gecko/mozglue/linker/ElfLoader.cpp
Mike Hommey 95e40852cb Bug 1036286 - Make sure libraries loaded by faulty.lib use its own sigaction. r=nfroyd
Android L added a libsigchain library it LD_PRELOADs. That library exposes
a different sigaction than libc's. It's used for ART.

faulty.lib gets its sigaction from libsigchain, but after bug 874708, the
libraries it loads simply use libc's sigaction, assuming it would be the
hooked one. In turn, this means libraries loaded by faulty.lib may
override faulty.lib's handler, which is definitely not the intent.

This essentially restores some of the code that bug 874708 removed.

An alternative fix would be to add support for LD_PRELOAD, but that has more
implications and feels more risky. This could be done, if necessary, as a
followup.
2014-07-24 13:43:56 +09:00

1153 lines
34 KiB
C++

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <string>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <dlfcn.h>
#include <unistd.h>
#include <algorithm>
#include <fcntl.h>
#include "ElfLoader.h"
#include "CustomElf.h"
#include "Mappable.h"
#include "Logging.h"
#include <inttypes.h>
#if defined(ANDROID)
#include <sys/syscall.h>
#include <android/api-level.h>
#if __ANDROID_API__ < 8
/* Android API < 8 doesn't provide sigaltstack */
extern "C" {
inline int sigaltstack(const stack_t *ss, stack_t *oss) {
return syscall(__NR_sigaltstack, ss, oss);
}
} /* extern "C" */
#endif /* __ANDROID_API__ */
#endif /* ANDROID */
#ifdef __ARM_EABI__
extern "C" MOZ_EXPORT const void *
__gnu_Unwind_Find_exidx(void *pc, int *pcount) __attribute__((weak));
#endif
using namespace mozilla;
/**
* dlfcn.h replacements functions
*/
void *
__wrap_dlopen(const char *path, int flags)
{
RefPtr<LibHandle> handle = ElfLoader::Singleton.Load(path, flags);
if (handle)
handle->AddDirectRef();
return handle;
}
const char *
__wrap_dlerror(void)
{
const char *error = ElfLoader::Singleton.lastError;
ElfLoader::Singleton.lastError = nullptr;
return error;
}
void *
__wrap_dlsym(void *handle, const char *symbol)
{
if (!handle) {
ElfLoader::Singleton.lastError = "dlsym(NULL, sym) unsupported";
return nullptr;
}
if (handle != RTLD_DEFAULT && handle != RTLD_NEXT) {
LibHandle *h = reinterpret_cast<LibHandle *>(handle);
return h->GetSymbolPtr(symbol);
}
return dlsym(handle, symbol);
}
int
__wrap_dlclose(void *handle)
{
if (!handle) {
ElfLoader::Singleton.lastError = "No handle given to dlclose()";
return -1;
}
reinterpret_cast<LibHandle *>(handle)->ReleaseDirectRef();
return 0;
}
int
__wrap_dladdr(void *addr, Dl_info *info)
{
RefPtr<LibHandle> handle = ElfLoader::Singleton.GetHandleByPtr(addr);
if (!handle)
return 0;
info->dli_fname = handle->GetPath();
return 1;
}
int
__wrap_dl_iterate_phdr(dl_phdr_cb callback, void *data)
{
if (!ElfLoader::Singleton.dbg)
return -1;
for (ElfLoader::DebuggerHelper::iterator it = ElfLoader::Singleton.dbg.begin();
it < ElfLoader::Singleton.dbg.end(); ++it) {
dl_phdr_info info;
info.dlpi_addr = reinterpret_cast<Elf::Addr>(it->l_addr);
info.dlpi_name = it->l_name;
info.dlpi_phdr = nullptr;
info.dlpi_phnum = 0;
// Assuming l_addr points to Elf headers (in most cases, this is true),
// get the Phdr location from there.
uint8_t mapped;
// If the page is not mapped, mincore returns an error.
if (!mincore(const_cast<void*>(it->l_addr), PageSize(), &mapped)) {
const Elf::Ehdr *ehdr = Elf::Ehdr::validate(it->l_addr);
if (ehdr) {
info.dlpi_phdr = reinterpret_cast<const Elf::Phdr *>(
reinterpret_cast<const char *>(ehdr) + ehdr->e_phoff);
info.dlpi_phnum = ehdr->e_phnum;
}
}
int ret = callback(&info, sizeof(dl_phdr_info), data);
if (ret)
return ret;
}
return 0;
}
#ifdef __ARM_EABI__
const void *
__wrap___gnu_Unwind_Find_exidx(void *pc, int *pcount)
{
RefPtr<LibHandle> handle = ElfLoader::Singleton.GetHandleByPtr(pc);
if (handle)
return handle->FindExidx(pcount);
if (__gnu_Unwind_Find_exidx)
return __gnu_Unwind_Find_exidx(pc, pcount);
*pcount = 0;
return nullptr;
}
#endif
/**
* faulty.lib public API
*/
MFBT_API size_t
__dl_get_mappable_length(void *handle) {
if (!handle)
return 0;
return reinterpret_cast<LibHandle *>(handle)->GetMappableLength();
}
MFBT_API void *
__dl_mmap(void *handle, void *addr, size_t length, off_t offset)
{
if (!handle)
return nullptr;
return reinterpret_cast<LibHandle *>(handle)->MappableMMap(addr, length,
offset);
}
MFBT_API void
__dl_munmap(void *handle, void *addr, size_t length)
{
if (!handle)
return;
return reinterpret_cast<LibHandle *>(handle)->MappableMUnmap(addr, length);
}
MFBT_API bool
IsSignalHandlingBroken()
{
return ElfLoader::Singleton.isSignalHandlingBroken();
}
namespace {
/**
* Returns the part after the last '/' for the given path
*/
const char *
LeafName(const char *path)
{
const char *lastSlash = strrchr(path, '/');
if (lastSlash)
return lastSlash + 1;
return path;
}
} /* Anonymous namespace */
/**
* LibHandle
*/
LibHandle::~LibHandle()
{
free(path);
}
const char *
LibHandle::GetName() const
{
return path ? LeafName(path) : nullptr;
}
size_t
LibHandle::GetMappableLength() const
{
if (!mappable)
mappable = GetMappable();
if (!mappable)
return 0;
return mappable->GetLength();
}
void *
LibHandle::MappableMMap(void *addr, size_t length, off_t offset) const
{
if (!mappable)
mappable = GetMappable();
if (!mappable)
return MAP_FAILED;
void* mapped = mappable->mmap(addr, length, PROT_READ, MAP_PRIVATE, offset);
if (mapped != MAP_FAILED) {
/* Ensure the availability of all pages within the mapping */
for (size_t off = 0; off < length; off += PageSize()) {
mappable->ensure(reinterpret_cast<char *>(mapped) + off);
}
}
return mapped;
}
void
LibHandle::MappableMUnmap(void *addr, size_t length) const
{
if (mappable)
mappable->munmap(addr, length);
}
/**
* SystemElf
*/
TemporaryRef<LibHandle>
SystemElf::Load(const char *path, int flags)
{
/* The Android linker returns a handle when the file name matches an
* already loaded library, even when the full path doesn't exist */
if (path && path[0] == '/' && (access(path, F_OK) == -1)){
DEBUG_LOG("dlopen(\"%s\", 0x%x) = %p", path, flags, (void *)nullptr);
return nullptr;
}
void *handle = dlopen(path, flags);
DEBUG_LOG("dlopen(\"%s\", 0x%x) = %p", path, flags, handle);
ElfLoader::Singleton.lastError = dlerror();
if (handle) {
SystemElf *elf = new SystemElf(path, handle);
ElfLoader::Singleton.Register(elf);
return elf;
}
return nullptr;
}
SystemElf::~SystemElf()
{
if (!dlhandle)
return;
DEBUG_LOG("dlclose(%p [\"%s\"])", dlhandle, GetPath());
dlclose(dlhandle);
ElfLoader::Singleton.lastError = dlerror();
ElfLoader::Singleton.Forget(this);
}
void *
SystemElf::GetSymbolPtr(const char *symbol) const
{
void *sym = dlsym(dlhandle, symbol);
DEBUG_LOG("dlsym(%p [\"%s\"], \"%s\") = %p", dlhandle, GetPath(), symbol, sym);
ElfLoader::Singleton.lastError = dlerror();
return sym;
}
Mappable *
SystemElf::GetMappable() const
{
const char *path = GetPath();
if (!path)
return nullptr;
#ifdef ANDROID
/* On Android, if we don't have the full path, try in /system/lib */
const char *name = LeafName(path);
std::string systemPath;
if (name == path) {
systemPath = "/system/lib/";
systemPath += path;
path = systemPath.c_str();
}
#endif
return MappableFile::Create(path);
}
#ifdef __ARM_EABI__
const void *
SystemElf::FindExidx(int *pcount) const
{
/* TODO: properly implement when ElfLoader::GetHandleByPtr
does return SystemElf handles */
*pcount = 0;
return nullptr;
}
#endif
/**
* ElfLoader
*/
/* Unique ElfLoader instance */
ElfLoader ElfLoader::Singleton;
TemporaryRef<LibHandle>
ElfLoader::Load(const char *path, int flags, LibHandle *parent)
{
/* Ensure logging is initialized or refresh if environment changed. */
Logging::Init();
RefPtr<LibHandle> handle;
/* Handle dlopen(nullptr) directly. */
if (!path) {
handle = SystemElf::Load(nullptr, flags);
return handle;
}
/* TODO: Handle relative paths correctly */
const char *name = LeafName(path);
/* Search the list of handles we already have for a match. When the given
* path is not absolute, compare file names, otherwise compare full paths. */
if (name == path) {
for (LibHandleList::iterator it = handles.begin(); it < handles.end(); ++it)
if ((*it)->GetName() && (strcmp((*it)->GetName(), name) == 0))
return *it;
} else {
for (LibHandleList::iterator it = handles.begin(); it < handles.end(); ++it)
if ((*it)->GetPath() && (strcmp((*it)->GetPath(), path) == 0))
return *it;
}
char *abs_path = nullptr;
const char *requested_path = path;
/* When the path is not absolute and the library is being loaded for
* another, first try to load the library from the directory containing
* that parent library. */
if ((name == path) && parent) {
const char *parentPath = parent->GetPath();
abs_path = new char[strlen(parentPath) + strlen(path)];
strcpy(abs_path, parentPath);
char *slash = strrchr(abs_path, '/');
strcpy(slash + 1, path);
path = abs_path;
}
Mappable *mappable = GetMappableFromPath(path);
/* Try loading with the custom linker if we have a Mappable */
if (mappable)
handle = CustomElf::Load(mappable, path, flags);
/* Try loading with the system linker if everything above failed */
if (!handle)
handle = SystemElf::Load(path, flags);
/* If we didn't have an absolute path and haven't been able to load
* a library yet, try in the system search path */
if (!handle && abs_path)
handle = SystemElf::Load(name, flags);
delete [] abs_path;
DEBUG_LOG("ElfLoader::Load(\"%s\", 0x%x, %p [\"%s\"]) = %p", requested_path, flags,
reinterpret_cast<void *>(parent), parent ? parent->GetPath() : "",
static_cast<void *>(handle));
return handle;
}
mozilla::TemporaryRef<LibHandle>
ElfLoader::GetHandleByPtr(void *addr)
{
/* Scan the list of handles we already have for a match */
for (LibHandleList::iterator it = handles.begin(); it < handles.end(); ++it) {
if ((*it)->Contains(addr))
return *it;
}
return nullptr;
}
Mappable *
ElfLoader::GetMappableFromPath(const char *path)
{
const char *name = LeafName(path);
Mappable *mappable = nullptr;
RefPtr<Zip> zip;
const char *subpath;
if ((subpath = strchr(path, '!'))) {
char *zip_path = strndup(path, subpath - path);
while (*(++subpath) == '/') { }
zip = ZipCollection::GetZip(zip_path);
Zip::Stream s;
if (zip && zip->GetStream(subpath, &s)) {
/* When the MOZ_LINKER_EXTRACT environment variable is set to "1",
* compressed libraries are going to be (temporarily) extracted as
* files, in the directory pointed by the MOZ_LINKER_CACHE
* environment variable. */
const char *extract = getenv("MOZ_LINKER_EXTRACT");
if (extract && !strncmp(extract, "1", 2 /* Including '\0' */))
mappable = MappableExtractFile::Create(name, zip, &s);
if (!mappable) {
if (s.GetType() == Zip::Stream::DEFLATE) {
mappable = MappableDeflate::Create(name, zip, &s);
} else if (s.GetType() == Zip::Stream::STORE) {
mappable = MappableSeekableZStream::Create(name, zip, &s);
}
}
}
}
/* If we couldn't load above, try with a MappableFile */
if (!mappable && !zip)
mappable = MappableFile::Create(path);
return mappable;
}
void
ElfLoader::Register(LibHandle *handle)
{
handles.push_back(handle);
if (dbg && !handle->IsSystemElf())
dbg.Add(static_cast<CustomElf *>(handle));
}
void
ElfLoader::Forget(LibHandle *handle)
{
/* Ensure logging is initialized or refresh if environment changed. */
Logging::Init();
LibHandleList::iterator it = std::find(handles.begin(), handles.end(), handle);
if (it != handles.end()) {
DEBUG_LOG("ElfLoader::Forget(%p [\"%s\"])", reinterpret_cast<void *>(handle),
handle->GetPath());
if (dbg && !handle->IsSystemElf())
dbg.Remove(static_cast<CustomElf *>(handle));
handles.erase(it);
} else {
DEBUG_LOG("ElfLoader::Forget(%p [\"%s\"]): Handle not found",
reinterpret_cast<void *>(handle), handle->GetPath());
}
}
ElfLoader::~ElfLoader()
{
LibHandleList list;
/* Build up a list of all library handles with direct (external) references.
* We actually skip system library handles because we want to keep at least
* some of these open. Most notably, Mozilla codebase keeps a few libgnome
* libraries deliberately open because of the mess that libORBit destruction
* is. dlclose()ing these libraries actually leads to problems. */
for (LibHandleList::reverse_iterator it = handles.rbegin();
it < handles.rend(); ++it) {
if ((*it)->DirectRefCount()) {
if ((*it)->IsSystemElf()) {
static_cast<SystemElf *>(*it)->Forget();
} else {
list.push_back(*it);
}
}
}
/* Force release all external references to the handles collected above */
for (LibHandleList::iterator it = list.begin(); it < list.end(); ++it) {
while ((*it)->ReleaseDirectRef()) { }
}
/* Remove the remaining system handles. */
if (handles.size()) {
list = handles;
for (LibHandleList::reverse_iterator it = list.rbegin();
it < list.rend(); ++it) {
if ((*it)->IsSystemElf()) {
DEBUG_LOG("ElfLoader::~ElfLoader(): Remaining handle for \"%s\" "
"[%d direct refs, %d refs total]", (*it)->GetPath(),
(*it)->DirectRefCount(), (*it)->refCount());
} else {
DEBUG_LOG("ElfLoader::~ElfLoader(): Unexpected remaining handle for \"%s\" "
"[%d direct refs, %d refs total]", (*it)->GetPath(),
(*it)->DirectRefCount(), (*it)->refCount());
/* Not removing, since it could have references to other libraries,
* destroying them as a side effect, and possibly leaving dangling
* pointers in the handle list we're scanning */
}
}
}
}
void
ElfLoader::stats(const char *when)
{
for (LibHandleList::iterator it = Singleton.handles.begin();
it < Singleton.handles.end(); ++it)
if (!(*it)->IsSystemElf())
static_cast<CustomElf *>(*it)->stats(when);
}
#ifdef __ARM_EABI__
int
ElfLoader::__wrap_aeabi_atexit(void *that, ElfLoader::Destructor destructor,
void *dso_handle)
{
Singleton.destructors.push_back(
DestructorCaller(destructor, that, dso_handle));
return 0;
}
#else
int
ElfLoader::__wrap_cxa_atexit(ElfLoader::Destructor destructor, void *that,
void *dso_handle)
{
Singleton.destructors.push_back(
DestructorCaller(destructor, that, dso_handle));
return 0;
}
#endif
void
ElfLoader::__wrap_cxa_finalize(void *dso_handle)
{
/* Call all destructors for the given DSO handle in reverse order they were
* registered. */
std::vector<DestructorCaller>::reverse_iterator it;
for (it = Singleton.destructors.rbegin();
it < Singleton.destructors.rend(); ++it) {
if (it->IsForHandle(dso_handle)) {
it->Call();
}
}
}
void
ElfLoader::DestructorCaller::Call()
{
if (destructor) {
DEBUG_LOG("ElfLoader::DestructorCaller::Call(%p, %p, %p)",
FunctionPtr(destructor), object, dso_handle);
destructor(object);
destructor = nullptr;
}
}
ElfLoader::DebuggerHelper::DebuggerHelper(): dbg(nullptr)
{
/* Find ELF auxiliary vectors.
*
* The kernel stores the following data on the stack when starting a
* program:
* argc
* argv[0] (pointer into argv strings defined below)
* argv[1] (likewise)
* ...
* argv[argc - 1] (likewise)
* nullptr
* envp[0] (pointer into environment strings defined below)
* envp[1] (likewise)
* ...
* envp[n] (likewise)
* nullptr
* ... (more NULLs on some platforms such as Android 4.3)
* auxv[0] (first ELF auxiliary vector)
* auxv[1] (second ELF auxiliary vector)
* ...
* auxv[p] (last ELF auxiliary vector)
* (AT_NULL, nullptr)
* padding
* argv strings, separated with '\0'
* environment strings, separated with '\0'
* nullptr
*
* What we are after are the auxv values defined by the following struct.
*/
struct AuxVector {
Elf::Addr type;
Elf::Addr value;
};
/* Pointer to the environment variables list */
extern char **environ;
/* The environment may have changed since the program started, in which
* case the environ variables list isn't the list the kernel put on stack
* anymore. But in this new list, variables that didn't change still point
* to the strings the kernel put on stack. It is quite unlikely that two
* modified environment variables point to two consecutive strings in memory,
* so we assume that if two consecutive environment variables point to two
* consecutive strings, we found strings the kernel put on stack. */
char **env;
for (env = environ; *env; env++)
if (*env + strlen(*env) + 1 == env[1])
break;
if (!*env)
return;
/* Next, we scan the stack backwards to find a pointer to one of those
* strings we found above, which will give us the location of the original
* envp list. As we are looking for pointers, we need to look at 32-bits or
* 64-bits aligned values, depening on the architecture. */
char **scan = reinterpret_cast<char **>(
reinterpret_cast<uintptr_t>(*env) & ~(sizeof(void *) - 1));
while (*env != *scan)
scan--;
/* Finally, scan forward to find the last environment variable pointer and
* thus the first auxiliary vector. */
while (*scan++);
/* Some platforms have more NULLs here, so skip them if we encounter them */
while (!*scan)
scan++;
AuxVector *auxv = reinterpret_cast<AuxVector *>(scan);
/* The two values of interest in the auxiliary vectors are AT_PHDR and
* AT_PHNUM, which gives us the the location and size of the ELF program
* headers. */
Array<Elf::Phdr> phdrs;
char *base = nullptr;
while (auxv->type) {
if (auxv->type == AT_PHDR) {
phdrs.Init(reinterpret_cast<Elf::Phdr*>(auxv->value));
/* Assume the base address is the first byte of the same page */
base = reinterpret_cast<char *>(PageAlignedPtr(auxv->value));
}
if (auxv->type == AT_PHNUM)
phdrs.Init(auxv->value);
auxv++;
}
if (!phdrs) {
DEBUG_LOG("Couldn't find program headers");
return;
}
/* In some cases, the address for the program headers we get from the
* auxiliary vectors is not mapped, because of the PT_LOAD segments
* definitions in the program executable. Trying to map anonymous memory
* with a hint giving the base address will return a different address
* if something is mapped there, and the base address otherwise. */
MappedPtr mem(MemoryRange::mmap(base, PageSize(), PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0));
if (mem == base) {
/* If program headers aren't mapped, try to map them */
int fd = open("/proc/self/exe", O_RDONLY);
if (fd == -1) {
DEBUG_LOG("Failed to open /proc/self/exe");
return;
}
mem.Assign(MemoryRange::mmap(base, PageSize(), PROT_READ, MAP_PRIVATE,
fd, 0));
/* If we don't manage to map at the right address, just give up. */
if (mem != base) {
DEBUG_LOG("Couldn't read program headers");
return;
}
}
/* Sanity check: the first bytes at the base address should be an ELF
* header. */
if (!Elf::Ehdr::validate(base)) {
DEBUG_LOG("Couldn't find program base");
return;
}
/* Search for the program PT_DYNAMIC segment */
Array<Elf::Dyn> dyns;
for (Array<Elf::Phdr>::iterator phdr = phdrs.begin(); phdr < phdrs.end();
++phdr) {
/* While the program headers are expected within the first mapped page of
* the program executable, the executable PT_LOADs may actually make them
* loaded at an address that is not the wanted base address of the
* library. We thus need to adjust the base address, compensating for the
* virtual address of the PT_LOAD segment corresponding to offset 0. */
if (phdr->p_type == PT_LOAD && phdr->p_offset == 0)
base -= phdr->p_vaddr;
if (phdr->p_type == PT_DYNAMIC)
dyns.Init(base + phdr->p_vaddr, phdr->p_filesz);
}
if (!dyns) {
DEBUG_LOG("Failed to find PT_DYNAMIC section in program");
return;
}
/* Search for the DT_DEBUG information */
for (Array<Elf::Dyn>::iterator dyn = dyns.begin(); dyn < dyns.end(); ++dyn) {
if (dyn->d_tag == DT_DEBUG) {
dbg = reinterpret_cast<r_debug *>(dyn->d_un.d_ptr);
break;
}
}
DEBUG_LOG("DT_DEBUG points at %p", static_cast<void *>(dbg));
}
/**
* Helper class to ensure the given pointer is writable within the scope of
* an instance. Permissions to the memory page where the pointer lies are
* restored to their original value when the instance is destroyed.
*/
class EnsureWritable
{
public:
template <typename T>
EnsureWritable(T *ptr, size_t length_ = sizeof(T))
{
MOZ_ASSERT(length_ < PageSize());
prot = -1;
page = MAP_FAILED;
char *firstPage = PageAlignedPtr(reinterpret_cast<char *>(ptr));
char *lastPageEnd = PageAlignedEndPtr(reinterpret_cast<char *>(ptr) + length_);
length = lastPageEnd - firstPage;
uintptr_t start = reinterpret_cast<uintptr_t>(firstPage);
uintptr_t end;
prot = getProt(start, &end);
if (prot == -1 || (start + length) > end)
MOZ_CRASH();
if (prot & PROT_WRITE)
return;
page = firstPage;
mprotect(page, length, prot | PROT_WRITE);
}
~EnsureWritable()
{
if (page != MAP_FAILED) {
mprotect(page, length, prot);
}
}
private:
int getProt(uintptr_t addr, uintptr_t *end)
{
/* The interesting part of the /proc/self/maps format looks like:
* startAddr-endAddr rwxp */
int result = 0;
AutoCloseFILE f(fopen("/proc/self/maps", "r"));
while (f) {
unsigned long long startAddr, endAddr;
char perms[5];
if (fscanf(f, "%llx-%llx %4s %*1024[^\n] ", &startAddr, &endAddr, perms) != 3)
return -1;
if (addr < startAddr || addr >= endAddr)
continue;
if (perms[0] == 'r')
result |= PROT_READ;
else if (perms[0] != '-')
return -1;
if (perms[1] == 'w')
result |= PROT_WRITE;
else if (perms[1] != '-')
return -1;
if (perms[2] == 'x')
result |= PROT_EXEC;
else if (perms[2] != '-')
return -1;
*end = endAddr;
return result;
}
return -1;
}
int prot;
void *page;
size_t length;
};
/**
* The system linker maintains a doubly linked list of library it loads
* for use by the debugger. Unfortunately, it also uses the list pointers
* in a lot of operations and adding our data in the list is likely to
* trigger crashes when the linker tries to use data we don't provide or
* that fall off the amount data we allocated. Fortunately, the linker only
* traverses the list forward and accesses the head of the list from a
* private pointer instead of using the value in the r_debug structure.
* This means we can safely add members at the beginning of the list.
* Unfortunately, gdb checks the coherency of l_prev values, so we have
* to adjust the l_prev value for the first element the system linker
* knows about. Fortunately, it doesn't use l_prev, and the first element
* is not ever going to be released before our elements, since it is the
* program executable, so the system linker should not be changing
* r_debug::r_map.
*/
void
ElfLoader::DebuggerHelper::Add(ElfLoader::link_map *map)
{
if (!dbg->r_brk)
return;
dbg->r_state = r_debug::RT_ADD;
dbg->r_brk();
map->l_prev = nullptr;
map->l_next = dbg->r_map;
if (!firstAdded) {
firstAdded = map;
/* When adding a library for the first time, r_map points to data
* handled by the system linker, and that data may be read-only */
EnsureWritable w(&dbg->r_map->l_prev);
dbg->r_map->l_prev = map;
} else
dbg->r_map->l_prev = map;
dbg->r_map = map;
dbg->r_state = r_debug::RT_CONSISTENT;
dbg->r_brk();
}
void
ElfLoader::DebuggerHelper::Remove(ElfLoader::link_map *map)
{
if (!dbg->r_brk)
return;
dbg->r_state = r_debug::RT_DELETE;
dbg->r_brk();
if (dbg->r_map == map)
dbg->r_map = map->l_next;
else
map->l_prev->l_next = map->l_next;
if (map == firstAdded) {
firstAdded = map->l_prev;
/* When removing the first added library, its l_next is going to be
* data handled by the system linker, and that data may be read-only */
EnsureWritable w(&map->l_next->l_prev);
map->l_next->l_prev = map->l_prev;
} else
map->l_next->l_prev = map->l_prev;
dbg->r_state = r_debug::RT_CONSISTENT;
dbg->r_brk();
}
#if defined(ANDROID)
/* As some system libraries may be calling signal() or sigaction() to
* set a SIGSEGV handler, effectively breaking MappableSeekableZStream,
* or worse, restore our SIGSEGV handler with wrong flags (which using
* signal() will do), we want to hook into the system's sigaction() to
* replace it with our own wrapper instead, so that our handler is never
* replaced. We used to only do that with libraries this linker loads,
* but it turns out at least one system library does call signal() and
* breaks us (libsc-a3xx.so on the Samsung Galaxy S4).
* As libc's signal (bsd_signal/sysv_signal, really) calls sigaction
* under the hood, instead of calling the signal system call directly,
* we only need to hook sigaction. This is true for both bionic and
* glibc.
*/
/* libc's sigaction */
extern "C" int
sigaction(int signum, const struct sigaction *act,
struct sigaction *oldact);
/* Simple reimplementation of sigaction. This is roughly equivalent
* to the assembly that comes in bionic, but not quite equivalent to
* glibc's implementation, so we only use this on Android. */
int
sys_sigaction(int signum, const struct sigaction *act,
struct sigaction *oldact)
{
return syscall(__NR_sigaction, signum, act, oldact);
}
/* Replace the first instructions of the given function with a jump
* to the given new function. */
template <typename T>
static bool
Divert(T func, T new_func)
{
void *ptr = FunctionPtr(func);
uintptr_t addr = reinterpret_cast<uintptr_t>(ptr);
#if defined(__i386__)
// A 32-bit jump is a 5 bytes instruction.
EnsureWritable w(ptr, 5);
*reinterpret_cast<unsigned char *>(addr) = 0xe9; // jmp
*reinterpret_cast<intptr_t *>(addr + 1) =
reinterpret_cast<uintptr_t>(new_func) - addr - 5; // target displacement
return true;
#elif defined(__arm__)
const unsigned char trampoline[] = {
// .thumb
0x46, 0x04, // nop
0x78, 0x47, // bx pc
0x46, 0x04, // nop
// .arm
0x04, 0xf0, 0x1f, 0xe5, // ldr pc, [pc, #-4]
// .word <new_func>
};
const unsigned char *start;
if (addr & 0x01) {
/* Function is thumb, the actual address of the code is without the
* least significant bit. */
addr--;
/* The arm part of the trampoline needs to be 32-bit aligned */
if (addr & 0x02)
start = trampoline;
else
start = trampoline + 2;
} else {
/* Function is arm, we only need the arm part of the trampoline */
start = trampoline + 6;
}
size_t len = sizeof(trampoline) - (start - trampoline);
EnsureWritable w(reinterpret_cast<void *>(addr), len + sizeof(void *));
memcpy(reinterpret_cast<void *>(addr), start, len);
*reinterpret_cast<void **>(addr + len) = FunctionPtr(new_func);
cacheflush(addr, addr + len + sizeof(void *), 0);
return true;
#else
return false;
#endif
}
#else
#define sys_sigaction sigaction
template <typename T>
static bool
Divert(T func, T new_func)
{
return false;
}
#endif
namespace {
/* Clock that only accounts for time spent in the current process. */
static uint64_t ProcessTimeStamp_Now()
{
struct timespec ts;
int rv = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
if (rv != 0) {
return 0;
}
uint64_t baseNs = (uint64_t)ts.tv_sec * 1000000000;
return baseNs + (uint64_t)ts.tv_nsec;
}
}
/* Data structure used to pass data to the temporary signal handler,
* as well as triggering a test crash. */
struct TmpData {
volatile int crash_int;
volatile uint64_t crash_timestamp;
};
SEGVHandler::SEGVHandler()
: registeredHandler(false), signalHandlingBroken(false)
, signalHandlingSlow(false)
{
/* Initialize oldStack.ss_flags to an invalid value when used to set
* an alternative stack, meaning we haven't got information about the
* original alternative stack and thus don't mean to restore it */
oldStack.ss_flags = SS_ONSTACK;
if (!Divert(sigaction, __wrap_sigaction))
return;
/* Get the current segfault signal handler. */
sys_sigaction(SIGSEGV, nullptr, &this->action);
/* Some devices don't provide useful information to their SIGSEGV handlers,
* making it impossible for on-demand decompression to work. To check if
* we're on such a device, setup a temporary handler and deliberately
* trigger a segfault. The handler will set signalHandlingBroken if the
* provided information is bogus.
* Some other devices have a kernel option enabled that makes SIGSEGV handler
* have an overhead so high that it affects how on-demand decompression
* performs. The handler will also set signalHandlingSlow if the triggered
* SIGSEGV took too much time. */
struct sigaction action;
action.sa_sigaction = &SEGVHandler::test_handler;
sigemptyset(&action.sa_mask);
action.sa_flags = SA_SIGINFO | SA_NODEFER;
action.sa_restorer = nullptr;
stackPtr.Assign(MemoryRange::mmap(nullptr, PageSize(),
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0));
if (stackPtr.get() == MAP_FAILED)
return;
if (sys_sigaction(SIGSEGV, &action, nullptr))
return;
TmpData *data = reinterpret_cast<TmpData*>(stackPtr.get());
data->crash_timestamp = ProcessTimeStamp_Now();
mprotect(stackPtr, stackPtr.GetLength(), PROT_NONE);
data->crash_int = 123;
/* Restore the original segfault signal handler. */
sys_sigaction(SIGSEGV, &this->action, nullptr);
stackPtr.Assign(MAP_FAILED, 0);
if (signalHandlingBroken || signalHandlingSlow)
return;
/* Setup an alternative stack if the already existing one is not big
* enough, or if there is none. */
if (sigaltstack(nullptr, &oldStack) == 0) {
if (oldStack.ss_flags == SS_ONSTACK)
oldStack.ss_flags = 0;
if (!oldStack.ss_sp || oldStack.ss_size < stackSize) {
stackPtr.Assign(MemoryRange::mmap(nullptr, stackSize,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0));
if (stackPtr.get() == MAP_FAILED)
return;
stack_t stack;
stack.ss_sp = stackPtr;
stack.ss_size = stackSize;
stack.ss_flags = 0;
if (sigaltstack(&stack, nullptr) != 0)
return;
}
}
/* Register our own handler, and store the already registered one in
* SEGVHandler's struct sigaction member */
action.sa_sigaction = &SEGVHandler::handler;
action.sa_flags = SA_SIGINFO | SA_NODEFER | SA_ONSTACK;
registeredHandler = !sys_sigaction(SIGSEGV, &action, nullptr);
}
SEGVHandler::~SEGVHandler()
{
/* Restore alternative stack for signals */
if (oldStack.ss_flags != SS_ONSTACK)
sigaltstack(&oldStack, nullptr);
/* Restore original signal handler */
if (registeredHandler)
sys_sigaction(SIGSEGV, &this->action, nullptr);
}
/* Test handler for a deliberately triggered SIGSEGV that determines whether
* useful information is provided to signal handlers, particularly whether
* si_addr is filled in properly, and whether the segfault handler is called
* quickly enough. */
void SEGVHandler::test_handler(int signum, siginfo_t *info, void *context)
{
SEGVHandler &that = ElfLoader::Singleton;
if (signum != SIGSEGV ||
info == nullptr || info->si_addr != that.stackPtr.get())
that.signalHandlingBroken = true;
mprotect(that.stackPtr, that.stackPtr.GetLength(), PROT_READ | PROT_WRITE);
TmpData *data = reinterpret_cast<TmpData*>(that.stackPtr.get());
uint64_t latency = ProcessTimeStamp_Now() - data->crash_timestamp;
DEBUG_LOG("SEGVHandler latency: %" PRIu64, latency);
/* See bug 886736 for timings on different devices, 150 µs is reasonably above
* the latency on "working" devices and seems to be reasonably fast to incur
* a huge overhead to on-demand decompression. */
if (latency > 150000)
that.signalHandlingSlow = true;
}
/* TODO: "properly" handle signal masks and flags */
void SEGVHandler::handler(int signum, siginfo_t *info, void *context)
{
//ASSERT(signum == SIGSEGV);
DEBUG_LOG("Caught segmentation fault @%p", info->si_addr);
/* Check whether we segfaulted in the address space of a CustomElf. We're
* only expecting that to happen as an access error. */
if (info->si_code == SEGV_ACCERR) {
mozilla::RefPtr<LibHandle> handle =
ElfLoader::Singleton.GetHandleByPtr(info->si_addr);
if (handle && !handle->IsSystemElf()) {
DEBUG_LOG("Within the address space of a CustomElf");
CustomElf *elf = static_cast<CustomElf *>(static_cast<LibHandle *>(handle));
if (elf->mappable->ensure(info->si_addr))
return;
}
}
/* Redispatch to the registered handler */
SEGVHandler &that = ElfLoader::Singleton;
if (that.action.sa_flags & SA_SIGINFO) {
DEBUG_LOG("Redispatching to registered handler @%p",
FunctionPtr(that.action.sa_sigaction));
that.action.sa_sigaction(signum, info, context);
} else if (that.action.sa_handler == SIG_DFL) {
DEBUG_LOG("Redispatching to default handler");
/* Reset the handler to the default one, and trigger it. */
sys_sigaction(signum, &that.action, nullptr);
raise(signum);
} else if (that.action.sa_handler != SIG_IGN) {
DEBUG_LOG("Redispatching to registered handler @%p",
FunctionPtr(that.action.sa_handler));
that.action.sa_handler(signum);
} else {
DEBUG_LOG("Ignoring");
}
}
int
SEGVHandler::__wrap_sigaction(int signum, const struct sigaction *act,
struct sigaction *oldact)
{
SEGVHandler &that = ElfLoader::Singleton;
/* Use system sigaction() function for all but SIGSEGV signals. */
if (!that.registeredHandler || (signum != SIGSEGV))
return sys_sigaction(signum, act, oldact);
if (oldact)
*oldact = that.action;
if (act)
that.action = *act;
return 0;
}
sighandler_t
SEGVHandler::__wrap_signal(int signum, sighandler_t handler)
{
/* Use system signal() function for all but SIGSEGV signals. */
if (signum != SIGSEGV)
return signal(signum, handler);
SEGVHandler &that = ElfLoader::Singleton;
union {
sighandler_t signal;
void (*sigaction)(int, siginfo_t *, void *);
} oldHandler;
/* Keep the previous handler to return its value */
if (that.action.sa_flags & SA_SIGINFO) {
oldHandler.sigaction = that.action.sa_sigaction;
} else {
oldHandler.signal = that.action.sa_handler;
}
/* Set the new handler */
that.action.sa_handler = handler;
that.action.sa_flags = 0;
return oldHandler.signal;
}
Logging Logging::Singleton;