mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
523 lines
17 KiB
C++
523 lines
17 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim:set ts=2 sw=2 sts=2 et cindent: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "ScriptProcessorNode.h"
|
|
#include "mozilla/dom/ScriptProcessorNodeBinding.h"
|
|
#include "AudioBuffer.h"
|
|
#include "AudioDestinationNode.h"
|
|
#include "AudioNodeEngine.h"
|
|
#include "AudioNodeStream.h"
|
|
#include "AudioProcessingEvent.h"
|
|
#include "WebAudioUtils.h"
|
|
#include "mozilla/dom/ScriptSettings.h"
|
|
#include "mozilla/Mutex.h"
|
|
#include "mozilla/PodOperations.h"
|
|
#include <deque>
|
|
|
|
namespace mozilla {
|
|
namespace dom {
|
|
|
|
// The maximum latency, in seconds, that we can live with before dropping
|
|
// buffers.
|
|
static const float MAX_LATENCY_S = 0.5;
|
|
|
|
NS_IMPL_ISUPPORTS_INHERITED0(ScriptProcessorNode, AudioNode)
|
|
|
|
// This class manages a queue of output buffers shared between
|
|
// the main thread and the Media Stream Graph thread.
|
|
class SharedBuffers
|
|
{
|
|
private:
|
|
class OutputQueue
|
|
{
|
|
public:
|
|
explicit OutputQueue(const char* aName)
|
|
: mMutex(aName)
|
|
{}
|
|
|
|
size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
|
|
{
|
|
mMutex.AssertCurrentThreadOwns();
|
|
|
|
size_t amount = 0;
|
|
for (size_t i = 0; i < mBufferList.size(); i++) {
|
|
amount += mBufferList[i].SizeOfExcludingThis(aMallocSizeOf, false);
|
|
}
|
|
|
|
return amount;
|
|
}
|
|
|
|
Mutex& Lock() const { return const_cast<OutputQueue*>(this)->mMutex; }
|
|
|
|
size_t ReadyToConsume() const
|
|
{
|
|
mMutex.AssertCurrentThreadOwns();
|
|
MOZ_ASSERT(!NS_IsMainThread());
|
|
return mBufferList.size();
|
|
}
|
|
|
|
// Produce one buffer
|
|
AudioChunk& Produce()
|
|
{
|
|
mMutex.AssertCurrentThreadOwns();
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
mBufferList.push_back(AudioChunk());
|
|
return mBufferList.back();
|
|
}
|
|
|
|
// Consumes one buffer.
|
|
AudioChunk Consume()
|
|
{
|
|
mMutex.AssertCurrentThreadOwns();
|
|
MOZ_ASSERT(!NS_IsMainThread());
|
|
MOZ_ASSERT(ReadyToConsume() > 0);
|
|
AudioChunk front = mBufferList.front();
|
|
mBufferList.pop_front();
|
|
return front;
|
|
}
|
|
|
|
// Empties the buffer queue.
|
|
void Clear()
|
|
{
|
|
mMutex.AssertCurrentThreadOwns();
|
|
mBufferList.clear();
|
|
}
|
|
|
|
private:
|
|
typedef std::deque<AudioChunk> BufferList;
|
|
|
|
// Synchronizes access to mBufferList. Note that it's the responsibility
|
|
// of the callers to perform the required locking, and we assert that every
|
|
// time we access mBufferList.
|
|
Mutex mMutex;
|
|
// The list representing the queue.
|
|
BufferList mBufferList;
|
|
};
|
|
|
|
public:
|
|
explicit SharedBuffers(float aSampleRate)
|
|
: mOutputQueue("SharedBuffers::outputQueue")
|
|
, mDelaySoFar(STREAM_TIME_MAX)
|
|
, mSampleRate(aSampleRate)
|
|
, mLatency(0.0)
|
|
, mDroppingBuffers(false)
|
|
{
|
|
}
|
|
|
|
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const
|
|
{
|
|
size_t amount = aMallocSizeOf(this);
|
|
|
|
{
|
|
MutexAutoLock lock(mOutputQueue.Lock());
|
|
amount += mOutputQueue.SizeOfExcludingThis(aMallocSizeOf);
|
|
}
|
|
|
|
return amount;
|
|
}
|
|
|
|
// main thread
|
|
void FinishProducingOutputBuffer(ThreadSharedFloatArrayBufferList* aBuffer,
|
|
uint32_t aBufferSize)
|
|
{
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
|
|
TimeStamp now = TimeStamp::Now();
|
|
|
|
if (mLastEventTime.IsNull()) {
|
|
mLastEventTime = now;
|
|
} else {
|
|
// When the main thread is blocked, and all the event are processed in a
|
|
// burst after the main thread unblocks, the |(now - mLastEventTime)|
|
|
// interval will be very short. |latency - bufferDuration| will be
|
|
// negative, effectively moving back mLatency to a smaller and smaller
|
|
// value, until it crosses zero, at which point we stop dropping buffers
|
|
// and resume normal operation. This does not work if at the same time,
|
|
// the MSG thread was also slowed down, so if the latency on the MSG
|
|
// thread is normal, and we are still dropping buffers, and mLatency is
|
|
// still more than twice the duration of a buffer, we reset it and stop
|
|
// dropping buffers.
|
|
float latency = (now - mLastEventTime).ToSeconds();
|
|
float bufferDuration = aBufferSize / mSampleRate;
|
|
mLatency += latency - bufferDuration;
|
|
mLastEventTime = now;
|
|
if (mLatency > MAX_LATENCY_S ||
|
|
(mDroppingBuffers && mLatency > 0.0 &&
|
|
fabs(latency - bufferDuration) < bufferDuration)) {
|
|
mDroppingBuffers = true;
|
|
return;
|
|
} else {
|
|
if (mDroppingBuffers) {
|
|
mLatency = 0;
|
|
}
|
|
mDroppingBuffers = false;
|
|
}
|
|
}
|
|
|
|
MutexAutoLock lock(mOutputQueue.Lock());
|
|
for (uint32_t offset = 0; offset < aBufferSize; offset += WEBAUDIO_BLOCK_SIZE) {
|
|
AudioChunk& chunk = mOutputQueue.Produce();
|
|
if (aBuffer) {
|
|
chunk.mDuration = WEBAUDIO_BLOCK_SIZE;
|
|
chunk.mBuffer = aBuffer;
|
|
chunk.mChannelData.SetLength(aBuffer->GetChannels());
|
|
for (uint32_t i = 0; i < aBuffer->GetChannels(); ++i) {
|
|
chunk.mChannelData[i] = aBuffer->GetData(i) + offset;
|
|
}
|
|
chunk.mVolume = 1.0f;
|
|
chunk.mBufferFormat = AUDIO_FORMAT_FLOAT32;
|
|
} else {
|
|
chunk.SetNull(WEBAUDIO_BLOCK_SIZE);
|
|
}
|
|
}
|
|
}
|
|
|
|
// graph thread
|
|
AudioChunk GetOutputBuffer()
|
|
{
|
|
MOZ_ASSERT(!NS_IsMainThread());
|
|
AudioChunk buffer;
|
|
|
|
{
|
|
MutexAutoLock lock(mOutputQueue.Lock());
|
|
if (mOutputQueue.ReadyToConsume() > 0) {
|
|
if (mDelaySoFar == STREAM_TIME_MAX) {
|
|
mDelaySoFar = 0;
|
|
}
|
|
buffer = mOutputQueue.Consume();
|
|
} else {
|
|
// If we're out of buffers to consume, just output silence
|
|
buffer.SetNull(WEBAUDIO_BLOCK_SIZE);
|
|
if (mDelaySoFar != STREAM_TIME_MAX) {
|
|
// Remember the delay that we just hit
|
|
mDelaySoFar += WEBAUDIO_BLOCK_SIZE;
|
|
}
|
|
}
|
|
}
|
|
|
|
return buffer;
|
|
}
|
|
|
|
StreamTime DelaySoFar() const
|
|
{
|
|
MOZ_ASSERT(!NS_IsMainThread());
|
|
return mDelaySoFar == STREAM_TIME_MAX ? 0 : mDelaySoFar;
|
|
}
|
|
|
|
void Reset()
|
|
{
|
|
MOZ_ASSERT(!NS_IsMainThread());
|
|
mDelaySoFar = STREAM_TIME_MAX;
|
|
mLatency = 0.0f;
|
|
{
|
|
MutexAutoLock lock(mOutputQueue.Lock());
|
|
mOutputQueue.Clear();
|
|
}
|
|
mLastEventTime = TimeStamp();
|
|
}
|
|
|
|
private:
|
|
OutputQueue mOutputQueue;
|
|
// How much delay we've seen so far. This measures the amount of delay
|
|
// caused by the main thread lagging behind in producing output buffers.
|
|
// STREAM_TIME_MAX means that we have not received our first buffer yet.
|
|
StreamTime mDelaySoFar;
|
|
// The samplerate of the context.
|
|
float mSampleRate;
|
|
// This is the latency caused by the buffering. If this grows too high, we
|
|
// will drop buffers until it is acceptable.
|
|
float mLatency;
|
|
// This is the time at which we last produced a buffer, to detect if the main
|
|
// thread has been blocked.
|
|
TimeStamp mLastEventTime;
|
|
// True if we should be dropping buffers.
|
|
bool mDroppingBuffers;
|
|
};
|
|
|
|
class ScriptProcessorNodeEngine : public AudioNodeEngine
|
|
{
|
|
public:
|
|
typedef nsAutoTArray<nsAutoArrayPtr<float>, 2> InputChannels;
|
|
|
|
ScriptProcessorNodeEngine(ScriptProcessorNode* aNode,
|
|
AudioDestinationNode* aDestination,
|
|
uint32_t aBufferSize,
|
|
uint32_t aNumberOfInputChannels)
|
|
: AudioNodeEngine(aNode)
|
|
, mSharedBuffers(aNode->GetSharedBuffers())
|
|
, mSource(nullptr)
|
|
, mDestination(static_cast<AudioNodeStream*> (aDestination->Stream()))
|
|
, mBufferSize(aBufferSize)
|
|
, mInputWriteIndex(0)
|
|
, mSeenNonSilenceInput(false)
|
|
{
|
|
mInputChannels.SetLength(aNumberOfInputChannels);
|
|
AllocateInputBlock();
|
|
}
|
|
|
|
void SetSourceStream(AudioNodeStream* aSource)
|
|
{
|
|
mSource = aSource;
|
|
}
|
|
|
|
virtual void ProcessBlock(AudioNodeStream* aStream,
|
|
const AudioChunk& aInput,
|
|
AudioChunk* aOutput,
|
|
bool* aFinished) MOZ_OVERRIDE
|
|
{
|
|
MutexAutoLock lock(NodeMutex());
|
|
|
|
// If our node is dead, just output silence.
|
|
if (!Node()) {
|
|
aOutput->SetNull(WEBAUDIO_BLOCK_SIZE);
|
|
return;
|
|
}
|
|
|
|
// This node is not connected to anything. Per spec, we don't fire the
|
|
// onaudioprocess event. We also want to clear out the input and output
|
|
// buffer queue, and output a null buffer.
|
|
if (!(aStream->ConsumerCount() ||
|
|
aStream->AsProcessedStream()->InputPortCount())) {
|
|
aOutput->SetNull(WEBAUDIO_BLOCK_SIZE);
|
|
mSharedBuffers->Reset();
|
|
mSeenNonSilenceInput = false;
|
|
mInputWriteIndex = 0;
|
|
return;
|
|
}
|
|
|
|
// First, record our input buffer
|
|
for (uint32_t i = 0; i < mInputChannels.Length(); ++i) {
|
|
if (aInput.IsNull()) {
|
|
PodZero(mInputChannels[i] + mInputWriteIndex,
|
|
aInput.GetDuration());
|
|
} else {
|
|
mSeenNonSilenceInput = true;
|
|
MOZ_ASSERT(aInput.GetDuration() == WEBAUDIO_BLOCK_SIZE, "sanity check");
|
|
MOZ_ASSERT(aInput.mChannelData.Length() == mInputChannels.Length());
|
|
AudioBlockCopyChannelWithScale(static_cast<const float*>(aInput.mChannelData[i]),
|
|
aInput.mVolume,
|
|
mInputChannels[i] + mInputWriteIndex);
|
|
}
|
|
}
|
|
mInputWriteIndex += aInput.GetDuration();
|
|
|
|
// Now, see if we have data to output
|
|
// Note that we need to do this before sending the buffer to the main
|
|
// thread so that our delay time is updated.
|
|
*aOutput = mSharedBuffers->GetOutputBuffer();
|
|
|
|
if (mInputWriteIndex >= mBufferSize) {
|
|
SendBuffersToMainThread(aStream);
|
|
mInputWriteIndex -= mBufferSize;
|
|
mSeenNonSilenceInput = false;
|
|
AllocateInputBlock();
|
|
}
|
|
}
|
|
|
|
virtual size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const MOZ_OVERRIDE
|
|
{
|
|
// Not owned:
|
|
// - mSharedBuffers
|
|
// - mSource (probably)
|
|
// - mDestination (probably)
|
|
size_t amount = AudioNodeEngine::SizeOfExcludingThis(aMallocSizeOf);
|
|
amount += mInputChannels.SizeOfExcludingThis(aMallocSizeOf);
|
|
for (size_t i = 0; i < mInputChannels.Length(); i++) {
|
|
amount += mInputChannels[i].SizeOfExcludingThis(aMallocSizeOf);
|
|
}
|
|
|
|
return amount;
|
|
}
|
|
|
|
virtual size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const MOZ_OVERRIDE
|
|
{
|
|
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
|
|
}
|
|
|
|
private:
|
|
void AllocateInputBlock()
|
|
{
|
|
for (unsigned i = 0; i < mInputChannels.Length(); ++i) {
|
|
if (!mInputChannels[i]) {
|
|
mInputChannels[i] = new float[mBufferSize];
|
|
}
|
|
}
|
|
}
|
|
|
|
void SendBuffersToMainThread(AudioNodeStream* aStream)
|
|
{
|
|
MOZ_ASSERT(!NS_IsMainThread());
|
|
|
|
// we now have a full input buffer ready to be sent to the main thread.
|
|
StreamTime playbackTick = mSource->GetCurrentPosition();
|
|
// Add the duration of the current sample
|
|
playbackTick += WEBAUDIO_BLOCK_SIZE;
|
|
// Add the delay caused by the main thread
|
|
playbackTick += mSharedBuffers->DelaySoFar();
|
|
// Compute the playback time in the coordinate system of the destination
|
|
double playbackTime =
|
|
mSource->DestinationTimeFromTicks(mDestination, playbackTick);
|
|
|
|
class Command : public nsRunnable
|
|
{
|
|
public:
|
|
Command(AudioNodeStream* aStream,
|
|
InputChannels& aInputChannels,
|
|
double aPlaybackTime,
|
|
bool aNullInput)
|
|
: mStream(aStream)
|
|
, mPlaybackTime(aPlaybackTime)
|
|
, mNullInput(aNullInput)
|
|
{
|
|
mInputChannels.SetLength(aInputChannels.Length());
|
|
if (!aNullInput) {
|
|
for (uint32_t i = 0; i < mInputChannels.Length(); ++i) {
|
|
mInputChannels[i] = aInputChannels[i].forget();
|
|
}
|
|
}
|
|
}
|
|
|
|
NS_IMETHODIMP Run()
|
|
{
|
|
nsRefPtr<ScriptProcessorNode> node = static_cast<ScriptProcessorNode*>
|
|
(mStream->Engine()->NodeMainThread());
|
|
if (!node) {
|
|
return NS_OK;
|
|
}
|
|
AudioContext* context = node->Context();
|
|
if (!context) {
|
|
return NS_OK;
|
|
}
|
|
|
|
AutoJSAPI jsapi;
|
|
if (NS_WARN_IF(!jsapi.Init(node->GetOwner()))) {
|
|
return NS_OK;
|
|
}
|
|
JSContext* cx = jsapi.cx();
|
|
|
|
// Create the input buffer
|
|
nsRefPtr<AudioBuffer> inputBuffer;
|
|
if (!mNullInput) {
|
|
ErrorResult rv;
|
|
inputBuffer =
|
|
AudioBuffer::Create(context, mInputChannels.Length(),
|
|
node->BufferSize(),
|
|
context->SampleRate(), cx, rv);
|
|
if (rv.Failed()) {
|
|
return NS_OK;
|
|
}
|
|
// Put the channel data inside it
|
|
for (uint32_t i = 0; i < mInputChannels.Length(); ++i) {
|
|
inputBuffer->SetRawChannelContents(i, mInputChannels[i]);
|
|
}
|
|
}
|
|
|
|
// Ask content to produce data in the output buffer
|
|
// Note that we always avoid creating the output buffer here, and we try to
|
|
// avoid creating the input buffer as well. The AudioProcessingEvent class
|
|
// knows how to lazily create them if needed once the script tries to access
|
|
// them. Otherwise, we may be able to get away without creating them!
|
|
nsRefPtr<AudioProcessingEvent> event = new AudioProcessingEvent(node, nullptr, nullptr);
|
|
event->InitEvent(inputBuffer,
|
|
mInputChannels.Length(),
|
|
context->StreamTimeToDOMTime(mPlaybackTime));
|
|
node->DispatchTrustedEvent(event);
|
|
|
|
// Steal the output buffers if they have been set.
|
|
// Don't create a buffer if it hasn't been used to return output;
|
|
// FinishProducingOutputBuffer() will optimize output = null.
|
|
// GetThreadSharedChannelsForRate() may also return null after OOM.
|
|
nsRefPtr<ThreadSharedFloatArrayBufferList> output;
|
|
if (event->HasOutputBuffer()) {
|
|
ErrorResult rv;
|
|
AudioBuffer* buffer = event->GetOutputBuffer(rv);
|
|
// HasOutputBuffer() returning true means that GetOutputBuffer()
|
|
// will not fail.
|
|
MOZ_ASSERT(!rv.Failed());
|
|
output = buffer->GetThreadSharedChannelsForRate(cx);
|
|
}
|
|
|
|
// Append it to our output buffer queue
|
|
node->GetSharedBuffers()->FinishProducingOutputBuffer(output, node->BufferSize());
|
|
|
|
return NS_OK;
|
|
}
|
|
private:
|
|
nsRefPtr<AudioNodeStream> mStream;
|
|
InputChannels mInputChannels;
|
|
double mPlaybackTime;
|
|
bool mNullInput;
|
|
};
|
|
|
|
NS_DispatchToMainThread(new Command(aStream, mInputChannels,
|
|
playbackTime,
|
|
!mSeenNonSilenceInput));
|
|
}
|
|
|
|
friend class ScriptProcessorNode;
|
|
|
|
SharedBuffers* mSharedBuffers;
|
|
AudioNodeStream* mSource;
|
|
AudioNodeStream* mDestination;
|
|
InputChannels mInputChannels;
|
|
const uint32_t mBufferSize;
|
|
// The write index into the current input buffer
|
|
uint32_t mInputWriteIndex;
|
|
bool mSeenNonSilenceInput;
|
|
};
|
|
|
|
ScriptProcessorNode::ScriptProcessorNode(AudioContext* aContext,
|
|
uint32_t aBufferSize,
|
|
uint32_t aNumberOfInputChannels,
|
|
uint32_t aNumberOfOutputChannels)
|
|
: AudioNode(aContext,
|
|
aNumberOfInputChannels,
|
|
mozilla::dom::ChannelCountMode::Explicit,
|
|
mozilla::dom::ChannelInterpretation::Speakers)
|
|
, mSharedBuffers(new SharedBuffers(aContext->SampleRate()))
|
|
, mBufferSize(aBufferSize ?
|
|
aBufferSize : // respect what the web developer requested
|
|
4096) // choose our own buffer size -- 4KB for now
|
|
, mNumberOfOutputChannels(aNumberOfOutputChannels)
|
|
{
|
|
MOZ_ASSERT(BufferSize() % WEBAUDIO_BLOCK_SIZE == 0, "Invalid buffer size");
|
|
ScriptProcessorNodeEngine* engine =
|
|
new ScriptProcessorNodeEngine(this,
|
|
aContext->Destination(),
|
|
BufferSize(),
|
|
aNumberOfInputChannels);
|
|
mStream = aContext->Graph()->CreateAudioNodeStream(engine, MediaStreamGraph::INTERNAL_STREAM);
|
|
engine->SetSourceStream(static_cast<AudioNodeStream*> (mStream.get()));
|
|
}
|
|
|
|
ScriptProcessorNode::~ScriptProcessorNode()
|
|
{
|
|
}
|
|
|
|
size_t
|
|
ScriptProcessorNode::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
|
|
{
|
|
size_t amount = AudioNode::SizeOfExcludingThis(aMallocSizeOf);
|
|
amount += mSharedBuffers->SizeOfIncludingThis(aMallocSizeOf);
|
|
return amount;
|
|
}
|
|
|
|
size_t
|
|
ScriptProcessorNode::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const
|
|
{
|
|
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
|
|
}
|
|
|
|
JSObject*
|
|
ScriptProcessorNode::WrapObject(JSContext* aCx)
|
|
{
|
|
return ScriptProcessorNodeBinding::Wrap(aCx, this);
|
|
}
|
|
|
|
}
|
|
}
|
|
|