gecko/media/libvpx/vp9/common/vp9_convolve.c
Jan Gerber 31fca20085 Bug 918550 - Update libvpx to 1.3.0 r=glandium,cpearce
This updates our in-tree copy of libvpx to the
v1.3.0 git tag (2e88f2f2ec777259bda1714e72f1ecd2519bceb5)
libvpx 1.3.0 adds support for VP9. VP9 support is built
but not yet exposed with this commit.

Our update.sh script is replaced with update.py that can
update the build system to a given git commit.
 - checkout out upstream git
 - create platform dependend config files
 - add/remove changed libvpx files
 - update moz.build
 - warn about new build categories in libvpx
2013-12-06 03:19:00 -08:00

306 lines
11 KiB
C

/*
* Copyright (c) 2013 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include "./vpx_config.h"
#include "./vp9_rtcd.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_convolve.h"
#include "vp9/common/vp9_filter.h"
#include "vpx/vpx_integer.h"
#include "vpx_ports/mem.h"
static void convolve_horiz_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x0, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h, int taps) {
int x, y, k;
/* NOTE: This assumes that the filter table is 256-byte aligned. */
/* TODO(agrange) Modify to make independent of table alignment. */
const int16_t *const filter_x_base =
(const int16_t *)(((intptr_t)filter_x0) & ~(intptr_t)0xff);
/* Adjust base pointer address for this source line */
src -= taps / 2 - 1;
for (y = 0; y < h; ++y) {
/* Initial phase offset */
int x_q4 = (int)(filter_x0 - filter_x_base) / taps;
for (x = 0; x < w; ++x) {
/* Per-pixel src offset */
const int src_x = x_q4 >> SUBPEL_BITS;
int sum = 0;
/* Pointer to filter to use */
const int16_t *const filter_x = filter_x_base +
(x_q4 & SUBPEL_MASK) * taps;
for (k = 0; k < taps; ++k)
sum += src[src_x + k] * filter_x[k];
dst[x] = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
/* Move to the next source pixel */
x_q4 += x_step_q4;
}
src += src_stride;
dst += dst_stride;
}
}
static void convolve_avg_horiz_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x0, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h, int taps) {
int x, y, k;
/* NOTE: This assumes that the filter table is 256-byte aligned. */
/* TODO(agrange) Modify to make independent of table alignment. */
const int16_t *const filter_x_base =
(const int16_t *)(((intptr_t)filter_x0) & ~(intptr_t)0xff);
/* Adjust base pointer address for this source line */
src -= taps / 2 - 1;
for (y = 0; y < h; ++y) {
/* Initial phase offset */
int x_q4 = (int)(filter_x0 - filter_x_base) / taps;
for (x = 0; x < w; ++x) {
/* Per-pixel src offset */
const int src_x = x_q4 >> SUBPEL_BITS;
int sum = 0;
/* Pointer to filter to use */
const int16_t *const filter_x = filter_x_base +
(x_q4 & SUBPEL_MASK) * taps;
for (k = 0; k < taps; ++k)
sum += src[src_x + k] * filter_x[k];
dst[x] = ROUND_POWER_OF_TWO(dst[x] +
clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS)), 1);
/* Move to the next source pixel */
x_q4 += x_step_q4;
}
src += src_stride;
dst += dst_stride;
}
}
static void convolve_vert_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y0, int y_step_q4,
int w, int h, int taps) {
int x, y, k;
/* NOTE: This assumes that the filter table is 256-byte aligned. */
/* TODO(agrange) Modify to make independent of table alignment. */
const int16_t *const filter_y_base =
(const int16_t *)(((intptr_t)filter_y0) & ~(intptr_t)0xff);
/* Adjust base pointer address for this source column */
src -= src_stride * (taps / 2 - 1);
for (x = 0; x < w; ++x) {
/* Initial phase offset */
int y_q4 = (int)(filter_y0 - filter_y_base) / taps;
for (y = 0; y < h; ++y) {
/* Per-pixel src offset */
const int src_y = y_q4 >> SUBPEL_BITS;
int sum = 0;
/* Pointer to filter to use */
const int16_t *const filter_y = filter_y_base +
(y_q4 & SUBPEL_MASK) * taps;
for (k = 0; k < taps; ++k)
sum += src[(src_y + k) * src_stride] * filter_y[k];
dst[y * dst_stride] =
clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
/* Move to the next source pixel */
y_q4 += y_step_q4;
}
++src;
++dst;
}
}
static void convolve_avg_vert_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y0, int y_step_q4,
int w, int h, int taps) {
int x, y, k;
/* NOTE: This assumes that the filter table is 256-byte aligned. */
/* TODO(agrange) Modify to make independent of table alignment. */
const int16_t *const filter_y_base =
(const int16_t *)(((intptr_t)filter_y0) & ~(intptr_t)0xff);
/* Adjust base pointer address for this source column */
src -= src_stride * (taps / 2 - 1);
for (x = 0; x < w; ++x) {
/* Initial phase offset */
int y_q4 = (int)(filter_y0 - filter_y_base) / taps;
for (y = 0; y < h; ++y) {
/* Per-pixel src offset */
const int src_y = y_q4 >> SUBPEL_BITS;
int sum = 0;
/* Pointer to filter to use */
const int16_t *const filter_y = filter_y_base +
(y_q4 & SUBPEL_MASK) * taps;
for (k = 0; k < taps; ++k)
sum += src[(src_y + k) * src_stride] * filter_y[k];
dst[y * dst_stride] = ROUND_POWER_OF_TWO(dst[y * dst_stride] +
clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS)), 1);
/* Move to the next source pixel */
y_q4 += y_step_q4;
}
++src;
++dst;
}
}
static void convolve_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h, int taps) {
/* Fixed size intermediate buffer places limits on parameters.
* Maximum intermediate_height is 324, for y_step_q4 == 80,
* h == 64, taps == 8.
* y_step_q4 of 80 allows for 1/10 scale for 5 layer svc
*/
uint8_t temp[64 * 324];
int intermediate_height = (((h - 1) * y_step_q4 + 15) >> 4) + taps;
assert(w <= 64);
assert(h <= 64);
assert(taps <= 8);
assert(y_step_q4 <= 80);
assert(x_step_q4 <= 80);
if (intermediate_height < h)
intermediate_height = h;
convolve_horiz_c(src - src_stride * (taps / 2 - 1), src_stride, temp, 64,
filter_x, x_step_q4, filter_y, y_step_q4, w,
intermediate_height, taps);
convolve_vert_c(temp + 64 * (taps / 2 - 1), 64, dst, dst_stride, filter_x,
x_step_q4, filter_y, y_step_q4, w, h, taps);
}
void vp9_convolve8_horiz_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h) {
convolve_horiz_c(src, src_stride, dst, dst_stride,
filter_x, x_step_q4, filter_y, y_step_q4, w, h, 8);
}
void vp9_convolve8_avg_horiz_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h) {
convolve_avg_horiz_c(src, src_stride, dst, dst_stride,
filter_x, x_step_q4, filter_y, y_step_q4, w, h, 8);
}
void vp9_convolve8_vert_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h) {
convolve_vert_c(src, src_stride, dst, dst_stride,
filter_x, x_step_q4, filter_y, y_step_q4, w, h, 8);
}
void vp9_convolve8_avg_vert_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h) {
convolve_avg_vert_c(src, src_stride, dst, dst_stride,
filter_x, x_step_q4, filter_y, y_step_q4, w, h, 8);
}
void vp9_convolve8_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h) {
convolve_c(src, src_stride, dst, dst_stride,
filter_x, x_step_q4, filter_y, y_step_q4, w, h, 8);
}
void vp9_convolve8_avg_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h) {
/* Fixed size intermediate buffer places limits on parameters. */
DECLARE_ALIGNED_ARRAY(16, uint8_t, temp, 64 * 64);
assert(w <= 64);
assert(h <= 64);
vp9_convolve8(src, src_stride, temp, 64,
filter_x, x_step_q4, filter_y, y_step_q4, w, h);
vp9_convolve_avg(temp, 64, dst, dst_stride, NULL, 0, NULL, 0, w, h);
}
void vp9_convolve_copy_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int filter_x_stride,
const int16_t *filter_y, int filter_y_stride,
int w, int h) {
int r;
for (r = h; r > 0; --r) {
vpx_memcpy(dst, src, w);
src += src_stride;
dst += dst_stride;
}
}
void vp9_convolve_avg_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int filter_x_stride,
const int16_t *filter_y, int filter_y_stride,
int w, int h) {
int x, y;
for (y = 0; y < h; ++y) {
for (x = 0; x < w; ++x)
dst[x] = ROUND_POWER_OF_TWO(dst[x] + src[x], 1);
src += src_stride;
dst += dst_stride;
}
}