mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
522 lines
16 KiB
C++
522 lines
16 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
* vim: set ts=8 sts=4 et sw=4 tw=99:
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
/* PR time code. */
|
|
|
|
#include "prmjtime.h"
|
|
|
|
#include "mozilla/MathAlgorithms.h"
|
|
|
|
#ifdef SOLARIS
|
|
#define _REENTRANT 1
|
|
#endif
|
|
#include <string.h>
|
|
#include <time.h>
|
|
|
|
#include "jstypes.h"
|
|
#include "jsutil.h"
|
|
|
|
#define PRMJ_DO_MILLISECONDS 1
|
|
|
|
#ifdef XP_WIN
|
|
#include <windef.h>
|
|
#include <winbase.h>
|
|
#include <mmsystem.h> /* for timeBegin/EndPeriod */
|
|
/* VC++ 8.0 or later */
|
|
#if _MSC_VER >= 1400
|
|
#define NS_HAVE_INVALID_PARAMETER_HANDLER 1
|
|
#endif
|
|
#ifdef NS_HAVE_INVALID_PARAMETER_HANDLER
|
|
#include <crtdbg.h> /* for _CrtSetReportMode */
|
|
#include <stdlib.h> /* for _set_invalid_parameter_handler */
|
|
#endif
|
|
|
|
#ifdef JS_THREADSAFE
|
|
#include "prinit.h"
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#ifdef XP_UNIX
|
|
|
|
#ifdef _SVID_GETTOD /* Defined only on Solaris, see Solaris <sys/types.h> */
|
|
extern int gettimeofday(struct timeval *tv);
|
|
#endif
|
|
|
|
#include <sys/time.h>
|
|
|
|
#endif /* XP_UNIX */
|
|
|
|
#define PRMJ_YEAR_DAYS 365L
|
|
#define PRMJ_FOUR_YEARS_DAYS (4 * PRMJ_YEAR_DAYS + 1)
|
|
#define PRMJ_CENTURY_DAYS (25 * PRMJ_FOUR_YEARS_DAYS - 1)
|
|
#define PRMJ_FOUR_CENTURIES_DAYS (4 * PRMJ_CENTURY_DAYS + 1)
|
|
#define PRMJ_HOUR_SECONDS 3600L
|
|
#define PRMJ_DAY_SECONDS (24L * PRMJ_HOUR_SECONDS)
|
|
#define PRMJ_YEAR_SECONDS (PRMJ_DAY_SECONDS * PRMJ_YEAR_DAYS)
|
|
#define PRMJ_MAX_UNIX_TIMET 2145859200L /*time_t value equiv. to 12/31/2037 */
|
|
|
|
/* Constants for GMT offset from 1970 */
|
|
#define G1970GMTMICROHI 0x00dcdcad /* micro secs to 1970 hi */
|
|
#define G1970GMTMICROLOW 0x8b3fa000 /* micro secs to 1970 low */
|
|
|
|
#define G2037GMTMICROHI 0x00e45fab /* micro secs to 2037 high */
|
|
#define G2037GMTMICROLOW 0x7a238000 /* micro secs to 2037 low */
|
|
|
|
#if defined(XP_WIN)
|
|
|
|
static const int64_t win2un = 0x19DB1DED53E8000;
|
|
|
|
#define FILETIME2INT64(ft) (((int64_t)ft.dwHighDateTime) << 32LL | (int64_t)ft.dwLowDateTime)
|
|
|
|
typedef struct CalibrationData {
|
|
long double freq; /* The performance counter frequency */
|
|
long double offset; /* The low res 'epoch' */
|
|
long double timer_offset; /* The high res 'epoch' */
|
|
|
|
/* The last high res time that we returned since recalibrating */
|
|
int64_t last;
|
|
|
|
bool calibrated;
|
|
|
|
#ifdef JS_THREADSAFE
|
|
CRITICAL_SECTION data_lock;
|
|
CRITICAL_SECTION calibration_lock;
|
|
#endif
|
|
} CalibrationData;
|
|
|
|
static CalibrationData calibration = { 0 };
|
|
|
|
static void
|
|
NowCalibrate()
|
|
{
|
|
FILETIME ft, ftStart;
|
|
LARGE_INTEGER liFreq, now;
|
|
|
|
if (calibration.freq == 0.0) {
|
|
if(!QueryPerformanceFrequency(&liFreq)) {
|
|
/* High-performance timer is unavailable */
|
|
calibration.freq = -1.0;
|
|
} else {
|
|
calibration.freq = (long double) liFreq.QuadPart;
|
|
}
|
|
}
|
|
if (calibration.freq > 0.0) {
|
|
int64_t calibrationDelta = 0;
|
|
|
|
/* By wrapping a timeBegin/EndPeriod pair of calls around this loop,
|
|
the loop seems to take much less time (1 ms vs 15ms) on Vista. */
|
|
timeBeginPeriod(1);
|
|
GetSystemTimeAsFileTime(&ftStart);
|
|
do {
|
|
GetSystemTimeAsFileTime(&ft);
|
|
} while (memcmp(&ftStart,&ft, sizeof(ft)) == 0);
|
|
timeEndPeriod(1);
|
|
|
|
/*
|
|
calibrationDelta = (FILETIME2INT64(ft) - FILETIME2INT64(ftStart))/10;
|
|
fprintf(stderr, "Calibration delta was %I64d us\n", calibrationDelta);
|
|
*/
|
|
|
|
QueryPerformanceCounter(&now);
|
|
|
|
calibration.offset = (long double) FILETIME2INT64(ft);
|
|
calibration.timer_offset = (long double) now.QuadPart;
|
|
|
|
/* The windows epoch is around 1600. The unix epoch is around
|
|
1970. win2un is the difference (in windows time units which
|
|
are 10 times more highres than the JS time unit) */
|
|
calibration.offset -= win2un;
|
|
calibration.offset *= 0.1;
|
|
calibration.last = 0;
|
|
|
|
calibration.calibrated = true;
|
|
}
|
|
}
|
|
|
|
#define CALIBRATIONLOCK_SPINCOUNT 0
|
|
#define DATALOCK_SPINCOUNT 4096
|
|
#define LASTLOCK_SPINCOUNT 4096
|
|
|
|
#ifdef JS_THREADSAFE
|
|
static PRStatus
|
|
NowInit(void)
|
|
{
|
|
memset(&calibration, 0, sizeof(calibration));
|
|
NowCalibrate();
|
|
InitializeCriticalSectionAndSpinCount(&calibration.calibration_lock, CALIBRATIONLOCK_SPINCOUNT);
|
|
InitializeCriticalSectionAndSpinCount(&calibration.data_lock, DATALOCK_SPINCOUNT);
|
|
return PR_SUCCESS;
|
|
}
|
|
|
|
void
|
|
PRMJ_NowShutdown()
|
|
{
|
|
DeleteCriticalSection(&calibration.calibration_lock);
|
|
DeleteCriticalSection(&calibration.data_lock);
|
|
}
|
|
|
|
#define MUTEX_LOCK(m) EnterCriticalSection(m)
|
|
#define MUTEX_TRYLOCK(m) TryEnterCriticalSection(m)
|
|
#define MUTEX_UNLOCK(m) LeaveCriticalSection(m)
|
|
#define MUTEX_SETSPINCOUNT(m, c) SetCriticalSectionSpinCount((m),(c))
|
|
|
|
static PRCallOnceType calibrationOnce = { 0 };
|
|
|
|
#else
|
|
|
|
#define MUTEX_LOCK(m)
|
|
#define MUTEX_TRYLOCK(m) 1
|
|
#define MUTEX_UNLOCK(m)
|
|
#define MUTEX_SETSPINCOUNT(m, c)
|
|
|
|
#endif
|
|
|
|
#endif /* XP_WIN */
|
|
|
|
|
|
#if defined(XP_UNIX)
|
|
int64_t
|
|
PRMJ_Now(void)
|
|
{
|
|
struct timeval tv;
|
|
|
|
#ifdef _SVID_GETTOD /* Defined only on Solaris, see Solaris <sys/types.h> */
|
|
gettimeofday(&tv);
|
|
#else
|
|
gettimeofday(&tv, 0);
|
|
#endif /* _SVID_GETTOD */
|
|
|
|
return int64_t(tv.tv_sec) * PRMJ_USEC_PER_SEC + int64_t(tv.tv_usec);
|
|
}
|
|
|
|
#else
|
|
/*
|
|
|
|
Win32 python-esque pseudo code
|
|
Please see bug 363258 for why the win32 timing code is so complex.
|
|
|
|
calibration mutex : Win32CriticalSection(spincount=0)
|
|
data mutex : Win32CriticalSection(spincount=4096)
|
|
|
|
def NowInit():
|
|
init mutexes
|
|
PRMJ_NowCalibration()
|
|
|
|
def NowCalibration():
|
|
expensive up-to-15ms call
|
|
|
|
def PRMJ_Now():
|
|
returnedTime = 0
|
|
needCalibration = False
|
|
cachedOffset = 0.0
|
|
calibrated = False
|
|
PR_CallOnce(PRMJ_NowInit)
|
|
do
|
|
if not global.calibrated or needCalibration:
|
|
acquire calibration mutex
|
|
acquire data mutex
|
|
|
|
// Only recalibrate if someone didn't already
|
|
if cachedOffset == calibration.offset:
|
|
// Have all waiting threads immediately wait
|
|
set data mutex spin count = 0
|
|
PRMJ_NowCalibrate()
|
|
calibrated = 1
|
|
|
|
set data mutex spin count = default
|
|
release data mutex
|
|
release calibration mutex
|
|
|
|
calculate lowres time
|
|
|
|
if highres timer available:
|
|
acquire data mutex
|
|
calculate highres time
|
|
cachedOffset = calibration.offset
|
|
highres time = calibration.last = max(highres time, calibration.last)
|
|
release data mutex
|
|
|
|
get kernel tick interval
|
|
|
|
if abs(highres - lowres) < kernel tick:
|
|
returnedTime = highres time
|
|
needCalibration = False
|
|
else:
|
|
if calibrated:
|
|
returnedTime = lowres
|
|
needCalibration = False
|
|
else:
|
|
needCalibration = True
|
|
else:
|
|
returnedTime = lowres
|
|
while needCalibration
|
|
|
|
*/
|
|
|
|
int64_t
|
|
PRMJ_Now(void)
|
|
{
|
|
static int nCalls = 0;
|
|
long double lowresTime, highresTimerValue;
|
|
FILETIME ft;
|
|
LARGE_INTEGER now;
|
|
bool calibrated = false;
|
|
bool needsCalibration = false;
|
|
int64_t returnedTime;
|
|
long double cachedOffset = 0.0;
|
|
|
|
/* For non threadsafe platforms, NowInit is not necessary */
|
|
#ifdef JS_THREADSAFE
|
|
PR_CallOnce(&calibrationOnce, NowInit);
|
|
#endif
|
|
do {
|
|
if (!calibration.calibrated || needsCalibration) {
|
|
MUTEX_LOCK(&calibration.calibration_lock);
|
|
MUTEX_LOCK(&calibration.data_lock);
|
|
|
|
/* Recalibrate only if no one else did before us */
|
|
if(calibration.offset == cachedOffset) {
|
|
/* Since calibration can take a while, make any other
|
|
threads immediately wait */
|
|
MUTEX_SETSPINCOUNT(&calibration.data_lock, 0);
|
|
|
|
NowCalibrate();
|
|
|
|
calibrated = true;
|
|
|
|
/* Restore spin count */
|
|
MUTEX_SETSPINCOUNT(&calibration.data_lock, DATALOCK_SPINCOUNT);
|
|
}
|
|
MUTEX_UNLOCK(&calibration.data_lock);
|
|
MUTEX_UNLOCK(&calibration.calibration_lock);
|
|
}
|
|
|
|
|
|
/* Calculate a low resolution time */
|
|
GetSystemTimeAsFileTime(&ft);
|
|
lowresTime = 0.1*(long double)(FILETIME2INT64(ft) - win2un);
|
|
|
|
if (calibration.freq > 0.0) {
|
|
long double highresTime, diff;
|
|
|
|
DWORD timeAdjustment, timeIncrement;
|
|
BOOL timeAdjustmentDisabled;
|
|
|
|
/* Default to 15.625 ms if the syscall fails */
|
|
long double skewThreshold = 15625.25;
|
|
/* Grab high resolution time */
|
|
QueryPerformanceCounter(&now);
|
|
highresTimerValue = (long double)now.QuadPart;
|
|
|
|
MUTEX_LOCK(&calibration.data_lock);
|
|
highresTime = calibration.offset + PRMJ_USEC_PER_SEC*
|
|
(highresTimerValue-calibration.timer_offset)/calibration.freq;
|
|
cachedOffset = calibration.offset;
|
|
|
|
/* On some dual processor/core systems, we might get an earlier time
|
|
so we cache the last time that we returned */
|
|
calibration.last = js::Max(calibration.last, int64_t(highresTime));
|
|
returnedTime = calibration.last;
|
|
MUTEX_UNLOCK(&calibration.data_lock);
|
|
|
|
/* Rather than assume the NT kernel ticks every 15.6ms, ask it */
|
|
if (GetSystemTimeAdjustment(&timeAdjustment,
|
|
&timeIncrement,
|
|
&timeAdjustmentDisabled)) {
|
|
if (timeAdjustmentDisabled) {
|
|
/* timeAdjustment is in units of 100ns */
|
|
skewThreshold = timeAdjustment/10.0;
|
|
} else {
|
|
/* timeIncrement is in units of 100ns */
|
|
skewThreshold = timeIncrement/10.0;
|
|
}
|
|
}
|
|
|
|
/* Check for clock skew */
|
|
diff = lowresTime - highresTime;
|
|
|
|
/* For some reason that I have not determined, the skew can be
|
|
up to twice a kernel tick. This does not seem to happen by
|
|
itself, but I have only seen it triggered by another program
|
|
doing some kind of file I/O. The symptoms are a negative diff
|
|
followed by an equally large positive diff. */
|
|
if (mozilla::Abs(diff) > 2 * skewThreshold) {
|
|
/*fprintf(stderr,"Clock skew detected (diff = %f)!\n", diff);*/
|
|
|
|
if (calibrated) {
|
|
/* If we already calibrated once this instance, and the
|
|
clock is still skewed, then either the processor(s) are
|
|
wildly changing clockspeed or the system is so busy that
|
|
we get switched out for long periods of time. In either
|
|
case, it would be infeasible to make use of high
|
|
resolution results for anything, so let's resort to old
|
|
behavior for this call. It's possible that in the
|
|
future, the user will want the high resolution timer, so
|
|
we don't disable it entirely. */
|
|
returnedTime = int64_t(lowresTime);
|
|
needsCalibration = false;
|
|
} else {
|
|
/* It is possible that when we recalibrate, we will return a
|
|
value less than what we have returned before; this is
|
|
unavoidable. We cannot tell the different between a
|
|
faulty QueryPerformanceCounter implementation and user
|
|
changes to the operating system time. Since we must
|
|
respect user changes to the operating system time, we
|
|
cannot maintain the invariant that Date.now() never
|
|
decreases; the old implementation has this behavior as
|
|
well. */
|
|
needsCalibration = true;
|
|
}
|
|
} else {
|
|
/* No detectable clock skew */
|
|
returnedTime = int64_t(highresTime);
|
|
needsCalibration = false;
|
|
}
|
|
} else {
|
|
/* No high resolution timer is available, so fall back */
|
|
returnedTime = int64_t(lowresTime);
|
|
}
|
|
} while (needsCalibration);
|
|
|
|
return returnedTime;
|
|
}
|
|
#endif
|
|
|
|
#ifdef NS_HAVE_INVALID_PARAMETER_HANDLER
|
|
static void
|
|
PRMJ_InvalidParameterHandler(const wchar_t *expression,
|
|
const wchar_t *function,
|
|
const wchar_t *file,
|
|
unsigned int line,
|
|
uintptr_t pReserved)
|
|
{
|
|
/* empty */
|
|
}
|
|
#endif
|
|
|
|
/* Format a time value into a buffer. Same semantics as strftime() */
|
|
size_t
|
|
PRMJ_FormatTime(char *buf, int buflen, const char *fmt, PRMJTime *prtm)
|
|
{
|
|
size_t result = 0;
|
|
#if defined(XP_UNIX) || defined(XP_WIN)
|
|
struct tm a;
|
|
int fake_tm_year = 0;
|
|
#ifdef NS_HAVE_INVALID_PARAMETER_HANDLER
|
|
_invalid_parameter_handler oldHandler;
|
|
int oldReportMode;
|
|
#endif
|
|
|
|
memset(&a, 0, sizeof(struct tm));
|
|
|
|
a.tm_sec = prtm->tm_sec;
|
|
a.tm_min = prtm->tm_min;
|
|
a.tm_hour = prtm->tm_hour;
|
|
a.tm_mday = prtm->tm_mday;
|
|
a.tm_mon = prtm->tm_mon;
|
|
a.tm_wday = prtm->tm_wday;
|
|
|
|
/*
|
|
* On systems where |struct tm| has members tm_gmtoff and tm_zone, we
|
|
* must fill in those values, or else strftime will return wrong results
|
|
* (e.g., bug 511726, bug 554338).
|
|
*/
|
|
#if defined(HAVE_LOCALTIME_R) && defined(HAVE_TM_ZONE_TM_GMTOFF)
|
|
{
|
|
/*
|
|
* Fill out |td| to the time represented by |prtm|, leaving the
|
|
* timezone fields zeroed out. localtime_r will then fill in the
|
|
* timezone fields for that local time according to the system's
|
|
* timezone parameters.
|
|
*/
|
|
struct tm td;
|
|
memset(&td, 0, sizeof(td));
|
|
td.tm_sec = prtm->tm_sec;
|
|
td.tm_min = prtm->tm_min;
|
|
td.tm_hour = prtm->tm_hour;
|
|
td.tm_mday = prtm->tm_mday;
|
|
td.tm_mon = prtm->tm_mon;
|
|
td.tm_wday = prtm->tm_wday;
|
|
td.tm_year = prtm->tm_year - 1900;
|
|
td.tm_yday = prtm->tm_yday;
|
|
td.tm_isdst = prtm->tm_isdst;
|
|
time_t t = mktime(&td);
|
|
localtime_r(&t, &td);
|
|
|
|
a.tm_gmtoff = td.tm_gmtoff;
|
|
a.tm_zone = td.tm_zone;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Years before 1900 and after 9999 cause strftime() to abort on Windows.
|
|
* To avoid that we replace it with FAKE_YEAR_BASE + year % 100 and then
|
|
* replace matching substrings in the strftime() result with the real year.
|
|
* Note that FAKE_YEAR_BASE should be a multiple of 100 to make 2-digit
|
|
* year formats (%y) work correctly (since we won't find the fake year
|
|
* in that case).
|
|
* e.g. new Date(1873, 0).toLocaleFormat('%Y %y') => "1873 73"
|
|
* See bug 327869.
|
|
*/
|
|
#define FAKE_YEAR_BASE 9900
|
|
if (prtm->tm_year < 1900 || prtm->tm_year > 9999) {
|
|
fake_tm_year = FAKE_YEAR_BASE + prtm->tm_year % 100;
|
|
a.tm_year = fake_tm_year - 1900;
|
|
}
|
|
else {
|
|
a.tm_year = prtm->tm_year - 1900;
|
|
}
|
|
a.tm_yday = prtm->tm_yday;
|
|
a.tm_isdst = prtm->tm_isdst;
|
|
|
|
/*
|
|
* Even with the above, SunOS 4 seems to detonate if tm_zone and tm_gmtoff
|
|
* are null. This doesn't quite work, though - the timezone is off by
|
|
* tzoff + dst. (And mktime seems to return -1 for the exact dst
|
|
* changeover time.)
|
|
*/
|
|
|
|
#ifdef NS_HAVE_INVALID_PARAMETER_HANDLER
|
|
oldHandler = _set_invalid_parameter_handler(PRMJ_InvalidParameterHandler);
|
|
oldReportMode = _CrtSetReportMode(_CRT_ASSERT, 0);
|
|
#endif
|
|
|
|
result = strftime(buf, buflen, fmt, &a);
|
|
|
|
#ifdef NS_HAVE_INVALID_PARAMETER_HANDLER
|
|
_set_invalid_parameter_handler(oldHandler);
|
|
_CrtSetReportMode(_CRT_ASSERT, oldReportMode);
|
|
#endif
|
|
|
|
if (fake_tm_year && result) {
|
|
char real_year[16];
|
|
char fake_year[16];
|
|
size_t real_year_len;
|
|
size_t fake_year_len;
|
|
char* p;
|
|
|
|
sprintf(real_year, "%d", prtm->tm_year);
|
|
real_year_len = strlen(real_year);
|
|
sprintf(fake_year, "%d", fake_tm_year);
|
|
fake_year_len = strlen(fake_year);
|
|
|
|
/* Replace the fake year in the result with the real year. */
|
|
for (p = buf; (p = strstr(p, fake_year)); p += real_year_len) {
|
|
size_t new_result = result + real_year_len - fake_year_len;
|
|
if ((int)new_result >= buflen) {
|
|
return 0;
|
|
}
|
|
memmove(p + real_year_len, p + fake_year_len, strlen(p + fake_year_len));
|
|
memcpy(p, real_year, real_year_len);
|
|
result = new_result;
|
|
*(buf + result) = '\0';
|
|
}
|
|
}
|
|
#endif
|
|
return result;
|
|
}
|