gecko/content/media/MP3FrameParser.cpp

490 lines
14 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <algorithm>
#include "nsMemory.h"
#include "MP3FrameParser.h"
#include "VideoUtils.h"
namespace mozilla {
// An ID3Buffer contains data of an ID3v2 header. The supplied buffer must
// point to an ID3 header and at least the size of ID_HEADER_LENGTH. Run the
// Parse method to read in the header's values.
class ID3Buffer
{
public:
enum {
ID3_HEADER_LENGTH = 10
};
ID3Buffer(const uint8_t* aBuffer, uint32_t aLength)
: mBuffer(aBuffer),
mLength(aLength),
mSize(0)
{
MOZ_ASSERT(mBuffer || !mLength);
}
nsresult Parse();
int64_t Length() const {
return ID3_HEADER_LENGTH + mSize;
}
private:
const uint8_t* mBuffer;
uint32_t mLength;
uint32_t mSize;
};
nsresult ID3Buffer::Parse()
{
NS_ENSURE_TRUE(mBuffer && mLength >= ID3_HEADER_LENGTH, NS_ERROR_INVALID_ARG);
if ((mBuffer[0] != 'I') ||
(mBuffer[1] != 'D') ||
(mBuffer[2] != '3') ||
(mBuffer[6] & 0x80) ||
(mBuffer[7] & 0x80) ||
(mBuffer[8] & 0x80) ||
(mBuffer[9] & 0x80)) {
return NS_ERROR_INVALID_ARG;
}
mSize = ((static_cast<uint32_t>(mBuffer[6])<<21) |
(static_cast<uint32_t>(mBuffer[7])<<14) |
(static_cast<uint32_t>(mBuffer[8])<<7) |
static_cast<uint32_t>(mBuffer[9]));
return NS_OK;
}
// The MP3Buffer contains MP3 frame data. The supplied buffer must point
// to a frame header. Call the method Parse to extract information from
// the MP3 frame headers in the supplied buffer.
class MP3Buffer
{
public:
enum {
MP3_HEADER_LENGTH = 4,
MP3_FRAMESIZE_CONST = 144000,
MP3_DURATION_CONST = 8000
};
MP3Buffer(const uint8_t* aBuffer, uint32_t aLength)
: mBuffer(aBuffer),
mLength(aLength),
mDurationUs(0),
mNumFrames(0),
mBitRateSum(0),
mSampleRate(0),
mFrameSizeSum(0)
{
MOZ_ASSERT(mBuffer || !mLength);
}
nsresult Parse();
int64_t GetDuration() const {
return mDurationUs;
}
int64_t GetNumberOfFrames() const {
return mNumFrames;
}
int64_t GetBitRateSum() const {
return mBitRateSum;
}
int16_t GetSampleRate() const {
return mSampleRate;
}
int64_t GetFrameSizeSum() const {
return mFrameSizeSum;
}
private:
enum MP3FrameHeaderField {
MP3_HDR_FIELD_SYNC,
MP3_HDR_FIELD_VERSION,
MP3_HDR_FIELD_LAYER,
MP3_HDR_FIELD_BITRATE,
MP3_HDR_FIELD_SAMPLERATE,
MP3_HDR_FIELD_PADDING,
MP3_HDR_FIELDS // Must be last enumerator value
};
enum {
MP3_HDR_CONST_FRAMESYNC = 0x7ff,
MP3_HDR_CONST_VERSION = 3,
MP3_HDR_CONST_LAYER = 1
};
static uint32_t ExtractBits(uint32_t aValue, uint32_t aOffset,
uint32_t aBits);
static uint32_t ExtractFrameHeaderField(uint32_t aHeader,
enum MP3FrameHeaderField aField);
static uint32_t ExtractFrameHeader(const uint8_t* aBuffer);
static nsresult DecodeFrameHeader(const uint8_t* aBuffer,
uint32_t* aFrameSize,
uint32_t* aBitRate,
uint16_t* aSampleRate,
uint64_t* aDuration);
static const uint16_t sBitRate[16];
static const uint16_t sSampleRate[4];
const uint8_t* mBuffer;
uint32_t mLength;
// The duration of this parsers data in milliseconds.
int64_t mDurationUs;
// The number of frames in the range.
int64_t mNumFrames;
// The sum of all frame's bit rates.
int64_t mBitRateSum;
// The number of audio samples per second
int16_t mSampleRate;
// The sum of all frame's sizes in byte.
int32_t mFrameSizeSum;
};
const uint16_t MP3Buffer::sBitRate[16] = {
0, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 0
};
const uint16_t MP3Buffer::sSampleRate[4] = {
44100, 48000, 32000, 0
};
uint32_t MP3Buffer::ExtractBits(uint32_t aValue, uint32_t aOffset, uint32_t aBits)
{
return (aValue >> aOffset) & ((0x1ul << aBits) - 1);
}
uint32_t MP3Buffer::ExtractFrameHeaderField(uint32_t aHeader, enum MP3FrameHeaderField aField)
{
static const uint8_t sField[MP3_HDR_FIELDS][2] = {
{21, 11}, {19, 2}, {17, 2}, {12, 4}, {10, 2}, {9, 1}
};
MOZ_ASSERT(aField < MP3_HDR_FIELDS);
return ExtractBits(aHeader, sField[aField][0], sField[aField][1]);
}
uint32_t MP3Buffer::ExtractFrameHeader(const uint8_t* aBuffer)
{
MOZ_ASSERT(aBuffer);
uint32_t header = (static_cast<uint32_t>(aBuffer[0])<<24) |
(static_cast<uint32_t>(aBuffer[1])<<16) |
(static_cast<uint32_t>(aBuffer[2])<<8) |
static_cast<uint32_t>(aBuffer[3]);
uint32_t frameSync = ExtractFrameHeaderField(header, MP3_HDR_FIELD_SYNC);
uint32_t version = ExtractFrameHeaderField(header, MP3_HDR_FIELD_VERSION);
uint32_t layer = ExtractFrameHeaderField(header, MP3_HDR_FIELD_LAYER);
uint32_t bitRate = sBitRate[ExtractFrameHeaderField(header, MP3_HDR_FIELD_BITRATE)];
uint32_t sampleRate = sSampleRate[ExtractFrameHeaderField(header, MP3_HDR_FIELD_SAMPLERATE)];
// branch-less implementation of
//
// if (fields-are-valid)
// return header;
// else
// return 0;
//
return (frameSync == uint32_t(MP3_HDR_CONST_FRAMESYNC)) *
(version == uint32_t(MP3_HDR_CONST_VERSION)) *
(layer == uint32_t(MP3_HDR_CONST_LAYER)) * !!bitRate * !!sampleRate * header;
}
nsresult MP3Buffer::DecodeFrameHeader(const uint8_t* aBuffer,
uint32_t* aFrameSize,
uint32_t* aBitRate,
uint16_t* aSampleRate,
uint64_t* aDuration)
{
uint32_t header = ExtractFrameHeader(aBuffer);
if (!header) {
return NS_ERROR_INVALID_ARG;
}
uint32_t bitRate = sBitRate[ExtractFrameHeaderField(header, MP3_HDR_FIELD_BITRATE)];
uint32_t sampleRate = sSampleRate[ExtractFrameHeaderField(header, MP3_HDR_FIELD_SAMPLERATE)];
uint32_t padding = ExtractFrameHeaderField(header, MP3_HDR_FIELD_PADDING);
uint32_t frameSize = (uint64_t(MP3_FRAMESIZE_CONST) * bitRate) / sampleRate + padding;
MOZ_ASSERT(aBitRate);
*aBitRate = bitRate;
MOZ_ASSERT(aFrameSize);
*aFrameSize = frameSize;
MOZ_ASSERT(aDuration);
*aDuration = (uint64_t(MP3_DURATION_CONST) * frameSize) / bitRate;
MOZ_ASSERT(aSampleRate);
*aSampleRate = sampleRate;
return NS_OK;
}
nsresult MP3Buffer::Parse()
{
// We walk over the newly arrived data and sum up the
// bit rates, sizes, durations, etc. of the contained
// MP3 frames.
const uint8_t* buffer = mBuffer;
uint32_t length = mLength;
while (length >= MP3_HEADER_LENGTH) {
uint32_t frameSize;
uint32_t bitRate;
uint16_t sampleRate;
uint64_t duration;
nsresult rv = DecodeFrameHeader(buffer, &frameSize, &bitRate,
&sampleRate, &duration);
if (NS_FAILED(rv)) {
return rv;
}
mBitRateSum += bitRate;
mDurationUs += duration;
++mNumFrames;
mFrameSizeSum += frameSize;
mSampleRate = sampleRate;
if (frameSize <= length) {
length -= frameSize;
} else {
length = 0;
}
buffer += frameSize;
}
return NS_OK;
}
// Some MP3's have large ID3v2 tags, up to 150KB, so we allow lots of
// skipped bytes to be read, just in case, before we give up and assume
// we're not parsing an MP3 stream.
static const uint32_t MAX_SKIPPED_BYTES = 200 * 1024;
// The number of audio samples per MP3 frame. This is constant over all MP3
// streams. With this constant, the stream's sample rate, and an estimated
// number of frames in the stream, we can estimate the stream's duration
// fairly accurately.
static const uint32_t SAMPLES_PER_FRAME = 1152;
MP3FrameParser::MP3FrameParser(int64_t aLength)
: mBufferLength(0),
mLock("MP3FrameParser.mLock"),
mDurationUs(0),
mBitRateSum(0),
mTotalFrameSize(0),
mNumFrames(0),
mOffset(0),
mLength(aLength),
mMP3Offset(-1),
mSkippedBytes(0),
mSampleRate(0),
mIsMP3(MAYBE_MP3)
{ }
nsresult MP3FrameParser::ParseBuffer(const uint8_t* aBuffer,
uint32_t aLength,
int64_t aStreamOffset,
uint32_t* aOutBytesRead)
{
// Iterate forwards over the buffer, looking for ID3 tag, or MP3
// Frame headers.
uint32_t bufferOffset = 0;
uint32_t headersParsed = 0;
while (bufferOffset < aLength) {
const uint8_t* buffer = aBuffer + bufferOffset;
const uint32_t length = aLength - bufferOffset;
if (mMP3Offset == -1) {
// We've not found any MP3 frames yet, there may still be ID3 tags in
// the stream, so test for them.
if (length < ID3Buffer::ID3_HEADER_LENGTH) {
// We don't have enough data to get a complete ID3 header, bail.
break;
}
ID3Buffer id3Buffer(buffer, length);
if (NS_SUCCEEDED(id3Buffer.Parse())) {
bufferOffset += id3Buffer.Length();
// Try to parse the next chunk.
headersParsed++;
continue;
}
}
if (length < MP3Buffer::MP3_HEADER_LENGTH) {
// We don't have enough data to get a complete MP3 frame header, bail.
break;
}
MP3Buffer mp3Buffer(buffer, length);
if (NS_SUCCEEDED(mp3Buffer.Parse())) {
headersParsed++;
if (mMP3Offset == -1) {
mMP3Offset = aStreamOffset + bufferOffset;
}
mDurationUs += mp3Buffer.GetDuration();
mBitRateSum += mp3Buffer.GetBitRateSum();
mTotalFrameSize += mp3Buffer.GetFrameSizeSum();
mSampleRate = mp3Buffer.GetSampleRate();
mNumFrames += mp3Buffer.GetNumberOfFrames();
bufferOffset += mp3Buffer.GetFrameSizeSum();
} else {
// No ID3 or MP3 frame header here. Try the next byte.
++bufferOffset;
}
}
if (headersParsed == 0) {
if (mIsMP3 == MAYBE_MP3) {
mSkippedBytes += aLength;
if (mSkippedBytes > MAX_SKIPPED_BYTES) {
mIsMP3 = NOT_MP3;
return NS_ERROR_FAILURE;
}
}
} else {
mIsMP3 = DEFINITELY_MP3;
mSkippedBytes = 0;
}
*aOutBytesRead = bufferOffset;
return NS_OK;
}
void MP3FrameParser::Parse(const char* aBuffer, uint32_t aLength, int64_t aOffset)
{
MutexAutoLock mon(mLock);
const uint8_t* buffer = reinterpret_cast<const uint8_t*>(aBuffer);
const int64_t lastChunkEnd = mOffset + mBufferLength;
if (aOffset + aLength <= lastChunkEnd) {
// We already processed this fragment.
return;
} else if (aOffset < lastChunkEnd) {
// mOffset is within the new fragment, shorten range.
aLength -= lastChunkEnd - aOffset;
buffer += lastChunkEnd - aOffset;
aOffset = lastChunkEnd;
} else if (aOffset > lastChunkEnd) {
// Fragment comes after current position, store difference.
mOffset += aOffset - lastChunkEnd;
mSkippedBytes = 0;
}
if (mBufferLength > 0) {
// We have some data which was left over from the last buffer we received.
// Append to it, so that we have enough data to parse a complete header, and
// try to parse it.
uint32_t copyLength = std::min<size_t>(NS_ARRAY_LENGTH(mBuffer)-mBufferLength, aLength);
memcpy(mBuffer+mBufferLength, buffer, copyLength*sizeof(*mBuffer));
// Caculate the offset of the data in the start of the buffer.
int64_t streamOffset = mOffset - mBufferLength;
uint32_t bufferLength = mBufferLength + copyLength;
uint32_t bytesRead = 0;
if (NS_FAILED(ParseBuffer(mBuffer,
bufferLength,
streamOffset,
&bytesRead))) {
return;
}
MOZ_ASSERT(bytesRead >= mBufferLength, "Parse should leave original buffer");
// Adjust the incoming buffer pointer/length so that it reflects that we may have
// consumed data from buffer.
uint32_t adjust = bytesRead - mBufferLength;
mBufferLength = 0;
if (adjust >= aLength) {
// The frame or tag found in the buffer finishes outside the range.
// Just set the offset to the end of that tag/frame, and return.
mOffset = streamOffset + bytesRead;
if (mOffset > mLength) {
mLength = mOffset;
}
return;
}
aOffset += adjust;
MOZ_ASSERT(aLength >= adjust);
aLength -= adjust;
}
uint32_t bytesRead = 0;
if (NS_FAILED(ParseBuffer(buffer,
aLength,
aOffset,
&bytesRead))) {
return;
}
mOffset += bytesRead;
if (bytesRead < aLength) {
// We have some data left over. Store trailing bytes in temporary buffer
// to be parsed next time we receive more data.
uint32_t trailing = aLength - bytesRead;
MOZ_ASSERT(trailing < (NS_ARRAY_LENGTH(mBuffer)*sizeof(mBuffer[0])));
memcpy(mBuffer, buffer+(aLength-trailing), trailing);
mBufferLength = trailing;
}
if (mOffset > mLength) {
mLength = mOffset;
}
}
int64_t MP3FrameParser::GetDuration()
{
MutexAutoLock mon(mLock);
if (!mNumFrames) {
return -1; // Not a single frame decoded yet
}
// Estimate the total number of frames in the file from the average frame
// size we've seen so far, and the length of the file.
double avgFrameSize = (double)mTotalFrameSize / mNumFrames;
// Need to cut out the header here. Ignore everything up to the first MP3
// frames.
double estimatedFrames = (double)(mLength - mMP3Offset) / avgFrameSize;
// The duration of each frame is constant over a given stream.
double usPerFrame = USECS_PER_S * SAMPLES_PER_FRAME / mSampleRate;
return estimatedFrames * usPerFrame;
}
int64_t MP3FrameParser::GetMP3Offset()
{
MutexAutoLock mon(mLock);
return mMP3Offset;
}
}