mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
514 lines
16 KiB
C++
514 lines
16 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim:set ts=2 sw=2 sts=2 et cindent: */
|
|
/* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is Mozilla code.
|
|
*
|
|
* The Initial Developer of the Original Code is the Mozilla Corporation.
|
|
* Portions created by the Initial Developer are Copyright (C) 2010
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
* Chris Double <chris.double@double.co.nz>
|
|
* Chris Pearce <chris@pearce.org.nz>
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
#include "nsDebug.h"
|
|
#include "nsOggCodecState.h"
|
|
#include "nsOggDecoder.h"
|
|
#include <string.h>
|
|
#include "nsTraceRefcnt.h"
|
|
#include "VideoUtils.h"
|
|
|
|
/*
|
|
The maximum height and width of the video. Used for
|
|
sanitizing the memory allocation of the RGB buffer.
|
|
The maximum resolution we anticipate encountering in the
|
|
wild is 2160p - 3840x2160 pixels.
|
|
*/
|
|
#define MAX_VIDEO_WIDTH 4000
|
|
#define MAX_VIDEO_HEIGHT 3000
|
|
|
|
// Adds two 64bit numbers, retuns PR_TRUE if addition succeeded, or PR_FALSE
|
|
// if addition would result in an overflow.
|
|
static PRBool AddOverflow(PRInt64 a, PRInt64 b, PRInt64& aResult);
|
|
|
|
// 64 bit integer multiplication with overflow checking. Returns PR_TRUE
|
|
// if the multiplication was successful, or PR_FALSE if the operation resulted
|
|
// in an integer overflow.
|
|
static PRBool MulOverflow(PRInt64 a, PRInt64 b, PRInt64& aResult);
|
|
|
|
// Defined in nsOggReader.cpp.
|
|
extern PRBool MulOverflow32(PRUint32 a, PRUint32 b, PRUint32& aResult);
|
|
|
|
|
|
nsOggCodecState*
|
|
nsOggCodecState::Create(ogg_page* aPage)
|
|
{
|
|
nsAutoPtr<nsOggCodecState> codecState;
|
|
if (aPage->body_len > 6 && memcmp(aPage->body+1, "theora", 6) == 0) {
|
|
codecState = new nsTheoraState(aPage);
|
|
} else if (aPage->body_len > 6 && memcmp(aPage->body+1, "vorbis", 6) == 0) {
|
|
codecState = new nsVorbisState(aPage);
|
|
} else if (aPage->body_len > 8 && memcmp(aPage->body, "fishead\0", 8) == 0) {
|
|
codecState = new nsSkeletonState(aPage);
|
|
} else {
|
|
codecState = new nsOggCodecState(aPage);
|
|
}
|
|
return codecState->nsOggCodecState::Init() ? codecState.forget() : nsnull;
|
|
}
|
|
|
|
nsOggCodecState::nsOggCodecState(ogg_page* aBosPage) :
|
|
mPacketCount(0),
|
|
mSerial(ogg_page_serialno(aBosPage)),
|
|
mActive(PR_FALSE),
|
|
mDoneReadingHeaders(PR_FALSE)
|
|
{
|
|
MOZ_COUNT_CTOR(nsOggCodecState);
|
|
memset(&mState, 0, sizeof(ogg_stream_state));
|
|
}
|
|
|
|
nsOggCodecState::~nsOggCodecState() {
|
|
MOZ_COUNT_DTOR(nsOggCodecState);
|
|
int ret = ogg_stream_clear(&mState);
|
|
NS_ASSERTION(ret == 0, "ogg_stream_clear failed");
|
|
}
|
|
|
|
nsresult nsOggCodecState::Reset() {
|
|
if (ogg_stream_reset(&mState) != 0) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
mBuffer.Erase();
|
|
return NS_OK;
|
|
}
|
|
|
|
PRBool nsOggCodecState::Init() {
|
|
int ret = ogg_stream_init(&mState, mSerial);
|
|
return ret == 0;
|
|
}
|
|
|
|
void nsPageQueue::Append(ogg_page* aPage) {
|
|
ogg_page* p = new ogg_page();
|
|
p->header_len = aPage->header_len;
|
|
p->body_len = aPage->body_len;
|
|
p->header = new unsigned char[p->header_len + p->body_len];
|
|
p->body = p->header + p->header_len;
|
|
memcpy(p->header, aPage->header, p->header_len);
|
|
memcpy(p->body, aPage->body, p->body_len);
|
|
nsDeque::Push(p);
|
|
}
|
|
|
|
PRBool nsOggCodecState::PageInFromBuffer() {
|
|
if (mBuffer.IsEmpty())
|
|
return PR_FALSE;
|
|
ogg_page *p = mBuffer.PeekFront();
|
|
int ret = ogg_stream_pagein(&mState, p);
|
|
NS_ENSURE_TRUE(ret == 0, PR_FALSE);
|
|
mBuffer.PopFront();
|
|
delete p->header;
|
|
delete p;
|
|
return PR_TRUE;
|
|
}
|
|
|
|
nsTheoraState::nsTheoraState(ogg_page* aBosPage) :
|
|
nsOggCodecState(aBosPage),
|
|
mSetup(0),
|
|
mCtx(0),
|
|
mFrameDuration(0),
|
|
mFrameRate(0),
|
|
mAspectRatio(0)
|
|
{
|
|
MOZ_COUNT_CTOR(nsTheoraState);
|
|
th_info_init(&mInfo);
|
|
th_comment_init(&mComment);
|
|
}
|
|
|
|
nsTheoraState::~nsTheoraState() {
|
|
MOZ_COUNT_DTOR(nsTheoraState);
|
|
th_setup_free(mSetup);
|
|
th_decode_free(mCtx);
|
|
th_comment_clear(&mComment);
|
|
th_info_clear(&mInfo);
|
|
}
|
|
|
|
PRBool nsTheoraState::Init() {
|
|
if (!mActive)
|
|
return PR_FALSE;
|
|
mCtx = th_decode_alloc(&mInfo, mSetup);
|
|
if (mCtx == NULL) {
|
|
return mActive = PR_FALSE;
|
|
}
|
|
|
|
PRInt64 n = mInfo.fps_numerator;
|
|
PRInt64 d = mInfo.fps_denominator;
|
|
|
|
mFrameRate = (n == 0 || d == 0) ?
|
|
0.0f : static_cast<float>(n) / static_cast<float>(d);
|
|
|
|
PRInt64 f;
|
|
if (!MulOverflow(1000, d, f)) {
|
|
return mActive = PR_FALSE;
|
|
}
|
|
f /= n;
|
|
if (f > PR_UINT32_MAX) {
|
|
return mActive = PR_FALSE;
|
|
}
|
|
mFrameDuration = static_cast<PRUint32>(f);
|
|
|
|
n = mInfo.aspect_numerator;
|
|
d = mInfo.aspect_denominator;
|
|
mAspectRatio = (n == 0 || d == 0) ?
|
|
1.0f : static_cast<float>(n) / static_cast<float>(d);
|
|
|
|
// Ensure the frame isn't larger than our prescribed maximum.
|
|
PRUint32 pixels;
|
|
if (!MulOverflow32(mInfo.pic_width, mInfo.pic_height, pixels) ||
|
|
pixels > MAX_VIDEO_WIDTH * MAX_VIDEO_HEIGHT ||
|
|
pixels == 0)
|
|
{
|
|
return mActive = PR_FALSE;
|
|
}
|
|
|
|
return PR_TRUE;
|
|
}
|
|
|
|
PRBool
|
|
nsTheoraState::DecodeHeader(ogg_packet* aPacket)
|
|
{
|
|
mPacketCount++;
|
|
int ret = th_decode_headerin(&mInfo,
|
|
&mComment,
|
|
&mSetup,
|
|
aPacket);
|
|
|
|
// We must determine when we've read the last header packet.
|
|
// th_decode_headerin() does not tell us when it's read the last header, so
|
|
// we must keep track of the headers externally.
|
|
//
|
|
// There are 3 header packets, the Identification, Comment, and Setup
|
|
// headers, which must be in that order. If they're out of order, the file
|
|
// is invalid. If we've successfully read a header, and it's the setup
|
|
// header, then we're done reading headers. The first byte of each packet
|
|
// determines it's type as follows:
|
|
// 0x80 -> Identification header
|
|
// 0x81 -> Comment header
|
|
// 0x82 -> Setup header
|
|
// See http://www.theora.org/doc/Theora.pdf Chapter 6, "Bitstream Headers",
|
|
// for more details of the Ogg/Theora containment scheme.
|
|
PRBool isSetupHeader = aPacket->bytes > 0 && aPacket->packet[0] == 0x82;
|
|
if (ret < 0 || mPacketCount > 3) {
|
|
// We've received an error, or the first three packets weren't valid
|
|
// header packets, assume bad input, and don't activate the bitstream.
|
|
mDoneReadingHeaders = PR_TRUE;
|
|
} else if (ret > 0 && isSetupHeader && mPacketCount == 3) {
|
|
// Successfully read the three header packets.
|
|
mDoneReadingHeaders = PR_TRUE;
|
|
mActive = PR_TRUE;
|
|
}
|
|
return mDoneReadingHeaders;
|
|
}
|
|
|
|
PRInt64
|
|
nsTheoraState::Time(PRInt64 granulepos) {
|
|
if (granulepos < 0 || !mActive || mInfo.fps_numerator == 0) {
|
|
return -1;
|
|
}
|
|
PRInt64 t = 0;
|
|
PRInt64 frameno = th_granule_frame(mCtx, granulepos);
|
|
if (!AddOverflow(frameno, 1, t))
|
|
return -1;
|
|
if (!MulOverflow(t, 1000, t))
|
|
return -1;
|
|
if (!MulOverflow(t, mInfo.fps_denominator, t))
|
|
return -1;
|
|
return t / mInfo.fps_numerator;
|
|
}
|
|
|
|
PRInt64 nsTheoraState::StartTime(PRInt64 granulepos) {
|
|
if (granulepos < 0 || !mActive || mInfo.fps_numerator == 0) {
|
|
return -1;
|
|
}
|
|
PRInt64 t = 0;
|
|
PRInt64 frameno = th_granule_frame(mCtx, granulepos);
|
|
if (!MulOverflow(frameno, 1000, t))
|
|
return -1;
|
|
if (!MulOverflow(t, mInfo.fps_denominator, t))
|
|
return -1;
|
|
return t / mInfo.fps_numerator;
|
|
}
|
|
|
|
PRInt64
|
|
nsTheoraState::MaxKeyframeOffset()
|
|
{
|
|
// Determine the maximum time in milliseconds by which a key frame could
|
|
// offset for the theora bitstream. Theora granulepos encode time as:
|
|
// ((key_frame_number << granule_shift) + frame_offset).
|
|
// Therefore the maximum possible time by which any frame could be offset
|
|
// from a keyframe is the duration of (1 << granule_shift) - 1) frames.
|
|
PRInt64 frameDuration;
|
|
PRInt64 keyframeDiff;
|
|
|
|
PRInt64 shift = mInfo.keyframe_granule_shift;
|
|
|
|
// Max number of frames keyframe could possibly be offset.
|
|
keyframeDiff = (1 << shift) - 1;
|
|
|
|
// Length of frame in ms.
|
|
PRInt64 d = 0; // d will be 0 if multiplication overflows.
|
|
MulOverflow(1000, mInfo.fps_denominator, d);
|
|
frameDuration = d / mInfo.fps_numerator;
|
|
|
|
// Total time in ms keyframe can be offset from any given frame.
|
|
return frameDuration * keyframeDiff;
|
|
}
|
|
|
|
nsresult nsVorbisState::Reset()
|
|
{
|
|
nsresult res = NS_OK;
|
|
if (mActive && vorbis_synthesis_restart(&mDsp) != 0) {
|
|
res = NS_ERROR_FAILURE;
|
|
}
|
|
if (NS_FAILED(nsOggCodecState::Reset())) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
nsVorbisState::nsVorbisState(ogg_page* aBosPage) :
|
|
nsOggCodecState(aBosPage)
|
|
{
|
|
MOZ_COUNT_CTOR(nsVorbisState);
|
|
vorbis_info_init(&mInfo);
|
|
vorbis_comment_init(&mComment);
|
|
memset(&mDsp, 0, sizeof(vorbis_dsp_state));
|
|
memset(&mBlock, 0, sizeof(vorbis_block));
|
|
}
|
|
|
|
nsVorbisState::~nsVorbisState() {
|
|
MOZ_COUNT_DTOR(nsVorbisState);
|
|
vorbis_block_clear(&mBlock);
|
|
vorbis_dsp_clear(&mDsp);
|
|
vorbis_info_clear(&mInfo);
|
|
vorbis_comment_clear(&mComment);
|
|
}
|
|
|
|
PRBool nsVorbisState::DecodeHeader(ogg_packet* aPacket) {
|
|
mPacketCount++;
|
|
int ret = vorbis_synthesis_headerin(&mInfo,
|
|
&mComment,
|
|
aPacket);
|
|
// We must determine when we've read the last header packet.
|
|
// vorbis_synthesis_headerin() does not tell us when it's read the last
|
|
// header, so we must keep track of the headers externally.
|
|
//
|
|
// There are 3 header packets, the Identification, Comment, and Setup
|
|
// headers, which must be in that order. If they're out of order, the file
|
|
// is invalid. If we've successfully read a header, and it's the setup
|
|
// header, then we're done reading headers. The first byte of each packet
|
|
// determines it's type as follows:
|
|
// 0x1 -> Identification header
|
|
// 0x3 -> Comment header
|
|
// 0x5 -> Setup header
|
|
// For more details of the Vorbis/Ogg containment scheme, see the Vorbis I
|
|
// Specification, Chapter 4, Codec Setup and Packet Decode:
|
|
// http://www.xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-580004
|
|
|
|
PRBool isSetupHeader = aPacket->bytes > 0 && aPacket->packet[0] == 0x5;
|
|
|
|
if (ret < 0 || mPacketCount > 3) {
|
|
// We've received an error, or the first three packets weren't valid
|
|
// header packets, assume bad input, and don't activate the bitstream.
|
|
mDoneReadingHeaders = PR_TRUE;
|
|
} else if (ret == 0 && isSetupHeader && mPacketCount == 3) {
|
|
// Successfully read the three header packets, activate the bitstream.
|
|
mDoneReadingHeaders = PR_TRUE;
|
|
mActive = PR_TRUE;
|
|
}
|
|
return mDoneReadingHeaders;
|
|
}
|
|
|
|
PRBool nsVorbisState::Init()
|
|
{
|
|
if (!mActive)
|
|
return PR_FALSE;
|
|
|
|
int ret = vorbis_synthesis_init(&mDsp, &mInfo);
|
|
if (ret != 0) {
|
|
NS_WARNING("vorbis_synthesis_init() failed initializing vorbis bitstream");
|
|
return mActive = PR_FALSE;
|
|
}
|
|
ret = vorbis_block_init(&mDsp, &mBlock);
|
|
if (ret != 0) {
|
|
NS_WARNING("vorbis_block_init() failed initializing vorbis bitstream");
|
|
if (mActive) {
|
|
vorbis_dsp_clear(&mDsp);
|
|
}
|
|
return mActive = PR_FALSE;
|
|
}
|
|
return PR_TRUE;
|
|
}
|
|
|
|
PRInt64 nsVorbisState::Time(PRInt64 granulepos) {
|
|
if (granulepos == -1 || !mActive || mDsp.vi->rate == 0) {
|
|
return -1;
|
|
}
|
|
PRInt64 t = 0;
|
|
MulOverflow(1000, granulepos, t);
|
|
return t / mDsp.vi->rate;
|
|
}
|
|
|
|
nsSkeletonState::nsSkeletonState(ogg_page* aBosPage)
|
|
: nsOggCodecState(aBosPage)
|
|
{
|
|
MOZ_COUNT_CTOR(nsSkeletonState);
|
|
}
|
|
|
|
nsSkeletonState::~nsSkeletonState()
|
|
{
|
|
MOZ_COUNT_DTOR(nsSkeletonState);
|
|
}
|
|
|
|
PRBool nsSkeletonState::DecodeHeader(ogg_packet* aPacket)
|
|
{
|
|
if (aPacket->e_o_s) {
|
|
mActive = PR_TRUE;
|
|
mDoneReadingHeaders = PR_TRUE;
|
|
}
|
|
return mDoneReadingHeaders;
|
|
}
|
|
|
|
// Adds two 64bit numbers, retuns PR_TRUE if addition succeeded, or PR_FALSE
|
|
// if addition would result in an overflow.
|
|
static PRBool AddOverflow(PRInt64 a, PRInt64 b, PRInt64& aResult) {
|
|
if (b < 1) {
|
|
if (PR_INT64_MIN - b <= a) {
|
|
aResult = a + b;
|
|
return PR_TRUE;
|
|
}
|
|
} else if (PR_INT64_MAX - b >= a) {
|
|
aResult = a + b;
|
|
return PR_TRUE;
|
|
}
|
|
return PR_FALSE;
|
|
}
|
|
|
|
// 64 bit integer multiplication with overflow checking. Returns PR_TRUE
|
|
// if the multiplication was successful, or PR_FALSE if the operation resulted
|
|
// in an integer overflow.
|
|
static PRBool MulOverflow(PRInt64 a, PRInt64 b, PRInt64& aResult) {
|
|
// We break a multiplication a * b into of sign_a * sign_b * abs(a) * abs(b)
|
|
//
|
|
// This is equivalent to:
|
|
//
|
|
// (sign_a * sign_b) * ((a_hi * 2^32) + a_lo) * ((b_hi * 2^32) + b_lo)
|
|
//
|
|
// Which is equivalent to:
|
|
//
|
|
// (sign_a * sign_b) *
|
|
// ((a_hi * b_hi << 64) +
|
|
// (a_hi * b_lo << 32) + (a_lo * b_hi << 32) +
|
|
// a_lo * b_lo)
|
|
//
|
|
// So to check if a*b overflows, we must check each sub part of the above
|
|
// sum.
|
|
//
|
|
// Note: -1 * PR_INT64_MIN == PR_INT64_MIN ; we can't negate PR_INT64_MIN!
|
|
// Note: Shift of negative numbers is undefined.
|
|
//
|
|
// Figure out the sign after multiplication. Then we can just work with
|
|
// unsigned numbers.
|
|
PRInt64 sign = (!(a < 0) == !(b < 0)) ? 1 : -1;
|
|
|
|
PRInt64 abs_a = (a < 0) ? -a : a;
|
|
PRInt64 abs_b = (b < 0) ? -b : b;
|
|
|
|
if (abs_a < 0) {
|
|
NS_ASSERTION(a == PR_INT64_MIN, "How else can this happen?");
|
|
if (b == 0 || b == 1) {
|
|
aResult = a * b;
|
|
return PR_TRUE;
|
|
} else {
|
|
return PR_FALSE;
|
|
}
|
|
}
|
|
|
|
if (abs_b < 0) {
|
|
NS_ASSERTION(b == PR_INT64_MIN, "How else can this happen?");
|
|
if (a == 0 || a == 1) {
|
|
aResult = a * b;
|
|
return PR_TRUE;
|
|
} else {
|
|
return PR_FALSE;
|
|
}
|
|
}
|
|
|
|
NS_ASSERTION(abs_a >= 0 && abs_b >= 0, "abs values must be non-negative");
|
|
|
|
PRInt64 a_hi = abs_a >> 32;
|
|
PRInt64 a_lo = abs_a & 0xFFFFFFFF;
|
|
PRInt64 b_hi = abs_b >> 32;
|
|
PRInt64 b_lo = abs_b & 0xFFFFFFFF;
|
|
|
|
NS_ASSERTION((a_hi<<32) + a_lo == abs_a, "Partition must be correct");
|
|
NS_ASSERTION((b_hi<<32) + b_lo == abs_b, "Partition must be correct");
|
|
|
|
// In the sub-equation (a_hi * b_hi << 64), if a_hi or b_hi
|
|
// are non-zero, this will overflow as it's shifted by 64.
|
|
// Abort if this overflows.
|
|
if (a_hi != 0 && b_hi != 0) {
|
|
return PR_FALSE;
|
|
}
|
|
|
|
// We can now assume that either a_hi or b_hi is 0.
|
|
NS_ASSERTION(a_hi == 0 || b_hi == 0, "One of these must be 0");
|
|
|
|
// Next we calculate:
|
|
// (a_hi * b_lo << 32) + (a_lo * b_hi << 32)
|
|
// We can factor this as:
|
|
// (a_hi * b_lo + a_lo * b_hi) << 32
|
|
PRInt64 q = a_hi * b_lo + a_lo * b_hi;
|
|
if (q > PR_INT32_MAX) {
|
|
// q will overflow when we shift by 32; abort.
|
|
return PR_FALSE;
|
|
}
|
|
q <<= 32;
|
|
|
|
// Both a_lo and b_lo are less than INT32_MAX, so can't overflow.
|
|
PRUint64 lo = a_lo * b_lo;
|
|
if (lo > PR_INT64_MAX) {
|
|
return PR_FALSE;
|
|
}
|
|
|
|
// Add the final result. We must check for overflow during addition.
|
|
if (!AddOverflow(q, static_cast<PRInt64>(lo), aResult)) {
|
|
return PR_FALSE;
|
|
}
|
|
|
|
aResult *= sign;
|
|
NS_ASSERTION(a * b == aResult, "We didn't overflow, but result is wrong!");
|
|
return PR_TRUE;
|
|
}
|