gecko/gfx/2d/PathHelpers.cpp

168 lines
6.3 KiB
C++

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "PathHelpers.h"
namespace mozilla {
namespace gfx {
void
AppendRoundedRectToPath(PathBuilder* aPathBuilder,
const Rect& aRect,
// paren's needed due to operator precedence:
const Size(& aCornerRadii)[4],
bool aDrawClockwise)
{
// For CW drawing, this looks like:
//
// ...******0** 1 C
// ****
// *** 2
// **
// *
// *
// 3
// *
// *
//
// Where 0, 1, 2, 3 are the control points of the Bezier curve for
// the corner, and C is the actual corner point.
//
// At the start of the loop, the current point is assumed to be
// the point adjacent to the top left corner on the top
// horizontal. Note that corner indices start at the top left and
// continue clockwise, whereas in our loop i = 0 refers to the top
// right corner.
//
// When going CCW, the control points are swapped, and the first
// corner that's drawn is the top left (along with the top segment).
//
// There is considerable latitude in how one chooses the four
// control points for a Bezier curve approximation to an ellipse.
// For the overall path to be continuous and show no corner at the
// endpoints of the arc, points 0 and 3 must be at the ends of the
// straight segments of the rectangle; points 0, 1, and C must be
// collinear; and points 3, 2, and C must also be collinear. This
// leaves only two free parameters: the ratio of the line segments
// 01 and 0C, and the ratio of the line segments 32 and 3C. See
// the following papers for extensive discussion of how to choose
// these ratios:
//
// Dokken, Tor, et al. "Good approximation of circles by
// curvature-continuous Bezier curves." Computer-Aided
// Geometric Design 7(1990) 33--41.
// Goldapp, Michael. "Approximation of circular arcs by cubic
// polynomials." Computer-Aided Geometric Design 8(1991) 227--238.
// Maisonobe, Luc. "Drawing an elliptical arc using polylines,
// quadratic, or cubic Bezier curves."
// http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf
//
// We follow the approach in section 2 of Goldapp (least-error,
// Hermite-type approximation) and make both ratios equal to
//
// 2 2 + n - sqrt(2n + 28)
// alpha = - * ---------------------
// 3 n - 4
//
// where n = 3( cbrt(sqrt(2)+1) - cbrt(sqrt(2)-1) ).
//
// This is the result of Goldapp's equation (10b) when the angle
// swept out by the arc is pi/2, and the parameter "a-bar" is the
// expression given immediately below equation (21).
//
// Using this value, the maximum radial error for a circle, as a
// fraction of the radius, is on the order of 0.2 x 10^-3.
// Neither Dokken nor Goldapp discusses error for a general
// ellipse; Maisonobe does, but his choice of control points
// follows different constraints, and Goldapp's expression for
// 'alpha' gives much smaller radial error, even for very flat
// ellipses, than Maisonobe's equivalent.
//
// For the various corners and for each axis, the sign of this
// constant changes, or it might be 0 -- it's multiplied by the
// appropriate multiplier from the list before using.
const Float alpha = Float(0.55191497064665766025);
typedef struct { Float a, b; } twoFloats;
twoFloats cwCornerMults[4] = { { -1, 0 }, // cc == clockwise
{ 0, -1 },
{ +1, 0 },
{ 0, +1 } };
twoFloats ccwCornerMults[4] = { { +1, 0 }, // ccw == counter-clockwise
{ 0, -1 },
{ -1, 0 },
{ 0, +1 } };
twoFloats *cornerMults = aDrawClockwise ? cwCornerMults : ccwCornerMults;
Point cornerCoords[] = { aRect.TopLeft(), aRect.TopRight(),
aRect.BottomRight(), aRect.BottomLeft() };
Point pc, p0, p1, p2, p3;
// The indexes of the corners:
const int kTopLeft = 0, kTopRight = 1;
if (aDrawClockwise) {
aPathBuilder->MoveTo(Point(aRect.X() + aCornerRadii[kTopLeft].width,
aRect.Y()));
} else {
aPathBuilder->MoveTo(Point(aRect.X() + aRect.Width() - aCornerRadii[kTopRight].width,
aRect.Y()));
}
for (int i = 0; i < 4; ++i) {
// the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw)
int c = aDrawClockwise ? ((i+1) % 4) : ((4-i) % 4);
// i+2 and i+3 respectively. These are used to index into the corner
// multiplier table, and were deduced by calculating out the long form
// of each corner and finding a pattern in the signs and values.
int i2 = (i+2) % 4;
int i3 = (i+3) % 4;
pc = cornerCoords[c];
if (aCornerRadii[c].width > 0.0 && aCornerRadii[c].height > 0.0) {
p0.x = pc.x + cornerMults[i].a * aCornerRadii[c].width;
p0.y = pc.y + cornerMults[i].b * aCornerRadii[c].height;
p3.x = pc.x + cornerMults[i3].a * aCornerRadii[c].width;
p3.y = pc.y + cornerMults[i3].b * aCornerRadii[c].height;
p1.x = p0.x + alpha * cornerMults[i2].a * aCornerRadii[c].width;
p1.y = p0.y + alpha * cornerMults[i2].b * aCornerRadii[c].height;
p2.x = p3.x - alpha * cornerMults[i3].a * aCornerRadii[c].width;
p2.y = p3.y - alpha * cornerMults[i3].b * aCornerRadii[c].height;
aPathBuilder->LineTo(p0);
aPathBuilder->BezierTo(p1, p2, p3);
} else {
aPathBuilder->LineTo(pc);
}
}
aPathBuilder->Close();
}
void
AppendEllipseToPath(PathBuilder* aPathBuilder,
const Point& aCenter,
const Size& aDimensions)
{
Size halfDim = aDimensions / 2.0;
Rect rect(aCenter - Point(halfDim.width, halfDim.height), aDimensions);
Size radii[] = { halfDim, halfDim, halfDim, halfDim };
AppendRoundedRectToPath(aPathBuilder, rect, radii);
}
} // namespace gfx
} // namespace mozilla