gecko/gfx/2d/FilterNodeSoftware.cpp

3600 lines
103 KiB
C++

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#define _USE_MATH_DEFINES
#include <cmath>
#include "DataSurfaceHelpers.h"
#include "FilterNodeSoftware.h"
#include "2D.h"
#include "Tools.h"
#include "Blur.h"
#include <map>
#include "FilterProcessing.h"
#include "Logging.h"
#include "mozilla/PodOperations.h"
#include "mozilla/DebugOnly.h"
// #define DEBUG_DUMP_SURFACES
#ifdef DEBUG_DUMP_SURFACES
#include "gfxUtils.h" // not part of Moz2D
#endif
namespace mozilla {
namespace gfx {
namespace {
/**
* This class provides a way to get a pow() results in constant-time. It works
* by caching 256 values for bases between 0 and 1 and a fixed exponent.
**/
class PowCache
{
public:
PowCache()
{
CacheForExponent(0.0f);
}
void CacheForExponent(Float aExponent)
{
mExponent = aExponent;
int numPreSquares = 0;
while (numPreSquares < 5 && mExponent > (1 << (numPreSquares + 2))) {
numPreSquares++;
}
mNumPowTablePreSquares = numPreSquares;
for (size_t i = 0; i < sCacheSize; i++) {
// sCacheSize is chosen in such a way that a takes values
// from 0.0 to 1.0 inclusive.
Float a = i / Float(1 << sCacheIndexPrecisionBits);
MOZ_ASSERT(0.0f <= a && a <= 1.0f, "We only want to cache for bases between 0 and 1.");
for (int j = 0; j < mNumPowTablePreSquares; j++) {
a = sqrt(a);
}
uint32_t cachedInt = pow(a, mExponent) * (1 << sOutputIntPrecisionBits);
MOZ_ASSERT(cachedInt < (1 << (sizeof(mPowTable[i]) * 8)), "mPowCache integer type too small");
mPowTable[i] = cachedInt;
}
}
uint16_t Pow(uint16_t aBase)
{
// Results should be similar to what the following code would produce:
// Float x = Float(aBase) / (1 << sInputIntPrecisionBits);
// return uint16_t(pow(x, mExponent) * (1 << sOutputIntPrecisionBits));
MOZ_ASSERT(aBase <= (1 << sInputIntPrecisionBits), "aBase needs to be between 0 and 1!");
uint32_t a = aBase;
for (int j = 0; j < mNumPowTablePreSquares; j++) {
a = a * a >> sInputIntPrecisionBits;
}
uint32_t i = a >> (sInputIntPrecisionBits - sCacheIndexPrecisionBits);
MOZ_ASSERT(i < sCacheSize, "out-of-bounds mPowTable access");
return mPowTable[i];
}
static const int sInputIntPrecisionBits = 15;
static const int sOutputIntPrecisionBits = 15;
static const int sCacheIndexPrecisionBits = 7;
private:
static const size_t sCacheSize = (1 << sCacheIndexPrecisionBits) + 1;
Float mExponent;
int mNumPowTablePreSquares;
uint16_t mPowTable[sCacheSize];
};
class PointLightSoftware
{
public:
bool SetAttribute(uint32_t aIndex, Float) { return false; }
bool SetAttribute(uint32_t aIndex, const Point3D &);
void Prepare() {}
Point3D GetVectorToLight(const Point3D &aTargetPoint);
uint32_t GetColor(uint32_t aLightColor, const Point3D &aVectorToLight);
private:
Point3D mPosition;
};
class SpotLightSoftware
{
public:
SpotLightSoftware();
bool SetAttribute(uint32_t aIndex, Float);
bool SetAttribute(uint32_t aIndex, const Point3D &);
void Prepare();
Point3D GetVectorToLight(const Point3D &aTargetPoint);
uint32_t GetColor(uint32_t aLightColor, const Point3D &aVectorToLight);
private:
Point3D mPosition;
Point3D mPointsAt;
Point3D mVectorFromFocusPointToLight;
Float mSpecularFocus;
Float mLimitingConeAngle;
Float mLimitingConeCos;
PowCache mPowCache;
};
class DistantLightSoftware
{
public:
DistantLightSoftware();
bool SetAttribute(uint32_t aIndex, Float);
bool SetAttribute(uint32_t aIndex, const Point3D &) { return false; }
void Prepare();
Point3D GetVectorToLight(const Point3D &aTargetPoint);
uint32_t GetColor(uint32_t aLightColor, const Point3D &aVectorToLight);
private:
Float mAzimuth;
Float mElevation;
Point3D mVectorToLight;
};
class DiffuseLightingSoftware
{
public:
DiffuseLightingSoftware();
bool SetAttribute(uint32_t aIndex, Float);
void Prepare() {}
uint32_t LightPixel(const Point3D &aNormal, const Point3D &aVectorToLight,
uint32_t aColor);
private:
Float mDiffuseConstant;
};
class SpecularLightingSoftware
{
public:
SpecularLightingSoftware();
bool SetAttribute(uint32_t aIndex, Float);
void Prepare();
uint32_t LightPixel(const Point3D &aNormal, const Point3D &aVectorToLight,
uint32_t aColor);
private:
Float mSpecularConstant;
Float mSpecularExponent;
uint32_t mSpecularConstantInt;
PowCache mPowCache;
};
} // unnamed namespace
// from xpcom/ds/nsMathUtils.h
static int32_t
NS_lround(double x)
{
return x >= 0.0 ? int32_t(x + 0.5) : int32_t(x - 0.5);
}
// This check is safe against integer overflow.
static bool
SurfaceContainsPoint(SourceSurface* aSurface, const IntPoint& aPoint)
{
IntSize size = aSurface->GetSize();
return aPoint.x >= 0 && aPoint.x < size.width &&
aPoint.y >= 0 && aPoint.y < size.height;
}
static uint8_t*
DataAtOffset(DataSourceSurface* aSurface, IntPoint aPoint)
{
if (!SurfaceContainsPoint(aSurface, aPoint)) {
MOZ_CRASH("sample position needs to be inside surface!");
}
MOZ_ASSERT(Factory::CheckSurfaceSize(aSurface->GetSize()),
"surface size overflows - this should have been prevented when the surface was created");
uint8_t* data = aSurface->GetData() + aPoint.y * aSurface->Stride() +
aPoint.x * BytesPerPixel(aSurface->GetFormat());
if (data < aSurface->GetData()) {
MOZ_CRASH("out-of-range data access");
}
return data;
}
static bool
IntRectOverflows(const IntRect& aRect)
{
CheckedInt<int32_t> xMost = aRect.x;
xMost += aRect.width;
CheckedInt<int32_t> yMost = aRect.y;
yMost += aRect.height;
return !xMost.isValid() || !yMost.isValid();
}
/**
* aSrcRect: Rect relative to the aSrc surface
* aDestPoint: Point inside aDest surface
*/
static void
CopyRect(DataSourceSurface* aSrc, DataSourceSurface* aDest,
IntRect aSrcRect, IntPoint aDestPoint)
{
if (IntRectOverflows(aSrcRect) ||
IntRectOverflows(IntRect(aDestPoint, aSrcRect.Size()))) {
MOZ_CRASH("we should never be getting invalid rects at this point");
}
MOZ_ASSERT(aSrc->GetFormat() == aDest->GetFormat(), "different surface formats");
MOZ_ASSERT(IntRect(IntPoint(), aSrc->GetSize()).Contains(aSrcRect), "source rect too big for source surface");
MOZ_ASSERT(IntRect(IntPoint(), aDest->GetSize()).Contains(aSrcRect - aSrcRect.TopLeft() + aDestPoint), "dest surface too small");
if (aSrcRect.IsEmpty()) {
return;
}
uint8_t* sourceData = DataAtOffset(aSrc, aSrcRect.TopLeft());
uint32_t sourceStride = aSrc->Stride();
uint8_t* destData = DataAtOffset(aDest, aDestPoint);
uint32_t destStride = aDest->Stride();
if (BytesPerPixel(aSrc->GetFormat()) == 4) {
for (int32_t y = 0; y < aSrcRect.height; y++) {
PodCopy((int32_t*)destData, (int32_t*)sourceData, aSrcRect.width);
sourceData += sourceStride;
destData += destStride;
}
} else if (BytesPerPixel(aSrc->GetFormat()) == 1) {
for (int32_t y = 0; y < aSrcRect.height; y++) {
PodCopy(destData, sourceData, aSrcRect.width);
sourceData += sourceStride;
destData += destStride;
}
}
}
TemporaryRef<DataSourceSurface>
CloneAligned(DataSourceSurface* aSource)
{
RefPtr<DataSourceSurface> copy =
Factory::CreateDataSourceSurface(aSource->GetSize(), aSource->GetFormat());
if (copy) {
CopyRect(aSource, copy, IntRect(IntPoint(), aSource->GetSize()), IntPoint());
}
return copy.forget();
}
static void
FillRectWithPixel(DataSourceSurface *aSurface, const IntRect &aFillRect, IntPoint aPixelPos)
{
MOZ_ASSERT(!IntRectOverflows(aFillRect));
MOZ_ASSERT(IntRect(IntPoint(), aSurface->GetSize()).Contains(aFillRect),
"aFillRect needs to be completely inside the surface");
MOZ_ASSERT(SurfaceContainsPoint(aSurface, aPixelPos),
"aPixelPos needs to be inside the surface");
int32_t stride = aSurface->Stride();
uint8_t* sourcePixelData = DataAtOffset(aSurface, aPixelPos);
uint8_t* data = DataAtOffset(aSurface, aFillRect.TopLeft());
int bpp = BytesPerPixel(aSurface->GetFormat());
// Fill the first row by hand.
if (bpp == 4) {
uint32_t sourcePixel = *(uint32_t*)sourcePixelData;
for (int32_t x = 0; x < aFillRect.width; x++) {
*((uint32_t*)data + x) = sourcePixel;
}
} else if (BytesPerPixel(aSurface->GetFormat()) == 1) {
uint8_t sourcePixel = *sourcePixelData;
memset(data, sourcePixel, aFillRect.width);
}
// Copy the first row into the other rows.
for (int32_t y = 1; y < aFillRect.height; y++) {
PodCopy(data + y * stride, data, aFillRect.width * bpp);
}
}
static void
FillRectWithVerticallyRepeatingHorizontalStrip(DataSourceSurface *aSurface,
const IntRect &aFillRect,
const IntRect &aSampleRect)
{
MOZ_ASSERT(!IntRectOverflows(aFillRect));
MOZ_ASSERT(!IntRectOverflows(aSampleRect));
MOZ_ASSERT(IntRect(IntPoint(), aSurface->GetSize()).Contains(aFillRect),
"aFillRect needs to be completely inside the surface");
MOZ_ASSERT(IntRect(IntPoint(), aSurface->GetSize()).Contains(aSampleRect),
"aSampleRect needs to be completely inside the surface");
int32_t stride = aSurface->Stride();
uint8_t* sampleData = DataAtOffset(aSurface, aSampleRect.TopLeft());
uint8_t* data = DataAtOffset(aSurface, aFillRect.TopLeft());
if (BytesPerPixel(aSurface->GetFormat()) == 4) {
for (int32_t y = 0; y < aFillRect.height; y++) {
PodCopy((uint32_t*)data, (uint32_t*)sampleData, aFillRect.width);
data += stride;
}
} else if (BytesPerPixel(aSurface->GetFormat()) == 1) {
for (int32_t y = 0; y < aFillRect.height; y++) {
PodCopy(data, sampleData, aFillRect.width);
data += stride;
}
}
}
static void
FillRectWithHorizontallyRepeatingVerticalStrip(DataSourceSurface *aSurface,
const IntRect &aFillRect,
const IntRect &aSampleRect)
{
MOZ_ASSERT(!IntRectOverflows(aFillRect));
MOZ_ASSERT(!IntRectOverflows(aSampleRect));
MOZ_ASSERT(IntRect(IntPoint(), aSurface->GetSize()).Contains(aFillRect),
"aFillRect needs to be completely inside the surface");
MOZ_ASSERT(IntRect(IntPoint(), aSurface->GetSize()).Contains(aSampleRect),
"aSampleRect needs to be completely inside the surface");
int32_t stride = aSurface->Stride();
uint8_t* sampleData = DataAtOffset(aSurface, aSampleRect.TopLeft());
uint8_t* data = DataAtOffset(aSurface, aFillRect.TopLeft());
if (BytesPerPixel(aSurface->GetFormat()) == 4) {
for (int32_t y = 0; y < aFillRect.height; y++) {
int32_t sampleColor = *((uint32_t*)sampleData);
for (int32_t x = 0; x < aFillRect.width; x++) {
*((uint32_t*)data + x) = sampleColor;
}
data += stride;
sampleData += stride;
}
} else if (BytesPerPixel(aSurface->GetFormat()) == 1) {
for (int32_t y = 0; y < aFillRect.height; y++) {
uint8_t sampleColor = *sampleData;
memset(data, sampleColor, aFillRect.width);
data += stride;
sampleData += stride;
}
}
}
static void
DuplicateEdges(DataSourceSurface* aSurface, const IntRect &aFromRect)
{
MOZ_ASSERT(!IntRectOverflows(aFromRect));
MOZ_ASSERT(IntRect(IntPoint(), aSurface->GetSize()).Contains(aFromRect),
"aFromRect needs to be completely inside the surface");
IntSize size = aSurface->GetSize();
IntRect fill;
IntRect sampleRect;
for (int32_t ix = 0; ix < 3; ix++) {
switch (ix) {
case 0:
fill.x = 0;
fill.width = aFromRect.x;
sampleRect.x = fill.XMost();
sampleRect.width = 1;
break;
case 1:
fill.x = aFromRect.x;
fill.width = aFromRect.width;
sampleRect.x = fill.x;
sampleRect.width = fill.width;
break;
case 2:
fill.x = aFromRect.XMost();
fill.width = size.width - fill.x;
sampleRect.x = fill.x - 1;
sampleRect.width = 1;
break;
}
if (fill.width <= 0) {
continue;
}
bool xIsMiddle = (ix == 1);
for (int32_t iy = 0; iy < 3; iy++) {
switch (iy) {
case 0:
fill.y = 0;
fill.height = aFromRect.y;
sampleRect.y = fill.YMost();
sampleRect.height = 1;
break;
case 1:
fill.y = aFromRect.y;
fill.height = aFromRect.height;
sampleRect.y = fill.y;
sampleRect.height = fill.height;
break;
case 2:
fill.y = aFromRect.YMost();
fill.height = size.height - fill.y;
sampleRect.y = fill.y - 1;
sampleRect.height = 1;
break;
}
if (fill.height <= 0) {
continue;
}
bool yIsMiddle = (iy == 1);
if (!xIsMiddle && !yIsMiddle) {
// Corner
FillRectWithPixel(aSurface, fill, sampleRect.TopLeft());
}
if (xIsMiddle && !yIsMiddle) {
// Top middle or bottom middle
FillRectWithVerticallyRepeatingHorizontalStrip(aSurface, fill, sampleRect);
}
if (!xIsMiddle && yIsMiddle) {
// Left middle or right middle
FillRectWithHorizontallyRepeatingVerticalStrip(aSurface, fill, sampleRect);
}
}
}
}
static IntPoint
TileIndex(const IntRect &aFirstTileRect, const IntPoint &aPoint)
{
return IntPoint(int32_t(floor(double(aPoint.x - aFirstTileRect.x) / aFirstTileRect.width)),
int32_t(floor(double(aPoint.y - aFirstTileRect.y) / aFirstTileRect.height)));
}
static void
TileSurface(DataSourceSurface* aSource, DataSourceSurface* aTarget, const IntPoint &aOffset)
{
IntRect sourceRect(aOffset, aSource->GetSize());
IntRect targetRect(IntPoint(0, 0), aTarget->GetSize());
IntPoint startIndex = TileIndex(sourceRect, targetRect.TopLeft());
IntPoint endIndex = TileIndex(sourceRect, targetRect.BottomRight());
for (int32_t ix = startIndex.x; ix <= endIndex.x; ix++) {
for (int32_t iy = startIndex.y; iy <= endIndex.y; iy++) {
IntPoint destPoint(sourceRect.x + ix * sourceRect.width,
sourceRect.y + iy * sourceRect.height);
IntRect destRect(destPoint, sourceRect.Size());
destRect = destRect.Intersect(targetRect);
IntRect srcRect = destRect - destPoint;
CopyRect(aSource, aTarget, srcRect, destRect.TopLeft());
}
}
}
static TemporaryRef<DataSourceSurface>
GetDataSurfaceInRect(SourceSurface *aSurface,
const IntRect &aSurfaceRect,
const IntRect &aDestRect,
ConvolveMatrixEdgeMode aEdgeMode)
{
MOZ_ASSERT(aSurface ? aSurfaceRect.Size() == aSurface->GetSize() : aSurfaceRect.IsEmpty());
if (IntRectOverflows(aSurfaceRect) || IntRectOverflows(aDestRect)) {
// We can't rely on the intersection calculations below to make sense when
// XMost() or YMost() overflow. Bail out.
return nullptr;
}
IntRect sourceRect = aSurfaceRect;
if (sourceRect.IsEqualEdges(aDestRect)) {
return aSurface ? aSurface->GetDataSurface() : nullptr;
}
IntRect intersect = sourceRect.Intersect(aDestRect);
IntRect intersectInSourceSpace = intersect - sourceRect.TopLeft();
IntRect intersectInDestSpace = intersect - aDestRect.TopLeft();
SurfaceFormat format = aSurface ? aSurface->GetFormat() : SurfaceFormat(SurfaceFormat::B8G8R8A8);
bool clear = aEdgeMode == EDGE_MODE_NONE && !aSurfaceRect.Contains(aDestRect);
RefPtr<DataSourceSurface> target =
Factory::CreateDataSourceSurface(aDestRect.Size(), format, clear);
if (MOZ2D_WARN_IF(!target)) {
return nullptr;
}
if (!aSurface) {
return target.forget();
}
RefPtr<DataSourceSurface> dataSource = aSurface->GetDataSurface();
MOZ_ASSERT(dataSource);
if (aEdgeMode == EDGE_MODE_WRAP) {
TileSurface(dataSource, target, intersectInDestSpace.TopLeft());
return target.forget();
}
CopyRect(dataSource, target, intersectInSourceSpace,
intersectInDestSpace.TopLeft());
if (aEdgeMode == EDGE_MODE_DUPLICATE) {
DuplicateEdges(target, intersectInDestSpace);
}
return target.forget();
}
/* static */ TemporaryRef<FilterNode>
FilterNodeSoftware::Create(FilterType aType)
{
RefPtr<FilterNodeSoftware> filter;
switch (aType) {
case FilterType::BLEND:
filter = new FilterNodeBlendSoftware();
break;
case FilterType::TRANSFORM:
filter = new FilterNodeTransformSoftware();
break;
case FilterType::MORPHOLOGY:
filter = new FilterNodeMorphologySoftware();
break;
case FilterType::COLOR_MATRIX:
filter = new FilterNodeColorMatrixSoftware();
break;
case FilterType::FLOOD:
filter = new FilterNodeFloodSoftware();
break;
case FilterType::TILE:
filter = new FilterNodeTileSoftware();
break;
case FilterType::TABLE_TRANSFER:
filter = new FilterNodeTableTransferSoftware();
break;
case FilterType::DISCRETE_TRANSFER:
filter = new FilterNodeDiscreteTransferSoftware();
break;
case FilterType::LINEAR_TRANSFER:
filter = new FilterNodeLinearTransferSoftware();
break;
case FilterType::GAMMA_TRANSFER:
filter = new FilterNodeGammaTransferSoftware();
break;
case FilterType::CONVOLVE_MATRIX:
filter = new FilterNodeConvolveMatrixSoftware();
break;
case FilterType::DISPLACEMENT_MAP:
filter = new FilterNodeDisplacementMapSoftware();
break;
case FilterType::TURBULENCE:
filter = new FilterNodeTurbulenceSoftware();
break;
case FilterType::ARITHMETIC_COMBINE:
filter = new FilterNodeArithmeticCombineSoftware();
break;
case FilterType::COMPOSITE:
filter = new FilterNodeCompositeSoftware();
break;
case FilterType::GAUSSIAN_BLUR:
filter = new FilterNodeGaussianBlurSoftware();
break;
case FilterType::DIRECTIONAL_BLUR:
filter = new FilterNodeDirectionalBlurSoftware();
break;
case FilterType::CROP:
filter = new FilterNodeCropSoftware();
break;
case FilterType::PREMULTIPLY:
filter = new FilterNodePremultiplySoftware();
break;
case FilterType::UNPREMULTIPLY:
filter = new FilterNodeUnpremultiplySoftware();
break;
case FilterType::POINT_DIFFUSE:
filter = new FilterNodeLightingSoftware<PointLightSoftware, DiffuseLightingSoftware>("FilterNodeLightingSoftware<PointLight, DiffuseLighting>");
break;
case FilterType::POINT_SPECULAR:
filter = new FilterNodeLightingSoftware<PointLightSoftware, SpecularLightingSoftware>("FilterNodeLightingSoftware<PointLight, SpecularLighting>");
break;
case FilterType::SPOT_DIFFUSE:
filter = new FilterNodeLightingSoftware<SpotLightSoftware, DiffuseLightingSoftware>("FilterNodeLightingSoftware<SpotLight, DiffuseLighting>");
break;
case FilterType::SPOT_SPECULAR:
filter = new FilterNodeLightingSoftware<SpotLightSoftware, SpecularLightingSoftware>("FilterNodeLightingSoftware<SpotLight, SpecularLighting>");
break;
case FilterType::DISTANT_DIFFUSE:
filter = new FilterNodeLightingSoftware<DistantLightSoftware, DiffuseLightingSoftware>("FilterNodeLightingSoftware<DistantLight, DiffuseLighting>");
break;
case FilterType::DISTANT_SPECULAR:
filter = new FilterNodeLightingSoftware<DistantLightSoftware, SpecularLightingSoftware>("FilterNodeLightingSoftware<DistantLight, SpecularLighting>");
break;
}
return filter.forget();
}
void
FilterNodeSoftware::Draw(DrawTarget* aDrawTarget,
const Rect &aSourceRect,
const Point &aDestPoint,
const DrawOptions &aOptions)
{
#ifdef DEBUG_DUMP_SURFACES
printf("<style>section{margin:10px;}</style><pre>\nRendering filter %s...\n", GetName());
#endif
Rect renderRect = aSourceRect;
renderRect.RoundOut();
IntRect renderIntRect;
if (!renderRect.ToIntRect(&renderIntRect)) {
#ifdef DEBUG_DUMP_SURFACES
printf("render rect overflowed, not painting anything\n");
printf("</pre>\n");
#endif
return;
}
IntRect outputRect = GetOutputRectInRect(renderIntRect);
if (IntRectOverflows(outputRect)) {
#ifdef DEBUG_DUMP_SURFACES
printf("output rect overflowed, not painting anything\n");
printf("</pre>\n");
#endif
return;
}
RefPtr<DataSourceSurface> result;
if (!outputRect.IsEmpty()) {
result = GetOutput(outputRect);
}
if (!result) {
// Null results are allowed and treated as transparent. Don't draw anything.
#ifdef DEBUG_DUMP_SURFACES
printf("output returned null\n");
printf("</pre>\n");
#endif
return;
}
#ifdef DEBUG_DUMP_SURFACES
printf("output from %s:\n", GetName());
printf("<img src='"); gfxUtils::DumpAsDataURL(result); printf("'>\n");
printf("</pre>\n");
#endif
Point sourceToDestOffset = aDestPoint - aSourceRect.TopLeft();
Rect renderedSourceRect = Rect(outputRect).Intersect(aSourceRect);
Rect renderedDestRect = renderedSourceRect + sourceToDestOffset;
if (result->GetFormat() == SurfaceFormat::A8) {
// Interpret the result as having implicitly black color channels.
aDrawTarget->PushClipRect(renderedDestRect);
aDrawTarget->MaskSurface(ColorPattern(Color(0.0, 0.0, 0.0, 1.0)),
result,
Point(outputRect.TopLeft()) + sourceToDestOffset,
aOptions);
aDrawTarget->PopClip();
} else {
aDrawTarget->DrawSurface(result, renderedDestRect,
renderedSourceRect - Point(outputRect.TopLeft()),
DrawSurfaceOptions(), aOptions);
}
}
TemporaryRef<DataSourceSurface>
FilterNodeSoftware::GetOutput(const IntRect &aRect)
{
MOZ_ASSERT(GetOutputRectInRect(aRect).Contains(aRect));
if (IntRectOverflows(aRect)) {
return nullptr;
}
if (!mCachedRect.Contains(aRect)) {
RequestRect(aRect);
mCachedOutput = Render(mRequestedRect);
if (!mCachedOutput) {
mCachedRect = IntRect();
mRequestedRect = IntRect();
return nullptr;
}
mCachedRect = mRequestedRect;
mRequestedRect = IntRect();
} else {
MOZ_ASSERT(mCachedOutput, "cached rect but no cached output?");
}
return GetDataSurfaceInRect(mCachedOutput, mCachedRect, aRect, EDGE_MODE_NONE);
}
void
FilterNodeSoftware::RequestRect(const IntRect &aRect)
{
mRequestedRect = mRequestedRect.Union(aRect);
RequestFromInputsForRect(aRect);
}
void
FilterNodeSoftware::RequestInputRect(uint32_t aInputEnumIndex, const IntRect &aRect)
{
if (IntRectOverflows(aRect)) {
return;
}
int32_t inputIndex = InputIndex(aInputEnumIndex);
if (inputIndex < 0 || (uint32_t)inputIndex >= NumberOfSetInputs()) {
MOZ_CRASH();
}
if (mInputSurfaces[inputIndex]) {
return;
}
RefPtr<FilterNodeSoftware> filter = mInputFilters[inputIndex];
MOZ_ASSERT(filter, "missing input");
filter->RequestRect(filter->GetOutputRectInRect(aRect));
}
SurfaceFormat
FilterNodeSoftware::DesiredFormat(SurfaceFormat aCurrentFormat,
FormatHint aFormatHint)
{
if (aCurrentFormat == SurfaceFormat::A8 && aFormatHint == CAN_HANDLE_A8) {
return SurfaceFormat::A8;
}
return SurfaceFormat::B8G8R8A8;
}
TemporaryRef<DataSourceSurface>
FilterNodeSoftware::GetInputDataSourceSurface(uint32_t aInputEnumIndex,
const IntRect& aRect,
FormatHint aFormatHint,
ConvolveMatrixEdgeMode aEdgeMode,
const IntRect *aTransparencyPaddedSourceRect)
{
if (IntRectOverflows(aRect)) {
return nullptr;
}
#ifdef DEBUG_DUMP_SURFACES
printf("<section><h1>GetInputDataSourceSurface with aRect: %d, %d, %d, %d</h1>\n",
aRect.x, aRect.y, aRect.width, aRect.height);
#endif
int32_t inputIndex = InputIndex(aInputEnumIndex);
if (inputIndex < 0 || (uint32_t)inputIndex >= NumberOfSetInputs()) {
MOZ_CRASH();
return nullptr;
}
if (aRect.IsEmpty()) {
return nullptr;
}
RefPtr<SourceSurface> surface;
IntRect surfaceRect;
if (mInputSurfaces[inputIndex]) {
// Input from input surface
surface = mInputSurfaces[inputIndex];
#ifdef DEBUG_DUMP_SURFACES
printf("input from input surface:\n");
#endif
surfaceRect = IntRect(IntPoint(0, 0), surface->GetSize());
} else {
// Input from input filter
#ifdef DEBUG_DUMP_SURFACES
printf("getting input from input filter %s...\n", mInputFilters[inputIndex]->GetName());
#endif
RefPtr<FilterNodeSoftware> filter = mInputFilters[inputIndex];
MOZ_ASSERT(filter, "missing input");
IntRect inputFilterOutput = filter->GetOutputRectInRect(aRect);
if (!inputFilterOutput.IsEmpty()) {
surface = filter->GetOutput(inputFilterOutput);
}
#ifdef DEBUG_DUMP_SURFACES
printf("input from input filter %s:\n", mInputFilters[inputIndex]->GetName());
#endif
surfaceRect = inputFilterOutput;
MOZ_ASSERT(!surface || surfaceRect.Size() == surface->GetSize());
}
if (surface && surface->GetFormat() == SurfaceFormat::UNKNOWN) {
#ifdef DEBUG_DUMP_SURFACES
printf("wrong input format</section>\n\n");
#endif
return nullptr;
}
if (!surfaceRect.IsEmpty() && !surface) {
#ifdef DEBUG_DUMP_SURFACES
printf(" -- no input --</section>\n\n");
#endif
return nullptr;
}
if (aTransparencyPaddedSourceRect && !aTransparencyPaddedSourceRect->IsEmpty()) {
IntRect srcRect = aTransparencyPaddedSourceRect->Intersect(aRect);
surface = GetDataSurfaceInRect(surface, surfaceRect, srcRect, EDGE_MODE_NONE);
surfaceRect = srcRect;
}
RefPtr<DataSourceSurface> result =
GetDataSurfaceInRect(surface, surfaceRect, aRect, aEdgeMode);
if (result) {
// TODO: This isn't safe since we don't have a guarantee
// that future Maps will have the same stride
DataSourceSurface::MappedSurface map;
if (result->Map(DataSourceSurface::READ, &map)) {
// Unmap immediately since CloneAligned hasn't been updated
// to use the Map API yet. We can still read the stride/data
// values as long as we don't try to dereference them.
result->Unmap();
if (map.mStride != GetAlignedStride<16>(map.mStride) ||
reinterpret_cast<uintptr_t>(map.mData) % 16 != 0) {
// Align unaligned surface.
result = CloneAligned(result);
}
} else {
result = nullptr;
}
}
if (!result) {
#ifdef DEBUG_DUMP_SURFACES
printf(" -- no input --</section>\n\n");
#endif
return nullptr;
}
SurfaceFormat currentFormat = result->GetFormat();
if (DesiredFormat(currentFormat, aFormatHint) == SurfaceFormat::B8G8R8A8 &&
currentFormat != SurfaceFormat::B8G8R8A8) {
result = FilterProcessing::ConvertToB8G8R8A8(result);
}
#ifdef DEBUG_DUMP_SURFACES
printf("<img src='"); gfxUtils::DumpAsDataURL(result); printf("'></section>");
#endif
MOZ_ASSERT(!result || result->GetSize() == aRect.Size(), "wrong surface size");
return result.forget();
}
IntRect
FilterNodeSoftware::GetInputRectInRect(uint32_t aInputEnumIndex,
const IntRect &aInRect)
{
if (IntRectOverflows(aInRect)) {
return IntRect();
}
int32_t inputIndex = InputIndex(aInputEnumIndex);
if (inputIndex < 0 || (uint32_t)inputIndex >= NumberOfSetInputs()) {
MOZ_CRASH();
return IntRect();
}
if (mInputSurfaces[inputIndex]) {
return aInRect.Intersect(IntRect(IntPoint(0, 0),
mInputSurfaces[inputIndex]->GetSize()));
}
RefPtr<FilterNodeSoftware> filter = mInputFilters[inputIndex];
MOZ_ASSERT(filter, "missing input");
return filter->GetOutputRectInRect(aInRect);
}
size_t
FilterNodeSoftware::NumberOfSetInputs()
{
return std::max(mInputSurfaces.size(), mInputFilters.size());
}
void
FilterNodeSoftware::AddInvalidationListener(FilterInvalidationListener* aListener)
{
MOZ_ASSERT(aListener, "null listener");
mInvalidationListeners.push_back(aListener);
}
void
FilterNodeSoftware::RemoveInvalidationListener(FilterInvalidationListener* aListener)
{
MOZ_ASSERT(aListener, "null listener");
std::vector<FilterInvalidationListener*>::iterator it =
std::find(mInvalidationListeners.begin(), mInvalidationListeners.end(), aListener);
mInvalidationListeners.erase(it);
}
void
FilterNodeSoftware::FilterInvalidated(FilterNodeSoftware* aFilter)
{
Invalidate();
}
void
FilterNodeSoftware::Invalidate()
{
mCachedOutput = nullptr;
mCachedRect = IntRect();
for (std::vector<FilterInvalidationListener*>::iterator it = mInvalidationListeners.begin();
it != mInvalidationListeners.end(); it++) {
(*it)->FilterInvalidated(this);
}
}
FilterNodeSoftware::~FilterNodeSoftware()
{
MOZ_ASSERT(!mInvalidationListeners.size(),
"All invalidation listeners should have unsubscribed themselves by now!");
for (std::vector<RefPtr<FilterNodeSoftware> >::iterator it = mInputFilters.begin();
it != mInputFilters.end(); it++) {
if (*it) {
(*it)->RemoveInvalidationListener(this);
}
}
}
void
FilterNodeSoftware::SetInput(uint32_t aIndex, FilterNode *aFilter)
{
if (aFilter && aFilter->GetBackendType() != FILTER_BACKEND_SOFTWARE) {
MOZ_ASSERT(false, "can only take software filters as inputs");
return;
}
SetInput(aIndex, nullptr, static_cast<FilterNodeSoftware*>(aFilter));
}
void
FilterNodeSoftware::SetInput(uint32_t aIndex, SourceSurface *aSurface)
{
SetInput(aIndex, aSurface, nullptr);
}
void
FilterNodeSoftware::SetInput(uint32_t aInputEnumIndex,
SourceSurface *aSurface,
FilterNodeSoftware *aFilter)
{
int32_t inputIndex = InputIndex(aInputEnumIndex);
if (inputIndex < 0) {
MOZ_CRASH();
return;
}
if ((uint32_t)inputIndex >= NumberOfSetInputs()) {
mInputSurfaces.resize(inputIndex + 1);
mInputFilters.resize(inputIndex + 1);
}
mInputSurfaces[inputIndex] = aSurface;
if (mInputFilters[inputIndex]) {
mInputFilters[inputIndex]->RemoveInvalidationListener(this);
}
if (aFilter) {
aFilter->AddInvalidationListener(this);
}
mInputFilters[inputIndex] = aFilter;
if (!aSurface && !aFilter && (size_t)inputIndex == NumberOfSetInputs()) {
mInputSurfaces.resize(inputIndex);
mInputFilters.resize(inputIndex);
}
Invalidate();
}
FilterNodeBlendSoftware::FilterNodeBlendSoftware()
: mBlendMode(BLEND_MODE_MULTIPLY)
{}
int32_t
FilterNodeBlendSoftware::InputIndex(uint32_t aInputEnumIndex)
{
switch (aInputEnumIndex) {
case IN_BLEND_IN: return 0;
case IN_BLEND_IN2: return 1;
default: return -1;
}
}
void
FilterNodeBlendSoftware::SetAttribute(uint32_t aIndex, uint32_t aBlendMode)
{
MOZ_ASSERT(aIndex == ATT_BLEND_BLENDMODE);
mBlendMode = static_cast<BlendMode>(aBlendMode);
Invalidate();
}
static CompositionOp ToBlendOp(BlendMode aOp)
{
switch (aOp) {
case BLEND_MODE_MULTIPLY:
return CompositionOp::OP_MULTIPLY;
case BLEND_MODE_SCREEN:
return CompositionOp::OP_SCREEN;
case BLEND_MODE_OVERLAY:
return CompositionOp::OP_OVERLAY;
case BLEND_MODE_DARKEN:
return CompositionOp::OP_DARKEN;
case BLEND_MODE_LIGHTEN:
return CompositionOp::OP_LIGHTEN;
case BLEND_MODE_COLOR_DODGE:
return CompositionOp::OP_COLOR_DODGE;
case BLEND_MODE_COLOR_BURN:
return CompositionOp::OP_COLOR_BURN;
case BLEND_MODE_HARD_LIGHT:
return CompositionOp::OP_HARD_LIGHT;
case BLEND_MODE_SOFT_LIGHT:
return CompositionOp::OP_SOFT_LIGHT;
case BLEND_MODE_DIFFERENCE:
return CompositionOp::OP_DIFFERENCE;
case BLEND_MODE_EXCLUSION:
return CompositionOp::OP_EXCLUSION;
case BLEND_MODE_HUE:
return CompositionOp::OP_HUE;
case BLEND_MODE_SATURATION:
return CompositionOp::OP_SATURATION;
case BLEND_MODE_COLOR:
return CompositionOp::OP_COLOR;
case BLEND_MODE_LUMINOSITY:
return CompositionOp::OP_LUMINOSITY;
default:
return CompositionOp::OP_OVER;
}
return CompositionOp::OP_OVER;
}
TemporaryRef<DataSourceSurface>
FilterNodeBlendSoftware::Render(const IntRect& aRect)
{
RefPtr<DataSourceSurface> input1 =
GetInputDataSourceSurface(IN_BLEND_IN, aRect, NEED_COLOR_CHANNELS);
RefPtr<DataSourceSurface> input2 =
GetInputDataSourceSurface(IN_BLEND_IN2, aRect, NEED_COLOR_CHANNELS);
// Null inputs need to be treated as transparent.
// First case: both are transparent.
if (!input1 && !input2) {
// Then the result is transparent, too.
return nullptr;
}
// Second case: one of them is transparent. Return the non-transparent one.
if (!input1 || !input2) {
return input1 ? input1.forget() : input2.forget();
}
// Third case: both are non-transparent.
// Apply normal filtering.
RefPtr<DataSourceSurface> target = FilterProcessing::ApplyBlending(input1, input2, mBlendMode);
if (target != nullptr) {
return target.forget();
}
IntSize size = input1->GetSize();
target =
Factory::CreateDataSourceSurface(size, SurfaceFormat::B8G8R8A8);
if (MOZ2D_WARN_IF(!target)) {
return nullptr;
}
CopyRect(input1, target, IntRect(IntPoint(), size), IntPoint());
RefPtr<DrawTarget> dt =
Factory::CreateDrawTargetForData(BackendType::CAIRO,
target->GetData(),
target->GetSize(),
target->Stride(),
target->GetFormat());
Rect r(0, 0, size.width, size.height);
dt->DrawSurface(input2, r, r, DrawSurfaceOptions(), DrawOptions(1.0f, ToBlendOp(mBlendMode)));
dt->Flush();
return target.forget();
}
void
FilterNodeBlendSoftware::RequestFromInputsForRect(const IntRect &aRect)
{
RequestInputRect(IN_BLEND_IN, aRect);
RequestInputRect(IN_BLEND_IN2, aRect);
}
IntRect
FilterNodeBlendSoftware::GetOutputRectInRect(const IntRect& aRect)
{
return GetInputRectInRect(IN_BLEND_IN, aRect).Union(
GetInputRectInRect(IN_BLEND_IN2, aRect)).Intersect(aRect);
}
FilterNodeTransformSoftware::FilterNodeTransformSoftware()
: mFilter(Filter::GOOD)
{}
int32_t
FilterNodeTransformSoftware::InputIndex(uint32_t aInputEnumIndex)
{
switch (aInputEnumIndex) {
case IN_TRANSFORM_IN: return 0;
default: return -1;
}
}
void
FilterNodeTransformSoftware::SetAttribute(uint32_t aIndex, uint32_t aFilter)
{
MOZ_ASSERT(aIndex == ATT_TRANSFORM_FILTER);
mFilter = static_cast<Filter>(aFilter);
Invalidate();
}
void
FilterNodeTransformSoftware::SetAttribute(uint32_t aIndex, const Matrix &aMatrix)
{
MOZ_ASSERT(aIndex == ATT_TRANSFORM_MATRIX);
mMatrix = aMatrix;
Invalidate();
}
IntRect
FilterNodeTransformSoftware::SourceRectForOutputRect(const IntRect &aRect)
{
if (aRect.IsEmpty()) {
return IntRect();
}
Matrix inverted(mMatrix);
if (!inverted.Invert()) {
return IntRect();
}
Rect neededRect = inverted.TransformBounds(Rect(aRect));
neededRect.RoundOut();
IntRect neededIntRect;
if (!neededRect.ToIntRect(&neededIntRect)) {
return IntRect();
}
return GetInputRectInRect(IN_TRANSFORM_IN, neededIntRect);
}
TemporaryRef<DataSourceSurface>
FilterNodeTransformSoftware::Render(const IntRect& aRect)
{
IntRect srcRect = SourceRectForOutputRect(aRect);
RefPtr<DataSourceSurface> input =
GetInputDataSourceSurface(IN_TRANSFORM_IN, srcRect, NEED_COLOR_CHANNELS);
if (!input) {
return nullptr;
}
Matrix transform = Matrix::Translation(srcRect.x, srcRect.y) * mMatrix *
Matrix::Translation(-aRect.x, -aRect.y);
if (transform.IsIdentity() && srcRect.Size() == aRect.Size()) {
return input.forget();
}
RefPtr<DrawTarget> dt =
Factory::CreateDrawTarget(BackendType::CAIRO, aRect.Size(), input->GetFormat());
if (!dt) {
return nullptr;
}
Rect r(0, 0, srcRect.width, srcRect.height);
dt->SetTransform(transform);
dt->DrawSurface(input, r, r, DrawSurfaceOptions(mFilter));
RefPtr<SourceSurface> result = dt->Snapshot();
RefPtr<DataSourceSurface> resultData = result->GetDataSurface();
return resultData.forget();
}
void
FilterNodeTransformSoftware::RequestFromInputsForRect(const IntRect &aRect)
{
RequestInputRect(IN_TRANSFORM_IN, SourceRectForOutputRect(aRect));
}
IntRect
FilterNodeTransformSoftware::GetOutputRectInRect(const IntRect& aRect)
{
IntRect srcRect = SourceRectForOutputRect(aRect);
if (srcRect.IsEmpty()) {
return IntRect();
}
Rect outRect = mMatrix.TransformBounds(Rect(srcRect));
outRect.RoundOut();
IntRect outIntRect;
if (!outRect.ToIntRect(&outIntRect)) {
return IntRect();
}
return outIntRect.Intersect(aRect);
}
FilterNodeMorphologySoftware::FilterNodeMorphologySoftware()
: mOperator(MORPHOLOGY_OPERATOR_ERODE)
{}
int32_t
FilterNodeMorphologySoftware::InputIndex(uint32_t aInputEnumIndex)
{
switch (aInputEnumIndex) {
case IN_MORPHOLOGY_IN: return 0;
default: return -1;
}
}
void
FilterNodeMorphologySoftware::SetAttribute(uint32_t aIndex,
const IntSize &aRadii)
{
MOZ_ASSERT(aIndex == ATT_MORPHOLOGY_RADII);
mRadii.width = std::min(std::max(aRadii.width, 0), 100000);
mRadii.height = std::min(std::max(aRadii.height, 0), 100000);
Invalidate();
}
void
FilterNodeMorphologySoftware::SetAttribute(uint32_t aIndex,
uint32_t aOperator)
{
MOZ_ASSERT(aIndex == ATT_MORPHOLOGY_OPERATOR);
mOperator = static_cast<MorphologyOperator>(aOperator);
Invalidate();
}
static TemporaryRef<DataSourceSurface>
ApplyMorphology(const IntRect& aSourceRect, DataSourceSurface* aInput,
const IntRect& aDestRect, int32_t rx, int32_t ry,
MorphologyOperator aOperator)
{
IntRect srcRect = aSourceRect - aDestRect.TopLeft();
IntRect destRect = aDestRect - aDestRect.TopLeft();
IntRect tmpRect(destRect.x, srcRect.y, destRect.width, srcRect.height);
#ifdef DEBUG
IntMargin margin = srcRect - destRect;
MOZ_ASSERT(margin.top >= ry && margin.right >= rx &&
margin.bottom >= ry && margin.left >= rx, "insufficient margin");
#endif
RefPtr<DataSourceSurface> tmp;
if (rx == 0) {
tmp = aInput;
} else {
tmp = Factory::CreateDataSourceSurface(tmpRect.Size(), SurfaceFormat::B8G8R8A8);
if (MOZ2D_WARN_IF(!tmp)) {
return nullptr;
}
int32_t sourceStride = aInput->Stride();
uint8_t* sourceData = DataAtOffset(aInput, destRect.TopLeft() - srcRect.TopLeft());
int32_t tmpStride = tmp->Stride();
uint8_t* tmpData = DataAtOffset(tmp, destRect.TopLeft() - tmpRect.TopLeft());
FilterProcessing::ApplyMorphologyHorizontal(
sourceData, sourceStride, tmpData, tmpStride, tmpRect, rx, aOperator);
}
RefPtr<DataSourceSurface> dest;
if (ry == 0) {
dest = tmp;
} else {
dest = Factory::CreateDataSourceSurface(destRect.Size(), SurfaceFormat::B8G8R8A8);
if (MOZ2D_WARN_IF(!dest)) {
return nullptr;
}
int32_t tmpStride = tmp->Stride();
uint8_t* tmpData = DataAtOffset(tmp, destRect.TopLeft() - tmpRect.TopLeft());
int32_t destStride = dest->Stride();
uint8_t* destData = dest->GetData();
FilterProcessing::ApplyMorphologyVertical(
tmpData, tmpStride, destData, destStride, destRect, ry, aOperator);
}
return dest.forget();
}
TemporaryRef<DataSourceSurface>
FilterNodeMorphologySoftware::Render(const IntRect& aRect)
{
IntRect srcRect = aRect;
srcRect.Inflate(mRadii);
RefPtr<DataSourceSurface> input =
GetInputDataSourceSurface(IN_MORPHOLOGY_IN, srcRect, NEED_COLOR_CHANNELS);
if (!input) {
return nullptr;
}
int32_t rx = mRadii.width;
int32_t ry = mRadii.height;
if (rx == 0 && ry == 0) {
return input.forget();
}
return ApplyMorphology(srcRect, input, aRect, rx, ry, mOperator);
}
void
FilterNodeMorphologySoftware::RequestFromInputsForRect(const IntRect &aRect)
{
IntRect srcRect = aRect;
srcRect.Inflate(mRadii);
RequestInputRect(IN_MORPHOLOGY_IN, srcRect);
}
IntRect
FilterNodeMorphologySoftware::GetOutputRectInRect(const IntRect& aRect)
{
IntRect inflatedSourceRect = aRect;
inflatedSourceRect.Inflate(mRadii);
IntRect inputRect = GetInputRectInRect(IN_MORPHOLOGY_IN, inflatedSourceRect);
if (mOperator == MORPHOLOGY_OPERATOR_ERODE) {
inputRect.Deflate(mRadii);
} else {
inputRect.Inflate(mRadii);
}
return inputRect.Intersect(aRect);
}
int32_t
FilterNodeColorMatrixSoftware::InputIndex(uint32_t aInputEnumIndex)
{
switch (aInputEnumIndex) {
case IN_COLOR_MATRIX_IN: return 0;
default: return -1;
}
}
void
FilterNodeColorMatrixSoftware::SetAttribute(uint32_t aIndex,
const Matrix5x4 &aMatrix)
{
MOZ_ASSERT(aIndex == ATT_COLOR_MATRIX_MATRIX);
mMatrix = aMatrix;
Invalidate();
}
void
FilterNodeColorMatrixSoftware::SetAttribute(uint32_t aIndex,
uint32_t aAlphaMode)
{
MOZ_ASSERT(aIndex == ATT_COLOR_MATRIX_ALPHA_MODE);
mAlphaMode = (AlphaMode)aAlphaMode;
Invalidate();
}
static TemporaryRef<DataSourceSurface>
Premultiply(DataSourceSurface* aSurface)
{
if (aSurface->GetFormat() == SurfaceFormat::A8) {
return aSurface;
}
IntSize size = aSurface->GetSize();
RefPtr<DataSourceSurface> target =
Factory::CreateDataSourceSurface(size, SurfaceFormat::B8G8R8A8);
if (MOZ2D_WARN_IF(!target)) {
return nullptr;
}
uint8_t* inputData = aSurface->GetData();
int32_t inputStride = aSurface->Stride();
uint8_t* targetData = target->GetData();
int32_t targetStride = target->Stride();
FilterProcessing::DoPremultiplicationCalculation(
size, targetData, targetStride, inputData, inputStride);
return target.forget();
}
static TemporaryRef<DataSourceSurface>
Unpremultiply(DataSourceSurface* aSurface)
{
if (aSurface->GetFormat() == SurfaceFormat::A8) {
return aSurface;
}
IntSize size = aSurface->GetSize();
RefPtr<DataSourceSurface> target =
Factory::CreateDataSourceSurface(size, SurfaceFormat::B8G8R8A8);
if (MOZ2D_WARN_IF(!target)) {
return nullptr;
}
uint8_t* inputData = aSurface->GetData();
int32_t inputStride = aSurface->Stride();
uint8_t* targetData = target->GetData();
int32_t targetStride = target->Stride();
FilterProcessing::DoUnpremultiplicationCalculation(
size, targetData, targetStride, inputData, inputStride);
return target.forget();
}
TemporaryRef<DataSourceSurface>
FilterNodeColorMatrixSoftware::Render(const IntRect& aRect)
{
RefPtr<DataSourceSurface> input =
GetInputDataSourceSurface(IN_COLOR_MATRIX_IN, aRect, NEED_COLOR_CHANNELS);
if (!input) {
return nullptr;
}
if (mAlphaMode == ALPHA_MODE_PREMULTIPLIED) {
input = Unpremultiply(input);
}
RefPtr<DataSourceSurface> result =
FilterProcessing::ApplyColorMatrix(input, mMatrix);
if (mAlphaMode == ALPHA_MODE_PREMULTIPLIED) {
result = Premultiply(result);
}
return result.forget();
}
void
FilterNodeColorMatrixSoftware::RequestFromInputsForRect(const IntRect &aRect)
{
RequestInputRect(IN_COLOR_MATRIX_IN, aRect);
}
IntRect
FilterNodeColorMatrixSoftware::GetOutputRectInRect(const IntRect& aRect)
{
return GetInputRectInRect(IN_COLOR_MATRIX_IN, aRect);
}
void
FilterNodeFloodSoftware::SetAttribute(uint32_t aIndex, const Color &aColor)
{
MOZ_ASSERT(aIndex == ATT_FLOOD_COLOR);
mColor = aColor;
Invalidate();
}
static uint32_t
ColorToBGRA(const Color& aColor)
{
union {
uint32_t color;
uint8_t components[4];
};
components[B8G8R8A8_COMPONENT_BYTEOFFSET_R] = NS_lround(aColor.r * aColor.a * 255.0f);
components[B8G8R8A8_COMPONENT_BYTEOFFSET_G] = NS_lround(aColor.g * aColor.a * 255.0f);
components[B8G8R8A8_COMPONENT_BYTEOFFSET_B] = NS_lround(aColor.b * aColor.a * 255.0f);
components[B8G8R8A8_COMPONENT_BYTEOFFSET_A] = NS_lround(aColor.a * 255.0f);
return color;
}
static SurfaceFormat
FormatForColor(Color aColor)
{
if (aColor.r == 0 && aColor.g == 0 && aColor.b == 0) {
return SurfaceFormat::A8;
}
return SurfaceFormat::B8G8R8A8;
}
TemporaryRef<DataSourceSurface>
FilterNodeFloodSoftware::Render(const IntRect& aRect)
{
SurfaceFormat format = FormatForColor(mColor);
RefPtr<DataSourceSurface> target =
Factory::CreateDataSourceSurface(aRect.Size(), format);
if (MOZ2D_WARN_IF(!target)) {
return nullptr;
}
uint8_t* targetData = target->GetData();
uint32_t stride = target->Stride();
if (format == SurfaceFormat::B8G8R8A8) {
uint32_t color = ColorToBGRA(mColor);
for (int32_t y = 0; y < aRect.height; y++) {
for (int32_t x = 0; x < aRect.width; x++) {
*((uint32_t*)targetData + x) = color;
}
targetData += stride;
}
} else if (format == SurfaceFormat::A8) {
uint8_t alpha = NS_lround(mColor.a * 255.0f);
for (int32_t y = 0; y < aRect.height; y++) {
for (int32_t x = 0; x < aRect.width; x++) {
targetData[x] = alpha;
}
targetData += stride;
}
} else {
MOZ_CRASH();
}
return target.forget();
}
// Override GetOutput to get around caching. Rendering simple floods is
// comparatively fast.
TemporaryRef<DataSourceSurface>
FilterNodeFloodSoftware::GetOutput(const IntRect& aRect)
{
return Render(aRect);
}
IntRect
FilterNodeFloodSoftware::GetOutputRectInRect(const IntRect& aRect)
{
if (mColor.a == 0.0f) {
return IntRect();
}
return aRect;
}
int32_t
FilterNodeTileSoftware::InputIndex(uint32_t aInputEnumIndex)
{
switch (aInputEnumIndex) {
case IN_TILE_IN: return 0;
default: return -1;
}
}
void
FilterNodeTileSoftware::SetAttribute(uint32_t aIndex,
const IntRect &aSourceRect)
{
MOZ_ASSERT(aIndex == ATT_TILE_SOURCE_RECT);
mSourceRect = IntRect(int32_t(aSourceRect.x), int32_t(aSourceRect.y),
int32_t(aSourceRect.width), int32_t(aSourceRect.height));
Invalidate();
}
namespace {
struct CompareIntRects
{
bool operator()(const IntRect& a, const IntRect& b) const
{
if (a.x != b.x) {
return a.x < b.x;
}
if (a.y != b.y) {
return a.y < b.y;
}
if (a.width != b.width) {
return a.width < b.width;
}
return a.height < b.height;
}
};
}
TemporaryRef<DataSourceSurface>
FilterNodeTileSoftware::Render(const IntRect& aRect)
{
if (mSourceRect.IsEmpty()) {
return nullptr;
}
if (mSourceRect.Contains(aRect)) {
return GetInputDataSourceSurface(IN_TILE_IN, aRect);
}
RefPtr<DataSourceSurface> target;
typedef std::map<IntRect, RefPtr<DataSourceSurface>, CompareIntRects> InputMap;
InputMap inputs;
IntPoint startIndex = TileIndex(mSourceRect, aRect.TopLeft());
IntPoint endIndex = TileIndex(mSourceRect, aRect.BottomRight());
for (int32_t ix = startIndex.x; ix <= endIndex.x; ix++) {
for (int32_t iy = startIndex.y; iy <= endIndex.y; iy++) {
IntPoint sourceToDestOffset(ix * mSourceRect.width,
iy * mSourceRect.height);
IntRect destRect = aRect.Intersect(mSourceRect + sourceToDestOffset);
IntRect srcRect = destRect - sourceToDestOffset;
if (srcRect.IsEmpty()) {
continue;
}
RefPtr<DataSourceSurface> input;
InputMap::iterator it = inputs.find(srcRect);
if (it == inputs.end()) {
input = GetInputDataSourceSurface(IN_TILE_IN, srcRect);
inputs[srcRect] = input;
} else {
input = it->second;
}
if (!input) {
return nullptr;
}
if (!target) {
// We delay creating the target until now because we want to use the
// same format as our input filter, and we do not actually know the
// input format before we call GetInputDataSourceSurface.
target = Factory::CreateDataSourceSurface(aRect.Size(), input->GetFormat());
if (MOZ2D_WARN_IF(!target)) {
return nullptr;
}
}
MOZ_ASSERT(input->GetFormat() == target->GetFormat(), "different surface formats from the same input?");
CopyRect(input, target, srcRect - srcRect.TopLeft(), destRect.TopLeft() - aRect.TopLeft());
}
}
return target.forget();
}
void
FilterNodeTileSoftware::RequestFromInputsForRect(const IntRect &aRect)
{
// Do not request anything.
// Source rects for the tile filter can be discontinuous with large gaps
// between them. Requesting those from our input filter might cause it to
// render the whole bounding box of all of them, which would be wasteful.
}
IntRect
FilterNodeTileSoftware::GetOutputRectInRect(const IntRect& aRect)
{
return aRect;
}
FilterNodeComponentTransferSoftware::FilterNodeComponentTransferSoftware()
: mDisableR(true)
, mDisableG(true)
, mDisableB(true)
, mDisableA(true)
{}
void
FilterNodeComponentTransferSoftware::SetAttribute(uint32_t aIndex,
bool aDisable)
{
switch (aIndex) {
case ATT_TRANSFER_DISABLE_R:
mDisableR = aDisable;
break;
case ATT_TRANSFER_DISABLE_G:
mDisableG = aDisable;
break;
case ATT_TRANSFER_DISABLE_B:
mDisableB = aDisable;
break;
case ATT_TRANSFER_DISABLE_A:
mDisableA = aDisable;
break;
default:
MOZ_CRASH();
}
Invalidate();
}
void
FilterNodeComponentTransferSoftware::GenerateLookupTable(ptrdiff_t aComponent,
uint8_t aTables[4][256],
bool aDisabled)
{
if (aDisabled) {
static uint8_t sIdentityLookupTable[256];
static bool sInitializedIdentityLookupTable = false;
if (!sInitializedIdentityLookupTable) {
for (int32_t i = 0; i < 256; i++) {
sIdentityLookupTable[i] = i;
}
sInitializedIdentityLookupTable = true;
}
memcpy(aTables[aComponent], sIdentityLookupTable, 256);
} else {
FillLookupTable(aComponent, aTables[aComponent]);
}
}
template<uint32_t BytesPerPixel>
static void TransferComponents(DataSourceSurface* aInput,
DataSourceSurface* aTarget,
const uint8_t aLookupTables[BytesPerPixel][256])
{
MOZ_ASSERT(aInput->GetFormat() == aTarget->GetFormat(), "different formats");
IntSize size = aInput->GetSize();
uint8_t* sourceData = aInput->GetData();
uint8_t* targetData = aTarget->GetData();
uint32_t sourceStride = aInput->Stride();
uint32_t targetStride = aTarget->Stride();
for (int32_t y = 0; y < size.height; y++) {
for (int32_t x = 0; x < size.width; x++) {
uint32_t sourceIndex = y * sourceStride + x * BytesPerPixel;
uint32_t targetIndex = y * targetStride + x * BytesPerPixel;
for (uint32_t i = 0; i < BytesPerPixel; i++) {
targetData[targetIndex + i] = aLookupTables[i][sourceData[sourceIndex + i]];
}
}
}
}
bool
IsAllZero(uint8_t aLookupTable[256])
{
for (int32_t i = 0; i < 256; i++) {
if (aLookupTable[i] != 0) {
return false;
}
}
return true;
}
TemporaryRef<DataSourceSurface>
FilterNodeComponentTransferSoftware::Render(const IntRect& aRect)
{
if (mDisableR && mDisableG && mDisableB && mDisableA) {
return GetInputDataSourceSurface(IN_TRANSFER_IN, aRect);
}
uint8_t lookupTables[4][256];
GenerateLookupTable(B8G8R8A8_COMPONENT_BYTEOFFSET_R, lookupTables, mDisableR);
GenerateLookupTable(B8G8R8A8_COMPONENT_BYTEOFFSET_G, lookupTables, mDisableG);
GenerateLookupTable(B8G8R8A8_COMPONENT_BYTEOFFSET_B, lookupTables, mDisableB);
GenerateLookupTable(B8G8R8A8_COMPONENT_BYTEOFFSET_A, lookupTables, mDisableA);
bool needColorChannels =
lookupTables[B8G8R8A8_COMPONENT_BYTEOFFSET_R][0] != 0 ||
lookupTables[B8G8R8A8_COMPONENT_BYTEOFFSET_G][0] != 0 ||
lookupTables[B8G8R8A8_COMPONENT_BYTEOFFSET_B][0] != 0;
FormatHint pref = needColorChannels ? NEED_COLOR_CHANNELS : CAN_HANDLE_A8;
RefPtr<DataSourceSurface> input =
GetInputDataSourceSurface(IN_TRANSFER_IN, aRect, pref);
if (!input) {
return nullptr;
}
if (input->GetFormat() == SurfaceFormat::B8G8R8A8 && !needColorChannels) {
bool colorChannelsBecomeBlack =
IsAllZero(lookupTables[B8G8R8A8_COMPONENT_BYTEOFFSET_R]) &&
IsAllZero(lookupTables[B8G8R8A8_COMPONENT_BYTEOFFSET_G]) &&
IsAllZero(lookupTables[B8G8R8A8_COMPONENT_BYTEOFFSET_B]);
if (colorChannelsBecomeBlack) {
input = FilterProcessing::ExtractAlpha(input);
}
}
SurfaceFormat format = input->GetFormat();
if (format == SurfaceFormat::A8 && mDisableA) {
return input.forget();
}
RefPtr<DataSourceSurface> target =
Factory::CreateDataSourceSurface(aRect.Size(), format);
if (MOZ2D_WARN_IF(!target)) {
return nullptr;
}
if (format == SurfaceFormat::A8) {
TransferComponents<1>(input, target, &lookupTables[B8G8R8A8_COMPONENT_BYTEOFFSET_A]);
} else {
TransferComponents<4>(input, target, lookupTables);
}
return target.forget();
}
void
FilterNodeComponentTransferSoftware::RequestFromInputsForRect(const IntRect &aRect)
{
RequestInputRect(IN_TRANSFER_IN, aRect);
}
IntRect
FilterNodeComponentTransferSoftware::GetOutputRectInRect(const IntRect& aRect)
{
return GetInputRectInRect(IN_TRANSFER_IN, aRect);
}
int32_t
FilterNodeComponentTransferSoftware::InputIndex(uint32_t aInputEnumIndex)
{
switch (aInputEnumIndex) {
case IN_TRANSFER_IN: return 0;
default: return -1;
}
}
void
FilterNodeTableTransferSoftware::SetAttribute(uint32_t aIndex,
const Float* aFloat,
uint32_t aSize)
{
std::vector<Float> table(aFloat, aFloat + aSize);
switch (aIndex) {
case ATT_TABLE_TRANSFER_TABLE_R:
mTableR = table;
break;
case ATT_TABLE_TRANSFER_TABLE_G:
mTableG = table;
break;
case ATT_TABLE_TRANSFER_TABLE_B:
mTableB = table;
break;
case ATT_TABLE_TRANSFER_TABLE_A:
mTableA = table;
break;
default:
MOZ_CRASH();
}
Invalidate();
}
void
FilterNodeTableTransferSoftware::FillLookupTable(ptrdiff_t aComponent,
uint8_t aTable[256])
{
switch (aComponent) {
case B8G8R8A8_COMPONENT_BYTEOFFSET_R:
FillLookupTableImpl(mTableR, aTable);
break;
case B8G8R8A8_COMPONENT_BYTEOFFSET_G:
FillLookupTableImpl(mTableG, aTable);
break;
case B8G8R8A8_COMPONENT_BYTEOFFSET_B:
FillLookupTableImpl(mTableB, aTable);
break;
case B8G8R8A8_COMPONENT_BYTEOFFSET_A:
FillLookupTableImpl(mTableA, aTable);
break;
default:
MOZ_ASSERT(false, "unknown component");
break;
}
}
void
FilterNodeTableTransferSoftware::FillLookupTableImpl(std::vector<Float>& aTableValues,
uint8_t aTable[256])
{
uint32_t tvLength = aTableValues.size();
if (tvLength < 2) {
return;
}
for (size_t i = 0; i < 256; i++) {
uint32_t k = (i * (tvLength - 1)) / 255;
Float v1 = aTableValues[k];
Float v2 = aTableValues[std::min(k + 1, tvLength - 1)];
int32_t val =
int32_t(255 * (v1 + (i/255.0f - k/float(tvLength-1))*(tvLength - 1)*(v2 - v1)));
val = std::min(255, val);
val = std::max(0, val);
aTable[i] = val;
}
}
void
FilterNodeDiscreteTransferSoftware::SetAttribute(uint32_t aIndex,
const Float* aFloat,
uint32_t aSize)
{
std::vector<Float> discrete(aFloat, aFloat + aSize);
switch (aIndex) {
case ATT_DISCRETE_TRANSFER_TABLE_R:
mTableR = discrete;
break;
case ATT_DISCRETE_TRANSFER_TABLE_G:
mTableG = discrete;
break;
case ATT_DISCRETE_TRANSFER_TABLE_B:
mTableB = discrete;
break;
case ATT_DISCRETE_TRANSFER_TABLE_A:
mTableA = discrete;
break;
default:
MOZ_CRASH();
}
Invalidate();
}
void
FilterNodeDiscreteTransferSoftware::FillLookupTable(ptrdiff_t aComponent,
uint8_t aTable[256])
{
switch (aComponent) {
case B8G8R8A8_COMPONENT_BYTEOFFSET_R:
FillLookupTableImpl(mTableR, aTable);
break;
case B8G8R8A8_COMPONENT_BYTEOFFSET_G:
FillLookupTableImpl(mTableG, aTable);
break;
case B8G8R8A8_COMPONENT_BYTEOFFSET_B:
FillLookupTableImpl(mTableB, aTable);
break;
case B8G8R8A8_COMPONENT_BYTEOFFSET_A:
FillLookupTableImpl(mTableA, aTable);
break;
default:
MOZ_ASSERT(false, "unknown component");
break;
}
}
void
FilterNodeDiscreteTransferSoftware::FillLookupTableImpl(std::vector<Float>& aTableValues,
uint8_t aTable[256])
{
uint32_t tvLength = aTableValues.size();
if (tvLength < 1) {
return;
}
for (size_t i = 0; i < 256; i++) {
uint32_t k = (i * tvLength) / 255;
k = std::min(k, tvLength - 1);
Float v = aTableValues[k];
int32_t val = NS_lround(255 * v);
val = std::min(255, val);
val = std::max(0, val);
aTable[i] = val;
}
}
FilterNodeLinearTransferSoftware::FilterNodeLinearTransferSoftware()
: mSlopeR(0)
, mSlopeG(0)
, mSlopeB(0)
, mSlopeA(0)
, mInterceptR(0)
, mInterceptG(0)
, mInterceptB(0)
, mInterceptA(0)
{}
void
FilterNodeLinearTransferSoftware::SetAttribute(uint32_t aIndex,
Float aValue)
{
switch (aIndex) {
case ATT_LINEAR_TRANSFER_SLOPE_R:
mSlopeR = aValue;
break;
case ATT_LINEAR_TRANSFER_INTERCEPT_R:
mInterceptR = aValue;
break;
case ATT_LINEAR_TRANSFER_SLOPE_G:
mSlopeG = aValue;
break;
case ATT_LINEAR_TRANSFER_INTERCEPT_G:
mInterceptG = aValue;
break;
case ATT_LINEAR_TRANSFER_SLOPE_B:
mSlopeB = aValue;
break;
case ATT_LINEAR_TRANSFER_INTERCEPT_B:
mInterceptB = aValue;
break;
case ATT_LINEAR_TRANSFER_SLOPE_A:
mSlopeA = aValue;
break;
case ATT_LINEAR_TRANSFER_INTERCEPT_A:
mInterceptA = aValue;
break;
default:
MOZ_CRASH();
}
Invalidate();
}
void
FilterNodeLinearTransferSoftware::FillLookupTable(ptrdiff_t aComponent,
uint8_t aTable[256])
{
switch (aComponent) {
case B8G8R8A8_COMPONENT_BYTEOFFSET_R:
FillLookupTableImpl(mSlopeR, mInterceptR, aTable);
break;
case B8G8R8A8_COMPONENT_BYTEOFFSET_G:
FillLookupTableImpl(mSlopeG, mInterceptG, aTable);
break;
case B8G8R8A8_COMPONENT_BYTEOFFSET_B:
FillLookupTableImpl(mSlopeB, mInterceptB, aTable);
break;
case B8G8R8A8_COMPONENT_BYTEOFFSET_A:
FillLookupTableImpl(mSlopeA, mInterceptA, aTable);
break;
default:
MOZ_ASSERT(false, "unknown component");
break;
}
}
void
FilterNodeLinearTransferSoftware::FillLookupTableImpl(Float aSlope,
Float aIntercept,
uint8_t aTable[256])
{
for (size_t i = 0; i < 256; i++) {
int32_t val = NS_lround(aSlope * i + 255 * aIntercept);
val = std::min(255, val);
val = std::max(0, val);
aTable[i] = val;
}
}
FilterNodeGammaTransferSoftware::FilterNodeGammaTransferSoftware()
: mAmplitudeR(0)
, mAmplitudeG(0)
, mAmplitudeB(0)
, mAmplitudeA(0)
, mExponentR(0)
, mExponentG(0)
, mExponentB(0)
, mExponentA(0)
{}
void
FilterNodeGammaTransferSoftware::SetAttribute(uint32_t aIndex,
Float aValue)
{
switch (aIndex) {
case ATT_GAMMA_TRANSFER_AMPLITUDE_R:
mAmplitudeR = aValue;
break;
case ATT_GAMMA_TRANSFER_EXPONENT_R:
mExponentR = aValue;
break;
case ATT_GAMMA_TRANSFER_OFFSET_R:
mOffsetR = aValue;
break;
case ATT_GAMMA_TRANSFER_AMPLITUDE_G:
mAmplitudeG = aValue;
break;
case ATT_GAMMA_TRANSFER_EXPONENT_G:
mExponentG = aValue;
break;
case ATT_GAMMA_TRANSFER_OFFSET_G:
mOffsetG = aValue;
break;
case ATT_GAMMA_TRANSFER_AMPLITUDE_B:
mAmplitudeB = aValue;
break;
case ATT_GAMMA_TRANSFER_EXPONENT_B:
mExponentB = aValue;
break;
case ATT_GAMMA_TRANSFER_OFFSET_B:
mOffsetB = aValue;
break;
case ATT_GAMMA_TRANSFER_AMPLITUDE_A:
mAmplitudeA = aValue;
break;
case ATT_GAMMA_TRANSFER_EXPONENT_A:
mExponentA = aValue;
break;
case ATT_GAMMA_TRANSFER_OFFSET_A:
mOffsetA = aValue;
break;
default:
MOZ_CRASH();
}
Invalidate();
}
void
FilterNodeGammaTransferSoftware::FillLookupTable(ptrdiff_t aComponent,
uint8_t aTable[256])
{
switch (aComponent) {
case B8G8R8A8_COMPONENT_BYTEOFFSET_R:
FillLookupTableImpl(mAmplitudeR, mExponentR, mOffsetR, aTable);
break;
case B8G8R8A8_COMPONENT_BYTEOFFSET_G:
FillLookupTableImpl(mAmplitudeG, mExponentG, mOffsetG, aTable);
break;
case B8G8R8A8_COMPONENT_BYTEOFFSET_B:
FillLookupTableImpl(mAmplitudeB, mExponentB, mOffsetB, aTable);
break;
case B8G8R8A8_COMPONENT_BYTEOFFSET_A:
FillLookupTableImpl(mAmplitudeA, mExponentA, mOffsetA, aTable);
break;
default:
MOZ_ASSERT(false, "unknown component");
break;
}
}
void
FilterNodeGammaTransferSoftware::FillLookupTableImpl(Float aAmplitude,
Float aExponent,
Float aOffset,
uint8_t aTable[256])
{
for (size_t i = 0; i < 256; i++) {
int32_t val = NS_lround(255 * (aAmplitude * pow(i / 255.0f, aExponent) + aOffset));
val = std::min(255, val);
val = std::max(0, val);
aTable[i] = val;
}
}
FilterNodeConvolveMatrixSoftware::FilterNodeConvolveMatrixSoftware()
: mDivisor(0)
, mBias(0)
, mEdgeMode(EDGE_MODE_DUPLICATE)
, mPreserveAlpha(false)
{}
int32_t
FilterNodeConvolveMatrixSoftware::InputIndex(uint32_t aInputEnumIndex)
{
switch (aInputEnumIndex) {
case IN_CONVOLVE_MATRIX_IN: return 0;
default: return -1;
}
}
void
FilterNodeConvolveMatrixSoftware::SetAttribute(uint32_t aIndex,
const IntSize &aKernelSize)
{
MOZ_ASSERT(aIndex == ATT_CONVOLVE_MATRIX_KERNEL_SIZE);
mKernelSize = aKernelSize;
Invalidate();
}
void
FilterNodeConvolveMatrixSoftware::SetAttribute(uint32_t aIndex,
const Float *aMatrix,
uint32_t aSize)
{
MOZ_ASSERT(aIndex == ATT_CONVOLVE_MATRIX_KERNEL_MATRIX);
mKernelMatrix = std::vector<Float>(aMatrix, aMatrix + aSize);
Invalidate();
}
void
FilterNodeConvolveMatrixSoftware::SetAttribute(uint32_t aIndex, Float aValue)
{
switch (aIndex) {
case ATT_CONVOLVE_MATRIX_DIVISOR:
mDivisor = aValue;
break;
case ATT_CONVOLVE_MATRIX_BIAS:
mBias = aValue;
break;
default:
MOZ_CRASH();
}
Invalidate();
}
void
FilterNodeConvolveMatrixSoftware::SetAttribute(uint32_t aIndex, const Size &aKernelUnitLength)
{
switch (aIndex) {
case ATT_CONVOLVE_MATRIX_KERNEL_UNIT_LENGTH:
mKernelUnitLength = aKernelUnitLength;
break;
default:
MOZ_CRASH();
}
Invalidate();
}
void
FilterNodeConvolveMatrixSoftware::SetAttribute(uint32_t aIndex,
const IntPoint &aTarget)
{
MOZ_ASSERT(aIndex == ATT_CONVOLVE_MATRIX_TARGET);
mTarget = aTarget;
Invalidate();
}
void
FilterNodeConvolveMatrixSoftware::SetAttribute(uint32_t aIndex,
const IntRect &aSourceRect)
{
MOZ_ASSERT(aIndex == ATT_CONVOLVE_MATRIX_SOURCE_RECT);
mSourceRect = aSourceRect;
Invalidate();
}
void
FilterNodeConvolveMatrixSoftware::SetAttribute(uint32_t aIndex,
uint32_t aEdgeMode)
{
MOZ_ASSERT(aIndex == ATT_CONVOLVE_MATRIX_EDGE_MODE);
mEdgeMode = static_cast<ConvolveMatrixEdgeMode>(aEdgeMode);
Invalidate();
}
void
FilterNodeConvolveMatrixSoftware::SetAttribute(uint32_t aIndex,
bool aPreserveAlpha)
{
MOZ_ASSERT(aIndex == ATT_CONVOLVE_MATRIX_PRESERVE_ALPHA);
mPreserveAlpha = aPreserveAlpha;
Invalidate();
}
#ifdef DEBUG
static bool sColorSamplingAccessControlEnabled = false;
static uint8_t* sColorSamplingAccessControlStart = nullptr;
static uint8_t* sColorSamplingAccessControlEnd = nullptr;
struct DebugOnlyAutoColorSamplingAccessControl
{
explicit DebugOnlyAutoColorSamplingAccessControl(DataSourceSurface* aSurface)
{
sColorSamplingAccessControlStart = aSurface->GetData();
sColorSamplingAccessControlEnd = sColorSamplingAccessControlStart +
aSurface->Stride() * aSurface->GetSize().height;
sColorSamplingAccessControlEnabled = true;
}
~DebugOnlyAutoColorSamplingAccessControl()
{
sColorSamplingAccessControlEnabled = false;
}
};
static inline void
DebugOnlyCheckColorSamplingAccess(const uint8_t* aSampleAddress)
{
if (sColorSamplingAccessControlEnabled) {
MOZ_ASSERT(aSampleAddress >= sColorSamplingAccessControlStart, "accessing before start");
MOZ_ASSERT(aSampleAddress < sColorSamplingAccessControlEnd, "accessing after end");
}
}
#else
typedef DebugOnly<DataSourceSurface*> DebugOnlyAutoColorSamplingAccessControl;
#define DebugOnlyCheckColorSamplingAccess(address)
#endif
static inline uint8_t
ColorComponentAtPoint(const uint8_t *aData, int32_t aStride, int32_t x, int32_t y, size_t bpp, ptrdiff_t c)
{
DebugOnlyCheckColorSamplingAccess(&aData[y * aStride + bpp * x + c]);
return aData[y * aStride + bpp * x + c];
}
static inline int32_t
ColorAtPoint(const uint8_t *aData, int32_t aStride, int32_t x, int32_t y)
{
DebugOnlyCheckColorSamplingAccess(aData + y * aStride + 4 * x);
return *(uint32_t*)(aData + y * aStride + 4 * x);
}
// Accepts fractional x & y and does bilinear interpolation.
// Only call this if the pixel (floor(x)+1, floor(y)+1) is accessible.
static inline uint8_t
ColorComponentAtPoint(const uint8_t *aData, int32_t aStride, Float x, Float y, size_t bpp, ptrdiff_t c)
{
const uint32_t f = 256;
const int32_t lx = floor(x);
const int32_t ly = floor(y);
const int32_t tux = uint32_t((x - lx) * f);
const int32_t tlx = f - tux;
const int32_t tuy = uint32_t((y - ly) * f);
const int32_t tly = f - tuy;
const uint8_t &cll = ColorComponentAtPoint(aData, aStride, lx, ly, bpp, c);
const uint8_t &cul = ColorComponentAtPoint(aData, aStride, lx + 1, ly, bpp, c);
const uint8_t &clu = ColorComponentAtPoint(aData, aStride, lx, ly + 1, bpp, c);
const uint8_t &cuu = ColorComponentAtPoint(aData, aStride, lx + 1, ly + 1, bpp, c);
return ((cll * tlx + cul * tux) * tly +
(clu * tlx + cuu * tux) * tuy + f * f / 2) / (f * f);
}
static int32_t
ClampToNonZero(int32_t a)
{
return a * (a >= 0);
}
template<typename CoordType>
static void
ConvolvePixel(const uint8_t *aSourceData,
uint8_t *aTargetData,
int32_t aWidth, int32_t aHeight,
int32_t aSourceStride, int32_t aTargetStride,
int32_t aX, int32_t aY,
const int32_t *aKernel,
int32_t aBias, int32_t shiftL, int32_t shiftR,
bool aPreserveAlpha,
int32_t aOrderX, int32_t aOrderY,
int32_t aTargetX, int32_t aTargetY,
CoordType aKernelUnitLengthX,
CoordType aKernelUnitLengthY)
{
int32_t sum[4] = {0, 0, 0, 0};
int32_t offsets[4] = { B8G8R8A8_COMPONENT_BYTEOFFSET_R,
B8G8R8A8_COMPONENT_BYTEOFFSET_G,
B8G8R8A8_COMPONENT_BYTEOFFSET_B,
B8G8R8A8_COMPONENT_BYTEOFFSET_A };
int32_t channels = aPreserveAlpha ? 3 : 4;
int32_t roundingAddition = shiftL == 0 ? 0 : 1 << (shiftL - 1);
for (int32_t y = 0; y < aOrderY; y++) {
CoordType sampleY = aY + (y - aTargetY) * aKernelUnitLengthY;
for (int32_t x = 0; x < aOrderX; x++) {
CoordType sampleX = aX + (x - aTargetX) * aKernelUnitLengthX;
for (int32_t i = 0; i < channels; i++) {
sum[i] += aKernel[aOrderX * y + x] *
ColorComponentAtPoint(aSourceData, aSourceStride,
sampleX, sampleY, 4, offsets[i]);
}
}
}
for (int32_t i = 0; i < channels; i++) {
int32_t clamped = umin(ClampToNonZero(sum[i] + aBias), 255 << shiftL >> shiftR);
aTargetData[aY * aTargetStride + 4 * aX + offsets[i]] =
(clamped + roundingAddition) << shiftR >> shiftL;
}
if (aPreserveAlpha) {
aTargetData[aY * aTargetStride + 4 * aX + B8G8R8A8_COMPONENT_BYTEOFFSET_A] =
aSourceData[aY * aSourceStride + 4 * aX + B8G8R8A8_COMPONENT_BYTEOFFSET_A];
}
}
TemporaryRef<DataSourceSurface>
FilterNodeConvolveMatrixSoftware::Render(const IntRect& aRect)
{
if (mKernelUnitLength.width == floor(mKernelUnitLength.width) &&
mKernelUnitLength.height == floor(mKernelUnitLength.height)) {
return DoRender(aRect, (int32_t)mKernelUnitLength.width, (int32_t)mKernelUnitLength.height);
}
return DoRender(aRect, mKernelUnitLength.width, mKernelUnitLength.height);
}
static std::vector<Float>
ReversedVector(const std::vector<Float> &aVector)
{
size_t length = aVector.size();
std::vector<Float> result(length, 0);
for (size_t i = 0; i < length; i++) {
result[length - 1 - i] = aVector[i];
}
return result;
}
static std::vector<Float>
ScaledVector(const std::vector<Float> &aVector, Float aDivisor)
{
size_t length = aVector.size();
std::vector<Float> result(length, 0);
for (size_t i = 0; i < length; i++) {
result[i] = aVector[i] / aDivisor;
}
return result;
}
static Float
MaxVectorSum(const std::vector<Float> &aVector)
{
Float sum = 0;
size_t length = aVector.size();
for (size_t i = 0; i < length; i++) {
if (aVector[i] > 0) {
sum += aVector[i];
}
}
return sum;
}
// Returns shiftL and shiftR in such a way that
// a << shiftL >> shiftR is roughly a * aFloat.
static void
TranslateDoubleToShifts(double aDouble, int32_t &aShiftL, int32_t &aShiftR)
{
aShiftL = 0;
aShiftR = 0;
if (aDouble <= 0) {
MOZ_CRASH();
}
if (aDouble < 1) {
while (1 << (aShiftR + 1) < 1 / aDouble) {
aShiftR++;
}
} else {
while (1 << (aShiftL + 1) < aDouble) {
aShiftL++;
}
}
}
template<typename CoordType>
TemporaryRef<DataSourceSurface>
FilterNodeConvolveMatrixSoftware::DoRender(const IntRect& aRect,
CoordType aKernelUnitLengthX,
CoordType aKernelUnitLengthY)
{
if (mKernelSize.width <= 0 || mKernelSize.height <= 0 ||
mKernelMatrix.size() != uint32_t(mKernelSize.width * mKernelSize.height) ||
!IntRect(IntPoint(0, 0), mKernelSize).Contains(mTarget) ||
mDivisor == 0) {
return Factory::CreateDataSourceSurface(aRect.Size(), SurfaceFormat::B8G8R8A8);
}
IntRect srcRect = InflatedSourceRect(aRect);
// Inflate the source rect by another pixel because the bilinear filtering in
// ColorComponentAtPoint may want to access the margins.
srcRect.Inflate(1);
RefPtr<DataSourceSurface> input =
GetInputDataSourceSurface(IN_CONVOLVE_MATRIX_IN, srcRect, NEED_COLOR_CHANNELS, mEdgeMode, &mSourceRect);
if (!input) {
return nullptr;
}
DebugOnlyAutoColorSamplingAccessControl accessControl(input);
RefPtr<DataSourceSurface> target =
Factory::CreateDataSourceSurface(aRect.Size(), SurfaceFormat::B8G8R8A8, true);
if (MOZ2D_WARN_IF(!target)) {
return nullptr;
}
IntPoint offset = aRect.TopLeft() - srcRect.TopLeft();
uint8_t* sourceData = DataAtOffset(input, offset);
int32_t sourceStride = input->Stride();
uint8_t* targetData = target->GetData();
int32_t targetStride = target->Stride();
// Why exactly are we reversing the kernel?
std::vector<Float> kernel = ReversedVector(mKernelMatrix);
kernel = ScaledVector(kernel, mDivisor);
Float maxResultAbs = std::max(MaxVectorSum(kernel) + mBias,
MaxVectorSum(ScaledVector(kernel, -1)) - mBias);
maxResultAbs = std::max(maxResultAbs, 1.0f);
double idealFactor = INT32_MAX / 2.0 / maxResultAbs / 255.0 * 0.999;
MOZ_ASSERT(255.0 * maxResultAbs * idealFactor <= INT32_MAX / 2.0, "badly chosen float-to-int scale");
int32_t shiftL, shiftR;
TranslateDoubleToShifts(idealFactor, shiftL, shiftR);
double factorFromShifts = Float(1 << shiftL) / Float(1 << shiftR);
MOZ_ASSERT(255.0 * maxResultAbs * factorFromShifts <= INT32_MAX / 2.0, "badly chosen float-to-int scale");
int32_t* intKernel = new int32_t[kernel.size()];
for (size_t i = 0; i < kernel.size(); i++) {
intKernel[i] = NS_lround(kernel[i] * factorFromShifts);
}
int32_t bias = NS_lround(mBias * 255 * factorFromShifts);
for (int32_t y = 0; y < aRect.height; y++) {
for (int32_t x = 0; x < aRect.width; x++) {
ConvolvePixel(sourceData, targetData,
aRect.width, aRect.height, sourceStride, targetStride,
x, y, intKernel, bias, shiftL, shiftR, mPreserveAlpha,
mKernelSize.width, mKernelSize.height, mTarget.x, mTarget.y,
aKernelUnitLengthX, aKernelUnitLengthY);
}
}
delete[] intKernel;
return target.forget();
}
void
FilterNodeConvolveMatrixSoftware::RequestFromInputsForRect(const IntRect &aRect)
{
RequestInputRect(IN_CONVOLVE_MATRIX_IN, InflatedSourceRect(aRect));
}
IntRect
FilterNodeConvolveMatrixSoftware::InflatedSourceRect(const IntRect &aDestRect)
{
if (aDestRect.IsEmpty()) {
return IntRect();
}
IntMargin margin;
margin.left = ceil(mTarget.x * mKernelUnitLength.width);
margin.top = ceil(mTarget.y * mKernelUnitLength.height);
margin.right = ceil((mKernelSize.width - mTarget.x - 1) * mKernelUnitLength.width);
margin.bottom = ceil((mKernelSize.height - mTarget.y - 1) * mKernelUnitLength.height);
IntRect srcRect = aDestRect;
srcRect.Inflate(margin);
return srcRect;
}
IntRect
FilterNodeConvolveMatrixSoftware::InflatedDestRect(const IntRect &aSourceRect)
{
if (aSourceRect.IsEmpty()) {
return IntRect();
}
IntMargin margin;
margin.left = ceil((mKernelSize.width - mTarget.x - 1) * mKernelUnitLength.width);
margin.top = ceil((mKernelSize.height - mTarget.y - 1) * mKernelUnitLength.height);
margin.right = ceil(mTarget.x * mKernelUnitLength.width);
margin.bottom = ceil(mTarget.y * mKernelUnitLength.height);
IntRect destRect = aSourceRect;
destRect.Inflate(margin);
return destRect;
}
IntRect
FilterNodeConvolveMatrixSoftware::GetOutputRectInRect(const IntRect& aRect)
{
IntRect srcRequest = InflatedSourceRect(aRect);
IntRect srcOutput = GetInputRectInRect(IN_COLOR_MATRIX_IN, srcRequest);
return InflatedDestRect(srcOutput).Intersect(aRect);
}
FilterNodeDisplacementMapSoftware::FilterNodeDisplacementMapSoftware()
: mScale(0.0f)
, mChannelX(COLOR_CHANNEL_R)
, mChannelY(COLOR_CHANNEL_G)
{}
int32_t
FilterNodeDisplacementMapSoftware::InputIndex(uint32_t aInputEnumIndex)
{
switch (aInputEnumIndex) {
case IN_DISPLACEMENT_MAP_IN: return 0;
case IN_DISPLACEMENT_MAP_IN2: return 1;
default: return -1;
}
}
void
FilterNodeDisplacementMapSoftware::SetAttribute(uint32_t aIndex,
Float aScale)
{
MOZ_ASSERT(aIndex == ATT_DISPLACEMENT_MAP_SCALE);
mScale = aScale;
Invalidate();
}
void
FilterNodeDisplacementMapSoftware::SetAttribute(uint32_t aIndex, uint32_t aValue)
{
switch (aIndex) {
case ATT_DISPLACEMENT_MAP_X_CHANNEL:
mChannelX = static_cast<ColorChannel>(aValue);
break;
case ATT_DISPLACEMENT_MAP_Y_CHANNEL:
mChannelY = static_cast<ColorChannel>(aValue);
break;
default:
MOZ_CRASH();
}
Invalidate();
}
TemporaryRef<DataSourceSurface>
FilterNodeDisplacementMapSoftware::Render(const IntRect& aRect)
{
IntRect srcRect = InflatedSourceOrDestRect(aRect);
RefPtr<DataSourceSurface> input =
GetInputDataSourceSurface(IN_DISPLACEMENT_MAP_IN, srcRect, NEED_COLOR_CHANNELS);
RefPtr<DataSourceSurface> map =
GetInputDataSourceSurface(IN_DISPLACEMENT_MAP_IN2, aRect, NEED_COLOR_CHANNELS);
RefPtr<DataSourceSurface> target =
Factory::CreateDataSourceSurface(aRect.Size(), SurfaceFormat::B8G8R8A8);
if (MOZ2D_WARN_IF(!(input && map && target))) {
return nullptr;
}
IntPoint offset = aRect.TopLeft() - srcRect.TopLeft();
uint8_t* sourceData = DataAtOffset(input, offset);
int32_t sourceStride = input->Stride();
uint8_t* mapData = map->GetData();
int32_t mapStride = map->Stride();
uint8_t* targetData = target->GetData();
int32_t targetStride = target->Stride();
static const ptrdiff_t channelMap[4] = {
B8G8R8A8_COMPONENT_BYTEOFFSET_R,
B8G8R8A8_COMPONENT_BYTEOFFSET_G,
B8G8R8A8_COMPONENT_BYTEOFFSET_B,
B8G8R8A8_COMPONENT_BYTEOFFSET_A };
uint16_t xChannel = channelMap[mChannelX];
uint16_t yChannel = channelMap[mChannelY];
float scaleOver255 = mScale / 255.0f;
float scaleAdjustment = -0.5f * mScale;
for (int32_t y = 0; y < aRect.height; y++) {
for (int32_t x = 0; x < aRect.width; x++) {
uint32_t mapIndex = y * mapStride + 4 * x;
uint32_t targIndex = y * targetStride + 4 * x;
int32_t sourceX = x +
scaleOver255 * mapData[mapIndex + xChannel] + scaleAdjustment;
int32_t sourceY = y +
scaleOver255 * mapData[mapIndex + yChannel] + scaleAdjustment;
*(uint32_t*)(targetData + targIndex) =
ColorAtPoint(sourceData, sourceStride, sourceX, sourceY);
}
}
return target.forget();
}
void
FilterNodeDisplacementMapSoftware::RequestFromInputsForRect(const IntRect &aRect)
{
RequestInputRect(IN_DISPLACEMENT_MAP_IN, InflatedSourceOrDestRect(aRect));
RequestInputRect(IN_DISPLACEMENT_MAP_IN2, aRect);
}
IntRect
FilterNodeDisplacementMapSoftware::InflatedSourceOrDestRect(const IntRect &aDestOrSourceRect)
{
IntRect sourceOrDestRect = aDestOrSourceRect;
sourceOrDestRect.Inflate(ceil(fabs(mScale) / 2));
return sourceOrDestRect;
}
IntRect
FilterNodeDisplacementMapSoftware::GetOutputRectInRect(const IntRect& aRect)
{
IntRect srcRequest = InflatedSourceOrDestRect(aRect);
IntRect srcOutput = GetInputRectInRect(IN_DISPLACEMENT_MAP_IN, srcRequest);
return InflatedSourceOrDestRect(srcOutput).Intersect(aRect);
}
FilterNodeTurbulenceSoftware::FilterNodeTurbulenceSoftware()
: mNumOctaves(0)
, mSeed(0)
, mStitchable(false)
, mType(TURBULENCE_TYPE_TURBULENCE)
{}
int32_t
FilterNodeTurbulenceSoftware::InputIndex(uint32_t aInputEnumIndex)
{
return -1;
}
void
FilterNodeTurbulenceSoftware::SetAttribute(uint32_t aIndex, const Size &aBaseFrequency)
{
switch (aIndex) {
case ATT_TURBULENCE_BASE_FREQUENCY:
mBaseFrequency = aBaseFrequency;
break;
default:
MOZ_CRASH();
break;
}
Invalidate();
}
void
FilterNodeTurbulenceSoftware::SetAttribute(uint32_t aIndex, const IntRect &aRect)
{
switch (aIndex) {
case ATT_TURBULENCE_RECT:
mRenderRect = aRect;
break;
default:
MOZ_CRASH();
break;
}
Invalidate();
}
void
FilterNodeTurbulenceSoftware::SetAttribute(uint32_t aIndex, bool aStitchable)
{
MOZ_ASSERT(aIndex == ATT_TURBULENCE_STITCHABLE);
mStitchable = aStitchable;
Invalidate();
}
void
FilterNodeTurbulenceSoftware::SetAttribute(uint32_t aIndex, uint32_t aValue)
{
switch (aIndex) {
case ATT_TURBULENCE_NUM_OCTAVES:
mNumOctaves = aValue;
break;
case ATT_TURBULENCE_SEED:
mSeed = aValue;
break;
case ATT_TURBULENCE_TYPE:
mType = static_cast<TurbulenceType>(aValue);
break;
default:
MOZ_CRASH();
break;
}
Invalidate();
}
TemporaryRef<DataSourceSurface>
FilterNodeTurbulenceSoftware::Render(const IntRect& aRect)
{
return FilterProcessing::RenderTurbulence(
aRect.Size(), aRect.TopLeft(), mBaseFrequency,
mSeed, mNumOctaves, mType, mStitchable, Rect(mRenderRect));
}
IntRect
FilterNodeTurbulenceSoftware::GetOutputRectInRect(const IntRect& aRect)
{
return aRect.Intersect(mRenderRect);
}
FilterNodeArithmeticCombineSoftware::FilterNodeArithmeticCombineSoftware()
: mK1(0), mK2(0), mK3(0), mK4(0)
{
}
int32_t
FilterNodeArithmeticCombineSoftware::InputIndex(uint32_t aInputEnumIndex)
{
switch (aInputEnumIndex) {
case IN_ARITHMETIC_COMBINE_IN: return 0;
case IN_ARITHMETIC_COMBINE_IN2: return 1;
default: return -1;
}
}
void
FilterNodeArithmeticCombineSoftware::SetAttribute(uint32_t aIndex,
const Float* aFloat,
uint32_t aSize)
{
MOZ_ASSERT(aIndex == ATT_ARITHMETIC_COMBINE_COEFFICIENTS);
MOZ_ASSERT(aSize == 4);
mK1 = aFloat[0];
mK2 = aFloat[1];
mK3 = aFloat[2];
mK4 = aFloat[3];
Invalidate();
}
TemporaryRef<DataSourceSurface>
FilterNodeArithmeticCombineSoftware::Render(const IntRect& aRect)
{
RefPtr<DataSourceSurface> input1 =
GetInputDataSourceSurface(IN_ARITHMETIC_COMBINE_IN, aRect, NEED_COLOR_CHANNELS);
RefPtr<DataSourceSurface> input2 =
GetInputDataSourceSurface(IN_ARITHMETIC_COMBINE_IN2, aRect, NEED_COLOR_CHANNELS);
if (!input1 && !input2) {
return nullptr;
}
// If one input is null, treat it as transparent by adjusting the factors.
Float k1 = mK1, k2 = mK2, k3 = mK3, k4 = mK4;
if (!input1) {
k1 = 0.0f;
k2 = 0.0f;
input1 = input2;
}
if (!input2) {
k1 = 0.0f;
k3 = 0.0f;
input2 = input1;
}
return FilterProcessing::ApplyArithmeticCombine(input1, input2, k1, k2, k3, k4);
}
void
FilterNodeArithmeticCombineSoftware::RequestFromInputsForRect(const IntRect &aRect)
{
RequestInputRect(IN_ARITHMETIC_COMBINE_IN, aRect);
RequestInputRect(IN_ARITHMETIC_COMBINE_IN2, aRect);
}
IntRect
FilterNodeArithmeticCombineSoftware::GetOutputRectInRect(const IntRect& aRect)
{
if (mK4 > 0.0f) {
return aRect;
}
IntRect rectFrom1 = GetInputRectInRect(IN_ARITHMETIC_COMBINE_IN, aRect).Intersect(aRect);
IntRect rectFrom2 = GetInputRectInRect(IN_ARITHMETIC_COMBINE_IN2, aRect).Intersect(aRect);
IntRect result;
if (mK1 > 0.0f) {
result = rectFrom1.Intersect(rectFrom2);
}
if (mK2 > 0.0f) {
result = result.Union(rectFrom1);
}
if (mK3 > 0.0f) {
result = result.Union(rectFrom2);
}
return result;
}
FilterNodeCompositeSoftware::FilterNodeCompositeSoftware()
: mOperator(COMPOSITE_OPERATOR_OVER)
{}
int32_t
FilterNodeCompositeSoftware::InputIndex(uint32_t aInputEnumIndex)
{
return aInputEnumIndex - IN_COMPOSITE_IN_START;
}
void
FilterNodeCompositeSoftware::SetAttribute(uint32_t aIndex, uint32_t aCompositeOperator)
{
MOZ_ASSERT(aIndex == ATT_COMPOSITE_OPERATOR);
mOperator = static_cast<CompositeOperator>(aCompositeOperator);
Invalidate();
}
TemporaryRef<DataSourceSurface>
FilterNodeCompositeSoftware::Render(const IntRect& aRect)
{
RefPtr<DataSourceSurface> start =
GetInputDataSourceSurface(IN_COMPOSITE_IN_START, aRect, NEED_COLOR_CHANNELS);
RefPtr<DataSourceSurface> dest =
Factory::CreateDataSourceSurface(aRect.Size(), SurfaceFormat::B8G8R8A8, !start);
if (MOZ2D_WARN_IF(!dest)) {
return nullptr;
}
if (start) {
CopyRect(start, dest, aRect - aRect.TopLeft(), IntPoint());
}
for (size_t inputIndex = 1; inputIndex < NumberOfSetInputs(); inputIndex++) {
RefPtr<DataSourceSurface> input =
GetInputDataSourceSurface(IN_COMPOSITE_IN_START + inputIndex, aRect, NEED_COLOR_CHANNELS);
if (input) {
FilterProcessing::ApplyComposition(input, dest, mOperator);
} else {
// We need to treat input as transparent. Depending on the composite
// operator, different things happen to dest.
switch (mOperator) {
case COMPOSITE_OPERATOR_OVER:
case COMPOSITE_OPERATOR_ATOP:
case COMPOSITE_OPERATOR_XOR:
// dest is unchanged.
break;
case COMPOSITE_OPERATOR_OUT:
// dest is now transparent, but it can become non-transparent again
// when compositing additional inputs.
ClearDataSourceSurface(dest);
break;
case COMPOSITE_OPERATOR_IN:
// Transparency always wins. We're completely transparent now and
// no additional input can get rid of that transparency.
return nullptr;
}
}
}
return dest.forget();
}
void
FilterNodeCompositeSoftware::RequestFromInputsForRect(const IntRect &aRect)
{
for (size_t inputIndex = 0; inputIndex < NumberOfSetInputs(); inputIndex++) {
RequestInputRect(IN_COMPOSITE_IN_START + inputIndex, aRect);
}
}
IntRect
FilterNodeCompositeSoftware::GetOutputRectInRect(const IntRect& aRect)
{
IntRect rect;
for (size_t inputIndex = 0; inputIndex < NumberOfSetInputs(); inputIndex++) {
IntRect inputRect = GetInputRectInRect(IN_COMPOSITE_IN_START + inputIndex, aRect);
if (mOperator == COMPOSITE_OPERATOR_IN && inputIndex > 0) {
rect = rect.Intersect(inputRect);
} else {
rect = rect.Union(inputRect);
}
}
return rect;
}
int32_t
FilterNodeBlurXYSoftware::InputIndex(uint32_t aInputEnumIndex)
{
switch (aInputEnumIndex) {
case IN_GAUSSIAN_BLUR_IN: return 0;
default: return -1;
}
}
TemporaryRef<DataSourceSurface>
FilterNodeBlurXYSoftware::Render(const IntRect& aRect)
{
Size sigmaXY = StdDeviationXY();
IntSize d = AlphaBoxBlur::CalculateBlurRadius(Point(sigmaXY.width, sigmaXY.height));
if (d.width == 0 && d.height == 0) {
return GetInputDataSourceSurface(IN_GAUSSIAN_BLUR_IN, aRect);
}
IntRect srcRect = InflatedSourceOrDestRect(aRect);
RefPtr<DataSourceSurface> input =
GetInputDataSourceSurface(IN_GAUSSIAN_BLUR_IN, srcRect);
if (!input) {
return nullptr;
}
RefPtr<DataSourceSurface> target;
Rect r(0, 0, srcRect.width, srcRect.height);
if (input->GetFormat() == SurfaceFormat::A8) {
target = Factory::CreateDataSourceSurface(srcRect.Size(), SurfaceFormat::A8);
if (MOZ2D_WARN_IF(!target)) {
return nullptr;
}
CopyRect(input, target, IntRect(IntPoint(), input->GetSize()), IntPoint());
AlphaBoxBlur blur(r, target->Stride(), sigmaXY.width, sigmaXY.height);
blur.Blur(target->GetData());
} else {
RefPtr<DataSourceSurface> channel0, channel1, channel2, channel3;
FilterProcessing::SeparateColorChannels(input, channel0, channel1, channel2, channel3);
if (MOZ2D_WARN_IF(!(channel0 && channel1 && channel2))) {
return nullptr;
}
AlphaBoxBlur blur(r, channel0->Stride(), sigmaXY.width, sigmaXY.height);
blur.Blur(channel0->GetData());
blur.Blur(channel1->GetData());
blur.Blur(channel2->GetData());
blur.Blur(channel3->GetData());
target = FilterProcessing::CombineColorChannels(channel0, channel1, channel2, channel3);
}
return GetDataSurfaceInRect(target, srcRect, aRect, EDGE_MODE_NONE);
}
void
FilterNodeBlurXYSoftware::RequestFromInputsForRect(const IntRect &aRect)
{
RequestInputRect(IN_GAUSSIAN_BLUR_IN, InflatedSourceOrDestRect(aRect));
}
IntRect
FilterNodeBlurXYSoftware::InflatedSourceOrDestRect(const IntRect &aDestRect)
{
Size sigmaXY = StdDeviationXY();
IntSize d = AlphaBoxBlur::CalculateBlurRadius(Point(sigmaXY.width, sigmaXY.height));
IntRect srcRect = aDestRect;
srcRect.Inflate(d);
return srcRect;
}
IntRect
FilterNodeBlurXYSoftware::GetOutputRectInRect(const IntRect& aRect)
{
IntRect srcRequest = InflatedSourceOrDestRect(aRect);
IntRect srcOutput = GetInputRectInRect(IN_GAUSSIAN_BLUR_IN, srcRequest);
return InflatedSourceOrDestRect(srcOutput).Intersect(aRect);
}
FilterNodeGaussianBlurSoftware::FilterNodeGaussianBlurSoftware()
: mStdDeviation(0)
{}
static float
ClampStdDeviation(float aStdDeviation)
{
// Cap software blur radius for performance reasons.
return std::min(std::max(0.0f, aStdDeviation), 100.0f);
}
void
FilterNodeGaussianBlurSoftware::SetAttribute(uint32_t aIndex,
float aStdDeviation)
{
switch (aIndex) {
case ATT_GAUSSIAN_BLUR_STD_DEVIATION:
mStdDeviation = ClampStdDeviation(aStdDeviation);
break;
default:
MOZ_CRASH();
}
Invalidate();
}
Size
FilterNodeGaussianBlurSoftware::StdDeviationXY()
{
return Size(mStdDeviation, mStdDeviation);
}
FilterNodeDirectionalBlurSoftware::FilterNodeDirectionalBlurSoftware()
: mBlurDirection(BLUR_DIRECTION_X)
{}
void
FilterNodeDirectionalBlurSoftware::SetAttribute(uint32_t aIndex,
Float aStdDeviation)
{
switch (aIndex) {
case ATT_DIRECTIONAL_BLUR_STD_DEVIATION:
mStdDeviation = ClampStdDeviation(aStdDeviation);
break;
default:
MOZ_CRASH();
}
Invalidate();
}
void
FilterNodeDirectionalBlurSoftware::SetAttribute(uint32_t aIndex,
uint32_t aBlurDirection)
{
switch (aIndex) {
case ATT_DIRECTIONAL_BLUR_DIRECTION:
mBlurDirection = (BlurDirection)aBlurDirection;
break;
default:
MOZ_CRASH();
}
Invalidate();
}
Size
FilterNodeDirectionalBlurSoftware::StdDeviationXY()
{
float sigmaX = mBlurDirection == BLUR_DIRECTION_X ? mStdDeviation : 0;
float sigmaY = mBlurDirection == BLUR_DIRECTION_Y ? mStdDeviation : 0;
return Size(sigmaX, sigmaY);
}
int32_t
FilterNodeCropSoftware::InputIndex(uint32_t aInputEnumIndex)
{
switch (aInputEnumIndex) {
case IN_CROP_IN: return 0;
default: return -1;
}
}
void
FilterNodeCropSoftware::SetAttribute(uint32_t aIndex,
const Rect &aSourceRect)
{
MOZ_ASSERT(aIndex == ATT_CROP_RECT);
Rect srcRect = aSourceRect;
srcRect.Round();
if (!srcRect.ToIntRect(&mCropRect)) {
mCropRect = IntRect();
}
Invalidate();
}
TemporaryRef<DataSourceSurface>
FilterNodeCropSoftware::Render(const IntRect& aRect)
{
return GetInputDataSourceSurface(IN_CROP_IN, aRect.Intersect(mCropRect));
}
void
FilterNodeCropSoftware::RequestFromInputsForRect(const IntRect &aRect)
{
RequestInputRect(IN_CROP_IN, aRect.Intersect(mCropRect));
}
IntRect
FilterNodeCropSoftware::GetOutputRectInRect(const IntRect& aRect)
{
return GetInputRectInRect(IN_CROP_IN, aRect).Intersect(mCropRect);
}
int32_t
FilterNodePremultiplySoftware::InputIndex(uint32_t aInputEnumIndex)
{
switch (aInputEnumIndex) {
case IN_PREMULTIPLY_IN: return 0;
default: return -1;
}
}
TemporaryRef<DataSourceSurface>
FilterNodePremultiplySoftware::Render(const IntRect& aRect)
{
RefPtr<DataSourceSurface> input =
GetInputDataSourceSurface(IN_PREMULTIPLY_IN, aRect);
return input ? Premultiply(input) : nullptr;
}
void
FilterNodePremultiplySoftware::RequestFromInputsForRect(const IntRect &aRect)
{
RequestInputRect(IN_PREMULTIPLY_IN, aRect);
}
IntRect
FilterNodePremultiplySoftware::GetOutputRectInRect(const IntRect& aRect)
{
return GetInputRectInRect(IN_PREMULTIPLY_IN, aRect);
}
int32_t
FilterNodeUnpremultiplySoftware::InputIndex(uint32_t aInputEnumIndex)
{
switch (aInputEnumIndex) {
case IN_UNPREMULTIPLY_IN: return 0;
default: return -1;
}
}
TemporaryRef<DataSourceSurface>
FilterNodeUnpremultiplySoftware::Render(const IntRect& aRect)
{
RefPtr<DataSourceSurface> input =
GetInputDataSourceSurface(IN_UNPREMULTIPLY_IN, aRect);
return input ? Unpremultiply(input) : nullptr;
}
void
FilterNodeUnpremultiplySoftware::RequestFromInputsForRect(const IntRect &aRect)
{
RequestInputRect(IN_UNPREMULTIPLY_IN, aRect);
}
IntRect
FilterNodeUnpremultiplySoftware::GetOutputRectInRect(const IntRect& aRect)
{
return GetInputRectInRect(IN_UNPREMULTIPLY_IN, aRect);
}
bool
PointLightSoftware::SetAttribute(uint32_t aIndex, const Point3D &aPoint)
{
switch (aIndex) {
case ATT_POINT_LIGHT_POSITION:
mPosition = aPoint;
break;
default:
return false;
}
return true;
}
SpotLightSoftware::SpotLightSoftware()
: mSpecularFocus(0)
, mLimitingConeAngle(0)
, mLimitingConeCos(1)
{
}
bool
SpotLightSoftware::SetAttribute(uint32_t aIndex, const Point3D &aPoint)
{
switch (aIndex) {
case ATT_SPOT_LIGHT_POSITION:
mPosition = aPoint;
break;
case ATT_SPOT_LIGHT_POINTS_AT:
mPointsAt = aPoint;
break;
default:
return false;
}
return true;
}
bool
SpotLightSoftware::SetAttribute(uint32_t aIndex, Float aValue)
{
switch (aIndex) {
case ATT_SPOT_LIGHT_LIMITING_CONE_ANGLE:
mLimitingConeAngle = aValue;
break;
case ATT_SPOT_LIGHT_FOCUS:
mSpecularFocus = aValue;
break;
default:
return false;
}
return true;
}
DistantLightSoftware::DistantLightSoftware()
: mAzimuth(0)
, mElevation(0)
{
}
bool
DistantLightSoftware::SetAttribute(uint32_t aIndex, Float aValue)
{
switch (aIndex) {
case ATT_DISTANT_LIGHT_AZIMUTH:
mAzimuth = aValue;
break;
case ATT_DISTANT_LIGHT_ELEVATION:
mElevation = aValue;
break;
default:
return false;
}
return true;
}
static inline Point3D Normalized(const Point3D &vec) {
Point3D copy(vec);
copy.Normalize();
return copy;
}
template<typename LightType, typename LightingType>
FilterNodeLightingSoftware<LightType, LightingType>::FilterNodeLightingSoftware(const char* aTypeName)
: mSurfaceScale(0)
#if defined(MOZILLA_INTERNAL_API) && (defined(DEBUG) || defined(FORCE_BUILD_REFCNT_LOGGING))
, mTypeName(aTypeName)
#endif
{}
template<typename LightType, typename LightingType>
int32_t
FilterNodeLightingSoftware<LightType, LightingType>::InputIndex(uint32_t aInputEnumIndex)
{
switch (aInputEnumIndex) {
case IN_LIGHTING_IN: return 0;
default: return -1;
}
}
template<typename LightType, typename LightingType>
void
FilterNodeLightingSoftware<LightType, LightingType>::SetAttribute(uint32_t aIndex, const Point3D &aPoint)
{
if (mLight.SetAttribute(aIndex, aPoint)) {
Invalidate();
return;
}
MOZ_CRASH();
}
template<typename LightType, typename LightingType>
void
FilterNodeLightingSoftware<LightType, LightingType>::SetAttribute(uint32_t aIndex, Float aValue)
{
if (mLight.SetAttribute(aIndex, aValue) ||
mLighting.SetAttribute(aIndex, aValue)) {
Invalidate();
return;
}
switch (aIndex) {
case ATT_LIGHTING_SURFACE_SCALE:
mSurfaceScale = aValue;
break;
default:
MOZ_CRASH();
}
Invalidate();
}
template<typename LightType, typename LightingType>
void
FilterNodeLightingSoftware<LightType, LightingType>::SetAttribute(uint32_t aIndex, const Size &aKernelUnitLength)
{
switch (aIndex) {
case ATT_LIGHTING_KERNEL_UNIT_LENGTH:
mKernelUnitLength = aKernelUnitLength;
break;
default:
MOZ_CRASH();
}
Invalidate();
}
template<typename LightType, typename LightingType>
void
FilterNodeLightingSoftware<LightType, LightingType>::SetAttribute(uint32_t aIndex, const Color &aColor)
{
MOZ_ASSERT(aIndex == ATT_LIGHTING_COLOR);
mColor = aColor;
Invalidate();
}
template<typename LightType, typename LightingType>
IntRect
FilterNodeLightingSoftware<LightType, LightingType>::GetOutputRectInRect(const IntRect& aRect)
{
return GetInputRectInRect(IN_LIGHTING_IN, aRect);
}
Point3D
PointLightSoftware::GetVectorToLight(const Point3D &aTargetPoint)
{
return Normalized(mPosition - aTargetPoint);
}
uint32_t
PointLightSoftware::GetColor(uint32_t aLightColor, const Point3D &aVectorToLight)
{
return aLightColor;
}
void
SpotLightSoftware::Prepare()
{
mVectorFromFocusPointToLight = Normalized(mPointsAt - mPosition);
mLimitingConeCos = std::max<double>(cos(mLimitingConeAngle * M_PI/180.0), 0.0);
mPowCache.CacheForExponent(mSpecularFocus);
}
Point3D
SpotLightSoftware::GetVectorToLight(const Point3D &aTargetPoint)
{
return Normalized(mPosition - aTargetPoint);
}
uint32_t
SpotLightSoftware::GetColor(uint32_t aLightColor, const Point3D &aVectorToLight)
{
union {
uint32_t color;
uint8_t colorC[4];
};
color = aLightColor;
Float dot = -aVectorToLight.DotProduct(mVectorFromFocusPointToLight);
uint16_t doti = dot * (dot >= 0) * (1 << PowCache::sInputIntPrecisionBits);
uint32_t tmp = mPowCache.Pow(doti) * (dot >= mLimitingConeCos);
MOZ_ASSERT(tmp <= (1 << PowCache::sOutputIntPrecisionBits), "pow() result must not exceed 1.0");
colorC[B8G8R8A8_COMPONENT_BYTEOFFSET_R] = uint8_t((colorC[B8G8R8A8_COMPONENT_BYTEOFFSET_R] * tmp) >> PowCache::sOutputIntPrecisionBits);
colorC[B8G8R8A8_COMPONENT_BYTEOFFSET_G] = uint8_t((colorC[B8G8R8A8_COMPONENT_BYTEOFFSET_G] * tmp) >> PowCache::sOutputIntPrecisionBits);
colorC[B8G8R8A8_COMPONENT_BYTEOFFSET_B] = uint8_t((colorC[B8G8R8A8_COMPONENT_BYTEOFFSET_B] * tmp) >> PowCache::sOutputIntPrecisionBits);
colorC[B8G8R8A8_COMPONENT_BYTEOFFSET_A] = 255;
return color;
}
void
DistantLightSoftware::Prepare()
{
const double radPerDeg = M_PI / 180.0;
mVectorToLight.x = cos(mAzimuth * radPerDeg) * cos(mElevation * radPerDeg);
mVectorToLight.y = sin(mAzimuth * radPerDeg) * cos(mElevation * radPerDeg);
mVectorToLight.z = sin(mElevation * radPerDeg);
}
Point3D
DistantLightSoftware::GetVectorToLight(const Point3D &aTargetPoint)
{
return mVectorToLight;
}
uint32_t
DistantLightSoftware::GetColor(uint32_t aLightColor, const Point3D &aVectorToLight)
{
return aLightColor;
}
template<typename CoordType>
static Point3D
GenerateNormal(const uint8_t *data, int32_t stride,
int32_t x, int32_t y, float surfaceScale,
CoordType dx, CoordType dy)
{
const uint8_t *index = data + y * stride + x;
CoordType zero = 0;
// See this for source of constants:
// http://www.w3.org/TR/SVG11/filters.html#feDiffuseLightingElement
int16_t normalX =
-1 * ColorComponentAtPoint(index, stride, -dx, -dy, 1, 0) +
1 * ColorComponentAtPoint(index, stride, dx, -dy, 1, 0) +
-2 * ColorComponentAtPoint(index, stride, -dx, zero, 1, 0) +
2 * ColorComponentAtPoint(index, stride, dx, zero, 1, 0) +
-1 * ColorComponentAtPoint(index, stride, -dx, dy, 1, 0) +
1 * ColorComponentAtPoint(index, stride, dx, dy, 1, 0);
int16_t normalY =
-1 * ColorComponentAtPoint(index, stride, -dx, -dy, 1, 0) +
-2 * ColorComponentAtPoint(index, stride, zero, -dy, 1, 0) +
-1 * ColorComponentAtPoint(index, stride, dx, -dy, 1, 0) +
1 * ColorComponentAtPoint(index, stride, -dx, dy, 1, 0) +
2 * ColorComponentAtPoint(index, stride, zero, dy, 1, 0) +
1 * ColorComponentAtPoint(index, stride, dx, dy, 1, 0);
Point3D normal;
normal.x = -surfaceScale * normalX / 4.0f;
normal.y = -surfaceScale * normalY / 4.0f;
normal.z = 255;
return Normalized(normal);
}
template<typename LightType, typename LightingType>
TemporaryRef<DataSourceSurface>
FilterNodeLightingSoftware<LightType, LightingType>::Render(const IntRect& aRect)
{
if (mKernelUnitLength.width == floor(mKernelUnitLength.width) &&
mKernelUnitLength.height == floor(mKernelUnitLength.height)) {
return DoRender(aRect, (int32_t)mKernelUnitLength.width, (int32_t)mKernelUnitLength.height);
}
return DoRender(aRect, mKernelUnitLength.width, mKernelUnitLength.height);
}
template<typename LightType, typename LightingType>
void
FilterNodeLightingSoftware<LightType, LightingType>::RequestFromInputsForRect(const IntRect &aRect)
{
IntRect srcRect = aRect;
srcRect.Inflate(ceil(mKernelUnitLength.width),
ceil(mKernelUnitLength.height));
RequestInputRect(IN_LIGHTING_IN, srcRect);
}
template<typename LightType, typename LightingType> template<typename CoordType>
TemporaryRef<DataSourceSurface>
FilterNodeLightingSoftware<LightType, LightingType>::DoRender(const IntRect& aRect,
CoordType aKernelUnitLengthX,
CoordType aKernelUnitLengthY)
{
IntRect srcRect = aRect;
IntSize size = aRect.Size();
srcRect.Inflate(ceil(float(aKernelUnitLengthX)),
ceil(float(aKernelUnitLengthY)));
// Inflate the source rect by another pixel because the bilinear filtering in
// ColorComponentAtPoint may want to access the margins.
srcRect.Inflate(1);
RefPtr<DataSourceSurface> input =
GetInputDataSourceSurface(IN_LIGHTING_IN, srcRect, CAN_HANDLE_A8,
EDGE_MODE_DUPLICATE);
if (!input) {
return nullptr;
}
if (input->GetFormat() != SurfaceFormat::A8) {
input = FilterProcessing::ExtractAlpha(input);
}
DebugOnlyAutoColorSamplingAccessControl accessControl(input);
RefPtr<DataSourceSurface> target =
Factory::CreateDataSourceSurface(size, SurfaceFormat::B8G8R8A8);
if (MOZ2D_WARN_IF(!target)) {
return nullptr;
}
IntPoint offset = aRect.TopLeft() - srcRect.TopLeft();
uint8_t* sourceData = DataAtOffset(input, offset);
int32_t sourceStride = input->Stride();
uint8_t* targetData = target->GetData();
int32_t targetStride = target->Stride();
uint32_t lightColor = ColorToBGRA(mColor);
mLight.Prepare();
mLighting.Prepare();
for (int32_t y = 0; y < size.height; y++) {
for (int32_t x = 0; x < size.width; x++) {
int32_t sourceIndex = y * sourceStride + x;
int32_t targetIndex = y * targetStride + 4 * x;
Point3D normal = GenerateNormal(sourceData, sourceStride,
x, y, mSurfaceScale,
aKernelUnitLengthX, aKernelUnitLengthY);
IntPoint pointInFilterSpace(aRect.x + x, aRect.y + y);
Float Z = mSurfaceScale * sourceData[sourceIndex] / 255.0f;
Point3D pt(pointInFilterSpace.x, pointInFilterSpace.y, Z);
Point3D rayDir = mLight.GetVectorToLight(pt);
uint32_t color = mLight.GetColor(lightColor, rayDir);
*(uint32_t*)(targetData + targetIndex) = mLighting.LightPixel(normal, rayDir, color);
}
}
return target.forget();
}
DiffuseLightingSoftware::DiffuseLightingSoftware()
: mDiffuseConstant(0)
{
}
bool
DiffuseLightingSoftware::SetAttribute(uint32_t aIndex, Float aValue)
{
switch (aIndex) {
case ATT_DIFFUSE_LIGHTING_DIFFUSE_CONSTANT:
mDiffuseConstant = aValue;
break;
default:
return false;
}
return true;
}
uint32_t
DiffuseLightingSoftware::LightPixel(const Point3D &aNormal,
const Point3D &aVectorToLight,
uint32_t aColor)
{
Float dotNL = std::max(0.0f, aNormal.DotProduct(aVectorToLight));
Float diffuseNL = mDiffuseConstant * dotNL;
union {
uint32_t bgra;
uint8_t components[4];
} color = { aColor };
color.components[B8G8R8A8_COMPONENT_BYTEOFFSET_B] =
umin(uint32_t(diffuseNL * color.components[B8G8R8A8_COMPONENT_BYTEOFFSET_B]), 255U);
color.components[B8G8R8A8_COMPONENT_BYTEOFFSET_G] =
umin(uint32_t(diffuseNL * color.components[B8G8R8A8_COMPONENT_BYTEOFFSET_G]), 255U);
color.components[B8G8R8A8_COMPONENT_BYTEOFFSET_R] =
umin(uint32_t(diffuseNL * color.components[B8G8R8A8_COMPONENT_BYTEOFFSET_R]), 255U);
color.components[B8G8R8A8_COMPONENT_BYTEOFFSET_A] = 255;
return color.bgra;
}
SpecularLightingSoftware::SpecularLightingSoftware()
: mSpecularConstant(0)
, mSpecularExponent(0)
{
}
bool
SpecularLightingSoftware::SetAttribute(uint32_t aIndex, Float aValue)
{
switch (aIndex) {
case ATT_SPECULAR_LIGHTING_SPECULAR_CONSTANT:
mSpecularConstant = std::min(std::max(aValue, 0.0f), 255.0f);
break;
case ATT_SPECULAR_LIGHTING_SPECULAR_EXPONENT:
mSpecularExponent = std::min(std::max(aValue, 1.0f), 128.0f);
break;
default:
return false;
}
return true;
}
void
SpecularLightingSoftware::Prepare()
{
mPowCache.CacheForExponent(mSpecularExponent);
mSpecularConstantInt = uint32_t(mSpecularConstant * (1 << 8));
}
uint32_t
SpecularLightingSoftware::LightPixel(const Point3D &aNormal,
const Point3D &aVectorToLight,
uint32_t aColor)
{
Point3D vectorToEye(0, 0, 1);
Point3D halfwayVector = Normalized(aVectorToLight + vectorToEye);
Float dotNH = aNormal.DotProduct(halfwayVector);
uint16_t dotNHi = uint16_t(dotNH * (dotNH >= 0) * (1 << PowCache::sInputIntPrecisionBits));
uint32_t specularNHi = uint32_t(mSpecularConstantInt) * mPowCache.Pow(dotNHi) >> 8;
union {
uint32_t bgra;
uint8_t components[4];
} color = { aColor };
color.components[B8G8R8A8_COMPONENT_BYTEOFFSET_B] =
umin(
(specularNHi * color.components[B8G8R8A8_COMPONENT_BYTEOFFSET_B]) >> PowCache::sOutputIntPrecisionBits, 255U);
color.components[B8G8R8A8_COMPONENT_BYTEOFFSET_G] =
umin(
(specularNHi * color.components[B8G8R8A8_COMPONENT_BYTEOFFSET_G]) >> PowCache::sOutputIntPrecisionBits, 255U);
color.components[B8G8R8A8_COMPONENT_BYTEOFFSET_R] =
umin(
(specularNHi * color.components[B8G8R8A8_COMPONENT_BYTEOFFSET_R]) >> PowCache::sOutputIntPrecisionBits, 255U);
color.components[B8G8R8A8_COMPONENT_BYTEOFFSET_A] =
umax(color.components[B8G8R8A8_COMPONENT_BYTEOFFSET_B],
umax(color.components[B8G8R8A8_COMPONENT_BYTEOFFSET_G],
color.components[B8G8R8A8_COMPONENT_BYTEOFFSET_R]));
return color.bgra;
}
} // namespace gfx
} // namespace mozilla