNodeMap, s, PL_DHASH_ADD));
if (!e)
return nsnull;
PtrInfo *result;
if (!e->mNode) {
// New entry.
result = mNodeBuilder.Add(s, aParticipant
IF_DEBUG_CC_PARAM(aLangID)
);
if (!result) {
PL_DHashTableRawRemove(&mPtrToNodeMap, e);
return nsnull;
}
e->mNode = result;
} else {
result = e->mNode;
NS_ASSERTION(result->mParticipant == aParticipant,
"nsCycleCollectionParticipant shouldn't change!");
}
return result;
}
void
GCGraphBuilder::Traverse(PtrInfo* aPtrInfo)
{
mCurrPi = aPtrInfo;
#ifdef DEBUG_CC
if (!mCurrPi->mParticipant) {
Fault("unknown pointer during walk", aPtrInfo);
return;
}
#endif
mCurrPi->mFirstChild = mEdgeBuilder.Mark();
nsresult rv = aPtrInfo->mParticipant->Traverse(aPtrInfo->mPointer, *this);
if (NS_FAILED(rv)) {
Fault("script pointer traversal failed", aPtrInfo);
}
mCurrPi->mLastChild = mEdgeBuilder.Mark();
}
NS_IMETHODIMP_(void)
GCGraphBuilder::NoteXPCOMRoot(nsISupports *root)
{
root = canonicalize(root);
NS_ASSERTION(root,
"Don't add objects that don't participate in collection!");
#ifdef DEBUG_CC
if (nsCycleCollector_shouldSuppress(root))
return;
#endif
nsXPCOMCycleCollectionParticipant *cp;
ToParticipant(root, &cp);
NoteRoot(nsIProgrammingLanguage::CPLUSPLUS, root, cp);
}
NS_IMETHODIMP_(void)
GCGraphBuilder::NoteRoot(PRUint32 langID, void *root,
nsCycleCollectionParticipant* participant)
{
NS_ASSERTION(root, "Don't add a null root!");
if (langID > nsIProgrammingLanguage::MAX || !mRuntimes[langID]) {
Fault("adding root for unregistered language", root);
return;
}
AddNode(root, participant, langID);
}
NS_IMETHODIMP_(void)
GCGraphBuilder::DescribeNode(CCNodeType type, nsrefcnt refCount,
size_t objSz, const char *objName)
{
#ifdef DEBUG_CC
mCurrPi->mBytes = objSz;
mCurrPi->mName = PL_strdup(objName);
#endif
if (type == RefCounted) {
if (refCount == 0 || refCount == PR_UINT32_MAX)
Fault("zero or overflowing refcount", mCurrPi);
mCurrPi->mRefCount = refCount;
}
else {
mCurrPi->mRefCount = type == GCMarked ? PR_UINT32_MAX : 0;
}
#ifdef DEBUG_CC
sCollector->mStats.mVisitedNode++;
#endif
}
NS_IMETHODIMP_(void)
GCGraphBuilder::NoteXPCOMChild(nsISupports *child)
{
#ifdef DEBUG_CC
nsCString edgeName(mNextEdgeName);
mNextEdgeName.Truncate();
#endif
if (!child || !(child = canonicalize(child)))
return;
#ifdef DEBUG_CC
if (nsCycleCollector_shouldSuppress(child))
return;
#endif
nsXPCOMCycleCollectionParticipant *cp;
ToParticipant(child, &cp);
if (cp) {
PtrInfo *childPi = AddNode(child, cp, nsIProgrammingLanguage::CPLUSPLUS);
if (!childPi)
return;
mEdgeBuilder.Add(childPi);
#ifdef DEBUG_CC
mCurrPi->mEdgeNames.AppendElement(edgeName);
#endif
++childPi->mInternalRefs;
}
}
NS_IMETHODIMP_(void)
GCGraphBuilder::NoteNativeChild(void *child,
nsCycleCollectionParticipant *participant)
{
#ifdef DEBUG_CC
nsCString edgeName(mNextEdgeName);
mNextEdgeName.Truncate();
#endif
if (!child)
return;
NS_ASSERTION(participant, "Need a nsCycleCollectionParticipant!");
PtrInfo *childPi = AddNode(child, participant, nsIProgrammingLanguage::CPLUSPLUS);
if (!childPi)
return;
mEdgeBuilder.Add(childPi);
#ifdef DEBUG_CC
mCurrPi->mEdgeNames.AppendElement(edgeName);
#endif
++childPi->mInternalRefs;
}
NS_IMETHODIMP_(void)
GCGraphBuilder::NoteScriptChild(PRUint32 langID, void *child)
{
#ifdef DEBUG_CC
nsCString edgeName(mNextEdgeName);
mNextEdgeName.Truncate();
#endif
if (!child)
return;
if (langID > nsIProgrammingLanguage::MAX) {
Fault("traversing pointer for unknown language", child);
return;
}
if (!mRuntimes[langID]) {
NS_WARNING("Not collecting cycles involving objects for scripting "
"languages that don't participate in cycle collection.");
return;
}
nsCycleCollectionParticipant *cp = mRuntimes[langID]->ToParticipant(child);
if (!cp)
return;
PtrInfo *childPi = AddNode(child, cp, langID);
if (!childPi)
return;
mEdgeBuilder.Add(childPi);
#ifdef DEBUG_CC
mCurrPi->mEdgeNames.AppendElement(edgeName);
#endif
++childPi->mInternalRefs;
}
NS_IMETHODIMP_(void)
GCGraphBuilder::NoteNextEdgeName(const char* name)
{
#ifdef DEBUG_CC
mNextEdgeName = name;
#endif
}
static PRBool
AddPurpleRoot(GCGraphBuilder &builder, nsISupports *root)
{
root = canonicalize(root);
NS_ASSERTION(root,
"Don't add objects that don't participate in collection!");
nsXPCOMCycleCollectionParticipant *cp;
ToParticipant(root, &cp);
PtrInfo *pinfo = builder.AddNode(root, cp,
nsIProgrammingLanguage::CPLUSPLUS);
if (!pinfo) {
return PR_FALSE;
}
cp->UnmarkPurple(root);
return PR_TRUE;
}
#ifdef DEBUG_CC
static PLDHashOperator
noteAllCallback(nsVoidPtrHashKey* key, void* userArg)
{
GCGraphBuilder *builder = static_cast<GCGraphBuilder*>(userArg);
builder->NoteXPCOMRoot(
static_cast<nsISupports *>(const_cast<void*>(key->GetKey())));
return PL_DHASH_NEXT;
}
void
nsPurpleBuffer::NoteAll(GCGraphBuilder &builder)
{
mCompatObjects.EnumerateEntries(noteAllCallback, &builder);
for (Block *b = &mFirstBlock; b; b = b->mNext) {
for (nsPurpleBufferEntry *e = b->mEntries,
*eEnd = e + NS_ARRAY_LENGTH(b->mEntries);
e != eEnd; ++e) {
if (!(PRUword(e->mObject) & PRUword(1))) {
builder.NoteXPCOMRoot(e->mObject);
}
}
}
}
#endif
void
nsCycleCollector::SelectPurple(GCGraphBuilder &builder)
{
mPurpleBuf.SelectPointers(builder);
}
void
nsCycleCollector::MarkRoots(GCGraphBuilder &builder)
{
mGraph.mRootCount = builder.Count();
// read the PtrInfo out of the graph that we are building
NodePool::Enumerator queue(mGraph.mNodes);
while (!queue.IsDone()) {
PtrInfo *pi = queue.GetNext();
builder.Traverse(pi);
}
}
////////////////////////////////////////////////////////////////////////
// Bacon & Rajan's |ScanRoots| routine.
////////////////////////////////////////////////////////////////////////
struct ScanBlackWalker : public GraphWalker
{
ScanBlackWalker(PRUint32 &aWhiteNodeCount) : mWhiteNodeCount(aWhiteNodeCount)
{
}
PRBool ShouldVisitNode(PtrInfo const *pi)
{
return pi->mColor != black;
}
void VisitNode(PtrInfo *pi)
{
if (pi->mColor == white)
--mWhiteNodeCount;
pi->mColor = black;
#ifdef DEBUG_CC
sCollector->mStats.mSetColorBlack++;
#endif
}
PRUint32 &mWhiteNodeCount;
};
struct scanWalker : public GraphWalker
{
scanWalker(PRUint32 &aWhiteNodeCount) : mWhiteNodeCount(aWhiteNodeCount)
{
}
PRBool ShouldVisitNode(PtrInfo const *pi)
{
return pi->mColor == grey;
}
void VisitNode(PtrInfo *pi)
{
if (pi->mInternalRefs > pi->mRefCount && pi->mRefCount > 0)
Fault("traversed refs exceed refcount", pi);
if (pi->mInternalRefs == pi->mRefCount || pi->mRefCount == 0) {
pi->mColor = white;
++mWhiteNodeCount;
#ifdef DEBUG_CC
sCollector->mStats.mSetColorWhite++;
#endif
} else {
ScanBlackWalker(mWhiteNodeCount).Walk(pi);
NS_ASSERTION(pi->mColor == black,
"Why didn't ScanBlackWalker make pi black?");
}
}
PRUint32 &mWhiteNodeCount;
};
void
nsCycleCollector::ScanRoots()
{
mWhiteNodeCount = 0;
// On the assumption that most nodes will be black, it's
// probably faster to use a GraphWalker than a
// NodePool::Enumerator.
scanWalker(mWhiteNodeCount).WalkFromRoots(mGraph);
#ifdef DEBUG_CC
// Sanity check: scan should have colored all grey nodes black or
// white. So we ensure we have no grey nodes at this point.
NodePool::Enumerator etor(mGraph.mNodes);
while (!etor.IsDone())
{
PtrInfo *pinfo = etor.GetNext();
if (pinfo->mColor == grey) {
Fault("valid grey node after scanning", pinfo);
}
}
#endif
}
////////////////////////////////////////////////////////////////////////
// Bacon & Rajan's |CollectWhite| routine, somewhat modified.
////////////////////////////////////////////////////////////////////////
void
nsCycleCollector::RootWhite()
{
// Explanation of "somewhat modified": we have no way to collect the
// set of whites "all at once", we have to ask each of them to drop
// their outgoing links and assume this will cause the garbage cycle
// to *mostly* self-destruct (except for the reference we continue
// to hold).
//
// To do this "safely" we must make sure that the white nodes we're
// operating on are stable for the duration of our operation. So we
// make 3 sets of calls to language runtimes:
//
// - Root(whites), which should pin the whites in memory.
// - Unlink(whites), which drops outgoing links on each white.
// - Unroot(whites), which returns the whites to normal GC.
nsresult rv;
NS_ASSERTION(mWhiteNodes->IsEmpty(),
"FinishCollection wasn't called?");
mWhiteNodes->SetCapacity(mWhiteNodeCount);
NodePool::Enumerator etor(mGraph.mNodes);
while (!etor.IsDone())
{
PtrInfo *pinfo = etor.GetNext();
if (pinfo->mColor == white && mWhiteNodes->AppendElement(pinfo)) {
rv = pinfo->mParticipant->RootAndUnlinkJSObjects(pinfo->mPointer);
if (NS_FAILED(rv)) {
Fault("Failed root call while unlinking", pinfo);
mWhiteNodes->RemoveElementAt(mWhiteNodes->Length() - 1);
}
}
}
}
PRBool
nsCycleCollector::CollectWhite()
{
nsresult rv;
#if defined(DEBUG_CC) && !defined(__MINGW32__) && defined(WIN32)
struct _CrtMemState ms1, ms2;
_CrtMemCheckpoint(&ms1);
#endif
PRUint32 i, count = mWhiteNodes->Length();
for (i = 0; i < count; ++i) {
PtrInfo *pinfo = mWhiteNodes->ElementAt(i);
rv = pinfo->mParticipant->Unlink(pinfo->mPointer);
if (NS_FAILED(rv)) {
Fault("Failed unlink call while unlinking", pinfo);
#ifdef DEBUG_CC
mStats.mFailedUnlink++;
#endif
}
else {
#ifdef DEBUG_CC
++mStats.mCollectedNode;
#endif
}
}
for (i = 0; i < count; ++i) {
PtrInfo *pinfo = mWhiteNodes->ElementAt(i);
rv = pinfo->mParticipant->Unroot(pinfo->mPointer);
if (NS_FAILED(rv))
Fault("Failed unroot call while unlinking", pinfo);
}
#if defined(DEBUG_CC) && !defined(__MINGW32__) && defined(WIN32)
_CrtMemCheckpoint(&ms2);
if (ms2.lTotalCount < ms1.lTotalCount)
mStats.mFreedBytes += (ms1.lTotalCount - ms2.lTotalCount);
#endif
mCollectedObjects += count;
return count > 0;
}
#ifdef DEBUG_CC
////////////////////////////////////////////////////////////////////////
// Memory-hooking stuff
// When debugging wild pointers, it sometimes helps to hook malloc and
// free. This stuff is disabled unless you set an environment variable.
////////////////////////////////////////////////////////////////////////
static PRBool hookedMalloc = PR_FALSE;
#if defined(__GLIBC__) && !defined(__UCLIBC__)
#include <malloc.h>
static void* (*old_memalign_hook)(size_t, size_t, const void *);
static void* (*old_realloc_hook)(void *, size_t, const void *);
static void* (*old_malloc_hook)(size_t, const void *);
static void (*old_free_hook)(void *, const void *);
static void* my_memalign_hook(size_t, size_t, const void *);
static void* my_realloc_hook(void *, size_t, const void *);
static void* my_malloc_hook(size_t, const void *);
static void my_free_hook(void *, const void *);
static inline void
install_old_hooks()
{
__memalign_hook = old_memalign_hook;
__realloc_hook = old_realloc_hook;
__malloc_hook = old_malloc_hook;
__free_hook = old_free_hook;
}
static inline void
save_old_hooks()
{
// Glibc docs recommend re-saving old hooks on
// return from recursive calls. Strangely when
// we do this, we find ourselves in infinite
// recursion.
// old_memalign_hook = __memalign_hook;
// old_realloc_hook = __realloc_hook;
// old_malloc_hook = __malloc_hook;
// old_free_hook = __free_hook;
}
static inline void
install_new_hooks()
{
__memalign_hook = my_memalign_hook;
__realloc_hook = my_realloc_hook;
__malloc_hook = my_malloc_hook;
__free_hook = my_free_hook;
}
static void*
my_realloc_hook(void *ptr, size_t size, const void *caller)
{
void *result;
install_old_hooks();
result = realloc(ptr, size);
save_old_hooks();
if (sCollector) {
sCollector->Freed(ptr);
sCollector->Allocated(result, size);
}
install_new_hooks();
return result;
}
static void*
my_memalign_hook(size_t size, size_t alignment, const void *caller)
{
void *result;
install_old_hooks();
result = memalign(size, alignment);
save_old_hooks();
if (sCollector)
sCollector->Allocated(result, size);
install_new_hooks();
return result;
}
static void
my_free_hook (void *ptr, const void *caller)
{
install_old_hooks();
free(ptr);
save_old_hooks();
if (sCollector)
sCollector->Freed(ptr);
install_new_hooks();
}
static void*
my_malloc_hook (size_t size, const void *caller)
{
void *result;
install_old_hooks();
result = malloc (size);
save_old_hooks();
if (sCollector)
sCollector->Allocated(result, size);
install_new_hooks();
return result;
}
static void
InitMemHook(void)
{
if (!hookedMalloc) {
save_old_hooks();
install_new_hooks();
hookedMalloc = PR_TRUE;
}
}
#elif defined(WIN32)
#ifndef __MINGW32__
static int
AllocHook(int allocType, void *userData, size_t size, int
blockType, long requestNumber, const unsigned char *filename, int
lineNumber)
{
if (allocType == _HOOK_FREE)
sCollector->Freed(userData);
return 1;
}
static void InitMemHook(void)
{
if (!hookedMalloc) {
_CrtSetAllocHook (AllocHook);
hookedMalloc = PR_TRUE;
}
}
#endif // __MINGW32__
#elif 0 // defined(XP_MACOSX)
#include <malloc/malloc.h>
static void (*old_free)(struct _malloc_zone_t *zone, void *ptr);
static void
freehook(struct _malloc_zone_t *zone, void *ptr)
{
if (sCollector)
sCollector->Freed(ptr);
old_free(zone, ptr);
}
static void
InitMemHook(void)
{
if (!hookedMalloc) {
malloc_zone_t *default_zone = malloc_default_zone();
old_free = default_zone->free;
default_zone->free = freehook;
hookedMalloc = PR_TRUE;
}
}
#else
static void
InitMemHook(void)
{
}
#endif // GLIBC / WIN32 / OSX
#endif // DEBUG_CC
////////////////////////////////////////////////////////////////////////
// Collector implementation
////////////////////////////////////////////////////////////////////////
nsCycleCollector::nsCycleCollector() :
mCollectionInProgress(PR_FALSE),
mScanInProgress(PR_FALSE),
mCollectedObjects(0),
mWhiteNodes(nsnull),
mWhiteNodeCount(0),
#ifdef DEBUG_CC
mPurpleBuf(mParams, mStats),
mPtrLog(nsnull)
#else
mPurpleBuf(mParams)
#endif
{
#ifdef DEBUG_CC
mExpectedGarbage.Init();
#endif
memset(mRuntimes, 0, sizeof(mRuntimes));
mRuntimes[nsIProgrammingLanguage::CPLUSPLUS] = &mXPCOMRuntime;
}
nsCycleCollector::~nsCycleCollector()
{
}
void
nsCycleCollector::RegisterRuntime(PRUint32 langID,
nsCycleCollectionLanguageRuntime *rt)
{
if (mParams.mDoNothing)
return;
if (langID > nsIProgrammingLanguage::MAX)
Fault("unknown language runtime in registration");
if (mRuntimes[langID])
Fault("multiple registrations of language runtime", rt);
mRuntimes[langID] = rt;
}
nsCycleCollectionLanguageRuntime *
nsCycleCollector::GetRuntime(PRUint32 langID)
{
if (langID > nsIProgrammingLanguage::MAX)
return nsnull;
return mRuntimes[langID];
}
void
nsCycleCollector::ForgetRuntime(PRUint32 langID)
{
if (mParams.mDoNothing)
return;
if (langID > nsIProgrammingLanguage::MAX)
Fault("unknown language runtime in deregistration");
if (! mRuntimes[langID])
Fault("forgetting non-registered language runtime");
mRuntimes[langID] = nsnull;
}
#ifdef DEBUG_CC
static void
WriteGraph(FILE *stream, GCGraph &graph, const void *redPtr)
{
fprintf(stream,
"digraph collection {\n"
"rankdir=LR\n"
"node [fontname=fixed, fontsize=10, style=filled, shape=box]\n"
);
NodePool::Enumerator etor(graph.mNodes);
while (!etor.IsDone()) {
PtrInfo *pi = etor.GetNext();
const void *p = pi->mPointer;
fprintf(stream,
"n%p [label=\"%s\\n%p\\n",
p,
pi->mName,
p);
if (pi->mRefCount != 0 && pi->mRefCount != PR_UINT32_MAX) {
fprintf(stream,
"%u/%u refs found",
pi->mInternalRefs, pi->mRefCount);
}
fprintf(stream,
"\", fillcolor=%s, fontcolor=%s]\n",
(redPtr && redPtr == p ? "red" : (pi->mColor == black ? "black" : "white")),
(pi->mColor == black ? "white" : "black"));
for (EdgePool::Iterator child = pi->mFirstChild,
child_end = pi->mLastChild;
child != child_end; ++child) {
fprintf(stream, "n%p -> n%p\n", p, (*child)->mPointer);
}
}
fprintf(stream, "\n}\n");
}
void
nsCycleCollector::MaybeDrawGraphs()
{
if (mParams.mDrawGraphs) {
// We draw graphs only if there were any white nodes.
PRBool anyWhites = PR_FALSE;
NodePool::Enumerator fwetor(mGraph.mNodes);
while (!fwetor.IsDone())
{
PtrInfo *pinfo = fwetor.GetNext();
if (pinfo->mColor == white) {
anyWhites = PR_TRUE;
break;
}
}
if (anyWhites) {
// We can't just use _popen here because graphviz-for-windows
// doesn't set up its stdin stream properly, sigh.
FILE *stream;
#ifdef WIN32
stream = fopen("c:\\cycle-graph.dot", "w+");
#else
stream = popen("dotty -", "w");
#endif
WriteGraph(stream, mGraph, nsnull);
#ifdef WIN32
fclose(stream);
// Even dotty doesn't work terribly well on windows, since
// they execute lefty asynchronously. So we'll just run
// lefty ourselves.
_spawnlp(_P_WAIT,
"lefty",
"lefty",
"-e",
"\"load('dotty.lefty');"
"dotty.simple('c:\\cycle-graph.dot');\"",
NULL);
unlink("c:\\cycle-graph.dot");
#else
pclose(stream);
#endif
}
}
}
class Suppressor :
public nsCycleCollectionTraversalCallback
{
protected:
static char *sSuppressionList;
static PRBool sInitialized;
PRBool mSuppressThisNode;
public:
Suppressor()
{
}
PRBool shouldSuppress(nsISupports *s)
{
if (!sInitialized) {
sSuppressionList = PR_GetEnv("XPCOM_CC_SUPPRESS");
sInitialized = PR_TRUE;
}
if (sSuppressionList == nsnull) {
mSuppressThisNode = PR_FALSE;
} else {
nsresult rv;
nsXPCOMCycleCollectionParticipant *cp;
rv = CallQueryInterface(s, &cp);
if (NS_FAILED(rv)) {
Fault("checking suppression on wrong type of pointer", s);
return PR_TRUE;
}
cp->Traverse(s, *this);
}
return mSuppressThisNode;
}
NS_IMETHOD_(void) DescribeNode(CCNodeType type, nsrefcnt refCount,
size_t objSz, const char *objName)
{
mSuppressThisNode = (PL_strstr(sSuppressionList, objName) != nsnull);
}
NS_IMETHOD_(void) NoteXPCOMRoot(nsISupports *root) {};
NS_IMETHOD_(void) NoteRoot(PRUint32 langID, void *root,
nsCycleCollectionParticipant* participant) {};
NS_IMETHOD_(void) NoteXPCOMChild(nsISupports *child) {}
NS_IMETHOD_(void) NoteScriptChild(PRUint32 langID, void *child) {}
NS_IMETHOD_(void) NoteNativeChild(void *child,
nsCycleCollectionParticipant *participant) {}
NS_IMETHOD_(void) NoteNextEdgeName(const char* name) {}
};
char *Suppressor::sSuppressionList = nsnull;
PRBool Suppressor::sInitialized = PR_FALSE;
static PRBool
nsCycleCollector_shouldSuppress(nsISupports *s)
{
Suppressor supp;
return supp.shouldSuppress(s);
}
#endif
#ifdef DEBUG
static PRBool
nsCycleCollector_isScanSafe(nsISupports *s)
{
if (!s)
return PR_FALSE;
nsXPCOMCycleCollectionParticipant *cp;
ToParticipant(s, &cp);
return cp != nsnull;
}
#endif
PRBool
nsCycleCollector::Suspect(nsISupports *n)
{
// Re-entering ::Suspect during collection used to be a fault, but
// we are canonicalizing nsISupports pointers using QI, so we will
// see some spurious refcount traffic here.
if (mScanInProgress)
return PR_FALSE;
NS_ASSERTION(nsCycleCollector_isScanSafe(n),
"suspected a non-scansafe pointer");
NS_ASSERTION(NS_IsMainThread(), "trying to suspect from non-main thread");
if (mParams.mDoNothing)
return PR_FALSE;
#ifdef DEBUG_CC
mStats.mSuspectNode++;
if (nsCycleCollector_shouldSuppress(n))
return PR_FALSE;
#ifndef __MINGW32__
if (mParams.mHookMalloc)
InitMemHook();
#endif
if (mParams.mLogPointers) {
if (!mPtrLog)
mPtrLog = fopen("pointer_log", "w");
fprintf(mPtrLog, "S %p\n", static_cast<void*>(n));
}
#endif
return mPurpleBuf.PutCompatObject(n);
}
PRBool
nsCycleCollector::Forget(nsISupports *n)
{
// Re-entering ::Forget during collection used to be a fault, but
// we are canonicalizing nsISupports pointers using QI, so we will
// see some spurious refcount traffic here.
if (mScanInProgress)
return PR_FALSE;
NS_ASSERTION(NS_IsMainThread(), "trying to forget from non-main thread");
if (mParams.mDoNothing)
return PR_TRUE; // it's as good as forgotten
#ifdef DEBUG_CC
mStats.mForgetNode++;
#ifndef __MINGW32__
if (mParams.mHookMalloc)
InitMemHook();
#endif
if (mParams.mLogPointers) {
if (!mPtrLog)
mPtrLog = fopen("pointer_log", "w");
fprintf(mPtrLog, "F %p\n", static_cast<void*>(n));
}
#endif
mPurpleBuf.RemoveCompatObject(n);
return PR_TRUE;
}
nsPurpleBufferEntry*
nsCycleCollector::Suspect2(nsISupports *n)
{
// Re-entering ::Suspect during collection used to be a fault, but
// we are canonicalizing nsISupports pointers using QI, so we will
// see some spurious refcount traffic here.
if (mScanInProgress)
return nsnull;
NS_ASSERTION(nsCycleCollector_isScanSafe(n),
"suspected a non-scansafe pointer");
NS_ASSERTION(NS_IsMainThread(), "trying to suspect from non-main thread");
if (mParams.mDoNothing)
return nsnull;
#ifdef DEBUG_CC
mStats.mSuspectNode++;
if (nsCycleCollector_shouldSuppress(n))
return nsnull;
#ifndef __MINGW32__
if (mParams.mHookMalloc)
InitMemHook();
#endif
if (mParams.mLogPointers) {
if (!mPtrLog)
mPtrLog = fopen("pointer_log", "w");
fprintf(mPtrLog, "S %p\n", static_cast<void*>(n));
}
#endif
// Caller is responsible for filling in result's mRefCnt.
return mPurpleBuf.Put(n);
}
PRBool
nsCycleCollector::Forget2(nsPurpleBufferEntry *e)
{
// Re-entering ::Forget during collection used to be a fault, but
// we are canonicalizing nsISupports pointers using QI, so we will
// see some spurious refcount traffic here.
if (mScanInProgress)
return PR_FALSE;
NS_ASSERTION(NS_IsMainThread(), "trying to forget from non-main thread");
#ifdef DEBUG_CC
mStats.mForgetNode++;
#ifndef __MINGW32__
if (mParams.mHookMalloc)
InitMemHook();
#endif
if (mParams.mLogPointers) {
if (!mPtrLog)
mPtrLog = fopen("pointer_log", "w");
fprintf(mPtrLog, "F %p\n", static_cast<void*>(e->mObject));
}
#endif
mPurpleBuf.Remove(e);
return PR_TRUE;
}
#ifdef DEBUG_CC
void
nsCycleCollector::Allocated(void *n, size_t sz)
{
}
void
nsCycleCollector::Freed(void *n)
{
mStats.mFreeCalls++;
if (!n) {
// Ignore null pointers coming through
return;
}
if (mPurpleBuf.Exists(n)) {
mStats.mForgetNode++;
mStats.mFreedWhilePurple++;
Fault("freed while purple", n);
if (mParams.mLogPointers) {
if (!mPtrLog)
mPtrLog = fopen("pointer_log", "w");
fprintf(mPtrLog, "R %p\n", n);
}
}
}
#endif
PRUint32
nsCycleCollector::Collect(PRUint32 aTryCollections)
{
#if defined(DEBUG_CC) && !defined(__MINGW32__)
if (!mParams.mDoNothing && mParams.mHookMalloc)
InitMemHook();
#endif
// This can legitimately happen in a few cases. See bug 383651.
if (mCollectionInProgress)
return 0;
#ifdef COLLECT_TIME_DEBUG
printf("cc: Starting nsCycleCollector::Collect(%d)\n", aTryCollections);
PRTime start = PR_Now();
#endif
mCollectionInProgress = PR_TRUE;
nsCOMPtr<nsIObserverService> obs =
do_GetService("@mozilla.org/observer-service;1");
if (obs) {
obs->NotifyObservers(nsnull, "cycle-collector-begin", nsnull);
}
mFollowupCollection = PR_FALSE;
mCollectedObjects = 0;
nsAutoTPtrArray<PtrInfo, 4000> whiteNodes;
mWhiteNodes = &whiteNodes;
PRUint32 totalCollections = 0;
while (aTryCollections > totalCollections) {
PRBool collected;
if (mRuntimes[nsIProgrammingLanguage::JAVASCRIPT]) {
collected = static_cast<nsCycleCollectionJSRuntime*>
(mRuntimes[nsIProgrammingLanguage::JAVASCRIPT])->Collect();
}
else {
collected = BeginCollection() && FinishCollection();
}
#ifdef DEBUG_CC
// We wait until after FinishCollection to check the white nodes because
// some objects may outlive CollectWhite but then be freed by
// FinishCycleCollection (like XPConnect's deferred release of native
// objects).
PRUint32 i, count = mWhiteNodes->Length();
for (i = 0; i < count; ++i) {
PtrInfo *pinfo = mWhiteNodes->ElementAt(i);
if (pinfo->mLangID == nsIProgrammingLanguage::CPLUSPLUS &&
mPurpleBuf.Exists(pinfo->mPointer)) {
printf("nsCycleCollector: %s object @%p is still alive after\n"
" calling RootAndUnlinkJSObjects, Unlink, and Unroot on"
" it! This probably\n"
" means the Unlink implementation was insufficient.\n",
pinfo->mName, pinfo->mPointer);
}
}
#endif
mWhiteNodes->Clear();
ClearGraph();
mParams.mDoNothing = PR_FALSE;
if (!collected)
break;
++totalCollections;
}
mWhiteNodes = nsnull;
mCollectionInProgress = PR_FALSE;
#ifdef XP_OS2
// Now that the cycle collector has freed some memory, we can try to
// force the C library to give back as much memory to the system as
// possible.
_heapmin();
#endif
#ifdef COLLECT_TIME_DEBUG
printf("cc: Collect() took %lldms\n",
(PR_Now() - start) / PR_USEC_PER_MSEC);
#endif
#ifdef DEBUG_CC
ExplainLiveExpectedGarbage();
#endif
return mCollectedObjects;
}
PRBool
nsCycleCollector::BeginCollection()
{
if (mParams.mDoNothing)
return PR_FALSE;
GCGraphBuilder builder(mGraph, mRuntimes);
#ifdef COLLECT_TIME_DEBUG
PRTime now = PR_Now();
#endif
for (PRUint32 i = 0; i <= nsIProgrammingLanguage::MAX; ++i) {
if (mRuntimes[i])
mRuntimes[i]->BeginCycleCollection(builder);
}
#ifdef COLLECT_TIME_DEBUG
printf("cc: mRuntimes[*]->BeginCycleCollection() took %lldms\n",
(PR_Now() - now) / PR_USEC_PER_MSEC);
now = PR_Now();
#endif
#ifdef DEBUG_CC
PRUint32 purpleStart = builder.Count();
#endif
mScanInProgress = PR_TRUE;
SelectPurple(builder);
#ifdef DEBUG_CC
PRUint32 purpleEnd = builder.Count();
if (purpleStart != purpleEnd) {
#ifndef __MINGW32__
if (mParams.mHookMalloc)
InitMemHook();
#endif
if (mParams.mLogPointers && !mPtrLog)
mPtrLog = fopen("pointer_log", "w");
PRUint32 i = 0;
NodePool::Enumerator queue(mGraph.mNodes);
while (i++ < purpleStart) {
queue.GetNext();
}
while (i++ < purpleEnd) {
mStats.mForgetNode++;
if (mParams.mLogPointers)
fprintf(mPtrLog, "F %p\n", queue.GetNext()->mPointer);
}
}
#endif
#ifdef COLLECT_TIME_DEBUG
printf("cc: SelectPurple() took %lldms\n",
(PR_Now() - now) / PR_USEC_PER_MSEC);
#endif
if (builder.Count() > 0) {
// The main Bacon & Rajan collection algorithm.
#ifdef COLLECT_TIME_DEBUG
now = PR_Now();
#endif
MarkRoots(builder);
#ifdef COLLECT_TIME_DEBUG
{
PRTime then = PR_Now();
printf("cc: MarkRoots() took %lldms\n",
(then - now) / PR_USEC_PER_MSEC);
now = then;
}
#endif
ScanRoots();
#ifdef COLLECT_TIME_DEBUG
printf("cc: ScanRoots() took %lldms\n",
(PR_Now() - now) / PR_USEC_PER_MSEC);
#endif
#ifdef DEBUG_CC
MaybeDrawGraphs();
#endif
mScanInProgress = PR_FALSE;
#ifdef DEBUG_CC
if (mFollowupCollection && purpleStart != purpleEnd) {
PRUint32 i = 0;
NodePool::Enumerator queue(mGraph.mNodes);
while (i++ < purpleStart) {
queue.GetNext();
}
while (i++ < purpleEnd) {
PtrInfo *pi = queue.GetNext();
if (pi->mColor == white) {
printf("nsCycleCollector: a later shutdown collection collected the additional\n"
" suspect %p %s\n"
" (which could be fixed by improving traversal)\n",
pi->mPointer, pi->mName);
}
}
}
#endif
#ifdef COLLECT_TIME_DEBUG
now = PR_Now();
#endif
RootWhite();
#ifdef COLLECT_TIME_DEBUG
printf("cc: RootWhite() took %lldms\n",
(PR_Now() - now) / PR_USEC_PER_MSEC);
#endif
}
else {
mScanInProgress = PR_FALSE;
}
return PR_TRUE;
}
PRBool
nsCycleCollector::FinishCollection()
{
#ifdef COLLECT_TIME_DEBUG
PRTime now = PR_Now();
#endif
PRBool collected = CollectWhite();
#ifdef COLLECT_TIME_DEBUG
printf("cc: CollectWhite() took %lldms\n",
(PR_Now() - now) / PR_USEC_PER_MSEC);
#endif
#ifdef DEBUG_CC
mStats.mCollection++;
if (mParams.mReportStats)
mStats.Dump();
#endif
for (PRUint32 i = 0; i <= nsIProgrammingLanguage::MAX; ++i) {
if (mRuntimes[i])
mRuntimes[i]->FinishCycleCollection();
}
mFollowupCollection = PR_TRUE;
return collected;
}
PRUint32
nsCycleCollector::SuspectedCount()
{
return mPurpleBuf.Count();
}
void
nsCycleCollector::Shutdown()
{
// Here we want to run a final collection and then permanently
// disable the collector because the program is shutting down.
Collect(SHUTDOWN_COLLECTIONS(mParams));
#ifdef DEBUG_CC
GCGraphBuilder builder(mGraph, mRuntimes);
mScanInProgress = PR_TRUE;
SelectPurple(builder);
mScanInProgress = PR_FALSE;
if (builder.Count() != 0) {
printf("Might have been able to release more cycles if the cycle collector would "
"run once more at shutdown.\n");
}
ClearGraph();
#endif
mParams.mDoNothing = PR_TRUE;
}
#ifdef DEBUG_CC
static PLDHashOperator
AddExpectedGarbage(nsVoidPtrHashKey *p, void *arg)
{
GCGraphBuilder *builder = static_cast<GCGraphBuilder*>(arg);
nsISupports *root =
static_cast<nsISupports*>(const_cast<void*>(p->GetKey()));
builder->NoteXPCOMRoot(root);
return PL_DHASH_NEXT;
}
struct SetSCCWalker : public GraphWalker
{
SetSCCWalker(PRUint32 aIndex) : mIndex(aIndex) {}
PRBool ShouldVisitNode(PtrInfo const *pi) { return pi->mSCCIndex == 0; }
void VisitNode(PtrInfo *pi) { pi->mSCCIndex = mIndex; }
private:
PRUint32 mIndex;
};
struct SetNonRootGreyWalker : public GraphWalker
{
PRBool ShouldVisitNode(PtrInfo const *pi) { return pi->mColor == white; }
void VisitNode(PtrInfo *pi) { pi->mColor = grey; }
};
static void
PrintPathToExpectedGarbage(PtrInfo *pi)
{
printf(" An object expected to be garbage could be "
"reached from it by the path:\n");
for (PtrInfo *path = pi, *prev = nsnull; prev != path;
prev = path,
path = path->mShortestPathToExpectedGarbage) {
if (prev) {
nsCString *edgeName = prev
->mShortestPathToExpectedGarbageEdgeName;
printf(" via %s\n",
edgeName->IsEmpty() ? "<unknown edge>"
: edgeName->get());
}
printf(" %s %p\n", path->mName, path->mPointer);
}
}
void
nsCycleCollector::ExplainLiveExpectedGarbage()
{
if (mScanInProgress || mCollectionInProgress)
Fault("can't explain expected garbage during collection itself");
if (mParams.mDoNothing) {
printf("nsCycleCollector: not explaining expected garbage since\n"
" cycle collection disabled\n");
return;
}
mCollectionInProgress = PR_TRUE;
mScanInProgress = PR_TRUE;
{
GCGraphBuilder builder(mGraph, mRuntimes);
// Instead of adding roots from the purple buffer, we add them
// from the list of nodes we were expected to collect.
// Put the expected garbage in *before* calling
// BeginCycleCollection so that we can separate the expected
// garbage from the NoteRoot calls in such a way that something
// that's in both is considered expected garbage.
mExpectedGarbage.EnumerateEntries(&AddExpectedGarbage, &builder);
PRUint32 expectedGarbageCount = builder.Count();
for (PRUint32 i = 0; i <= nsIProgrammingLanguage::MAX; ++i) {
if (mRuntimes[i])
mRuntimes[i]->BeginCycleCollection(builder);
}
// But just for extra information, add entries from the purple
// buffer too, since it may give us extra information about
// traversal deficiencies.
mPurpleBuf.NoteAll(builder);
MarkRoots(builder);
ScanRoots();
mScanInProgress = PR_FALSE;
PRBool describeExtraRefcounts = PR_FALSE;
PRBool findCycleRoots = PR_FALSE;
{
NodePool::Enumerator queue(mGraph.mNodes);
PRUint32 i = 0;
while (!queue.IsDone()) {
PtrInfo *pi = queue.GetNext();
if (pi->mColor == white) {
findCycleRoots = PR_TRUE;
}
if (pi->mInternalRefs != pi->mRefCount &&
(i < expectedGarbageCount || i >= mGraph.mRootCount)) {
// This check isn't particularly useful anymore
// given that we need to enter this part for i >=
// mGraph.mRootCount and there are plenty of
// NoteRoot roots.
describeExtraRefcounts = PR_TRUE;
}
++i;
}
}
if ((describeExtraRefcounts || findCycleRoots) &&
CreateReversedEdges()) {
// Note that the external references may have been external
// to a different node in the cycle collection that just
// happened, if that different node was purple and then
// black.
// Use mSCCIndex temporarily to track whether we've reached
// nodes in the breadth-first search.
const PRUint32 INDEX_UNREACHED = 0;
const PRUint32 INDEX_REACHED = 1;
NodePool::Enumerator etor_clear(mGraph.mNodes);
while (!etor_clear.IsDone()) {
PtrInfo *pi = etor_clear.GetNext();
pi->mSCCIndex = INDEX_UNREACHED;
}
nsDeque queue; // for breadth-first search
NodePool::Enumerator etor_roots(mGraph.mNodes);
for (PRUint32 i = 0; i < mGraph.mRootCount; ++i) {
PtrInfo *root_pi = etor_roots.GetNext();
if (i < expectedGarbageCount) {
root_pi->mSCCIndex = INDEX_REACHED;
root_pi->mShortestPathToExpectedGarbage = root_pi;
queue.Push(root_pi);
}
}
while (queue.GetSize() > 0) {
PtrInfo *pi = (PtrInfo*)queue.PopFront();
for (ReversedEdge *e = pi->mReversedEdges; e; e = e->mNext) {
if (e->mTarget->mSCCIndex == INDEX_UNREACHED) {
e->mTarget->mSCCIndex = INDEX_REACHED;
PtrInfo *target = e->mTarget;
if (!target->mShortestPathToExpectedGarbage) {
target->mShortestPathToExpectedGarbage = pi;
target->mShortestPathToExpectedGarbageEdgeName =
e->mEdgeName;
}
queue.Push(target);
}
}
if (pi->mRefCount == PR_UINT32_MAX ||
(pi->mInternalRefs != pi->mRefCount && pi->mRefCount > 0)) {
if (pi->mRefCount == PR_UINT32_MAX) {
printf("nsCycleCollector: %s %p was not collected due "
"to \n"
" external references\n",
pi->mName, pi->mPointer);
}
else {
printf("nsCycleCollector: %s %p was not collected due "
"to %d\n"
" external references (%d total - %d known)\n",
pi->mName, pi->mPointer,
pi->mRefCount - pi->mInternalRefs,
pi->mRefCount, pi->mInternalRefs);
}
PrintPathToExpectedGarbage(pi);
if (pi->mRefCount == PR_UINT32_MAX) {
printf(" The known references to it were from:\n");
}
else {
printf(" The %d known references to it were from:\n",
pi->mInternalRefs);
}
for (ReversedEdge *e = pi->mReversedEdges;
e; e = e->mNext) {
printf(" %s %p",
e->mTarget->mName, e->mTarget->mPointer);
if (!e->mEdgeName->IsEmpty()) {
printf(" via %s", e->mEdgeName->get());
}
printf("\n");
}
mRuntimes[pi->mLangID]->PrintAllReferencesTo(pi->mPointer);
}
}
if (findCycleRoots) {
// NOTE: This code changes the white nodes that are not
// roots to gray.
// Put the nodes in post-order traversal order from a
// depth-first search.
nsDeque DFSPostOrder;
{
// Use mSCCIndex temporarily to track the DFS numbering:
const PRUint32 INDEX_UNREACHED = 0;
const PRUint32 INDEX_TRAVERSING = 1;
const PRUint32 INDEX_NUMBERED = 2;
NodePool::Enumerator etor_clear(mGraph.mNodes);
while (!etor_clear.IsDone()) {
PtrInfo *pi = etor_clear.GetNext();
pi->mSCCIndex = INDEX_UNREACHED;
}
nsDeque stack;
NodePool::Enumerator etor_roots(mGraph.mNodes);
for (PRUint32 i = 0; i < mGraph.mRootCount; ++i) {
PtrInfo *root_pi = etor_roots.GetNext();
stack.Push(root_pi);
}
while (stack.GetSize() > 0) {
PtrInfo *pi = (PtrInfo*)stack.Peek();
if (pi->mSCCIndex == INDEX_UNREACHED) {
pi->mSCCIndex = INDEX_TRAVERSING;
for (EdgePool::Iterator child = pi->mFirstChild,
child_end = pi->mLastChild;
child != child_end; ++child) {
stack.Push(*child);
}
} else {
stack.Pop();
// Somebody else might have numbered it already
// (since this is depth-first, not breadth-first).
// This happens if a node is pushed on the stack
// a second time while it is on the stack in
// UNREACHED state.
if (pi->mSCCIndex == INDEX_TRAVERSING) {
pi->mSCCIndex = INDEX_NUMBERED;
DFSPostOrder.Push(pi);
}
}
}
}
// Put the nodes into strongly-connected components.
{
NodePool::Enumerator etor_clear(mGraph.mNodes);
while (!etor_clear.IsDone()) {
PtrInfo *pi = etor_clear.GetNext();
pi->mSCCIndex = 0;
}
PRUint32 currentSCC = 1;
while (DFSPostOrder.GetSize() > 0) {
SetSCCWalker(currentSCC).Walk((PtrInfo*)DFSPostOrder.PopFront());
++currentSCC;
}
}
// Mark any white nodes reachable from other components as
// grey.
{
NodePool::Enumerator queue(mGraph.mNodes);
while (!queue.IsDone()) {
PtrInfo *pi = queue.GetNext();
if (pi->mColor != white)
continue;
for (EdgePool::Iterator child = pi->mFirstChild,
child_end = pi->mLastChild;
child != child_end; ++child) {
if ((*child)->mSCCIndex != pi->mSCCIndex) {
SetNonRootGreyWalker().Walk(*child);
}
}
}
}
{
NodePool::Enumerator queue(mGraph.mNodes);
while (!queue.IsDone()) {
PtrInfo *pi = queue.GetNext();
if (pi->mColor == white) {
if (pi->mLangID ==
nsIProgrammingLanguage::CPLUSPLUS &&
mPurpleBuf.Exists(pi->mPointer)) {
printf(
"nsCycleCollector: %s %p in component %d\n"
" which was reference counted during the root/unlink/unroot phase of the\n"
" last collection was not collected due to failure to unlink (see other\n"
" warnings) or deficiency in traverse that causes cycles referenced only\n"
" from other cycles to require multiple rounds of cycle collection in which\n"
" this object was likely the reachable object\n",
pi->mName, pi->mPointer, pi->mSCCIndex);
} else {
printf(
"nsCycleCollector: %s %p in component %d\n"
" was not collected due to missing call to suspect, failure to unlink (see\n"
" other warnings), or deficiency in traverse that causes cycles referenced\n"
" only from other cycles to require multiple rounds of cycle collection\n",
pi->mName, pi->mPointer, pi->mSCCIndex);
}
if (pi->mShortestPathToExpectedGarbage)
PrintPathToExpectedGarbage(pi);
}
}
}
}
DestroyReversedEdges();
}
}
ClearGraph();
mCollectionInProgress = PR_FALSE;
for (PRUint32 i = 0; i <= nsIProgrammingLanguage::MAX; ++i) {
if (mRuntimes[i])
mRuntimes[i]->FinishCycleCollection();
}
}
PRBool
nsCycleCollector::CreateReversedEdges()
{
// Count the edges in the graph.
PRUint32 edgeCount = 0;
NodePool::Enumerator countQueue(mGraph.mNodes);
while (!countQueue.IsDone()) {
PtrInfo *pi = countQueue.GetNext();
for (EdgePool::Iterator e = pi->mFirstChild, e_end = pi->mLastChild;
e != e_end; ++e, ++edgeCount) {
}
}
// Allocate a pool to hold all of the edges.
mGraph.mReversedEdges = new ReversedEdge[edgeCount];
if (mGraph.mReversedEdges == nsnull) {
NS_NOTREACHED("allocation failure creating reversed edges");
return PR_FALSE;
}
// Fill in the reversed edges by scanning all forward edges.
ReversedEdge *current = mGraph.mReversedEdges;
NodePool::Enumerator buildQueue(mGraph.mNodes);
while (!buildQueue.IsDone()) {
PtrInfo *pi = buildQueue.GetNext();
PRInt32 i = 0;
for (EdgePool::Iterator e = pi->mFirstChild, e_end = pi->mLastChild;
e != e_end; ++e) {
current->mTarget = pi;
current->mEdgeName = &pi->mEdgeNames[i];
current->mNext = (*e)->mReversedEdges;
(*e)->mReversedEdges = current;
++current;
++i;
}
}
NS_ASSERTION(current - mGraph.mReversedEdges == ptrdiff_t(edgeCount),
"misallocation");
return PR_TRUE;
}
void
nsCycleCollector::DestroyReversedEdges()
{
NodePool::Enumerator queue(mGraph.mNodes);
while (!queue.IsDone()) {
PtrInfo *pi = queue.GetNext();
pi->mReversedEdges = nsnull;
}
delete mGraph.mReversedEdges;
mGraph.mReversedEdges = nsnull;
}
void
nsCycleCollector::ShouldBeFreed(nsISupports *n)
{
mExpectedGarbage.PutEntry(n);
}
void
nsCycleCollector::WasFreed(nsISupports *n)
{
mExpectedGarbage.RemoveEntry(n);
}
#endif
////////////////////////////////////////////////////////////////////////
// Module public API (exported in nsCycleCollector.h)
// Just functions that redirect into the singleton, once it's built.
////////////////////////////////////////////////////////////////////////
void
nsCycleCollector_registerRuntime(PRUint32 langID,
nsCycleCollectionLanguageRuntime *rt)
{
if (sCollector)
sCollector->RegisterRuntime(langID, rt);
}
nsCycleCollectionLanguageRuntime *
nsCycleCollector_getRuntime(PRUint32 langID)
{
if (sCollector)
sCollector->GetRuntime(langID);
return nsnull;
}
void
nsCycleCollector_forgetRuntime(PRUint32 langID)
{
if (sCollector)
sCollector->ForgetRuntime(langID);
}
PRBool
NS_CycleCollectorSuspect(nsISupports *n)
{
if (sCollector)
return sCollector->Suspect(n);
return PR_FALSE;
}
PRBool
NS_CycleCollectorForget(nsISupports *n)
{
return sCollector ? sCollector->Forget(n) : PR_TRUE;
}
nsPurpleBufferEntry*
NS_CycleCollectorSuspect2(nsISupports *n)
{
if (sCollector)
return sCollector->Suspect2(n);
return nsnull;
}
PRBool
NS_CycleCollectorForget2(nsPurpleBufferEntry *e)
{
return sCollector ? sCollector->Forget2(e) : PR_TRUE;
}
PRUint32
nsCycleCollector_collect()
{
return sCollector ? sCollector->Collect() : 0;
}
PRUint32
nsCycleCollector_suspectedCount()
{
return sCollector ? sCollector->SuspectedCount() : 0;
}
PRBool
nsCycleCollector_beginCollection()
{
return sCollector ? sCollector->BeginCollection() : PR_FALSE;
}
PRBool
nsCycleCollector_finishCollection()
{
return sCollector ? sCollector->FinishCollection() : PR_FALSE;
}
nsresult
nsCycleCollector_startup()
{
NS_ASSERTION(!sCollector, "Forgot to call nsCycleCollector_shutdown?");
sCollector = new nsCycleCollector();
return sCollector ? NS_OK : NS_ERROR_OUT_OF_MEMORY;
}
void
nsCycleCollector_shutdown()
{
if (sCollector) {
sCollector->Shutdown();
delete sCollector;
sCollector = nsnull;
}
}
#ifdef DEBUG
void
nsCycleCollector_DEBUG_shouldBeFreed(nsISupports *n)
{
#ifdef DEBUG_CC
if (sCollector)
sCollector->ShouldBeFreed(n);
#endif
}
void
nsCycleCollector_DEBUG_wasFreed(nsISupports *n)
{
#ifdef DEBUG_CC
if (sCollector)
sCollector->WasFreed(n);
#endif
}
#endif