mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
656 lines
20 KiB
C++
656 lines
20 KiB
C++
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
*
|
|
* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is Mozilla Communicator client code, released
|
|
* March 31, 1998.
|
|
*
|
|
* The Initial Developer of the Original Code is
|
|
* Netscape Communications Corporation.
|
|
* Portions created by the Initial Developer are Copyright (C) 1998
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either of the GNU General Public License Version 2 or later (the "GPL"),
|
|
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
|
|
#ifndef jsnum_h___
|
|
#define jsnum_h___
|
|
|
|
#include <math.h>
|
|
#if defined(XP_WIN) || defined(XP_OS2)
|
|
#include <float.h>
|
|
#endif
|
|
#ifdef SOLARIS
|
|
#include <ieeefp.h>
|
|
#endif
|
|
#include "jsvalue.h"
|
|
|
|
#include "jsstdint.h"
|
|
#include "jsstr.h"
|
|
#include "jsobj.h"
|
|
|
|
/*
|
|
* JS number (IEEE double) interface.
|
|
*
|
|
* JS numbers are optimistically stored in the top 31 bits of 32-bit integers,
|
|
* but floating point literals, results that overflow 31 bits, and division and
|
|
* modulus operands and results require a 64-bit IEEE double. These are GC'ed
|
|
* and pointed to by 32-bit jsvals on the stack and in object properties.
|
|
*/
|
|
|
|
/*
|
|
* The ARM architecture supports two floating point models: VFP and FPA. When
|
|
* targetting FPA, doubles are mixed-endian on little endian ARMs (meaning that
|
|
* the high and low words are in big endian order).
|
|
*/
|
|
#if defined(__arm) || defined(__arm32__) || defined(__arm26__) || defined(__arm__)
|
|
#if !defined(__VFP_FP__)
|
|
#define FPU_IS_ARM_FPA
|
|
#endif
|
|
#endif
|
|
|
|
typedef union jsdpun {
|
|
struct {
|
|
#if defined(IS_LITTLE_ENDIAN) && !defined(FPU_IS_ARM_FPA)
|
|
uint32 lo, hi;
|
|
#else
|
|
uint32 hi, lo;
|
|
#endif
|
|
} s;
|
|
uint64 u64;
|
|
jsdouble d;
|
|
} jsdpun;
|
|
|
|
static inline int
|
|
JSDOUBLE_IS_NaN(jsdouble d)
|
|
{
|
|
#ifdef WIN32
|
|
return _isnan(d);
|
|
#else
|
|
return isnan(d);
|
|
#endif
|
|
}
|
|
|
|
static inline int
|
|
JSDOUBLE_IS_FINITE(jsdouble d)
|
|
{
|
|
#ifdef WIN32
|
|
return _finite(d);
|
|
#else
|
|
return finite(d);
|
|
#endif
|
|
}
|
|
|
|
static inline int
|
|
JSDOUBLE_IS_INFINITE(jsdouble d)
|
|
{
|
|
#ifdef WIN32
|
|
int c = _fpclass(d);
|
|
return c == _FPCLASS_NINF || c == _FPCLASS_PINF;
|
|
#elif defined(SOLARIS)
|
|
return !finite(d) && !isnan(d);
|
|
#else
|
|
return isinf(d);
|
|
#endif
|
|
}
|
|
|
|
#define JSDOUBLE_HI32_SIGNBIT 0x80000000
|
|
#define JSDOUBLE_HI32_EXPMASK 0x7ff00000
|
|
#define JSDOUBLE_HI32_MANTMASK 0x000fffff
|
|
#define JSDOUBLE_HI32_NAN 0x7ff80000
|
|
#define JSDOUBLE_LO32_NAN 0x00000000
|
|
|
|
static inline bool
|
|
JSDOUBLE_IS_NEG(jsdouble d)
|
|
{
|
|
#ifdef WIN32
|
|
return JSDOUBLE_IS_NEGZERO(d) || d < 0;
|
|
#elif defined(SOLARIS)
|
|
return copysign(1, d) < 0;
|
|
#else
|
|
return signbit(d);
|
|
#endif
|
|
}
|
|
|
|
static inline uint32
|
|
JS_HASH_DOUBLE(jsdouble d)
|
|
{
|
|
jsdpun u;
|
|
u.d = d;
|
|
return u.s.lo ^ u.s.hi;
|
|
}
|
|
|
|
#if defined(XP_WIN)
|
|
#define JSDOUBLE_COMPARE(LVAL, OP, RVAL, IFNAN) \
|
|
((JSDOUBLE_IS_NaN(LVAL) || JSDOUBLE_IS_NaN(RVAL)) \
|
|
? (IFNAN) \
|
|
: (LVAL) OP (RVAL))
|
|
#else
|
|
#define JSDOUBLE_COMPARE(LVAL, OP, RVAL, IFNAN) ((LVAL) OP (RVAL))
|
|
#endif
|
|
|
|
extern jsdouble js_NaN;
|
|
extern jsdouble js_PositiveInfinity;
|
|
extern jsdouble js_NegativeInfinity;
|
|
|
|
/* Initialize number constants and runtime state for the first context. */
|
|
extern JSBool
|
|
js_InitRuntimeNumberState(JSContext *cx);
|
|
|
|
extern void
|
|
js_FinishRuntimeNumberState(JSContext *cx);
|
|
|
|
/* Initialize the Number class, returning its prototype object. */
|
|
extern js::Class js_NumberClass;
|
|
|
|
inline bool
|
|
JSObject::isNumber() const
|
|
{
|
|
return getClass() == &js_NumberClass;
|
|
}
|
|
|
|
extern JSObject *
|
|
js_InitNumberClass(JSContext *cx, JSObject *obj);
|
|
|
|
/*
|
|
* String constants for global function names, used in jsapi.c and jsnum.c.
|
|
*/
|
|
extern const char js_Infinity_str[];
|
|
extern const char js_NaN_str[];
|
|
extern const char js_isNaN_str[];
|
|
extern const char js_isFinite_str[];
|
|
extern const char js_parseFloat_str[];
|
|
extern const char js_parseInt_str[];
|
|
|
|
extern JSString * JS_FASTCALL
|
|
js_IntToString(JSContext *cx, jsint i);
|
|
|
|
extern JSString * JS_FASTCALL
|
|
js_NumberToString(JSContext *cx, jsdouble d);
|
|
|
|
/*
|
|
* Convert an integer or double (contained in the given value) to a string and
|
|
* append to the given buffer.
|
|
*/
|
|
extern JSBool JS_FASTCALL
|
|
js_NumberValueToCharBuffer(JSContext *cx, const js::Value &v, JSCharBuffer &cb);
|
|
|
|
namespace js {
|
|
|
|
/*
|
|
* The largest positive integer such that all positive integers less than it
|
|
* may be precisely represented using the IEEE-754 double-precision format.
|
|
*/
|
|
const double DOUBLE_INTEGRAL_PRECISION_LIMIT = uint64(1) << 53;
|
|
|
|
/*
|
|
* Compute the positive integer of the given base described immediately at the
|
|
* start of the range [start, end) -- no whitespace-skipping, no magical
|
|
* leading-"0" octal or leading-"0x" hex behavior, no "+"/"-" parsing, just
|
|
* reading the digits of the integer. Return the index one past the end of the
|
|
* digits of the integer in *endp, and return the integer itself in *dp. If
|
|
* base is 10 or a power of two the returned integer is the closest possible
|
|
* double; otherwise extremely large integers may be slightly inaccurate.
|
|
*
|
|
* If [start, end) does not begin with a number with the specified base,
|
|
* *dp == 0 and *endp == start upon return.
|
|
*/
|
|
extern bool
|
|
GetPrefixInteger(JSContext *cx, const jschar *start, const jschar *end, int base,
|
|
const jschar **endp, jsdouble *dp);
|
|
|
|
/*
|
|
* Convert a value to a number, returning the converted value in 'out' if the
|
|
* conversion succeeds.
|
|
*/
|
|
JS_ALWAYS_INLINE bool
|
|
ValueToNumber(JSContext *cx, const js::Value &v, double *out)
|
|
{
|
|
if (v.isNumber()) {
|
|
*out = v.toNumber();
|
|
return true;
|
|
}
|
|
extern bool ValueToNumberSlow(JSContext *, js::Value, double *);
|
|
return ValueToNumberSlow(cx, v, out);
|
|
}
|
|
|
|
/* Convert a value to a number, replacing 'vp' with the converted value. */
|
|
JS_ALWAYS_INLINE bool
|
|
ValueToNumber(JSContext *cx, js::Value *vp)
|
|
{
|
|
if (vp->isNumber())
|
|
return true;
|
|
double d;
|
|
extern bool ValueToNumberSlow(JSContext *, js::Value, double *);
|
|
if (!ValueToNumberSlow(cx, *vp, &d))
|
|
return false;
|
|
vp->setNumber(d);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Convert a value to an int32 or uint32, according to the ECMA rules for
|
|
* ToInt32 and ToUint32. Return converted value in *out on success, !ok on
|
|
* failure.
|
|
*/
|
|
JS_ALWAYS_INLINE bool
|
|
ValueToECMAInt32(JSContext *cx, const js::Value &v, int32_t *out)
|
|
{
|
|
if (v.isInt32()) {
|
|
*out = v.toInt32();
|
|
return true;
|
|
}
|
|
extern bool ValueToECMAInt32Slow(JSContext *, const js::Value &, int32_t *);
|
|
return ValueToECMAInt32Slow(cx, v, out);
|
|
}
|
|
|
|
JS_ALWAYS_INLINE bool
|
|
ValueToECMAUint32(JSContext *cx, const js::Value &v, uint32_t *out)
|
|
{
|
|
if (v.isInt32()) {
|
|
*out = (uint32_t)v.toInt32();
|
|
return true;
|
|
}
|
|
extern bool ValueToECMAUint32Slow(JSContext *, const js::Value &, uint32_t *);
|
|
return ValueToECMAUint32Slow(cx, v, out);
|
|
}
|
|
|
|
/*
|
|
* Convert a value to a number, then to an int32 if it fits by rounding to
|
|
* nearest. Return converted value in *out on success, !ok on failure. As a
|
|
* side effect, *vp will be mutated to match *out.
|
|
*/
|
|
JS_ALWAYS_INLINE bool
|
|
ValueToInt32(JSContext *cx, const js::Value &v, int32_t *out)
|
|
{
|
|
if (v.isInt32()) {
|
|
*out = v.toInt32();
|
|
return true;
|
|
}
|
|
extern bool ValueToInt32Slow(JSContext *, const js::Value &, int32_t *);
|
|
return ValueToInt32Slow(cx, v, out);
|
|
}
|
|
|
|
/*
|
|
* Convert a value to a number, then to a uint16 according to the ECMA rules
|
|
* for ToUint16. Return converted value on success, !ok on failure. v must be a
|
|
* copy of a rooted value.
|
|
*/
|
|
JS_ALWAYS_INLINE bool
|
|
ValueToUint16(JSContext *cx, const js::Value &v, uint16_t *out)
|
|
{
|
|
if (v.isInt32()) {
|
|
*out = (uint16_t)v.toInt32();
|
|
return true;
|
|
}
|
|
extern bool ValueToUint16Slow(JSContext *, const js::Value &, uint16_t *);
|
|
return ValueToUint16Slow(cx, v, out);
|
|
}
|
|
|
|
} /* namespace js */
|
|
|
|
/*
|
|
* Specialized ToInt32 and ToUint32 converters for doubles.
|
|
*/
|
|
/*
|
|
* From the ES3 spec, 9.5
|
|
* 2. If Result(1) is NaN, +0, -0, +Inf, or -Inf, return +0.
|
|
* 3. Compute sign(Result(1)) * floor(abs(Result(1))).
|
|
* 4. Compute Result(3) modulo 2^32; that is, a finite integer value k of Number
|
|
* type with positive sign and less than 2^32 in magnitude such the mathematical
|
|
* difference of Result(3) and k is mathematically an integer multiple of 2^32.
|
|
* 5. If Result(4) is greater than or equal to 2^31, return Result(4)- 2^32,
|
|
* otherwise return Result(4).
|
|
*/
|
|
static inline int32
|
|
js_DoubleToECMAInt32(jsdouble d)
|
|
{
|
|
#if defined(__i386__) || defined(__i386)
|
|
jsdpun du, duh, two32;
|
|
uint32 di_h, u_tmp, expon, shift_amount;
|
|
int32 mask32;
|
|
|
|
/*
|
|
* Algorithm Outline
|
|
* Step 1. If d is NaN, +/-Inf or |d|>=2^84 or |d|<1, then return 0
|
|
* All of this is implemented based on an exponent comparison.
|
|
* Step 2. If |d|<2^31, then return (int)d
|
|
* The cast to integer (conversion in RZ mode) returns the correct result.
|
|
* Step 3. If |d|>=2^32, d:=fmod(d, 2^32) is taken -- but without a call
|
|
* Step 4. If |d|>=2^31, then the fractional bits are cleared before
|
|
* applying the correction by 2^32: d - sign(d)*2^32
|
|
* Step 5. Return (int)d
|
|
*/
|
|
|
|
du.d = d;
|
|
di_h = du.s.hi;
|
|
|
|
u_tmp = (di_h & 0x7ff00000) - 0x3ff00000;
|
|
if (u_tmp >= (0x45300000-0x3ff00000)) {
|
|
// d is Nan, +/-Inf or +/-0, or |d|>=2^(32+52) or |d|<1, in which case result=0
|
|
return 0;
|
|
}
|
|
|
|
if (u_tmp < 0x01f00000) {
|
|
// |d|<2^31
|
|
return int32_t(d);
|
|
}
|
|
|
|
if (u_tmp > 0x01f00000) {
|
|
// |d|>=2^32
|
|
expon = u_tmp >> 20;
|
|
shift_amount = expon - 21;
|
|
duh.u64 = du.u64;
|
|
mask32 = 0x80000000;
|
|
if (shift_amount < 32) {
|
|
mask32 >>= shift_amount;
|
|
duh.s.hi = du.s.hi & mask32;
|
|
duh.s.lo = 0;
|
|
} else {
|
|
mask32 >>= (shift_amount-32);
|
|
duh.s.hi = du.s.hi;
|
|
duh.s.lo = du.s.lo & mask32;
|
|
}
|
|
du.d -= duh.d;
|
|
}
|
|
|
|
di_h = du.s.hi;
|
|
|
|
// eliminate fractional bits
|
|
u_tmp = (di_h & 0x7ff00000);
|
|
if (u_tmp >= 0x41e00000) {
|
|
// |d|>=2^31
|
|
expon = u_tmp >> 20;
|
|
shift_amount = expon - (0x3ff - 11);
|
|
mask32 = 0x80000000;
|
|
if (shift_amount < 32) {
|
|
mask32 >>= shift_amount;
|
|
du.s.hi &= mask32;
|
|
du.s.lo = 0;
|
|
} else {
|
|
mask32 >>= (shift_amount-32);
|
|
du.s.lo &= mask32;
|
|
}
|
|
two32.s.hi = 0x41f00000 ^ (du.s.hi & 0x80000000);
|
|
two32.s.lo = 0;
|
|
du.d -= two32.d;
|
|
}
|
|
|
|
return int32(du.d);
|
|
#elif defined (__arm__) && defined (__GNUC__)
|
|
int32_t i;
|
|
uint32_t tmp0;
|
|
uint32_t tmp1;
|
|
uint32_t tmp2;
|
|
asm (
|
|
// We use a pure integer solution here. In the 'softfp' ABI, the argument
|
|
// will start in r0 and r1, and VFP can't do all of the necessary ECMA
|
|
// conversions by itself so some integer code will be required anyway. A
|
|
// hybrid solution is faster on A9, but this pure integer solution is
|
|
// notably faster for A8.
|
|
|
|
// %0 is the result register, and may alias either of the %[QR]1 registers.
|
|
// %Q4 holds the lower part of the mantissa.
|
|
// %R4 holds the sign, exponent, and the upper part of the mantissa.
|
|
// %1, %2 and %3 are used as temporary values.
|
|
|
|
// Extract the exponent.
|
|
" mov %1, %R4, LSR #20\n"
|
|
" bic %1, %1, #(1 << 11)\n" // Clear the sign.
|
|
|
|
// Set the implicit top bit of the mantissa. This clobbers a bit of the
|
|
// exponent, but we have already extracted that.
|
|
" orr %R4, %R4, #(1 << 20)\n"
|
|
|
|
// Special Cases
|
|
// We should return zero in the following special cases:
|
|
// - Exponent is 0x000 - 1023: +/-0 or subnormal.
|
|
// - Exponent is 0x7ff - 1023: +/-INFINITY or NaN
|
|
// - This case is implicitly handled by the standard code path anyway,
|
|
// as shifting the mantissa up by the exponent will result in '0'.
|
|
//
|
|
// The result is composed of the mantissa, prepended with '1' and
|
|
// bit-shifted left by the (decoded) exponent. Note that because the r1[20]
|
|
// is the bit with value '1', r1 is effectively already shifted (left) by
|
|
// 20 bits, and r0 is already shifted by 52 bits.
|
|
|
|
// Adjust the exponent to remove the encoding offset. If the decoded
|
|
// exponent is negative, quickly bail out with '0' as such values round to
|
|
// zero anyway. This also catches +/-0 and subnormals.
|
|
" sub %1, %1, #0xff\n"
|
|
" subs %1, %1, #0x300\n"
|
|
" bmi 8f\n"
|
|
|
|
// %1 = (decoded) exponent >= 0
|
|
// %R4 = upper mantissa and sign
|
|
|
|
// ---- Lower Mantissa ----
|
|
" subs %3, %1, #52\n" // Calculate exp-52
|
|
" bmi 1f\n"
|
|
|
|
// Shift r0 left by exp-52.
|
|
// Ensure that we don't overflow ARM's 8-bit shift operand range.
|
|
// We need to handle anything up to an 11-bit value here as we know that
|
|
// 52 <= exp <= 1024 (0x400). Any shift beyond 31 bits results in zero
|
|
// anyway, so as long as we don't touch the bottom 5 bits, we can use
|
|
// a logical OR to push long shifts into the 32 <= (exp&0xff) <= 255 range.
|
|
" bic %2, %3, #0xff\n"
|
|
" orr %3, %3, %2, LSR #3\n"
|
|
// We can now perform a straight shift, avoiding the need for any
|
|
// conditional instructions or extra branches.
|
|
" mov %Q4, %Q4, LSL %3\n"
|
|
" b 2f\n"
|
|
"1:\n" // Shift r0 right by 52-exp.
|
|
// We know that 0 <= exp < 52, and we can shift up to 255 bits so 52-exp
|
|
// will always be a valid shift and we can sk%3 the range check for this case.
|
|
" rsb %3, %1, #52\n"
|
|
" mov %Q4, %Q4, LSR %3\n"
|
|
|
|
// %1 = (decoded) exponent
|
|
// %R4 = upper mantissa and sign
|
|
// %Q4 = partially-converted integer
|
|
|
|
"2:\n"
|
|
// ---- Upper Mantissa ----
|
|
// This is much the same as the lower mantissa, with a few different
|
|
// boundary checks and some masking to hide the exponent & sign bit in the
|
|
// upper word.
|
|
// Note that the upper mantissa is pre-shifted by 20 in %R4, but we shift
|
|
// it left more to remove the sign and exponent so it is effectively
|
|
// pre-shifted by 31 bits.
|
|
" subs %3, %1, #31\n" // Calculate exp-31
|
|
" mov %1, %R4, LSL #11\n" // Re-use %1 as a temporary register.
|
|
" bmi 3f\n"
|
|
|
|
// Shift %R4 left by exp-31.
|
|
// Avoid overflowing the 8-bit shift range, as before.
|
|
" bic %2, %3, #0xff\n"
|
|
" orr %3, %3, %2, LSR #3\n"
|
|
// Perform the shift.
|
|
" mov %2, %1, LSL %3\n"
|
|
" b 4f\n"
|
|
"3:\n" // Shift r1 right by 31-exp.
|
|
// We know that 0 <= exp < 31, and we can shift up to 255 bits so 31-exp
|
|
// will always be a valid shift and we can skip the range check for this case.
|
|
" rsb %3, %3, #0\n" // Calculate 31-exp from -(exp-31)
|
|
" mov %2, %1, LSR %3\n" // Thumb-2 can't do "LSR %3" in "orr".
|
|
|
|
// %Q4 = partially-converted integer (lower)
|
|
// %R4 = upper mantissa and sign
|
|
// %2 = partially-converted integer (upper)
|
|
|
|
"4:\n"
|
|
// Combine the converted parts.
|
|
" orr %Q4, %Q4, %2\n"
|
|
// Negate the result if we have to, and move it to %0 in the process. To
|
|
// avoid conditionals, we can do this by inverting on %R4[31], then adding
|
|
// %R4[31]>>31.
|
|
" eor %Q4, %Q4, %R4, ASR #31\n"
|
|
" add %0, %Q4, %R4, LSR #31\n"
|
|
" b 9f\n"
|
|
"8:\n"
|
|
// +/-INFINITY, +/-0, subnormals, NaNs, and anything else out-of-range that
|
|
// will result in a conversion of '0'.
|
|
" mov %0, #0\n"
|
|
"9:\n"
|
|
: "=r" (i), "=&r" (tmp0), "=&r" (tmp1), "=&r" (tmp2)
|
|
: "r" (d)
|
|
: "cc"
|
|
);
|
|
return i;
|
|
#else
|
|
int32 i;
|
|
jsdouble two32, two31;
|
|
|
|
if (!JSDOUBLE_IS_FINITE(d))
|
|
return 0;
|
|
|
|
i = (int32) d;
|
|
if ((jsdouble) i == d)
|
|
return i;
|
|
|
|
two32 = 4294967296.0;
|
|
two31 = 2147483648.0;
|
|
d = fmod(d, two32);
|
|
d = (d >= 0) ? floor(d) : ceil(d) + two32;
|
|
return (int32) (d >= two31 ? d - two32 : d);
|
|
#endif
|
|
}
|
|
|
|
uint32
|
|
js_DoubleToECMAUint32(jsdouble d);
|
|
|
|
/*
|
|
* Convert a jsdouble to an integral number, stored in a jsdouble.
|
|
* If d is NaN, return 0. If d is an infinity, return it without conversion.
|
|
*/
|
|
static inline jsdouble
|
|
js_DoubleToInteger(jsdouble d)
|
|
{
|
|
if (d == 0)
|
|
return d;
|
|
|
|
if (!JSDOUBLE_IS_FINITE(d)) {
|
|
if (JSDOUBLE_IS_NaN(d))
|
|
return 0;
|
|
return d;
|
|
}
|
|
|
|
JSBool neg = (d < 0);
|
|
d = floor(neg ? -d : d);
|
|
|
|
return neg ? -d : d;
|
|
}
|
|
|
|
/*
|
|
* Similar to strtod except that it replaces overflows with infinities of the
|
|
* correct sign, and underflows with zeros of the correct sign. Guaranteed to
|
|
* return the closest double number to the given input in dp.
|
|
*
|
|
* Also allows inputs of the form [+|-]Infinity, which produce an infinity of
|
|
* the appropriate sign. The case of the "Infinity" string must match exactly.
|
|
* If the string does not contain a number, set *ep to s and return 0.0 in dp.
|
|
* Return false if out of memory.
|
|
*/
|
|
extern JSBool
|
|
js_strtod(JSContext *cx, const jschar *s, const jschar *send,
|
|
const jschar **ep, jsdouble *dp);
|
|
|
|
namespace js {
|
|
|
|
static JS_ALWAYS_INLINE bool
|
|
ValueFitsInInt32(const Value &v, int32_t *pi)
|
|
{
|
|
if (v.isInt32()) {
|
|
*pi = v.toInt32();
|
|
return true;
|
|
}
|
|
return v.isDouble() && JSDOUBLE_IS_INT32(v.toDouble(), pi);
|
|
}
|
|
|
|
template<typename T> struct NumberTraits { };
|
|
template<> struct NumberTraits<int32> {
|
|
static JS_ALWAYS_INLINE int32 NaN() { return 0; }
|
|
static JS_ALWAYS_INLINE int32 toSelfType(int32 i) { return i; }
|
|
static JS_ALWAYS_INLINE int32 toSelfType(jsdouble d) { return js_DoubleToECMAUint32(d); }
|
|
};
|
|
template<> struct NumberTraits<jsdouble> {
|
|
static JS_ALWAYS_INLINE jsdouble NaN() { return js_NaN; }
|
|
static JS_ALWAYS_INLINE jsdouble toSelfType(int32 i) { return i; }
|
|
static JS_ALWAYS_INLINE jsdouble toSelfType(jsdouble d) { return d; }
|
|
};
|
|
|
|
template<typename T>
|
|
static JS_ALWAYS_INLINE T
|
|
StringToNumberType(JSContext *cx, JSString *str)
|
|
{
|
|
if (str->length() == 1) {
|
|
jschar c = str->chars()[0];
|
|
if ('0' <= c && c <= '9')
|
|
return NumberTraits<T>::toSelfType(T(c - '0'));
|
|
if (JS_ISSPACE(c))
|
|
return NumberTraits<T>::toSelfType(T(0));
|
|
return NumberTraits<T>::NaN();
|
|
}
|
|
|
|
const jschar* bp;
|
|
const jschar* end;
|
|
const jschar* ep;
|
|
jsdouble d;
|
|
|
|
str->getCharsAndEnd(bp, end);
|
|
bp = js_SkipWhiteSpace(bp, end);
|
|
|
|
/* ECMA doesn't allow signed hex numbers (bug 273467). */
|
|
if (end - bp >= 2 && bp[0] == '0' && (bp[1] == 'x' || bp[1] == 'X')) {
|
|
/* Looks like a hex number. */
|
|
const jschar *endptr;
|
|
if (!GetPrefixInteger(cx, bp + 2, end, 16, &endptr, &d) ||
|
|
js_SkipWhiteSpace(endptr, end) != end) {
|
|
return NumberTraits<T>::NaN();
|
|
}
|
|
return NumberTraits<T>::toSelfType(d);
|
|
}
|
|
|
|
/*
|
|
* Note that ECMA doesn't treat a string beginning with a '0' as
|
|
* an octal number here. This works because all such numbers will
|
|
* be interpreted as decimal by js_strtod. Also, any hex numbers
|
|
* that have made it here (which can only be negative ones) will
|
|
* be treated as 0 without consuming the 'x' by js_strtod.
|
|
*/
|
|
if (!js_strtod(cx, bp, end, &ep, &d) ||
|
|
js_SkipWhiteSpace(ep, end) != end) {
|
|
return NumberTraits<T>::NaN();
|
|
}
|
|
|
|
return NumberTraits<T>::toSelfType(d);
|
|
}
|
|
}
|
|
|
|
#endif /* jsnum_h___ */
|