gecko/gfx/layers/ImageContainer.cpp
2013-11-01 14:54:14 +13:00

589 lines
15 KiB
C++

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "ImageContainer.h"
#include <string.h> // for memcpy, memset
#include "SharedTextureImage.h" // for SharedTextureImage
#include "gfxImageSurface.h" // for gfxImageSurface
#include "gfxPlatform.h" // for gfxPlatform
#include "gfxUtils.h" // for gfxUtils
#include "mozilla/RefPtr.h" // for TemporaryRef
#include "mozilla/ipc/CrossProcessMutex.h" // for CrossProcessMutex, etc
#include "mozilla/layers/CompositorTypes.h"
#include "mozilla/layers/ImageBridgeChild.h" // for ImageBridgeChild
#include "mozilla/layers/ImageClient.h" // for ImageClient
#include "nsISupportsUtils.h" // for NS_IF_ADDREF
#ifdef MOZ_WIDGET_GONK
#include "GrallocImages.h"
#endif
#ifdef XP_MACOSX
#include "mozilla/gfx/QuartzSupport.h"
#include "MacIOSurfaceImage.h"
#endif
#ifdef XP_WIN
#include "gfxD2DSurface.h"
#include "gfxWindowsPlatform.h"
#include <d3d10_1.h>
#include "d3d10/ImageLayerD3D10.h"
#include "D3D9SurfaceImage.h"
#endif
using namespace mozilla::ipc;
using namespace android;
using mozilla::gfx::DataSourceSurface;
using mozilla::gfx::SourceSurface;
namespace mozilla {
namespace layers {
class DataSourceSurface;
class SourceSurface;
Atomic<int32_t> Image::sSerialCounter(0);
already_AddRefed<Image>
ImageFactory::CreateImage(const ImageFormat *aFormats,
uint32_t aNumFormats,
const gfxIntSize &,
BufferRecycleBin *aRecycleBin)
{
if (!aNumFormats) {
return nullptr;
}
nsRefPtr<Image> img;
#ifdef MOZ_WIDGET_GONK
if (FormatInList(aFormats, aNumFormats, GRALLOC_PLANAR_YCBCR)) {
img = new GrallocImage();
return img.forget();
}
#endif
if (FormatInList(aFormats, aNumFormats, PLANAR_YCBCR)) {
img = new PlanarYCbCrImage(aRecycleBin);
return img.forget();
}
if (FormatInList(aFormats, aNumFormats, CAIRO_SURFACE)) {
img = new CairoImage();
return img.forget();
}
if (FormatInList(aFormats, aNumFormats, SHARED_TEXTURE)) {
img = new SharedTextureImage();
return img.forget();
}
#ifdef XP_MACOSX
if (FormatInList(aFormats, aNumFormats, MAC_IOSURFACE)) {
img = new MacIOSurfaceImage();
return img.forget();
}
#endif
#ifdef XP_WIN
if (FormatInList(aFormats, aNumFormats, D3D9_RGB32_TEXTURE)) {
img = new D3D9SurfaceImage();
return img.forget();
}
#endif
return nullptr;
}
BufferRecycleBin::BufferRecycleBin()
: mLock("mozilla.layers.BufferRecycleBin.mLock")
{
}
void
BufferRecycleBin::RecycleBuffer(uint8_t* aBuffer, uint32_t aSize)
{
MutexAutoLock lock(mLock);
if (!mRecycledBuffers.IsEmpty() && aSize != mRecycledBufferSize) {
mRecycledBuffers.Clear();
}
mRecycledBufferSize = aSize;
mRecycledBuffers.AppendElement(aBuffer);
}
uint8_t*
BufferRecycleBin::GetBuffer(uint32_t aSize)
{
MutexAutoLock lock(mLock);
if (mRecycledBuffers.IsEmpty() || mRecycledBufferSize != aSize)
return new uint8_t[aSize];
uint32_t last = mRecycledBuffers.Length() - 1;
uint8_t* result = mRecycledBuffers[last].forget();
mRecycledBuffers.RemoveElementAt(last);
return result;
}
ImageContainer::ImageContainer(int flag)
: mReentrantMonitor("ImageContainer.mReentrantMonitor"),
mPaintCount(0),
mPreviousImagePainted(false),
mImageFactory(new ImageFactory()),
mRecycleBin(new BufferRecycleBin()),
mRemoteData(nullptr),
mRemoteDataMutex(nullptr),
mCompositionNotifySink(nullptr),
mImageClient(nullptr)
{
if (flag == ENABLE_ASYNC && ImageBridgeChild::IsCreated()) {
// the refcount of this ImageClient is 1. we don't use a RefPtr here because the refcount
// of this class must be done on the ImageBridge thread.
mImageClient = ImageBridgeChild::GetSingleton()->CreateImageClient(BUFFER_IMAGE_BUFFERED).drop();
MOZ_ASSERT(mImageClient);
}
}
ImageContainer::~ImageContainer()
{
if (IsAsync()) {
ImageBridgeChild::DispatchReleaseImageClient(mImageClient);
}
}
already_AddRefed<Image>
ImageContainer::CreateImage(const ImageFormat *aFormats,
uint32_t aNumFormats)
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
if (mImageClient) {
nsRefPtr<Image> img = mImageClient->CreateImage((uint32_t*)aFormats,
aNumFormats);
if (img) {
return img.forget();
}
}
return mImageFactory->CreateImage(aFormats, aNumFormats, mScaleHint, mRecycleBin);
}
void
ImageContainer::SetCurrentImageInternal(Image *aImage)
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
if (mRemoteData) {
NS_ASSERTION(mRemoteDataMutex, "Should have remote data mutex when having remote data!");
mRemoteDataMutex->Lock();
// This is important since it ensures we won't change the active image
// when we currently have a locked image that depends on mRemoteData.
}
mActiveImage = aImage;
CurrentImageChanged();
if (mRemoteData) {
mRemoteDataMutex->Unlock();
}
}
void
ImageContainer::ClearCurrentImage()
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
SetCurrentImageInternal(nullptr);
}
void
ImageContainer::SetCurrentImage(Image *aImage)
{
if (!aImage) {
ClearAllImages();
return;
}
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
if (IsAsync()) {
ImageBridgeChild::DispatchImageClientUpdate(mImageClient, this);
}
SetCurrentImageInternal(aImage);
}
void
ImageContainer::ClearAllImages()
{
if (IsAsync()) {
// Let ImageClient release all TextureClients.
ImageBridgeChild::FlushAllImages(mImageClient, this, false);
return;
}
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
SetCurrentImageInternal(nullptr);
}
void
ImageContainer::ClearAllImagesExceptFront()
{
if (IsAsync()) {
// Let ImageClient release all TextureClients except front one.
ImageBridgeChild::FlushAllImages(mImageClient, this, true);
}
}
void
ImageContainer::SetCurrentImageInTransaction(Image *aImage)
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
NS_ASSERTION(!mImageClient, "Should use async image transfer with ImageBridge.");
SetCurrentImageInternal(aImage);
}
bool ImageContainer::IsAsync() const {
return mImageClient != nullptr;
}
uint64_t ImageContainer::GetAsyncContainerID() const
{
NS_ASSERTION(IsAsync(),"Shared image ID is only relevant to async ImageContainers");
if (IsAsync()) {
return mImageClient->GetAsyncID();
} else {
return 0; // zero is always an invalid AsyncID
}
}
bool
ImageContainer::HasCurrentImage()
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
if (mRemoteData) {
CrossProcessMutexAutoLock autoLock(*mRemoteDataMutex);
EnsureActiveImage();
return !!mActiveImage.get();
}
return !!mActiveImage.get();
}
already_AddRefed<Image>
ImageContainer::LockCurrentImage()
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
if (mRemoteData) {
NS_ASSERTION(mRemoteDataMutex, "Should have remote data mutex when having remote data!");
mRemoteDataMutex->Lock();
}
EnsureActiveImage();
nsRefPtr<Image> retval = mActiveImage;
return retval.forget();
}
already_AddRefed<gfxASurface>
ImageContainer::LockCurrentAsSurface(gfxIntSize *aSize, Image** aCurrentImage)
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
if (mRemoteData) {
NS_ASSERTION(mRemoteDataMutex, "Should have remote data mutex when having remote data!");
mRemoteDataMutex->Lock();
EnsureActiveImage();
if (aCurrentImage) {
NS_IF_ADDREF(mActiveImage);
*aCurrentImage = mActiveImage.get();
}
if (!mActiveImage) {
return nullptr;
}
if (mActiveImage->GetFormat() == REMOTE_IMAGE_BITMAP) {
nsRefPtr<gfxImageSurface> newSurf =
new gfxImageSurface(mRemoteData->mBitmap.mData, mRemoteData->mSize, mRemoteData->mBitmap.mStride,
mRemoteData->mFormat == RemoteImageData::BGRX32 ?
gfxImageFormatARGB32 :
gfxImageFormatRGB24);
*aSize = newSurf->GetSize();
return newSurf.forget();
}
*aSize = mActiveImage->GetSize();
return mActiveImage->GetAsSurface();
}
if (aCurrentImage) {
NS_IF_ADDREF(mActiveImage);
*aCurrentImage = mActiveImage.get();
}
if (!mActiveImage) {
return nullptr;
}
*aSize = mActiveImage->GetSize();
return mActiveImage->GetAsSurface();
}
void
ImageContainer::UnlockCurrentImage()
{
if (mRemoteData) {
NS_ASSERTION(mRemoteDataMutex, "Should have remote data mutex when having remote data!");
mRemoteDataMutex->Unlock();
}
}
already_AddRefed<gfxASurface>
ImageContainer::GetCurrentAsSurface(gfxIntSize *aSize)
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
if (mRemoteData) {
CrossProcessMutexAutoLock autoLock(*mRemoteDataMutex);
EnsureActiveImage();
if (!mActiveImage)
return nullptr;
*aSize = mRemoteData->mSize;
} else {
if (!mActiveImage)
return nullptr;
*aSize = mActiveImage->GetSize();
}
return mActiveImage->GetAsSurface();
}
gfxIntSize
ImageContainer::GetCurrentSize()
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
if (mRemoteData) {
CrossProcessMutexAutoLock autoLock(*mRemoteDataMutex);
// We don't need to ensure we have an active image here, as we need to
// be in the mutex anyway, and this is easiest to return from there.
return mRemoteData->mSize;
}
if (!mActiveImage) {
return gfxIntSize(0,0);
}
return mActiveImage->GetSize();
}
void
ImageContainer::SetRemoteImageData(RemoteImageData *aData, CrossProcessMutex *aMutex)
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
NS_ASSERTION(!mActiveImage || !aData, "No active image expected when SetRemoteImageData is called with non-NULL aData.");
NS_ASSERTION(!mRemoteData || !aData, "No remote data expected when SetRemoteImageData is called with non-NULL aData.");
mRemoteData = aData;
if (aData) {
memset(aData, 0, sizeof(RemoteImageData));
} else {
mActiveImage = nullptr;
}
mRemoteDataMutex = aMutex;
}
void
ImageContainer::EnsureActiveImage()
{
if (mRemoteData) {
if (mRemoteData->mWasUpdated) {
mActiveImage = nullptr;
}
if (mRemoteData->mType == RemoteImageData::RAW_BITMAP &&
mRemoteData->mBitmap.mData && !mActiveImage) {
nsRefPtr<RemoteBitmapImage> newImg = new RemoteBitmapImage();
newImg->mFormat = mRemoteData->mFormat;
newImg->mData = mRemoteData->mBitmap.mData;
newImg->mSize = mRemoteData->mSize;
newImg->mStride = mRemoteData->mBitmap.mStride;
mRemoteData->mWasUpdated = false;
mActiveImage = newImg;
}
#ifdef XP_WIN
else if (mRemoteData->mType == RemoteImageData::DXGI_TEXTURE_HANDLE &&
mRemoteData->mTextureHandle && !mActiveImage) {
nsRefPtr<RemoteDXGITextureImage> newImg = new RemoteDXGITextureImage();
newImg->mSize = mRemoteData->mSize;
newImg->mHandle = mRemoteData->mTextureHandle;
newImg->mFormat = mRemoteData->mFormat;
mRemoteData->mWasUpdated = false;
mActiveImage = newImg;
}
#endif
}
}
PlanarYCbCrImage::PlanarYCbCrImage(BufferRecycleBin *aRecycleBin)
: Image(nullptr, PLANAR_YCBCR)
, mBufferSize(0)
, mOffscreenFormat(gfxImageFormatUnknown)
, mRecycleBin(aRecycleBin)
{
}
PlanarYCbCrImage::~PlanarYCbCrImage()
{
if (mBuffer) {
mRecycleBin->RecycleBuffer(mBuffer.forget(), mBufferSize);
}
}
uint8_t*
PlanarYCbCrImage::AllocateBuffer(uint32_t aSize)
{
return mRecycleBin->GetBuffer(aSize);
}
static void
CopyPlane(uint8_t *aDst, const uint8_t *aSrc,
const gfxIntSize &aSize, int32_t aStride, int32_t aSkip)
{
if (!aSkip) {
// Fast path: planar input.
memcpy(aDst, aSrc, aSize.height * aStride);
} else {
int32_t height = aSize.height;
int32_t width = aSize.width;
for (int y = 0; y < height; ++y) {
const uint8_t *src = aSrc;
uint8_t *dst = aDst;
// Slow path
for (int x = 0; x < width; ++x) {
*dst++ = *src++;
src += aSkip;
}
aSrc += aStride;
aDst += aStride;
}
}
}
void
PlanarYCbCrImage::CopyData(const Data& aData)
{
mData = aData;
// update buffer size
mBufferSize = mData.mCbCrStride * mData.mCbCrSize.height * 2 +
mData.mYStride * mData.mYSize.height;
// get new buffer
mBuffer = AllocateBuffer(mBufferSize);
if (!mBuffer)
return;
mData.mYChannel = mBuffer;
mData.mCbChannel = mData.mYChannel + mData.mYStride * mData.mYSize.height;
mData.mCrChannel = mData.mCbChannel + mData.mCbCrStride * mData.mCbCrSize.height;
CopyPlane(mData.mYChannel, aData.mYChannel,
mData.mYSize, mData.mYStride, mData.mYSkip);
CopyPlane(mData.mCbChannel, aData.mCbChannel,
mData.mCbCrSize, mData.mCbCrStride, mData.mCbSkip);
CopyPlane(mData.mCrChannel, aData.mCrChannel,
mData.mCbCrSize, mData.mCbCrStride, mData.mCrSkip);
mSize = aData.mPicSize;
}
void
PlanarYCbCrImage::SetData(const Data &aData)
{
CopyData(aData);
}
gfxImageFormat
PlanarYCbCrImage::GetOffscreenFormat()
{
return mOffscreenFormat == gfxImageFormatUnknown ?
gfxPlatform::GetPlatform()->GetOffscreenFormat() :
mOffscreenFormat;
}
void
PlanarYCbCrImage::SetDataNoCopy(const Data &aData)
{
mData = aData;
mSize = aData.mPicSize;
}
uint8_t*
PlanarYCbCrImage::AllocateAndGetNewBuffer(uint32_t aSize)
{
// update buffer size
mBufferSize = aSize;
// get new buffer
mBuffer = AllocateBuffer(mBufferSize);
return mBuffer;
}
already_AddRefed<gfxASurface>
PlanarYCbCrImage::GetAsSurface()
{
if (mSurface) {
nsRefPtr<gfxASurface> result = mSurface.get();
return result.forget();
}
gfxImageFormat format = GetOffscreenFormat();
gfxIntSize size(mSize);
gfxUtils::GetYCbCrToRGBDestFormatAndSize(mData, format, size);
if (size.width > PlanarYCbCrImage::MAX_DIMENSION ||
size.height > PlanarYCbCrImage::MAX_DIMENSION) {
NS_ERROR("Illegal image dest width or height");
return nullptr;
}
nsRefPtr<gfxImageSurface> imageSurface =
new gfxImageSurface(mSize, format);
gfxUtils::ConvertYCbCrToRGB(mData, format, mSize,
imageSurface->Data(),
imageSurface->Stride());
mSurface = imageSurface;
return imageSurface.forget();
}
already_AddRefed<gfxASurface>
RemoteBitmapImage::GetAsSurface()
{
nsRefPtr<gfxImageSurface> newSurf =
new gfxImageSurface(mSize,
mFormat == RemoteImageData::BGRX32 ? gfxImageFormatRGB24 : gfxImageFormatARGB32);
for (int y = 0; y < mSize.height; y++) {
memcpy(newSurf->Data() + newSurf->Stride() * y,
mData + mStride * y,
mSize.width * 4);
}
return newSurf.forget();
}
} // namespace
} // namespace