gecko/media/libvpx/vp8/encoder/encodemb.c
Jan Gerber 7daba17fb2 Bug 918550 - Update libvpx to 1.3.0 r=glandium,cpearce
This updates our in-tree copy of libvpx to the
v1.3.0 git tag (2e88f2f2ec777259bda1714e72f1ecd2519bceb5)
libvpx 1.3.0 adds support for VP9. VP9 support is built
but not yet exposed with this commit.

Our update.sh script is replaced with update.py that can
update the build system to a given git commit.
 - checkout out upstream git
 - create platform dependend config files
 - add/remove changed libvpx files
 - update moz.build
 - warn about new build categories in libvpx
2013-12-06 03:19:00 -08:00

649 lines
17 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_config.h"
#include "vp8_rtcd.h"
#include "encodemb.h"
#include "vp8/common/reconinter.h"
#include "quantize.h"
#include "tokenize.h"
#include "vp8/common/invtrans.h"
#include "vpx_mem/vpx_mem.h"
#include "rdopt.h"
void vp8_subtract_b_c(BLOCK *be, BLOCKD *bd, int pitch)
{
unsigned char *src_ptr = (*(be->base_src) + be->src);
short *diff_ptr = be->src_diff;
unsigned char *pred_ptr = bd->predictor;
int src_stride = be->src_stride;
int r, c;
for (r = 0; r < 4; r++)
{
for (c = 0; c < 4; c++)
{
diff_ptr[c] = src_ptr[c] - pred_ptr[c];
}
diff_ptr += pitch;
pred_ptr += pitch;
src_ptr += src_stride;
}
}
void vp8_subtract_mbuv_c(short *diff, unsigned char *usrc, unsigned char *vsrc,
int src_stride, unsigned char *upred,
unsigned char *vpred, int pred_stride)
{
short *udiff = diff + 256;
short *vdiff = diff + 320;
int r, c;
for (r = 0; r < 8; r++)
{
for (c = 0; c < 8; c++)
{
udiff[c] = usrc[c] - upred[c];
}
udiff += 8;
upred += pred_stride;
usrc += src_stride;
}
for (r = 0; r < 8; r++)
{
for (c = 0; c < 8; c++)
{
vdiff[c] = vsrc[c] - vpred[c];
}
vdiff += 8;
vpred += pred_stride;
vsrc += src_stride;
}
}
void vp8_subtract_mby_c(short *diff, unsigned char *src, int src_stride,
unsigned char *pred, int pred_stride)
{
int r, c;
for (r = 0; r < 16; r++)
{
for (c = 0; c < 16; c++)
{
diff[c] = src[c] - pred[c];
}
diff += 16;
pred += pred_stride;
src += src_stride;
}
}
static void vp8_subtract_mb(MACROBLOCK *x)
{
BLOCK *b = &x->block[0];
vp8_subtract_mby(x->src_diff, *(b->base_src),
b->src_stride, x->e_mbd.dst.y_buffer, x->e_mbd.dst.y_stride);
vp8_subtract_mbuv(x->src_diff, x->src.u_buffer,
x->src.v_buffer, x->src.uv_stride, x->e_mbd.dst.u_buffer,
x->e_mbd.dst.v_buffer, x->e_mbd.dst.uv_stride);
}
static void build_dcblock(MACROBLOCK *x)
{
short *src_diff_ptr = &x->src_diff[384];
int i;
for (i = 0; i < 16; i++)
{
src_diff_ptr[i] = x->coeff[i * 16];
}
}
void vp8_transform_mbuv(MACROBLOCK *x)
{
int i;
for (i = 16; i < 24; i += 2)
{
x->short_fdct8x4(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 16);
}
}
void vp8_transform_intra_mby(MACROBLOCK *x)
{
int i;
for (i = 0; i < 16; i += 2)
{
x->short_fdct8x4(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 32);
}
/* build dc block from 16 y dc values */
build_dcblock(x);
/* do 2nd order transform on the dc block */
x->short_walsh4x4(&x->block[24].src_diff[0],
&x->block[24].coeff[0], 8);
}
static void transform_mb(MACROBLOCK *x)
{
int i;
for (i = 0; i < 16; i += 2)
{
x->short_fdct8x4(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 32);
}
/* build dc block from 16 y dc values */
if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV)
build_dcblock(x);
for (i = 16; i < 24; i += 2)
{
x->short_fdct8x4(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 16);
}
/* do 2nd order transform on the dc block */
if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV)
x->short_walsh4x4(&x->block[24].src_diff[0],
&x->block[24].coeff[0], 8);
}
static void transform_mby(MACROBLOCK *x)
{
int i;
for (i = 0; i < 16; i += 2)
{
x->short_fdct8x4(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 32);
}
/* build dc block from 16 y dc values */
if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV)
{
build_dcblock(x);
x->short_walsh4x4(&x->block[24].src_diff[0],
&x->block[24].coeff[0], 8);
}
}
#define RDTRUNC(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF )
typedef struct vp8_token_state vp8_token_state;
struct vp8_token_state{
int rate;
int error;
signed char next;
signed char token;
short qc;
};
/* TODO: experiments to find optimal multiple numbers */
#define Y1_RD_MULT 4
#define UV_RD_MULT 2
#define Y2_RD_MULT 16
static const int plane_rd_mult[4]=
{
Y1_RD_MULT,
Y2_RD_MULT,
UV_RD_MULT,
Y1_RD_MULT
};
static void optimize_b(MACROBLOCK *mb, int ib, int type,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l)
{
BLOCK *b;
BLOCKD *d;
vp8_token_state tokens[17][2];
unsigned best_mask[2];
const short *dequant_ptr;
const short *coeff_ptr;
short *qcoeff_ptr;
short *dqcoeff_ptr;
int eob;
int i0;
int rc;
int x;
int sz = 0;
int next;
int rdmult;
int rddiv;
int final_eob;
int rd_cost0;
int rd_cost1;
int rate0;
int rate1;
int error0;
int error1;
int t0;
int t1;
int best;
int band;
int pt;
int i;
int err_mult = plane_rd_mult[type];
b = &mb->block[ib];
d = &mb->e_mbd.block[ib];
/* Enable this to test the effect of RDO as a replacement for the dynamic
* zero bin instead of an augmentation of it.
*/
#if 0
vp8_strict_quantize_b(b, d);
#endif
dequant_ptr = d->dequant;
coeff_ptr = b->coeff;
qcoeff_ptr = d->qcoeff;
dqcoeff_ptr = d->dqcoeff;
i0 = !type;
eob = *d->eob;
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
rdmult = mb->rdmult * err_mult;
if(mb->e_mbd.mode_info_context->mbmi.ref_frame==INTRA_FRAME)
rdmult = (rdmult * 9)>>4;
rddiv = mb->rddiv;
best_mask[0] = best_mask[1] = 0;
/* Initialize the sentinel node of the trellis. */
tokens[eob][0].rate = 0;
tokens[eob][0].error = 0;
tokens[eob][0].next = 16;
tokens[eob][0].token = DCT_EOB_TOKEN;
tokens[eob][0].qc = 0;
*(tokens[eob] + 1) = *(tokens[eob] + 0);
next = eob;
for (i = eob; i-- > i0;)
{
int base_bits;
int d2;
int dx;
rc = vp8_default_zig_zag1d[i];
x = qcoeff_ptr[rc];
/* Only add a trellis state for non-zero coefficients. */
if (x)
{
int shortcut=0;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
/* Evaluate the first possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
t0 = (vp8_dct_value_tokens_ptr + x)->Token;
/* Consider both possible successor states. */
if (next < 16)
{
band = vp8_coef_bands[i + 1];
pt = vp8_prev_token_class[t0];
rate0 +=
mb->token_costs[type][band][pt][tokens[next][0].token];
rate1 +=
mb->token_costs[type][band][pt][tokens[next][1].token];
}
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);
if (rd_cost0 == rd_cost1)
{
rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);
rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);
}
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp8_dct_value_cost_ptr + x);
dx = dqcoeff_ptr[rc] - coeff_ptr[rc];
d2 = dx*dx;
tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
tokens[i][0].error = d2 + (best ? error1 : error0);
tokens[i][0].next = next;
tokens[i][0].token = t0;
tokens[i][0].qc = x;
best_mask[0] |= best << i;
/* Evaluate the second possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
if((abs(x)*dequant_ptr[rc]>abs(coeff_ptr[rc])) &&
(abs(x)*dequant_ptr[rc]<abs(coeff_ptr[rc])+dequant_ptr[rc]))
shortcut = 1;
else
shortcut = 0;
if(shortcut)
{
sz = -(x < 0);
x -= 2*sz + 1;
}
/* Consider both possible successor states. */
if (!x)
{
/* If we reduced this coefficient to zero, check to see if
* we need to move the EOB back here.
*/
t0 = tokens[next][0].token == DCT_EOB_TOKEN ?
DCT_EOB_TOKEN : ZERO_TOKEN;
t1 = tokens[next][1].token == DCT_EOB_TOKEN ?
DCT_EOB_TOKEN : ZERO_TOKEN;
}
else
{
t0=t1 = (vp8_dct_value_tokens_ptr + x)->Token;
}
if (next < 16)
{
band = vp8_coef_bands[i + 1];
if(t0!=DCT_EOB_TOKEN)
{
pt = vp8_prev_token_class[t0];
rate0 += mb->token_costs[type][band][pt][
tokens[next][0].token];
}
if(t1!=DCT_EOB_TOKEN)
{
pt = vp8_prev_token_class[t1];
rate1 += mb->token_costs[type][band][pt][
tokens[next][1].token];
}
}
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);
if (rd_cost0 == rd_cost1)
{
rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);
rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);
}
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp8_dct_value_cost_ptr + x);
if(shortcut)
{
dx -= (dequant_ptr[rc] + sz) ^ sz;
d2 = dx*dx;
}
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
tokens[i][1].error = d2 + (best ? error1 : error0);
tokens[i][1].next = next;
tokens[i][1].token =best?t1:t0;
tokens[i][1].qc = x;
best_mask[1] |= best << i;
/* Finally, make this the new head of the trellis. */
next = i;
}
/* There's no choice to make for a zero coefficient, so we don't
* add a new trellis node, but we do need to update the costs.
*/
else
{
band = vp8_coef_bands[i + 1];
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
/* Update the cost of each path if we're past the EOB token. */
if (t0 != DCT_EOB_TOKEN)
{
tokens[next][0].rate += mb->token_costs[type][band][0][t0];
tokens[next][0].token = ZERO_TOKEN;
}
if (t1 != DCT_EOB_TOKEN)
{
tokens[next][1].rate += mb->token_costs[type][band][0][t1];
tokens[next][1].token = ZERO_TOKEN;
}
/* Don't update next, because we didn't add a new node. */
}
}
/* Now pick the best path through the whole trellis. */
band = vp8_coef_bands[i + 1];
VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l);
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
rate0 += mb->token_costs[type][band][pt][t0];
rate1 += mb->token_costs[type][band][pt][t1];
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);
if (rd_cost0 == rd_cost1)
{
rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);
rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);
}
best = rd_cost1 < rd_cost0;
final_eob = i0 - 1;
for (i = next; i < eob; i = next)
{
x = tokens[i][best].qc;
if (x)
final_eob = i;
rc = vp8_default_zig_zag1d[i];
qcoeff_ptr[rc] = x;
dqcoeff_ptr[rc] = x * dequant_ptr[rc];
next = tokens[i][best].next;
best = (best_mask[best] >> i) & 1;
}
final_eob++;
*a = *l = (final_eob != !type);
*d->eob = (char)final_eob;
}
static void check_reset_2nd_coeffs(MACROBLOCKD *x, int type,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l)
{
int sum=0;
int i;
BLOCKD *bd = &x->block[24];
if(bd->dequant[0]>=35 && bd->dequant[1]>=35)
return;
for(i=0;i<(*bd->eob);i++)
{
int coef = bd->dqcoeff[vp8_default_zig_zag1d[i]];
sum+= (coef>=0)?coef:-coef;
if(sum>=35)
return;
}
/**************************************************************************
our inverse hadamard transform effectively is weighted sum of all 16 inputs
with weight either 1 or -1. It has a last stage scaling of (sum+3)>>3. And
dc only idct is (dc+4)>>3. So if all the sums are between -35 and 29, the
output after inverse wht and idct will be all zero. A sum of absolute value
smaller than 35 guarantees all 16 different (+1/-1) weighted sums in wht
fall between -35 and +35.
**************************************************************************/
if(sum < 35)
{
for(i=0;i<(*bd->eob);i++)
{
int rc = vp8_default_zig_zag1d[i];
bd->qcoeff[rc]=0;
bd->dqcoeff[rc]=0;
}
*bd->eob = 0;
*a = *l = (*bd->eob != !type);
}
}
static void optimize_mb(MACROBLOCK *x)
{
int b;
int type;
int has_2nd_order;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
has_2nd_order = (x->e_mbd.mode_info_context->mbmi.mode != B_PRED
&& x->e_mbd.mode_info_context->mbmi.mode != SPLITMV);
type = has_2nd_order ? PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC;
for (b = 0; b < 16; b++)
{
optimize_b(x, b, type,
ta + vp8_block2above[b], tl + vp8_block2left[b]);
}
for (b = 16; b < 24; b++)
{
optimize_b(x, b, PLANE_TYPE_UV,
ta + vp8_block2above[b], tl + vp8_block2left[b]);
}
if (has_2nd_order)
{
b=24;
optimize_b(x, b, PLANE_TYPE_Y2,
ta + vp8_block2above[b], tl + vp8_block2left[b]);
check_reset_2nd_coeffs(&x->e_mbd, PLANE_TYPE_Y2,
ta + vp8_block2above[b], tl + vp8_block2left[b]);
}
}
void vp8_optimize_mby(MACROBLOCK *x)
{
int b;
int type;
int has_2nd_order;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
if (!x->e_mbd.above_context)
return;
if (!x->e_mbd.left_context)
return;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
has_2nd_order = (x->e_mbd.mode_info_context->mbmi.mode != B_PRED
&& x->e_mbd.mode_info_context->mbmi.mode != SPLITMV);
type = has_2nd_order ? PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC;
for (b = 0; b < 16; b++)
{
optimize_b(x, b, type,
ta + vp8_block2above[b], tl + vp8_block2left[b]);
}
if (has_2nd_order)
{
b=24;
optimize_b(x, b, PLANE_TYPE_Y2,
ta + vp8_block2above[b], tl + vp8_block2left[b]);
check_reset_2nd_coeffs(&x->e_mbd, PLANE_TYPE_Y2,
ta + vp8_block2above[b], tl + vp8_block2left[b]);
}
}
void vp8_optimize_mbuv(MACROBLOCK *x)
{
int b;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
if (!x->e_mbd.above_context)
return;
if (!x->e_mbd.left_context)
return;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
for (b = 16; b < 24; b++)
{
optimize_b(x, b, PLANE_TYPE_UV,
ta + vp8_block2above[b], tl + vp8_block2left[b]);
}
}
void vp8_encode_inter16x16(MACROBLOCK *x)
{
vp8_build_inter_predictors_mb(&x->e_mbd);
vp8_subtract_mb(x);
transform_mb(x);
vp8_quantize_mb(x);
if (x->optimize)
optimize_mb(x);
}
/* this funciton is used by first pass only */
void vp8_encode_inter16x16y(MACROBLOCK *x)
{
BLOCK *b = &x->block[0];
vp8_build_inter16x16_predictors_mby(&x->e_mbd, x->e_mbd.dst.y_buffer,
x->e_mbd.dst.y_stride);
vp8_subtract_mby(x->src_diff, *(b->base_src),
b->src_stride, x->e_mbd.dst.y_buffer, x->e_mbd.dst.y_stride);
transform_mby(x);
vp8_quantize_mby(x);
vp8_inverse_transform_mby(&x->e_mbd);
}