mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
582 lines
17 KiB
C++
582 lines
17 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "nsThreadManager.h"
|
|
#include "nsThread.h"
|
|
#include "nsThreadUtils.h"
|
|
#include "nsIClassInfoImpl.h"
|
|
#include "nsTArray.h"
|
|
#include "nsAutoPtr.h"
|
|
#include "mozilla/ThreadLocal.h"
|
|
#include "mozilla/ReentrantMonitor.h"
|
|
#ifdef MOZ_CANARY
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
using namespace mozilla;
|
|
|
|
static mozilla::ThreadLocal<bool> sTLSIsMainThread;
|
|
|
|
bool
|
|
NS_IsMainThread()
|
|
{
|
|
return sTLSIsMainThread.get();
|
|
}
|
|
|
|
void
|
|
NS_SetMainThread()
|
|
{
|
|
if (!sTLSIsMainThread.initialized()) {
|
|
if (!sTLSIsMainThread.init()) {
|
|
MOZ_CRASH();
|
|
}
|
|
sTLSIsMainThread.set(true);
|
|
}
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
}
|
|
|
|
typedef nsTArray<nsRefPtr<nsThread>> nsThreadArray;
|
|
|
|
#ifdef MOZ_NUWA_PROCESS
|
|
class NotifyAllThreadsWereIdle: public nsRunnable
|
|
{
|
|
public:
|
|
|
|
NotifyAllThreadsWereIdle(
|
|
nsTArray<nsRefPtr<nsThreadManager::AllThreadsWereIdleListener>>* aListeners)
|
|
: mListeners(aListeners)
|
|
{
|
|
}
|
|
|
|
virtual NS_IMETHODIMP
|
|
Run() {
|
|
// Copy listener array, which may be modified during call back.
|
|
nsTArray<nsRefPtr<nsThreadManager::AllThreadsWereIdleListener>> arr(*mListeners);
|
|
for (size_t i = 0; i < arr.Length(); i++) {
|
|
arr[i]->OnAllThreadsWereIdle();
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
private:
|
|
// Raw pointer, since it's pointing to a member of thread manager.
|
|
nsTArray<nsRefPtr<nsThreadManager::AllThreadsWereIdleListener>>* mListeners;
|
|
};
|
|
|
|
struct nsThreadManager::ThreadStatusInfo {
|
|
Atomic<bool> mWorking;
|
|
Atomic<bool> mWillBeWorking;
|
|
bool mIgnored;
|
|
ThreadStatusInfo()
|
|
: mWorking(false)
|
|
, mWillBeWorking(false)
|
|
, mIgnored(false)
|
|
{
|
|
}
|
|
};
|
|
#endif // MOZ_NUWA_PROCESS
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
static void
|
|
ReleaseObject(void* aData)
|
|
{
|
|
static_cast<nsISupports*>(aData)->Release();
|
|
}
|
|
|
|
#ifdef MOZ_NUWA_PROCESS
|
|
void
|
|
nsThreadManager::DeleteThreadStatusInfo(void* aData)
|
|
{
|
|
nsThreadManager* mgr = nsThreadManager::get();
|
|
nsThreadManager::ThreadStatusInfo* thrInfo =
|
|
static_cast<nsThreadManager::ThreadStatusInfo*>(aData);
|
|
{
|
|
ReentrantMonitorAutoEnter mon(*(mgr->mMonitor));
|
|
mgr->mThreadStatusInfos.RemoveElement(thrInfo);
|
|
if (NS_IsMainThread()) {
|
|
mgr->mMainThreadStatusInfo = nullptr;
|
|
}
|
|
}
|
|
delete thrInfo;
|
|
}
|
|
#endif
|
|
|
|
static PLDHashOperator
|
|
AppendAndRemoveThread(PRThread* aKey, nsRefPtr<nsThread>& aThread, void* aArg)
|
|
{
|
|
nsThreadArray* threads = static_cast<nsThreadArray*>(aArg);
|
|
threads->AppendElement(aThread);
|
|
return PL_DHASH_REMOVE;
|
|
}
|
|
|
|
// statically allocated instance
|
|
NS_IMETHODIMP_(MozExternalRefCountType)
|
|
nsThreadManager::AddRef()
|
|
{
|
|
return 2;
|
|
}
|
|
NS_IMETHODIMP_(MozExternalRefCountType)
|
|
nsThreadManager::Release()
|
|
{
|
|
return 1;
|
|
}
|
|
NS_IMPL_CLASSINFO(nsThreadManager, nullptr,
|
|
nsIClassInfo::THREADSAFE | nsIClassInfo::SINGLETON,
|
|
NS_THREADMANAGER_CID)
|
|
NS_IMPL_QUERY_INTERFACE_CI(nsThreadManager, nsIThreadManager)
|
|
NS_IMPL_CI_INTERFACE_GETTER(nsThreadManager, nsIThreadManager)
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
nsresult
|
|
nsThreadManager::Init()
|
|
{
|
|
// Child processes need to initialize the thread manager before they
|
|
// initialize XPCOM in order to set up the crash reporter. This leads to
|
|
// situations where we get initialized twice.
|
|
if (mInitialized) {
|
|
return NS_OK;
|
|
}
|
|
|
|
if (PR_NewThreadPrivateIndex(&mCurThreadIndex, ReleaseObject) == PR_FAILURE) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
#ifdef MOZ_NUWA_PROCESS
|
|
if (PR_NewThreadPrivateIndex(
|
|
&mThreadStatusInfoIndex,
|
|
nsThreadManager::DeleteThreadStatusInfo) == PR_FAILURE) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
#endif // MOZ_NUWA_PROCESS
|
|
|
|
mLock = new Mutex("nsThreadManager.mLock");
|
|
#ifdef MOZ_NUWA_PROCESS
|
|
mMonitor = MakeUnique<ReentrantMonitor>("nsThreadManager.mMonitor");
|
|
#endif // MOZ_NUWA_PROCESS
|
|
|
|
#ifdef MOZ_CANARY
|
|
const int flags = O_WRONLY | O_APPEND | O_CREAT | O_NONBLOCK;
|
|
const mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
|
|
char* env_var_flag = getenv("MOZ_KILL_CANARIES");
|
|
sCanaryOutputFD =
|
|
env_var_flag ? (env_var_flag[0] ? open(env_var_flag, flags, mode) :
|
|
STDERR_FILENO) :
|
|
0;
|
|
#endif
|
|
|
|
// Setup "main" thread
|
|
mMainThread = new nsThread(nsThread::MAIN_THREAD, 0);
|
|
|
|
nsresult rv = mMainThread->InitCurrentThread();
|
|
if (NS_FAILED(rv)) {
|
|
mMainThread = nullptr;
|
|
return rv;
|
|
}
|
|
|
|
// We need to keep a pointer to the current thread, so we can satisfy
|
|
// GetIsMainThread calls that occur post-Shutdown.
|
|
mMainThread->GetPRThread(&mMainPRThread);
|
|
|
|
mInitialized = true;
|
|
return NS_OK;
|
|
}
|
|
|
|
void
|
|
nsThreadManager::Shutdown()
|
|
{
|
|
MOZ_ASSERT(NS_IsMainThread(), "shutdown not called from main thread");
|
|
|
|
// Prevent further access to the thread manager (no more new threads!)
|
|
//
|
|
// XXX What happens if shutdown happens before NewThread completes?
|
|
// Fortunately, NewThread is only called on the main thread for now.
|
|
//
|
|
mInitialized = false;
|
|
|
|
// Empty the main thread event queue before we begin shutting down threads.
|
|
NS_ProcessPendingEvents(mMainThread);
|
|
|
|
// We gather the threads from the hashtable into a list, so that we avoid
|
|
// holding the hashtable lock while calling nsIThread::Shutdown.
|
|
nsThreadArray threads;
|
|
{
|
|
MutexAutoLock lock(*mLock);
|
|
mThreadsByPRThread.Enumerate(AppendAndRemoveThread, &threads);
|
|
}
|
|
|
|
// It's tempting to walk the list of threads here and tell them each to stop
|
|
// accepting new events, but that could lead to badness if one of those
|
|
// threads is stuck waiting for a response from another thread. To do it
|
|
// right, we'd need some way to interrupt the threads.
|
|
//
|
|
// Instead, we process events on the current thread while waiting for threads
|
|
// to shutdown. This means that we have to preserve a mostly functioning
|
|
// world until such time as the threads exit.
|
|
|
|
// Shutdown all threads that require it (join with threads that we created).
|
|
for (uint32_t i = 0; i < threads.Length(); ++i) {
|
|
nsThread* thread = threads[i];
|
|
if (thread->ShutdownRequired()) {
|
|
thread->Shutdown();
|
|
}
|
|
}
|
|
|
|
// In case there are any more events somehow...
|
|
NS_ProcessPendingEvents(mMainThread);
|
|
|
|
// There are no more background threads at this point.
|
|
|
|
// Clear the table of threads.
|
|
{
|
|
MutexAutoLock lock(*mLock);
|
|
mThreadsByPRThread.Clear();
|
|
}
|
|
|
|
// Normally thread shutdown clears the observer for the thread, but since the
|
|
// main thread is special we do it manually here after we're sure all events
|
|
// have been processed.
|
|
mMainThread->SetObserver(nullptr);
|
|
mMainThread->ClearObservers();
|
|
|
|
// Release main thread object.
|
|
mMainThread = nullptr;
|
|
mLock = nullptr;
|
|
|
|
// Remove the TLS entry for the main thread.
|
|
PR_SetThreadPrivate(mCurThreadIndex, nullptr);
|
|
#ifdef MOZ_NUWA_PROCESS
|
|
PR_SetThreadPrivate(mThreadStatusInfoIndex, nullptr);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
nsThreadManager::RegisterCurrentThread(nsThread* aThread)
|
|
{
|
|
MOZ_ASSERT(aThread->GetPRThread() == PR_GetCurrentThread(), "bad aThread");
|
|
|
|
MutexAutoLock lock(*mLock);
|
|
|
|
++mCurrentNumberOfThreads;
|
|
if (mCurrentNumberOfThreads > mHighestNumberOfThreads) {
|
|
mHighestNumberOfThreads = mCurrentNumberOfThreads;
|
|
}
|
|
|
|
mThreadsByPRThread.Put(aThread->GetPRThread(), aThread); // XXX check OOM?
|
|
|
|
NS_ADDREF(aThread); // for TLS entry
|
|
PR_SetThreadPrivate(mCurThreadIndex, aThread);
|
|
}
|
|
|
|
void
|
|
nsThreadManager::UnregisterCurrentThread(nsThread* aThread)
|
|
{
|
|
MOZ_ASSERT(aThread->GetPRThread() == PR_GetCurrentThread(), "bad aThread");
|
|
|
|
MutexAutoLock lock(*mLock);
|
|
|
|
--mCurrentNumberOfThreads;
|
|
mThreadsByPRThread.Remove(aThread->GetPRThread());
|
|
|
|
PR_SetThreadPrivate(mCurThreadIndex, nullptr);
|
|
// Ref-count balanced via ReleaseObject
|
|
#ifdef MOZ_NUWA_PROCESS
|
|
PR_SetThreadPrivate(mThreadStatusInfoIndex, nullptr);
|
|
#endif
|
|
}
|
|
|
|
nsThread*
|
|
nsThreadManager::GetCurrentThread()
|
|
{
|
|
// read thread local storage
|
|
void* data = PR_GetThreadPrivate(mCurThreadIndex);
|
|
if (data) {
|
|
return static_cast<nsThread*>(data);
|
|
}
|
|
|
|
if (!mInitialized) {
|
|
return nullptr;
|
|
}
|
|
|
|
// OK, that's fine. We'll dynamically create one :-)
|
|
nsRefPtr<nsThread> thread = new nsThread(nsThread::NOT_MAIN_THREAD, 0);
|
|
if (!thread || NS_FAILED(thread->InitCurrentThread())) {
|
|
return nullptr;
|
|
}
|
|
|
|
return thread.get(); // reference held in TLS
|
|
}
|
|
|
|
#ifdef MOZ_NUWA_PROCESS
|
|
nsThreadManager::ThreadStatusInfo*
|
|
nsThreadManager::GetCurrentThreadStatusInfo()
|
|
{
|
|
void* data = PR_GetThreadPrivate(mThreadStatusInfoIndex);
|
|
if (!data) {
|
|
ThreadStatusInfo *thrInfo = new ThreadStatusInfo();
|
|
PR_SetThreadPrivate(mThreadStatusInfoIndex, thrInfo);
|
|
data = thrInfo;
|
|
|
|
ReentrantMonitorAutoEnter mon(*mMonitor);
|
|
mThreadStatusInfos.AppendElement(thrInfo);
|
|
if (NS_IsMainThread()) {
|
|
mMainThreadStatusInfo = thrInfo;
|
|
}
|
|
}
|
|
|
|
return static_cast<ThreadStatusInfo*>(data);
|
|
}
|
|
#endif
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadManager::NewThread(uint32_t aCreationFlags,
|
|
uint32_t aStackSize,
|
|
nsIThread** aResult)
|
|
{
|
|
// No new threads during Shutdown
|
|
if (NS_WARN_IF(!mInitialized)) {
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
}
|
|
|
|
nsThread* thr = new nsThread(nsThread::NOT_MAIN_THREAD, aStackSize);
|
|
if (!thr) {
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
NS_ADDREF(thr);
|
|
|
|
nsresult rv = thr->Init();
|
|
if (NS_FAILED(rv)) {
|
|
NS_RELEASE(thr);
|
|
return rv;
|
|
}
|
|
|
|
// At this point, we expect that the thread has been registered in mThread;
|
|
// however, it is possible that it could have also been replaced by now, so
|
|
// we cannot really assert that it was added.
|
|
|
|
*aResult = thr;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadManager::GetThreadFromPRThread(PRThread* aThread, nsIThread** aResult)
|
|
{
|
|
// Keep this functioning during Shutdown
|
|
if (NS_WARN_IF(!mMainThread)) {
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
}
|
|
if (NS_WARN_IF(!aThread)) {
|
|
return NS_ERROR_INVALID_ARG;
|
|
}
|
|
|
|
nsRefPtr<nsThread> temp;
|
|
{
|
|
MutexAutoLock lock(*mLock);
|
|
mThreadsByPRThread.Get(aThread, getter_AddRefs(temp));
|
|
}
|
|
|
|
NS_IF_ADDREF(*aResult = temp);
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadManager::GetMainThread(nsIThread** aResult)
|
|
{
|
|
// Keep this functioning during Shutdown
|
|
if (NS_WARN_IF(!mMainThread)) {
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
}
|
|
NS_ADDREF(*aResult = mMainThread);
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadManager::GetCurrentThread(nsIThread** aResult)
|
|
{
|
|
// Keep this functioning during Shutdown
|
|
if (NS_WARN_IF(!mMainThread)) {
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
}
|
|
*aResult = GetCurrentThread();
|
|
if (!*aResult) {
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
NS_ADDREF(*aResult);
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadManager::GetIsMainThread(bool* aResult)
|
|
{
|
|
// This method may be called post-Shutdown
|
|
|
|
*aResult = (PR_GetCurrentThread() == mMainPRThread);
|
|
return NS_OK;
|
|
}
|
|
|
|
uint32_t
|
|
nsThreadManager::GetHighestNumberOfThreads()
|
|
{
|
|
MutexAutoLock lock(*mLock);
|
|
return mHighestNumberOfThreads;
|
|
}
|
|
|
|
#ifdef MOZ_NUWA_PROCESS
|
|
void
|
|
nsThreadManager::SetIgnoreThreadStatus()
|
|
{
|
|
GetCurrentThreadStatusInfo()->mIgnored = true;
|
|
}
|
|
|
|
void
|
|
nsThreadManager::SetThreadIdle(nsIRunnable **aReturnRunnable)
|
|
{
|
|
SetThreadIsWorking(GetCurrentThreadStatusInfo(), false, aReturnRunnable);
|
|
}
|
|
|
|
void
|
|
nsThreadManager::SetThreadWorking()
|
|
{
|
|
SetThreadIsWorking(GetCurrentThreadStatusInfo(), true, nullptr);
|
|
}
|
|
|
|
void
|
|
nsThreadManager::SetThreadIsWorking(ThreadStatusInfo* aInfo,
|
|
bool aIsWorking,
|
|
nsIRunnable **aReturnRunnable)
|
|
{
|
|
aInfo->mWillBeWorking = aIsWorking;
|
|
if (mThreadsIdledListeners.Length() > 0) {
|
|
|
|
// A race condition occurs since we don't want threads to try to enter the
|
|
// monitor (nsThreadManager::mMonitor) when no one cares about their status.
|
|
// And thus the race can happen when we put the first listener into
|
|
// |mThreadsIdledListeners|:
|
|
//
|
|
// (1) Thread A wants to dispatch a task to Thread B.
|
|
// (2) Thread A checks |mThreadsIdledListeners|, and nothing is in the
|
|
// list. So Thread A decides not to enter |mMonitor| when updating B's
|
|
// status.
|
|
// (3) Thread A is suspended just before it changed status of B.
|
|
// (4) A listener is added to |mThreadsIdledListeners|
|
|
// (5) Now is Thread C's turn to run. Thread C finds there's something in
|
|
// |mThreadsIdledListeners|, so it enters |mMonitor| and check all
|
|
// thread info structs in |mThreadStatusInfos| while A is in the middle
|
|
// of changing B's status.
|
|
//
|
|
// Then C may find Thread B is an idle thread (which is not correct, because
|
|
// A attempted to change B's status prior to C starting to walk throught
|
|
// |mThreadStatusInfo|), but the fact that thread A is working (thread A
|
|
// hasn't finished dispatching a task to thread B) can prevent thread C from
|
|
// firing a bogus notification.
|
|
//
|
|
// If the state transition that happens outside the monitor is in the other
|
|
// direction, the race condition could be:
|
|
//
|
|
// (1) Thread D has just finished its jobs and wants to set its status to idle.
|
|
// (2) Thread D checks |mThreadsIdledListeners|, and nothing is in the list.
|
|
// So Thread D decides not to enter |mMonitor|.
|
|
// (3) Thread D is is suspended before it updates its own status.
|
|
// (4) A listener is put into |mThreadsIdledListeners|.
|
|
// (5) Thread C wants to changes status of itself. It checks
|
|
// |mThreadsIdledListeners| and finds something inside the list. Thread C
|
|
// then enters |mMonitor|, updates its status and checks thread info in
|
|
// |mThreadStatusInfos| while D is changing status of itself out of monitor.
|
|
//
|
|
// Thread C will find that thread D is working (D actually wants to change its
|
|
// status to idle before C starting to check), then C returns without firing
|
|
// any notification. Finding that thread D is working can make our checking
|
|
// mechanism miss a chance to fire a notification: because thread D thought
|
|
// there's nothing in |mThreadsIdledListeners| and thus won't check the
|
|
// |mThreadStatusInfos| after changing the status of itself.
|
|
//
|
|
// |mWillBeWorking| can be used to address this problem. We require each
|
|
// thread to put the value that is going to be set to |mWorking| to
|
|
// |mWillBeWorking| before the thread decide whether it should enter
|
|
// |mMonitor| to change status or not. Thus C finds that D is working while
|
|
// D's |mWillBeWorking| is false, and C realizes that D is just updating and
|
|
// can treat D as an idle thread.
|
|
//
|
|
// It doesn't matter whether D will check thread status after changing its
|
|
// own status or not. If D checks, which means D will enter the monitor
|
|
// before updating status, thus D must be blocked until C has finished
|
|
// dispatching the notification task to main thread, and D will find that main
|
|
// thread is working and will not fire an additional event. On the other hand,
|
|
// if D doesn't check |mThreadStatusInfos|, it's still ok, because C has
|
|
// treated D as an idle thread already.
|
|
|
|
bool hasWorkingThread = false;
|
|
nsRefPtr<NotifyAllThreadsWereIdle> runnable;
|
|
{
|
|
ReentrantMonitorAutoEnter mon(*mMonitor);
|
|
// Get data structure of thread info.
|
|
aInfo->mWorking = aIsWorking;
|
|
if (aIsWorking) {
|
|
// We are working, so there's no need to check futher.
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < mThreadStatusInfos.Length(); i++) {
|
|
ThreadStatusInfo *info = mThreadStatusInfos[i];
|
|
if (!info->mIgnored) {
|
|
if (info->mWorking) {
|
|
if (info->mWillBeWorking) {
|
|
hasWorkingThread = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!hasWorkingThread && !mDispatchingToMainThread) {
|
|
runnable = new NotifyAllThreadsWereIdle(&mThreadsIdledListeners);
|
|
mDispatchingToMainThread = true;
|
|
}
|
|
}
|
|
|
|
if (runnable) {
|
|
if (NS_IsMainThread()) {
|
|
// We are holding the main thread's |nsThread::mThreadStatusMonitor|.
|
|
// If we dispatch a task to ourself, then we are in danger of causing
|
|
// deadlock. Instead, return the task, and let the caller dispatch it
|
|
// for us.
|
|
MOZ_ASSERT(aReturnRunnable,
|
|
"aReturnRunnable must be provided on main thread");
|
|
runnable.forget(aReturnRunnable);
|
|
} else {
|
|
NS_DispatchToMainThread(runnable);
|
|
ResetIsDispatchingToMainThread();
|
|
}
|
|
}
|
|
} else {
|
|
// Update thread info without holding any lock.
|
|
aInfo->mWorking = aIsWorking;
|
|
}
|
|
}
|
|
|
|
void
|
|
nsThreadManager::ResetIsDispatchingToMainThread()
|
|
{
|
|
ReentrantMonitorAutoEnter mon(*mMonitor);
|
|
mDispatchingToMainThread = false;
|
|
}
|
|
|
|
void
|
|
nsThreadManager::AddAllThreadsWereIdleListener(AllThreadsWereIdleListener *listener)
|
|
{
|
|
MOZ_ASSERT(GetCurrentThreadStatusInfo()->mWorking);
|
|
mThreadsIdledListeners.AppendElement(listener);
|
|
}
|
|
|
|
void
|
|
nsThreadManager::RemoveAllThreadsWereIdleListener(AllThreadsWereIdleListener *listener)
|
|
{
|
|
mThreadsIdledListeners.RemoveElement(listener);
|
|
}
|
|
|
|
#endif // MOZ_NUWA_PROCESS
|