gecko/netwerk/protocol/http/nsHttpConnection.cpp
2014-03-03 18:12:42 +13:00

1874 lines
64 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* vim:set ts=4 sw=4 sts=4 et cin: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// HttpLog.h should generally be included first
#include "HttpLog.h"
// Log on level :5, instead of default :4.
#undef LOG
#define LOG(args) LOG5(args)
#undef LOG_ENABLED
#define LOG_ENABLED() LOG5_ENABLED()
#include "nsHttpConnection.h"
#include "nsHttpRequestHead.h"
#include "nsHttpResponseHead.h"
#include "nsHttpHandler.h"
#include "nsIOService.h"
#include "nsISocketTransport.h"
#include "nsSocketTransportService2.h"
#include "nsISSLSocketControl.h"
#include "sslt.h"
#include "nsStringStream.h"
#include "nsProxyRelease.h"
#include "nsPreloadedStream.h"
#include "ASpdySession.h"
#include "mozilla/Telemetry.h"
#include "nsISupportsPriority.h"
#include "nsHttpPipeline.h"
#include <algorithm>
#include "mozilla/ChaosMode.h"
#ifdef DEBUG
// defined by the socket transport service while active
extern PRThread *gSocketThread;
#endif
namespace mozilla {
namespace net {
//-----------------------------------------------------------------------------
// nsHttpConnection <public>
//-----------------------------------------------------------------------------
nsHttpConnection::nsHttpConnection()
: mTransaction(nullptr)
, mHttpHandler(gHttpHandler)
, mCallbacksLock("nsHttpConnection::mCallbacksLock")
, mIdleTimeout(0)
, mConsiderReusedAfterInterval(0)
, mConsiderReusedAfterEpoch(0)
, mCurrentBytesRead(0)
, mMaxBytesRead(0)
, mTotalBytesRead(0)
, mTotalBytesWritten(0)
, mKeepAlive(true) // assume to keep-alive by default
, mKeepAliveMask(true)
, mDontReuse(false)
, mSupportsPipelining(false) // assume low-grade server
, mIsReused(false)
, mCompletedProxyConnect(false)
, mLastTransactionExpectedNoContent(false)
, mIdleMonitoring(false)
, mProxyConnectInProgress(false)
, mExperienced(false)
, mHttp1xTransactionCount(0)
, mRemainingConnectionUses(0xffffffff)
, mClassification(nsAHttpTransaction::CLASS_GENERAL)
, mNPNComplete(false)
, mSetupSSLCalled(false)
, mUsingSpdyVersion(0)
, mPriority(nsISupportsPriority::PRIORITY_NORMAL)
, mReportedSpdy(false)
, mEverUsedSpdy(false)
, mLastHttpResponseVersion(NS_HTTP_VERSION_1_1)
, mTransactionCaps(0)
, mResponseTimeoutEnabled(false)
, mTCPKeepaliveConfig(kTCPKeepaliveDisabled)
{
LOG(("Creating nsHttpConnection @%x\n", this));
}
nsHttpConnection::~nsHttpConnection()
{
LOG(("Destroying nsHttpConnection @%x\n", this));
if (!mEverUsedSpdy) {
LOG(("nsHttpConnection %p performed %d HTTP/1.x transactions\n",
this, mHttp1xTransactionCount));
Telemetry::Accumulate(Telemetry::HTTP_REQUEST_PER_CONN,
mHttp1xTransactionCount);
}
if (mTotalBytesRead) {
uint32_t totalKBRead = static_cast<uint32_t>(mTotalBytesRead >> 10);
LOG(("nsHttpConnection %p read %dkb on connection spdy=%d\n",
this, totalKBRead, mEverUsedSpdy));
Telemetry::Accumulate(mEverUsedSpdy ?
Telemetry::SPDY_KBREAD_PER_CONN :
Telemetry::HTTP_KBREAD_PER_CONN,
totalKBRead);
}
}
nsresult
nsHttpConnection::Init(nsHttpConnectionInfo *info,
uint16_t maxHangTime,
nsISocketTransport *transport,
nsIAsyncInputStream *instream,
nsIAsyncOutputStream *outstream,
nsIInterfaceRequestor *callbacks,
PRIntervalTime rtt)
{
MOZ_ASSERT(transport && instream && outstream,
"invalid socket information");
LOG(("nsHttpConnection::Init [this=%p "
"transport=%p instream=%p outstream=%p rtt=%d]\n",
this, transport, instream, outstream,
PR_IntervalToMilliseconds(rtt)));
NS_ENSURE_ARG_POINTER(info);
NS_ENSURE_TRUE(!mConnInfo, NS_ERROR_ALREADY_INITIALIZED);
mConnInfo = info;
mLastWriteTime = mLastReadTime = PR_IntervalNow();
mSupportsPipelining =
gHttpHandler->ConnMgr()->SupportsPipelining(mConnInfo);
mRtt = rtt;
mMaxHangTime = PR_SecondsToInterval(maxHangTime);
mSocketTransport = transport;
mSocketIn = instream;
mSocketOut = outstream;
nsresult rv = mSocketTransport->SetEventSink(this, nullptr);
NS_ENSURE_SUCCESS(rv, rv);
// See explanation for non-strictness of this operation in SetSecurityCallbacks.
mCallbacks = new nsMainThreadPtrHolder<nsIInterfaceRequestor>(callbacks, false);
rv = mSocketTransport->SetSecurityCallbacks(this);
NS_ENSURE_SUCCESS(rv, rv);
return NS_OK;
}
void
nsHttpConnection::StartSpdy(uint8_t spdyVersion)
{
LOG(("nsHttpConnection::StartSpdy [this=%p]\n", this));
MOZ_ASSERT(!mSpdySession);
mUsingSpdyVersion = spdyVersion;
mEverUsedSpdy = true;
// Setting the connection as reused allows some transactions that fail
// with NS_ERROR_NET_RESET to be restarted and SPDY uses that code
// to handle clean rejections (such as those that arrived after
// a server goaway was generated).
mIsReused = true;
// If mTransaction is a pipeline object it might represent
// several requests. If so, we need to unpack that and
// pack them all into a new spdy session.
nsTArray<nsRefPtr<nsAHttpTransaction> > list;
nsresult rv = mTransaction->TakeSubTransactions(list);
if (rv == NS_ERROR_ALREADY_OPENED) {
// Has the interface for TakeSubTransactions() changed?
LOG(("TakeSubTranscations somehow called after "
"nsAHttpTransaction began processing\n"));
MOZ_ASSERT(false,
"TakeSubTranscations somehow called after "
"nsAHttpTransaction began processing");
mTransaction->Close(NS_ERROR_ABORT);
return;
}
if (NS_FAILED(rv) && rv != NS_ERROR_NOT_IMPLEMENTED) {
// Has the interface for TakeSubTransactions() changed?
LOG(("unexpected rv from nnsAHttpTransaction::TakeSubTransactions()"));
MOZ_ASSERT(false,
"unexpected result from "
"nsAHttpTransaction::TakeSubTransactions()");
mTransaction->Close(NS_ERROR_ABORT);
return;
}
if (NS_FAILED(rv)) { // includes NS_ERROR_NOT_IMPLEMENTED
MOZ_ASSERT(list.IsEmpty(), "sub transaction list not empty");
// This is ok - treat mTransaction as a single real request.
// Wrap the old http transaction into the new spdy session
// as the first stream.
mSpdySession = ASpdySession::NewSpdySession(spdyVersion,
mTransaction, mSocketTransport,
mPriority);
LOG(("nsHttpConnection::StartSpdy moves single transaction %p "
"into SpdySession %p\n", mTransaction.get(), mSpdySession.get()));
}
else {
int32_t count = list.Length();
LOG(("nsHttpConnection::StartSpdy moving transaction list len=%d "
"into SpdySession %p\n", count, mSpdySession.get()));
if (!count) {
mTransaction->Close(NS_ERROR_ABORT);
return;
}
for (int32_t index = 0; index < count; ++index) {
if (!mSpdySession) {
mSpdySession = ASpdySession::NewSpdySession(spdyVersion,
list[index], mSocketTransport,
mPriority);
}
else {
// AddStream() cannot fail
if (!mSpdySession->AddStream(list[index], mPriority)) {
MOZ_ASSERT(false, "SpdySession::AddStream failed");
LOG(("SpdySession::AddStream failed\n"));
mTransaction->Close(NS_ERROR_ABORT);
return;
}
}
}
}
// Disable TCP Keepalives - use SPDY ping instead.
rv = DisableTCPKeepalives();
if (NS_WARN_IF(NS_FAILED(rv))) {
LOG(("nsHttpConnection::StartSpdy [%p] DisableTCPKeepalives failed "
"rv[0x%x]", this, rv));
}
mSupportsPipelining = false; // dont use http/1 pipelines with spdy
mTransaction = mSpdySession;
mIdleTimeout = gHttpHandler->SpdyTimeout();
}
bool
nsHttpConnection::EnsureNPNComplete()
{
// If for some reason the components to check on NPN aren't available,
// this function will just return true to continue on and disable SPDY
MOZ_ASSERT(mSocketTransport);
if (!mSocketTransport) {
// this cannot happen
mNPNComplete = true;
return true;
}
if (mNPNComplete)
return true;
nsresult rv;
nsCOMPtr<nsISupports> securityInfo;
nsCOMPtr<nsISSLSocketControl> ssl;
nsAutoCString negotiatedNPN;
rv = mSocketTransport->GetSecurityInfo(getter_AddRefs(securityInfo));
if (NS_FAILED(rv))
goto npnComplete;
ssl = do_QueryInterface(securityInfo, &rv);
if (NS_FAILED(rv))
goto npnComplete;
rv = ssl->GetNegotiatedNPN(negotiatedNPN);
if (rv == NS_ERROR_NOT_CONNECTED) {
// By writing 0 bytes to the socket the SSL handshake machine is
// pushed forward.
uint32_t count = 0;
rv = mSocketOut->Write("", 0, &count);
if (NS_FAILED(rv) && rv != NS_BASE_STREAM_WOULD_BLOCK)
goto npnComplete;
return false;
}
if (NS_FAILED(rv))
goto npnComplete;
LOG(("nsHttpConnection::EnsureNPNComplete %p [%s] negotiated to '%s'\n",
this, mConnInfo->Host(), negotiatedNPN.get()));
uint8_t spdyVersion;
rv = gHttpHandler->SpdyInfo()->GetNPNVersionIndex(negotiatedNPN,
&spdyVersion);
if (NS_SUCCEEDED(rv))
StartSpdy(spdyVersion);
Telemetry::Accumulate(Telemetry::SPDY_NPN_CONNECT, UsingSpdy());
npnComplete:
LOG(("nsHttpConnection::EnsureNPNComplete setting complete to true"));
mNPNComplete = true;
return true;
}
// called on the socket thread
nsresult
nsHttpConnection::Activate(nsAHttpTransaction *trans, uint32_t caps, int32_t pri)
{
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
LOG(("nsHttpConnection::Activate [this=%p trans=%x caps=%x]\n",
this, trans, caps));
if (!trans->IsNullTransaction())
mExperienced = true;
mTransactionCaps = caps;
mPriority = pri;
if (mTransaction && mUsingSpdyVersion)
return AddTransaction(trans, pri);
NS_ENSURE_ARG_POINTER(trans);
NS_ENSURE_TRUE(!mTransaction, NS_ERROR_IN_PROGRESS);
// reset the read timers to wash away any idle time
mLastWriteTime = mLastReadTime = PR_IntervalNow();
// Update security callbacks
nsCOMPtr<nsIInterfaceRequestor> callbacks;
trans->GetSecurityCallbacks(getter_AddRefs(callbacks));
SetSecurityCallbacks(callbacks);
SetupSSL(caps);
// take ownership of the transaction
mTransaction = trans;
MOZ_ASSERT(!mIdleMonitoring, "Activating a connection with an Idle Monitor");
mIdleMonitoring = false;
// set mKeepAlive according to what will be requested
mKeepAliveMask = mKeepAlive = (caps & NS_HTTP_ALLOW_KEEPALIVE);
// need to handle HTTP CONNECT tunnels if this is the first time if
// we are tunneling through a proxy
nsresult rv = NS_OK;
if (mConnInfo->UsingConnect() && !mCompletedProxyConnect) {
rv = SetupProxyConnect();
if (NS_FAILED(rv))
goto failed_activation;
mProxyConnectInProgress = true;
}
// Clear the per activation counter
mCurrentBytesRead = 0;
// The overflow state is not needed between activations
mInputOverflow = nullptr;
mResponseTimeoutEnabled = mTransaction->ResponseTimeout() > 0 &&
mTransaction->ResponseTimeoutEnabled();
rv = StartShortLivedTCPKeepalives();
if (NS_WARN_IF(NS_FAILED(rv))) {
LOG(("nsHttpConnection::Activate [%p] "
"StartShortLivedTCPKeepalives failed rv[0x%x]",
this, rv));
}
rv = OnOutputStreamReady(mSocketOut);
failed_activation:
if (NS_FAILED(rv)) {
mTransaction = nullptr;
}
return rv;
}
void
nsHttpConnection::SetupSSL(uint32_t caps)
{
LOG(("nsHttpConnection::SetupSSL %p caps=0x%X\n", this, caps));
if (mSetupSSLCalled) // do only once
return;
mSetupSSLCalled = true;
if (mNPNComplete)
return;
// we flip this back to false if SetNPNList succeeds at the end
// of this function
mNPNComplete = true;
if (!mConnInfo->UsingSSL())
return;
LOG(("nsHttpConnection::SetupSSL Setting up "
"Next Protocol Negotiation"));
nsCOMPtr<nsISupports> securityInfo;
nsresult rv =
mSocketTransport->GetSecurityInfo(getter_AddRefs(securityInfo));
if (NS_FAILED(rv))
return;
nsCOMPtr<nsISSLSocketControl> ssl = do_QueryInterface(securityInfo, &rv);
if (NS_FAILED(rv))
return;
if (caps & NS_HTTP_ALLOW_RSA_FALSESTART) {
LOG(("nsHttpConnection::SetupSSL %p "
">= RSA Key Exchange Expected\n", this));
ssl->SetKEAExpected(ssl_kea_rsa);
}
nsTArray<nsCString> protocolArray;
// The first protocol is used as the fallback if none of the
// protocols supported overlap with the server's list.
// In the case of overlap, matching priority is driven by
// the order of the server's advertisement.
protocolArray.AppendElement(NS_LITERAL_CSTRING("http/1.1"));
if (gHttpHandler->IsSpdyEnabled() &&
!(caps & NS_HTTP_DISALLOW_SPDY)) {
LOG(("nsHttpConnection::SetupSSL Allow SPDY NPN selection"));
for (uint32_t index = 0; index < SpdyInformation::kCount; ++index) {
if (gHttpHandler->SpdyInfo()->ProtocolEnabled(index))
protocolArray.AppendElement(
gHttpHandler->SpdyInfo()->VersionString[index]);
}
}
if (NS_SUCCEEDED(ssl->SetNPNList(protocolArray))) {
LOG(("nsHttpConnection::Init Setting up SPDY Negotiation OK"));
mNPNComplete = false;
}
}
nsresult
nsHttpConnection::AddTransaction(nsAHttpTransaction *httpTransaction,
int32_t priority)
{
LOG(("nsHttpConnection::AddTransaction for SPDY"));
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
MOZ_ASSERT(mSpdySession && mUsingSpdyVersion,
"AddTransaction to live http connection without spdy");
MOZ_ASSERT(mTransaction,
"AddTransaction to idle http connection");
if (!mSpdySession->AddStream(httpTransaction, priority)) {
MOZ_ASSERT(false, "AddStream should never fail due to"
"RoomForMore() admission check");
return NS_ERROR_FAILURE;
}
ResumeSend();
return NS_OK;
}
void
nsHttpConnection::Close(nsresult reason)
{
LOG(("nsHttpConnection::Close [this=%p reason=%x]\n", this, reason));
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
// Ensure TCP keepalive timer is stopped.
if (mTCPKeepaliveTransitionTimer) {
mTCPKeepaliveTransitionTimer->Cancel();
mTCPKeepaliveTransitionTimer = nullptr;
}
if (NS_FAILED(reason)) {
if (mIdleMonitoring)
EndIdleMonitoring();
if (mSocketTransport) {
mSocketTransport->SetEventSink(nullptr, nullptr);
// If there are bytes sitting in the input queue then read them
// into a junk buffer to avoid generating a tcp rst by closing a
// socket with data pending. TLS is a classic case of this where
// a Alert record might be superfulous to a clean HTTP/SPDY shutdown.
// Never block to do this and limit it to a small amount of data.
if (mSocketIn) {
char buffer[4000];
uint32_t count, total = 0;
nsresult rv;
do {
rv = mSocketIn->Read(buffer, 4000, &count);
if (NS_SUCCEEDED(rv))
total += count;
}
while (NS_SUCCEEDED(rv) && count > 0 && total < 64000);
LOG(("nsHttpConnection::Close drained %d bytes\n", total));
}
mSocketTransport->SetSecurityCallbacks(nullptr);
mSocketTransport->Close(reason);
if (mSocketOut)
mSocketOut->AsyncWait(nullptr, 0, 0, nullptr);
}
mKeepAlive = false;
}
}
// called on the socket thread
nsresult
nsHttpConnection::ProxyStartSSL()
{
LOG(("nsHttpConnection::ProxyStartSSL [this=%p]\n", this));
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
nsCOMPtr<nsISupports> securityInfo;
nsresult rv = mSocketTransport->GetSecurityInfo(getter_AddRefs(securityInfo));
if (NS_FAILED(rv)) return rv;
nsCOMPtr<nsISSLSocketControl> ssl = do_QueryInterface(securityInfo, &rv);
if (NS_FAILED(rv)) return rv;
return ssl->ProxyStartSSL();
}
void
nsHttpConnection::DontReuse()
{
mKeepAliveMask = false;
mKeepAlive = false;
mDontReuse = true;
mIdleTimeout = 0;
if (mSpdySession)
mSpdySession->DontReuse();
}
// Checked by the Connection Manager before scheduling a pipelined transaction
bool
nsHttpConnection::SupportsPipelining()
{
if (mTransaction &&
mTransaction->PipelineDepth() >= mRemainingConnectionUses) {
LOG(("nsHttpConnection::SupportsPipelining this=%p deny pipeline "
"because current depth %d exceeds max remaining uses %d\n",
this, mTransaction->PipelineDepth(), mRemainingConnectionUses));
return false;
}
return mSupportsPipelining && IsKeepAlive() && !mDontReuse;
}
bool
nsHttpConnection::CanReuse()
{
if (mDontReuse)
return false;
if ((mTransaction ? mTransaction->PipelineDepth() : 0) >=
mRemainingConnectionUses) {
return false;
}
bool canReuse;
if (mSpdySession)
canReuse = mSpdySession->CanReuse();
else
canReuse = IsKeepAlive();
canReuse = canReuse && (IdleTime() < mIdleTimeout) && IsAlive();
// An idle persistent connection should not have data waiting to be read
// before a request is sent. Data here is likely a 408 timeout response
// which we would deal with later on through the restart logic, but that
// path is more expensive than just closing the socket now.
uint64_t dataSize;
if (canReuse && mSocketIn && !mUsingSpdyVersion && mHttp1xTransactionCount &&
NS_SUCCEEDED(mSocketIn->Available(&dataSize)) && dataSize) {
LOG(("nsHttpConnection::CanReuse %p %s"
"Socket not reusable because read data pending (%llu) on it.\n",
this, mConnInfo->Host(), dataSize));
canReuse = false;
}
return canReuse;
}
bool
nsHttpConnection::CanDirectlyActivate()
{
// return true if a new transaction can be addded to ths connection at any
// time through Activate(). In practice this means this is a healthy SPDY
// connection with room for more concurrent streams.
return UsingSpdy() && CanReuse() &&
mSpdySession && mSpdySession->RoomForMoreStreams();
}
PRIntervalTime
nsHttpConnection::IdleTime()
{
return mSpdySession ?
mSpdySession->IdleTime() : (PR_IntervalNow() - mLastReadTime);
}
// returns the number of seconds left before the allowable idle period
// expires, or 0 if the period has already expied.
uint32_t
nsHttpConnection::TimeToLive()
{
if (IdleTime() >= mIdleTimeout)
return 0;
uint32_t timeToLive = PR_IntervalToSeconds(mIdleTimeout - IdleTime());
// a positive amount of time can be rounded to 0. Because 0 is used
// as the expiration signal, round all values from 0 to 1 up to 1.
if (!timeToLive)
timeToLive = 1;
return timeToLive;
}
bool
nsHttpConnection::IsAlive()
{
if (!mSocketTransport)
return false;
// SocketTransport::IsAlive can run the SSL state machine, so make sure
// the NPN options are set before that happens.
SetupSSL(mTransactionCaps);
bool alive;
nsresult rv = mSocketTransport->IsAlive(&alive);
if (NS_FAILED(rv))
alive = false;
//#define TEST_RESTART_LOGIC
#ifdef TEST_RESTART_LOGIC
if (!alive) {
LOG(("pretending socket is still alive to test restart logic\n"));
alive = true;
}
#endif
return alive;
}
bool
nsHttpConnection::SupportsPipelining(nsHttpResponseHead *responseHead)
{
// SPDY supports infinite parallelism, so no need to pipeline.
if (mUsingSpdyVersion)
return false;
// assuming connection is HTTP/1.1 with keep-alive enabled
if (mConnInfo->UsingHttpProxy() && !mConnInfo->UsingConnect()) {
// XXX check for bad proxy servers...
return true;
}
// check for bad origin servers
const char *val = responseHead->PeekHeader(nsHttp::Server);
// If there is no server header we will assume it should not be banned
// as facebook and some other prominent sites do this
if (!val)
return true;
// The blacklist is indexed by the first character. All of these servers are
// known to return their identifier as the first thing in the server string,
// so we can do a leading match.
static const char *bad_servers[26][6] = {
{ nullptr }, { nullptr }, { nullptr }, { nullptr }, // a - d
{ "EFAServer/", nullptr }, // e
{ nullptr }, { nullptr }, { nullptr }, { nullptr }, // f - i
{ nullptr }, { nullptr }, { nullptr }, // j - l
{ "Microsoft-IIS/4.", "Microsoft-IIS/5.", nullptr }, // m
{ "Netscape-Enterprise/3.", "Netscape-Enterprise/4.",
"Netscape-Enterprise/5.", "Netscape-Enterprise/6.", nullptr }, // n
{ nullptr }, { nullptr }, { nullptr }, { nullptr }, // o - r
{ nullptr }, { nullptr }, { nullptr }, { nullptr }, // s - v
{ "WebLogic 3.", "WebLogic 4.","WebLogic 5.", "WebLogic 6.",
"Winstone Servlet Engine v0.", nullptr }, // w
{ nullptr }, { nullptr }, { nullptr } // x - z
};
int index = val[0] - 'A'; // the whole table begins with capital letters
if ((index >= 0) && (index <= 25))
{
for (int i = 0; bad_servers[index][i] != nullptr; i++) {
if (!PL_strncmp (val, bad_servers[index][i], strlen (bad_servers[index][i]))) {
LOG(("looks like this server does not support pipelining"));
gHttpHandler->ConnMgr()->PipelineFeedbackInfo(
mConnInfo, nsHttpConnectionMgr::RedBannedServer, this , 0);
return false;
}
}
}
// ok, let's allow pipelining to this server
return true;
}
//----------------------------------------------------------------------------
// nsHttpConnection::nsAHttpConnection compatible methods
//----------------------------------------------------------------------------
nsresult
nsHttpConnection::OnHeadersAvailable(nsAHttpTransaction *trans,
nsHttpRequestHead *requestHead,
nsHttpResponseHead *responseHead,
bool *reset)
{
LOG(("nsHttpConnection::OnHeadersAvailable [this=%p trans=%p response-head=%p]\n",
this, trans, responseHead));
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
NS_ENSURE_ARG_POINTER(trans);
MOZ_ASSERT(responseHead, "No response head?");
// we won't change our keep-alive policy unless the server has explicitly
// told us to do so.
// inspect the connection headers for keep-alive info provided the
// transaction completed successfully. In the case of a non-sensical close
// and keep-alive favor the close out of conservatism.
bool explicitKeepAlive = false;
bool explicitClose = responseHead->HasHeaderValue(nsHttp::Connection, "close") ||
responseHead->HasHeaderValue(nsHttp::Proxy_Connection, "close");
if (!explicitClose)
explicitKeepAlive = responseHead->HasHeaderValue(nsHttp::Connection, "keep-alive") ||
responseHead->HasHeaderValue(nsHttp::Proxy_Connection, "keep-alive");
// deal with 408 Server Timeouts
uint16_t responseStatus = responseHead->Status();
static const PRIntervalTime k1000ms = PR_MillisecondsToInterval(1000);
if (responseStatus == 408) {
// If this error could be due to a persistent connection reuse then
// we pass an error code of NS_ERROR_NET_RESET to
// trigger the transaction 'restart' mechanism. We tell it to reset its
// response headers so that it will be ready to receive the new response.
if (mIsReused && ((PR_IntervalNow() - mLastWriteTime) < k1000ms)) {
Close(NS_ERROR_NET_RESET);
*reset = true;
return NS_OK;
}
// timeouts that are not caused by persistent connection reuse should
// not be retried for browser compatibility reasons. bug 907800. The
// server driven close is implicit in the 408.
explicitClose = true;
explicitKeepAlive = false;
}
// reset to default (the server may have changed since we last checked)
mSupportsPipelining = false;
if ((responseHead->Version() < NS_HTTP_VERSION_1_1) ||
(requestHead->Version() < NS_HTTP_VERSION_1_1)) {
// HTTP/1.0 connections are by default NOT persistent
if (explicitKeepAlive)
mKeepAlive = true;
else
mKeepAlive = false;
// We need at least version 1.1 to use pipelines
gHttpHandler->ConnMgr()->PipelineFeedbackInfo(
mConnInfo, nsHttpConnectionMgr::RedVersionTooLow, this, 0);
}
else {
// HTTP/1.1 connections are by default persistent
if (explicitClose) {
mKeepAlive = false;
// persistent connections are required for pipelining to work - if
// this close was not pre-announced then generate the negative
// BadExplicitClose feedback
if (mRemainingConnectionUses > 1)
gHttpHandler->ConnMgr()->PipelineFeedbackInfo(
mConnInfo, nsHttpConnectionMgr::BadExplicitClose, this, 0);
}
else {
mKeepAlive = true;
// Do not support pipelining when we are establishing
// an SSL tunnel though an HTTP proxy. Pipelining support
// determination must be based on comunication with the
// target server in this case. See bug 422016 for futher
// details.
if (!mProxyConnectStream)
mSupportsPipelining = SupportsPipelining(responseHead);
}
}
mKeepAliveMask = mKeepAlive;
// Update the pipelining status in the connection info object
// and also read it back. It is possible the ci status is
// locked to false if pipelining has been banned on this ci due to
// some kind of observed flaky behavior
if (mSupportsPipelining) {
// report the pipelining-compatible header to the connection manager
// as positive feedback. This will undo 1 penalty point the host
// may have accumulated in the past.
gHttpHandler->ConnMgr()->PipelineFeedbackInfo(
mConnInfo, nsHttpConnectionMgr::NeutralExpectedOK, this, 0);
mSupportsPipelining =
gHttpHandler->ConnMgr()->SupportsPipelining(mConnInfo);
}
// If this connection is reserved for revalidations and we are
// receiving a document that failed revalidation then switch the
// classification to general to avoid pipelining more revalidations behind
// it.
if (mClassification == nsAHttpTransaction::CLASS_REVALIDATION &&
responseStatus != 304) {
mClassification = nsAHttpTransaction::CLASS_GENERAL;
}
// if this connection is persistent, then the server may send a "Keep-Alive"
// header specifying the maximum number of times the connection can be
// reused as well as the maximum amount of time the connection can be idle
// before the server will close it. we ignore the max reuse count, because
// a "keep-alive" connection is by definition capable of being reused, and
// we only care about being able to reuse it once. if a timeout is not
// specified then we use our advertized timeout value.
bool foundKeepAliveMax = false;
if (mKeepAlive) {
const char *val = responseHead->PeekHeader(nsHttp::Keep_Alive);
if (!mUsingSpdyVersion) {
const char *cp = PL_strcasestr(val, "timeout=");
if (cp)
mIdleTimeout = PR_SecondsToInterval((uint32_t) atoi(cp + 8));
else
mIdleTimeout = gHttpHandler->IdleTimeout();
cp = PL_strcasestr(val, "max=");
if (cp) {
int val = atoi(cp + 4);
if (val > 0) {
foundKeepAliveMax = true;
mRemainingConnectionUses = static_cast<uint32_t>(val);
}
}
}
else {
mIdleTimeout = gHttpHandler->SpdyTimeout();
}
LOG(("Connection can be reused [this=%p idle-timeout=%usec]\n",
this, PR_IntervalToSeconds(mIdleTimeout)));
}
if (!foundKeepAliveMax && mRemainingConnectionUses && !mUsingSpdyVersion)
--mRemainingConnectionUses;
// If we're doing a proxy connect, we need to check whether or not
// it was successful. If so, we have to reset the transaction and step-up
// the socket connection if using SSL. Finally, we have to wake up the
// socket write request.
if (mProxyConnectStream) {
MOZ_ASSERT(!mUsingSpdyVersion,
"SPDY NPN Complete while using proxy connect stream");
mProxyConnectStream = 0;
if (responseStatus == 200) {
LOG(("proxy CONNECT succeeded! ssl=%s\n",
mConnInfo->UsingSSL() ? "true" :"false"));
*reset = true;
nsresult rv;
if (mConnInfo->UsingSSL()) {
rv = ProxyStartSSL();
if (NS_FAILED(rv)) // XXX need to handle this for real
LOG(("ProxyStartSSL failed [rv=%x]\n", rv));
}
mCompletedProxyConnect = true;
mProxyConnectInProgress = false;
rv = mSocketOut->AsyncWait(this, 0, 0, nullptr);
// XXX what if this fails -- need to handle this error
MOZ_ASSERT(NS_SUCCEEDED(rv), "mSocketOut->AsyncWait failed");
}
else {
LOG(("proxy CONNECT failed! ssl=%s\n",
mConnInfo->UsingSSL() ? "true" :"false"));
mTransaction->SetProxyConnectFailed();
}
}
const char *upgradeReq = requestHead->PeekHeader(nsHttp::Upgrade);
// Don't use persistent connection for Upgrade unless there's an auth failure:
// some proxies expect to see auth response on persistent connection.
if (upgradeReq && responseStatus != 401 && responseStatus != 407) {
LOG(("HTTP Upgrade in play - disable keepalive\n"));
DontReuse();
}
if (responseStatus == 101) {
const char *upgradeResp = responseHead->PeekHeader(nsHttp::Upgrade);
if (!upgradeReq || !upgradeResp ||
!nsHttp::FindToken(upgradeResp, upgradeReq,
HTTP_HEADER_VALUE_SEPS)) {
LOG(("HTTP 101 Upgrade header mismatch req = %s, resp = %s\n",
upgradeReq, upgradeResp));
Close(NS_ERROR_ABORT);
}
else {
LOG(("HTTP Upgrade Response to %s\n", upgradeResp));
}
}
mLastHttpResponseVersion = responseHead->Version();
return NS_OK;
}
bool
nsHttpConnection::IsReused()
{
if (mIsReused)
return true;
if (!mConsiderReusedAfterInterval)
return false;
// ReusedAfter allows a socket to be consider reused only after a certain
// interval of time has passed
return (PR_IntervalNow() - mConsiderReusedAfterEpoch) >=
mConsiderReusedAfterInterval;
}
void
nsHttpConnection::SetIsReusedAfter(uint32_t afterMilliseconds)
{
mConsiderReusedAfterEpoch = PR_IntervalNow();
mConsiderReusedAfterInterval = PR_MillisecondsToInterval(afterMilliseconds);
}
nsresult
nsHttpConnection::TakeTransport(nsISocketTransport **aTransport,
nsIAsyncInputStream **aInputStream,
nsIAsyncOutputStream **aOutputStream)
{
if (mUsingSpdyVersion)
return NS_ERROR_FAILURE;
if (mTransaction && !mTransaction->IsDone())
return NS_ERROR_IN_PROGRESS;
if (!(mSocketTransport && mSocketIn && mSocketOut))
return NS_ERROR_NOT_INITIALIZED;
if (mInputOverflow)
mSocketIn = mInputOverflow.forget();
// Change TCP Keepalive frequency to long-lived if currently short-lived.
if (mTCPKeepaliveConfig == kTCPKeepaliveShortLivedConfig) {
if (mTCPKeepaliveTransitionTimer) {
mTCPKeepaliveTransitionTimer->Cancel();
mTCPKeepaliveTransitionTimer = nullptr;
}
nsresult rv = StartLongLivedTCPKeepalives();
LOG(("nsHttpConnection::TakeTransport [%p] calling "
"StartLongLivedTCPKeepalives", this));
if (NS_WARN_IF(NS_FAILED(rv))) {
LOG(("nsHttpConnection::TakeTransport [%p] "
"StartLongLivedTCPKeepalives failed rv[0x%x]", this, rv));
}
}
NS_IF_ADDREF(*aTransport = mSocketTransport);
NS_IF_ADDREF(*aInputStream = mSocketIn);
NS_IF_ADDREF(*aOutputStream = mSocketOut);
mSocketTransport->SetSecurityCallbacks(nullptr);
mSocketTransport->SetEventSink(nullptr, nullptr);
mSocketTransport = nullptr;
mSocketIn = nullptr;
mSocketOut = nullptr;
return NS_OK;
}
uint32_t
nsHttpConnection::ReadTimeoutTick(PRIntervalTime now)
{
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
// make sure timer didn't tick before Activate()
if (!mTransaction)
return UINT32_MAX;
// Spdy implements some timeout handling using the SPDY ping frame.
if (mSpdySession) {
return mSpdySession->ReadTimeoutTick(now);
}
uint32_t nextTickAfter = UINT32_MAX;
// Timeout if the response is taking too long to arrive.
if (mResponseTimeoutEnabled) {
PRIntervalTime initialResponseDelta = now - mLastWriteTime;
if (initialResponseDelta > mTransaction->ResponseTimeout()) {
LOG(("canceling transaction: no response for %ums: timeout is %dms\n",
PR_IntervalToMilliseconds(initialResponseDelta),
PR_IntervalToMilliseconds(mTransaction->ResponseTimeout())));
mResponseTimeoutEnabled = false;
// This will also close the connection
CloseTransaction(mTransaction, NS_ERROR_NET_TIMEOUT);
return UINT32_MAX;
}
nextTickAfter = PR_IntervalToSeconds(mTransaction->ResponseTimeout()) -
PR_IntervalToSeconds(initialResponseDelta);
nextTickAfter = std::max(nextTickAfter, 1U);
}
if (!gHttpHandler->GetPipelineRescheduleOnTimeout())
return nextTickAfter;
PRIntervalTime delta = now - mLastReadTime;
// we replicate some of the checks both here and in OnSocketReadable() as
// they will be discovered under different conditions. The ones here
// will generally be discovered if we are totally hung and OSR does
// not get called at all, however OSR discovers them with lower latency
// if the issue is just very slow (but not stalled) reading.
//
// Right now we only take action if pipelining is involved, but this would
// be the place to add general read timeout handling if it is desired.
uint32_t pipelineDepth = mTransaction->PipelineDepth();
if (pipelineDepth > 1) {
// if we have pipelines outstanding (not just an idle connection)
// then get a fairly quick tick
nextTickAfter = 1;
}
if (delta >= gHttpHandler->GetPipelineRescheduleTimeout() &&
pipelineDepth > 1) {
// this just reschedules blocked transactions. no transaction
// is aborted completely.
LOG(("cancelling pipeline due to a %ums stall - depth %d\n",
PR_IntervalToMilliseconds(delta), pipelineDepth));
nsHttpPipeline *pipeline = mTransaction->QueryPipeline();
MOZ_ASSERT(pipeline, "pipelinedepth > 1 without pipeline");
// code this defensively for the moment and check for null in opt build
// This will reschedule blocked members of the pipeline, but the
// blocking transaction (i.e. response 0) will not be changed.
if (pipeline) {
pipeline->CancelPipeline(NS_ERROR_NET_TIMEOUT);
LOG(("Rescheduling the head of line blocked members of a pipeline "
"because reschedule-timeout idle interval exceeded"));
}
}
if (delta < gHttpHandler->GetPipelineTimeout())
return nextTickAfter;
if (pipelineDepth <= 1 && !mTransaction->PipelinePosition())
return nextTickAfter;
// nothing has transpired on this pipelined socket for many
// seconds. Call that a total stall and close the transaction.
// There is a chance the transaction will be restarted again
// depending on its state.. that will come back araound
// without pipelining on, so this won't loop.
LOG(("canceling transaction stalled for %ums on a pipeline "
"of depth %d and scheduled originally at pos %d\n",
PR_IntervalToMilliseconds(delta),
pipelineDepth, mTransaction->PipelinePosition()));
// This will also close the connection
CloseTransaction(mTransaction, NS_ERROR_NET_TIMEOUT);
return UINT32_MAX;
}
void
nsHttpConnection::UpdateTCPKeepalive(nsITimer *aTimer, void *aClosure)
{
MOZ_ASSERT(aTimer);
MOZ_ASSERT(aClosure);
nsHttpConnection *self = static_cast<nsHttpConnection*>(aClosure);
if (NS_WARN_IF(self->mUsingSpdyVersion)) {
return;
}
// Do not reduce keepalive probe frequency for idle connections.
if (self->mIdleMonitoring) {
return;
}
nsresult rv = self->StartLongLivedTCPKeepalives();
if (NS_WARN_IF(NS_FAILED(rv))) {
LOG(("nsHttpConnection::UpdateTCPKeepalive [%p] "
"StartLongLivedTCPKeepalives failed rv[0x%x]",
self, rv));
}
}
void
nsHttpConnection::GetSecurityInfo(nsISupports **secinfo)
{
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
if (mSocketTransport) {
if (NS_FAILED(mSocketTransport->GetSecurityInfo(secinfo)))
*secinfo = nullptr;
}
}
void
nsHttpConnection::SetSecurityCallbacks(nsIInterfaceRequestor* aCallbacks)
{
MutexAutoLock lock(mCallbacksLock);
// This is called both on and off the main thread. For JS-implemented
// callbacks, we requires that the call happen on the main thread, but
// for C++-implemented callbacks we don't care. Use a pointer holder with
// strict checking disabled.
mCallbacks = new nsMainThreadPtrHolder<nsIInterfaceRequestor>(aCallbacks, false);
}
nsresult
nsHttpConnection::PushBack(const char *data, uint32_t length)
{
LOG(("nsHttpConnection::PushBack [this=%p, length=%d]\n", this, length));
if (mInputOverflow) {
NS_ERROR("nsHttpConnection::PushBack only one buffer supported");
return NS_ERROR_UNEXPECTED;
}
mInputOverflow = new nsPreloadedStream(mSocketIn, data, length);
return NS_OK;
}
nsresult
nsHttpConnection::ResumeSend()
{
LOG(("nsHttpConnection::ResumeSend [this=%p]\n", this));
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
if (mSocketOut)
return mSocketOut->AsyncWait(this, 0, 0, nullptr);
NS_NOTREACHED("no socket output stream");
return NS_ERROR_UNEXPECTED;
}
nsresult
nsHttpConnection::ResumeRecv()
{
LOG(("nsHttpConnection::ResumeRecv [this=%p]\n", this));
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
// the mLastReadTime timestamp is used for finding slowish readers
// and can be pretty sensitive. For that reason we actually reset it
// when we ask to read (resume recv()) so that when we get called back
// with actual read data in OnSocketReadable() we are only measuring
// the latency between those two acts and not all the processing that
// may get done before the ResumeRecv() call
mLastReadTime = PR_IntervalNow();
if (mSocketIn)
return mSocketIn->AsyncWait(this, 0, 0, nullptr);
NS_NOTREACHED("no socket input stream");
return NS_ERROR_UNEXPECTED;
}
class nsHttpConnectionForceRecv : public nsRunnable
{
public:
nsHttpConnectionForceRecv(nsHttpConnection *aConn)
: mConn(aConn) {}
NS_IMETHOD Run()
{
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
if (!mConn->mSocketIn)
return NS_OK;
return mConn->OnInputStreamReady(mConn->mSocketIn);
}
private:
nsRefPtr<nsHttpConnection> mConn;
};
// trigger an asynchronous read
nsresult
nsHttpConnection::ForceRecv()
{
LOG(("nsHttpConnection::ForceRecv [this=%p]\n", this));
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
return NS_DispatchToCurrentThread(new nsHttpConnectionForceRecv(this));
}
void
nsHttpConnection::BeginIdleMonitoring()
{
LOG(("nsHttpConnection::BeginIdleMonitoring [this=%p]\n", this));
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
MOZ_ASSERT(!mTransaction, "BeginIdleMonitoring() while active");
MOZ_ASSERT(!mUsingSpdyVersion, "Idle monitoring of spdy not allowed");
LOG(("Entering Idle Monitoring Mode [this=%p]", this));
mIdleMonitoring = true;
if (mSocketIn)
mSocketIn->AsyncWait(this, 0, 0, nullptr);
}
void
nsHttpConnection::EndIdleMonitoring()
{
LOG(("nsHttpConnection::EndIdleMonitoring [this=%p]\n", this));
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
MOZ_ASSERT(!mTransaction, "EndIdleMonitoring() while active");
if (mIdleMonitoring) {
LOG(("Leaving Idle Monitoring Mode [this=%p]", this));
mIdleMonitoring = false;
if (mSocketIn)
mSocketIn->AsyncWait(nullptr, 0, 0, nullptr);
}
}
//-----------------------------------------------------------------------------
// nsHttpConnection <private>
//-----------------------------------------------------------------------------
void
nsHttpConnection::CloseTransaction(nsAHttpTransaction *trans, nsresult reason)
{
LOG(("nsHttpConnection::CloseTransaction[this=%p trans=%x reason=%x]\n",
this, trans, reason));
MOZ_ASSERT(trans == mTransaction, "wrong transaction");
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
if (mCurrentBytesRead > mMaxBytesRead)
mMaxBytesRead = mCurrentBytesRead;
// mask this error code because its not a real error.
if (reason == NS_BASE_STREAM_CLOSED)
reason = NS_OK;
if (mUsingSpdyVersion) {
DontReuse();
// if !mSpdySession then mUsingSpdyVersion must be false for canreuse()
mUsingSpdyVersion = 0;
mSpdySession = nullptr;
}
if (mTransaction) {
mHttp1xTransactionCount += mTransaction->Http1xTransactionCount();
mTransaction->Close(reason);
mTransaction = nullptr;
}
{
MutexAutoLock lock(mCallbacksLock);
mCallbacks = nullptr;
}
if (NS_FAILED(reason))
Close(reason);
// flag the connection as reused here for convenience sake. certainly
// it might be going away instead ;-)
mIsReused = true;
}
NS_METHOD
nsHttpConnection::ReadFromStream(nsIInputStream *input,
void *closure,
const char *buf,
uint32_t offset,
uint32_t count,
uint32_t *countRead)
{
// thunk for nsIInputStream instance
nsHttpConnection *conn = (nsHttpConnection *) closure;
return conn->OnReadSegment(buf, count, countRead);
}
nsresult
nsHttpConnection::OnReadSegment(const char *buf,
uint32_t count,
uint32_t *countRead)
{
if (count == 0) {
// some ReadSegments implementations will erroneously call the writer
// to consume 0 bytes worth of data. we must protect against this case
// or else we'd end up closing the socket prematurely.
NS_ERROR("bad ReadSegments implementation");
return NS_ERROR_FAILURE; // stop iterating
}
nsresult rv = mSocketOut->Write(buf, count, countRead);
if (NS_FAILED(rv))
mSocketOutCondition = rv;
else if (*countRead == 0)
mSocketOutCondition = NS_BASE_STREAM_CLOSED;
else {
mLastWriteTime = PR_IntervalNow();
mSocketOutCondition = NS_OK; // reset condition
if (!mProxyConnectInProgress)
mTotalBytesWritten += *countRead;
}
return mSocketOutCondition;
}
nsresult
nsHttpConnection::OnSocketWritable()
{
LOG(("nsHttpConnection::OnSocketWritable [this=%p] host=%s\n",
this, mConnInfo->Host()));
nsresult rv;
uint32_t n;
bool again = true;
do {
mSocketOutCondition = NS_OK;
// If we're doing a proxy connect, then we need to bypass calling into
// the transaction.
//
// NOTE: this code path can't be shared since the transaction doesn't
// implement nsIInputStream. doing so is not worth the added cost of
// extra indirections during normal reading.
//
if (mProxyConnectStream) {
LOG((" writing CONNECT request stream\n"));
rv = mProxyConnectStream->ReadSegments(ReadFromStream, this,
nsIOService::gDefaultSegmentSize,
&n);
}
else if (!EnsureNPNComplete()) {
// When SPDY is disabled this branch is not executed because Activate()
// sets mNPNComplete to true in that case.
// We are ready to proceed with SSL but the handshake is not done.
// When using NPN to negotiate between HTTPS and SPDY, we need to
// see the results of the handshake to know what bytes to send, so
// we cannot proceed with the request headers.
rv = NS_OK;
mSocketOutCondition = NS_BASE_STREAM_WOULD_BLOCK;
n = 0;
}
else {
if (!mReportedSpdy) {
mReportedSpdy = true;
gHttpHandler->ConnMgr()->ReportSpdyConnection(this, mEverUsedSpdy);
}
LOG((" writing transaction request stream\n"));
mProxyConnectInProgress = false;
rv = mTransaction->ReadSegments(this, nsIOService::gDefaultSegmentSize, &n);
}
LOG((" ReadSegments returned [rv=%x read=%u sock-cond=%x]\n",
rv, n, mSocketOutCondition));
// XXX some streams return NS_BASE_STREAM_CLOSED to indicate EOF.
if (rv == NS_BASE_STREAM_CLOSED && !mTransaction->IsDone()) {
rv = NS_OK;
n = 0;
}
if (NS_FAILED(rv)) {
// if the transaction didn't want to write any more data, then
// wait for the transaction to call ResumeSend.
if (rv == NS_BASE_STREAM_WOULD_BLOCK)
rv = NS_OK;
again = false;
}
else if (NS_FAILED(mSocketOutCondition)) {
if (mSocketOutCondition == NS_BASE_STREAM_WOULD_BLOCK)
rv = mSocketOut->AsyncWait(this, 0, 0, nullptr); // continue writing
else
rv = mSocketOutCondition;
again = false;
}
else if (n == 0) {
rv = NS_OK;
if (mTransaction) { // in case the ReadSegments stack called CloseTransaction()
//
// at this point we've written out the entire transaction, and now we
// must wait for the server's response. we manufacture a status message
// here to reflect the fact that we are waiting. this message will be
// trumped (overwritten) if the server responds quickly.
//
mTransaction->OnTransportStatus(mSocketTransport,
NS_NET_STATUS_WAITING_FOR,
0);
rv = ResumeRecv(); // start reading
}
again = false;
}
// write more to the socket until error or end-of-request...
} while (again);
return rv;
}
nsresult
nsHttpConnection::OnWriteSegment(char *buf,
uint32_t count,
uint32_t *countWritten)
{
if (count == 0) {
// some WriteSegments implementations will erroneously call the reader
// to provide 0 bytes worth of data. we must protect against this case
// or else we'd end up closing the socket prematurely.
NS_ERROR("bad WriteSegments implementation");
return NS_ERROR_FAILURE; // stop iterating
}
if (ChaosMode::isActive() && ChaosMode::randomUint32LessThan(2)) {
// read 1...count bytes
count = ChaosMode::randomUint32LessThan(count) + 1;
}
nsresult rv = mSocketIn->Read(buf, count, countWritten);
if (NS_FAILED(rv))
mSocketInCondition = rv;
else if (*countWritten == 0)
mSocketInCondition = NS_BASE_STREAM_CLOSED;
else
mSocketInCondition = NS_OK; // reset condition
return mSocketInCondition;
}
nsresult
nsHttpConnection::OnSocketReadable()
{
LOG(("nsHttpConnection::OnSocketReadable [this=%p]\n", this));
PRIntervalTime now = PR_IntervalNow();
PRIntervalTime delta = now - mLastReadTime;
// Reset mResponseTimeoutEnabled to stop response timeout checks.
mResponseTimeoutEnabled = false;
if (mKeepAliveMask && (delta >= mMaxHangTime)) {
LOG(("max hang time exceeded!\n"));
// give the handler a chance to create a new persistent connection to
// this host if we've been busy for too long.
mKeepAliveMask = false;
gHttpHandler->ProcessPendingQ(mConnInfo);
}
// Look for data being sent in bursts with large pauses. If the pauses
// are caused by server bottlenecks such as think-time, disk i/o, or
// cpu exhaustion (as opposed to network latency) then we generate negative
// pipelining feedback to prevent head of line problems
// Reduce the estimate of the time since last read by up to 1 RTT to
// accommodate exhausted sender TCP congestion windows or minor I/O delays.
if (delta > mRtt)
delta -= mRtt;
else
delta = 0;
static const PRIntervalTime k400ms = PR_MillisecondsToInterval(400);
if (delta >= (mRtt + gHttpHandler->GetPipelineRescheduleTimeout())) {
LOG(("Read delta ms of %u causing slow read major "
"event and pipeline cancellation",
PR_IntervalToMilliseconds(delta)));
gHttpHandler->ConnMgr()->PipelineFeedbackInfo(
mConnInfo, nsHttpConnectionMgr::BadSlowReadMajor, this, 0);
if (gHttpHandler->GetPipelineRescheduleOnTimeout() &&
mTransaction->PipelineDepth() > 1) {
nsHttpPipeline *pipeline = mTransaction->QueryPipeline();
MOZ_ASSERT(pipeline, "pipelinedepth > 1 without pipeline");
// code this defensively for the moment and check for null
// This will reschedule blocked members of the pipeline, but the
// blocking transaction (i.e. response 0) will not be changed.
if (pipeline) {
pipeline->CancelPipeline(NS_ERROR_NET_TIMEOUT);
LOG(("Rescheduling the head of line blocked members of a "
"pipeline because reschedule-timeout idle interval "
"exceeded"));
}
}
}
else if (delta > k400ms) {
gHttpHandler->ConnMgr()->PipelineFeedbackInfo(
mConnInfo, nsHttpConnectionMgr::BadSlowReadMinor, this, 0);
}
mLastReadTime = now;
nsresult rv;
uint32_t n;
bool again = true;
do {
if (!mProxyConnectInProgress && !mNPNComplete) {
// Unless we are setting up a tunnel via CONNECT, prevent reading
// from the socket until the results of NPN
// negotiation are known (which is determined from the write path).
// If the server speaks SPDY it is likely the readable data here is
// a spdy settings frame and without NPN it would be misinterpreted
// as HTTP/*
LOG(("nsHttpConnection::OnSocketReadable %p return due to inactive "
"tunnel setup but incomplete NPN state\n", this));
rv = NS_OK;
break;
}
rv = mTransaction->WriteSegments(this, nsIOService::gDefaultSegmentSize, &n);
if (NS_FAILED(rv)) {
// if the transaction didn't want to take any more data, then
// wait for the transaction to call ResumeRecv.
if (rv == NS_BASE_STREAM_WOULD_BLOCK)
rv = NS_OK;
again = false;
}
else {
mCurrentBytesRead += n;
mTotalBytesRead += n;
if (NS_FAILED(mSocketInCondition)) {
// continue waiting for the socket if necessary...
if (mSocketInCondition == NS_BASE_STREAM_WOULD_BLOCK)
rv = ResumeRecv();
else
rv = mSocketInCondition;
again = false;
}
}
// read more from the socket until error...
} while (again);
return rv;
}
nsresult
nsHttpConnection::SetupProxyConnect()
{
const char *val;
LOG(("nsHttpConnection::SetupProxyConnect [this=%p]\n", this));
NS_ENSURE_TRUE(!mProxyConnectStream, NS_ERROR_ALREADY_INITIALIZED);
MOZ_ASSERT(!mUsingSpdyVersion,
"SPDY NPN Complete while using proxy connect stream");
nsAutoCString buf;
nsresult rv = nsHttpHandler::GenerateHostPort(
nsDependentCString(mConnInfo->Host()), mConnInfo->Port(), buf);
if (NS_FAILED(rv))
return rv;
// CONNECT host:port HTTP/1.1
nsHttpRequestHead request;
request.SetMethod(nsHttp::Connect);
request.SetVersion(gHttpHandler->HttpVersion());
request.SetRequestURI(buf);
request.SetHeader(nsHttp::User_Agent, gHttpHandler->UserAgent());
// a CONNECT is always persistent
request.SetHeader(nsHttp::Proxy_Connection, NS_LITERAL_CSTRING("keep-alive"));
request.SetHeader(nsHttp::Connection, NS_LITERAL_CSTRING("keep-alive"));
val = mTransaction->RequestHead()->PeekHeader(nsHttp::Host);
if (val) {
// all HTTP/1.1 requests must include a Host header (even though it
// may seem redundant in this case; see bug 82388).
request.SetHeader(nsHttp::Host, nsDependentCString(val));
}
val = mTransaction->RequestHead()->PeekHeader(nsHttp::Proxy_Authorization);
if (val) {
// we don't know for sure if this authorization is intended for the
// SSL proxy, so we add it just in case.
request.SetHeader(nsHttp::Proxy_Authorization, nsDependentCString(val));
}
buf.Truncate();
request.Flatten(buf, false);
buf.AppendLiteral("\r\n");
return NS_NewCStringInputStream(getter_AddRefs(mProxyConnectStream), buf);
}
nsresult
nsHttpConnection::StartShortLivedTCPKeepalives()
{
if (mUsingSpdyVersion) {
return NS_OK;
}
MOZ_ASSERT(mSocketTransport);
if (!mSocketTransport) {
return NS_ERROR_NOT_INITIALIZED;
}
nsresult rv = NS_OK;
int32_t idleTimeS = -1;
int32_t retryIntervalS = -1;
if (gHttpHandler->TCPKeepaliveEnabledForShortLivedConns()) {
// Set the idle time.
idleTimeS = gHttpHandler->GetTCPKeepaliveShortLivedIdleTime();
LOG(("nsHttpConnection::StartShortLivedTCPKeepalives[%p] "
"idle time[%ds].", this, idleTimeS));
retryIntervalS =
std::max<int32_t>((int32_t)PR_IntervalToSeconds(mRtt), 1);
rv = mSocketTransport->SetKeepaliveVals(idleTimeS, retryIntervalS);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
rv = mSocketTransport->SetKeepaliveEnabled(true);
mTCPKeepaliveConfig = kTCPKeepaliveShortLivedConfig;
} else {
rv = mSocketTransport->SetKeepaliveEnabled(false);
mTCPKeepaliveConfig = kTCPKeepaliveDisabled;
}
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
// Start a timer to move to long-lived keepalive config.
if(!mTCPKeepaliveTransitionTimer) {
mTCPKeepaliveTransitionTimer =
do_CreateInstance("@mozilla.org/timer;1");
}
if (mTCPKeepaliveTransitionTimer) {
int32_t time = gHttpHandler->GetTCPKeepaliveShortLivedTime();
// Adjust |time| to ensure a full set of keepalive probes can be sent
// at the end of the short-lived phase.
if (gHttpHandler->TCPKeepaliveEnabledForShortLivedConns()) {
if (NS_WARN_IF(!gSocketTransportService)) {
return NS_ERROR_NOT_INITIALIZED;
}
int32_t probeCount = -1;
rv = gSocketTransportService->GetKeepaliveProbeCount(&probeCount);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
if (NS_WARN_IF(probeCount <= 0)) {
return NS_ERROR_UNEXPECTED;
}
// Add time for final keepalive probes, and 2 seconds for a buffer.
time += ((probeCount) * retryIntervalS) - (time % idleTimeS) + 2;
}
mTCPKeepaliveTransitionTimer->InitWithFuncCallback(
nsHttpConnection::UpdateTCPKeepalive,
this,
(uint32_t)time*1000,
nsITimer::TYPE_ONE_SHOT);
} else {
NS_WARNING("nsHttpConnection::StartShortLivedTCPKeepalives failed to "
"create timer.");
}
return NS_OK;
}
nsresult
nsHttpConnection::StartLongLivedTCPKeepalives()
{
MOZ_ASSERT(!mUsingSpdyVersion, "Don't use TCP Keepalive with SPDY!");
if (NS_WARN_IF(mUsingSpdyVersion)) {
return NS_OK;
}
MOZ_ASSERT(mSocketTransport);
if (!mSocketTransport) {
return NS_ERROR_NOT_INITIALIZED;
}
nsresult rv = NS_OK;
if (gHttpHandler->TCPKeepaliveEnabledForLongLivedConns()) {
// Increase the idle time.
int32_t idleTimeS = gHttpHandler->GetTCPKeepaliveLongLivedIdleTime();
LOG(("nsHttpConnection::StartLongLivedTCPKeepalives[%p] idle time[%ds]",
this, idleTimeS));
int32_t retryIntervalS =
std::max<int32_t>((int32_t)PR_IntervalToSeconds(mRtt), 1);
rv = mSocketTransport->SetKeepaliveVals(idleTimeS, retryIntervalS);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
// Ensure keepalive is enabled, if current status is disabled.
if (mTCPKeepaliveConfig == kTCPKeepaliveDisabled) {
rv = mSocketTransport->SetKeepaliveEnabled(true);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
}
mTCPKeepaliveConfig = kTCPKeepaliveLongLivedConfig;
} else {
rv = mSocketTransport->SetKeepaliveEnabled(false);
mTCPKeepaliveConfig = kTCPKeepaliveDisabled;
}
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
return NS_OK;
}
nsresult
nsHttpConnection::DisableTCPKeepalives()
{
MOZ_ASSERT(mSocketTransport);
if (!mSocketTransport) {
return NS_ERROR_NOT_INITIALIZED;
}
LOG(("nsHttpConnection::DisableTCPKeepalives [%p]", this));
if (mTCPKeepaliveConfig != kTCPKeepaliveDisabled) {
nsresult rv = mSocketTransport->SetKeepaliveEnabled(false);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
mTCPKeepaliveConfig = kTCPKeepaliveDisabled;
}
if (mTCPKeepaliveTransitionTimer) {
mTCPKeepaliveTransitionTimer->Cancel();
mTCPKeepaliveTransitionTimer = nullptr;
}
return NS_OK;
}
//-----------------------------------------------------------------------------
// nsHttpConnection::nsISupports
//-----------------------------------------------------------------------------
NS_IMPL_ISUPPORTS4(nsHttpConnection,
nsIInputStreamCallback,
nsIOutputStreamCallback,
nsITransportEventSink,
nsIInterfaceRequestor)
//-----------------------------------------------------------------------------
// nsHttpConnection::nsIInputStreamCallback
//-----------------------------------------------------------------------------
// called on the socket transport thread
NS_IMETHODIMP
nsHttpConnection::OnInputStreamReady(nsIAsyncInputStream *in)
{
MOZ_ASSERT(in == mSocketIn, "unexpected stream");
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
if (mIdleMonitoring) {
MOZ_ASSERT(!mTransaction, "Idle Input Event While Active");
// The only read event that is protocol compliant for an idle connection
// is an EOF, which we check for with CanReuse(). If the data is
// something else then just ignore it and suspend checking for EOF -
// our normal timers or protocol stack are the place to deal with
// any exception logic.
if (!CanReuse()) {
LOG(("Server initiated close of idle conn %p\n", this));
gHttpHandler->ConnMgr()->CloseIdleConnection(this);
return NS_OK;
}
LOG(("Input data on idle conn %p, but not closing yet\n", this));
return NS_OK;
}
// if the transaction was dropped...
if (!mTransaction) {
LOG((" no transaction; ignoring event\n"));
return NS_OK;
}
nsresult rv = OnSocketReadable();
if (NS_FAILED(rv))
CloseTransaction(mTransaction, rv);
return NS_OK;
}
//-----------------------------------------------------------------------------
// nsHttpConnection::nsIOutputStreamCallback
//-----------------------------------------------------------------------------
NS_IMETHODIMP
nsHttpConnection::OnOutputStreamReady(nsIAsyncOutputStream *out)
{
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
MOZ_ASSERT(out == mSocketOut, "unexpected socket");
// if the transaction was dropped...
if (!mTransaction) {
LOG((" no transaction; ignoring event\n"));
return NS_OK;
}
nsresult rv = OnSocketWritable();
if (NS_FAILED(rv))
CloseTransaction(mTransaction, rv);
return NS_OK;
}
//-----------------------------------------------------------------------------
// nsHttpConnection::nsITransportEventSink
//-----------------------------------------------------------------------------
NS_IMETHODIMP
nsHttpConnection::OnTransportStatus(nsITransport *trans,
nsresult status,
uint64_t progress,
uint64_t progressMax)
{
if (mTransaction)
mTransaction->OnTransportStatus(trans, status, progress);
return NS_OK;
}
//-----------------------------------------------------------------------------
// nsHttpConnection::nsIInterfaceRequestor
//-----------------------------------------------------------------------------
// not called on the socket transport thread
NS_IMETHODIMP
nsHttpConnection::GetInterface(const nsIID &iid, void **result)
{
// NOTE: This function is only called on the UI thread via sync proxy from
// the socket transport thread. If that weren't the case, then we'd
// have to worry about the possibility of mTransaction going away
// part-way through this function call. See CloseTransaction.
// NOTE - there is a bug here, the call to getinterface is proxied off the
// nss thread, not the ui thread as the above comment says. So there is
// indeed a chance of mTransaction going away. bug 615342
MOZ_ASSERT(PR_GetCurrentThread() != gSocketThread);
nsCOMPtr<nsIInterfaceRequestor> callbacks;
{
MutexAutoLock lock(mCallbacksLock);
callbacks = mCallbacks;
}
if (callbacks)
return callbacks->GetInterface(iid, result);
return NS_ERROR_NO_INTERFACE;
}
} // namespace mozilla::net
} // namespace mozilla