gecko/security/nss/lib/ssl/sslmutex.c
2009-01-21 04:43:31 +01:00

664 lines
17 KiB
C

/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the Netscape security libraries.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 2001
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
/* $Id: sslmutex.c,v 1.23 2008/12/02 06:36:59 nelson%bolyard.com Exp $ */
#include "seccomon.h"
/* This ifdef should match the one in sslsnce.c */
#if defined(XP_UNIX) || defined(XP_WIN32) || defined (XP_OS2) || defined(XP_BEOS)
#include "sslmutex.h"
#include "prerr.h"
static SECStatus single_process_sslMutex_Init(sslMutex* pMutex)
{
PR_ASSERT(pMutex != 0 && pMutex->u.sslLock == 0 );
pMutex->u.sslLock = PR_NewLock();
if (!pMutex->u.sslLock) {
return SECFailure;
}
return SECSuccess;
}
static SECStatus single_process_sslMutex_Destroy(sslMutex* pMutex)
{
PR_ASSERT(pMutex != 0);
PR_ASSERT(pMutex->u.sslLock!= 0);
if (!pMutex->u.sslLock) {
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
return SECFailure;
}
PR_DestroyLock(pMutex->u.sslLock);
return SECSuccess;
}
static SECStatus single_process_sslMutex_Unlock(sslMutex* pMutex)
{
PR_ASSERT(pMutex != 0 );
PR_ASSERT(pMutex->u.sslLock !=0);
if (!pMutex->u.sslLock) {
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
return SECFailure;
}
PR_Unlock(pMutex->u.sslLock);
return SECSuccess;
}
static SECStatus single_process_sslMutex_Lock(sslMutex* pMutex)
{
PR_ASSERT(pMutex != 0);
PR_ASSERT(pMutex->u.sslLock != 0 );
if (!pMutex->u.sslLock) {
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
return SECFailure;
}
PR_Lock(pMutex->u.sslLock);
return SECSuccess;
}
#if defined(LINUX) || defined(AIX) || defined(VMS) || defined(BEOS) || defined(BSDI) || (defined(NETBSD) && __NetBSD_Version__ < 500000000) || defined(OPENBSD)
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <errno.h>
#include "unix_err.h"
#include "pratom.h"
#define SSL_MUTEX_MAGIC 0xfeedfd
#define NONBLOCKING_POSTS 1 /* maybe this is faster */
#if NONBLOCKING_POSTS
#ifndef FNONBLOCK
#define FNONBLOCK O_NONBLOCK
#endif
static int
setNonBlocking(int fd, int nonBlocking)
{
int flags;
int err;
flags = fcntl(fd, F_GETFL, 0);
if (0 > flags)
return flags;
if (nonBlocking)
flags |= FNONBLOCK;
else
flags &= ~FNONBLOCK;
err = fcntl(fd, F_SETFL, flags);
return err;
}
#endif
SECStatus
sslMutex_Init(sslMutex *pMutex, int shared)
{
int err;
PR_ASSERT(pMutex);
pMutex->isMultiProcess = (PRBool)(shared != 0);
if (!shared) {
return single_process_sslMutex_Init(pMutex);
}
pMutex->u.pipeStr.mPipes[0] = -1;
pMutex->u.pipeStr.mPipes[1] = -1;
pMutex->u.pipeStr.mPipes[2] = -1;
pMutex->u.pipeStr.nWaiters = 0;
err = pipe(pMutex->u.pipeStr.mPipes);
if (err) {
nss_MD_unix_map_default_error(errno);
return err;
}
#if NONBLOCKING_POSTS
err = setNonBlocking(pMutex->u.pipeStr.mPipes[1], 1);
if (err)
goto loser;
#endif
pMutex->u.pipeStr.mPipes[2] = SSL_MUTEX_MAGIC;
#if defined(LINUX) && defined(i386)
/* Pipe starts out empty */
return SECSuccess;
#else
/* Pipe starts with one byte. */
return sslMutex_Unlock(pMutex);
#endif
loser:
nss_MD_unix_map_default_error(errno);
close(pMutex->u.pipeStr.mPipes[0]);
close(pMutex->u.pipeStr.mPipes[1]);
return SECFailure;
}
SECStatus
sslMutex_Destroy(sslMutex *pMutex)
{
if (PR_FALSE == pMutex->isMultiProcess) {
return single_process_sslMutex_Destroy(pMutex);
}
if (pMutex->u.pipeStr.mPipes[2] != SSL_MUTEX_MAGIC) {
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
return SECFailure;
}
close(pMutex->u.pipeStr.mPipes[0]);
close(pMutex->u.pipeStr.mPipes[1]);
pMutex->u.pipeStr.mPipes[0] = -1;
pMutex->u.pipeStr.mPipes[1] = -1;
pMutex->u.pipeStr.mPipes[2] = -1;
pMutex->u.pipeStr.nWaiters = 0;
return SECSuccess;
}
#if defined(LINUX) && defined(i386)
/* No memory barrier needed for this platform */
/* nWaiters includes the holder of the lock (if any) and the number
** threads waiting for it. After incrementing nWaiters, if the count
** is exactly 1, then you have the lock and may proceed. If the
** count is greater than 1, then you must wait on the pipe.
*/
SECStatus
sslMutex_Unlock(sslMutex *pMutex)
{
PRInt32 newValue;
if (PR_FALSE == pMutex->isMultiProcess) {
return single_process_sslMutex_Unlock(pMutex);
}
if (pMutex->u.pipeStr.mPipes[2] != SSL_MUTEX_MAGIC) {
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
return SECFailure;
}
/* Do Memory Barrier here. */
newValue = PR_AtomicDecrement(&pMutex->u.pipeStr.nWaiters);
if (newValue > 0) {
int cc;
char c = 1;
do {
cc = write(pMutex->u.pipeStr.mPipes[1], &c, 1);
} while (cc < 0 && (errno == EINTR || errno == EAGAIN));
if (cc != 1) {
if (cc < 0)
nss_MD_unix_map_default_error(errno);
else
PORT_SetError(PR_UNKNOWN_ERROR);
return SECFailure;
}
}
return SECSuccess;
}
SECStatus
sslMutex_Lock(sslMutex *pMutex)
{
PRInt32 newValue;
if (PR_FALSE == pMutex->isMultiProcess) {
return single_process_sslMutex_Lock(pMutex);
}
if (pMutex->u.pipeStr.mPipes[2] != SSL_MUTEX_MAGIC) {
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
return SECFailure;
}
newValue = PR_AtomicIncrement(&pMutex->u.pipeStr.nWaiters);
/* Do Memory Barrier here. */
if (newValue > 1) {
int cc;
char c;
do {
cc = read(pMutex->u.pipeStr.mPipes[0], &c, 1);
} while (cc < 0 && errno == EINTR);
if (cc != 1) {
if (cc < 0)
nss_MD_unix_map_default_error(errno);
else
PORT_SetError(PR_UNKNOWN_ERROR);
return SECFailure;
}
}
return SECSuccess;
}
#else
/* Using Atomic operations requires the use of a memory barrier instruction
** on PowerPC, Sparc, and Alpha. NSPR's PR_Atomic functions do not perform
** them, and NSPR does not provide a function that does them (e.g. PR_Barrier).
** So, we don't use them on those platforms.
*/
SECStatus
sslMutex_Unlock(sslMutex *pMutex)
{
int cc;
char c = 1;
if (PR_FALSE == pMutex->isMultiProcess) {
return single_process_sslMutex_Unlock(pMutex);
}
if (pMutex->u.pipeStr.mPipes[2] != SSL_MUTEX_MAGIC) {
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
return SECFailure;
}
do {
cc = write(pMutex->u.pipeStr.mPipes[1], &c, 1);
} while (cc < 0 && (errno == EINTR || errno == EAGAIN));
if (cc != 1) {
if (cc < 0)
nss_MD_unix_map_default_error(errno);
else
PORT_SetError(PR_UNKNOWN_ERROR);
return SECFailure;
}
return SECSuccess;
}
SECStatus
sslMutex_Lock(sslMutex *pMutex)
{
int cc;
char c;
if (PR_FALSE == pMutex->isMultiProcess) {
return single_process_sslMutex_Lock(pMutex);
}
if (pMutex->u.pipeStr.mPipes[2] != SSL_MUTEX_MAGIC) {
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
return SECFailure;
}
do {
cc = read(pMutex->u.pipeStr.mPipes[0], &c, 1);
} while (cc < 0 && errno == EINTR);
if (cc != 1) {
if (cc < 0)
nss_MD_unix_map_default_error(errno);
else
PORT_SetError(PR_UNKNOWN_ERROR);
return SECFailure;
}
return SECSuccess;
}
#endif
#elif defined(WIN32)
#include "win32err.h"
/* on Windows, we need to find the optimal type of locking mechanism to use
for the sslMutex.
There are 3 cases :
1) single-process, use a PRLock, as for all other platforms
2) Win95 multi-process, use a Win32 mutex
3) on WINNT multi-process, use a PRLock + a Win32 mutex
*/
#ifdef WINNT
SECStatus sslMutex_2LevelInit(sslMutex *sem)
{
/* the following adds a PRLock to sslMutex . This is done in each
process of a multi-process server and is only needed on WINNT, if
using fibers. We can't tell if native threads or fibers are used, so
we always do it on WINNT
*/
PR_ASSERT(sem);
if (sem) {
/* we need to reset the sslLock in the children or the single_process init
function below will assert */
sem->u.sslLock = NULL;
}
return single_process_sslMutex_Init(sem);
}
static SECStatus sslMutex_2LevelDestroy(sslMutex *sem)
{
return single_process_sslMutex_Destroy(sem);
}
#endif
SECStatus
sslMutex_Init(sslMutex *pMutex, int shared)
{
#ifdef WINNT
SECStatus retvalue;
#endif
HANDLE hMutex;
SECURITY_ATTRIBUTES attributes =
{ sizeof(SECURITY_ATTRIBUTES), NULL, TRUE };
PR_ASSERT(pMutex != 0 && (pMutex->u.sslMutx == 0 ||
pMutex->u.sslMutx == INVALID_HANDLE_VALUE) );
pMutex->isMultiProcess = (PRBool)(shared != 0);
if (PR_FALSE == pMutex->isMultiProcess) {
return single_process_sslMutex_Init(pMutex);
}
#ifdef WINNT
/* we need a lock on WINNT for fibers in the parent process */
retvalue = sslMutex_2LevelInit(pMutex);
if (SECSuccess != retvalue)
return SECFailure;
#endif
if (!pMutex || ((hMutex = pMutex->u.sslMutx) != 0 &&
hMutex != INVALID_HANDLE_VALUE)) {
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
return SECFailure;
}
attributes.bInheritHandle = (shared ? TRUE : FALSE);
hMutex = CreateMutex(&attributes, FALSE, NULL);
if (hMutex == NULL) {
hMutex = INVALID_HANDLE_VALUE;
nss_MD_win32_map_default_error(GetLastError());
return SECFailure;
}
pMutex->u.sslMutx = hMutex;
return SECSuccess;
}
SECStatus
sslMutex_Destroy(sslMutex *pMutex)
{
HANDLE hMutex;
int rv;
int retvalue = SECSuccess;
PR_ASSERT(pMutex != 0);
if (PR_FALSE == pMutex->isMultiProcess) {
return single_process_sslMutex_Destroy(pMutex);
}
/* multi-process mode */
#ifdef WINNT
/* on NT, get rid of the PRLock used for fibers within a process */
retvalue = sslMutex_2LevelDestroy(pMutex);
#endif
PR_ASSERT( pMutex->u.sslMutx != 0 &&
pMutex->u.sslMutx != INVALID_HANDLE_VALUE);
if (!pMutex || (hMutex = pMutex->u.sslMutx) == 0
|| hMutex == INVALID_HANDLE_VALUE) {
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
return SECFailure;
}
rv = CloseHandle(hMutex); /* ignore error */
if (rv) {
pMutex->u.sslMutx = hMutex = INVALID_HANDLE_VALUE;
} else {
nss_MD_win32_map_default_error(GetLastError());
retvalue = SECFailure;
}
return retvalue;
}
int
sslMutex_Unlock(sslMutex *pMutex)
{
BOOL success = FALSE;
HANDLE hMutex;
PR_ASSERT(pMutex != 0 );
if (PR_FALSE == pMutex->isMultiProcess) {
return single_process_sslMutex_Unlock(pMutex);
}
PR_ASSERT(pMutex->u.sslMutx != 0 &&
pMutex->u.sslMutx != INVALID_HANDLE_VALUE);
if (!pMutex || (hMutex = pMutex->u.sslMutx) == 0 ||
hMutex == INVALID_HANDLE_VALUE) {
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
return SECFailure;
}
success = ReleaseMutex(hMutex);
if (!success) {
nss_MD_win32_map_default_error(GetLastError());
return SECFailure;
}
#ifdef WINNT
return single_process_sslMutex_Unlock(pMutex);
/* release PRLock for other fibers in the process */
#else
return SECSuccess;
#endif
}
int
sslMutex_Lock(sslMutex *pMutex)
{
HANDLE hMutex;
DWORD event;
DWORD lastError;
SECStatus rv;
SECStatus retvalue = SECSuccess;
PR_ASSERT(pMutex != 0);
if (PR_FALSE == pMutex->isMultiProcess) {
return single_process_sslMutex_Lock(pMutex);
}
#ifdef WINNT
/* lock first to preserve from other threads/fibers
in the same process */
retvalue = single_process_sslMutex_Lock(pMutex);
#endif
PR_ASSERT(pMutex->u.sslMutx != 0 &&
pMutex->u.sslMutx != INVALID_HANDLE_VALUE);
if (!pMutex || (hMutex = pMutex->u.sslMutx) == 0 ||
hMutex == INVALID_HANDLE_VALUE) {
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
return SECFailure; /* what else ? */
}
/* acquire the mutex to be the only owner accross all other processes */
event = WaitForSingleObject(hMutex, INFINITE);
switch (event) {
case WAIT_OBJECT_0:
case WAIT_ABANDONED:
rv = SECSuccess;
break;
case WAIT_TIMEOUT:
#if defined(WAIT_IO_COMPLETION)
case WAIT_IO_COMPLETION:
#endif
default: /* should never happen. nothing we can do. */
PR_ASSERT(!("WaitForSingleObject returned invalid value."));
PORT_SetError(PR_UNKNOWN_ERROR);
rv = SECFailure;
break;
case WAIT_FAILED: /* failure returns this */
rv = SECFailure;
lastError = GetLastError(); /* for debugging */
nss_MD_win32_map_default_error(lastError);
break;
}
if (! (SECSuccess == retvalue && SECSuccess == rv)) {
return SECFailure;
}
return SECSuccess;
}
#elif defined(XP_UNIX)
#include <errno.h>
#include "unix_err.h"
SECStatus
sslMutex_Init(sslMutex *pMutex, int shared)
{
int rv;
PR_ASSERT(pMutex);
pMutex->isMultiProcess = (PRBool)(shared != 0);
if (!shared) {
return single_process_sslMutex_Init(pMutex);
}
do {
rv = sem_init(&pMutex->u.sem, shared, 1);
} while (rv < 0 && errno == EINTR);
if (rv < 0) {
nss_MD_unix_map_default_error(errno);
return SECFailure;
}
return SECSuccess;
}
SECStatus
sslMutex_Destroy(sslMutex *pMutex)
{
int rv;
if (PR_FALSE == pMutex->isMultiProcess) {
return single_process_sslMutex_Destroy(pMutex);
}
do {
rv = sem_destroy(&pMutex->u.sem);
} while (rv < 0 && errno == EINTR);
if (rv < 0) {
nss_MD_unix_map_default_error(errno);
return SECFailure;
}
return SECSuccess;
}
SECStatus
sslMutex_Unlock(sslMutex *pMutex)
{
int rv;
if (PR_FALSE == pMutex->isMultiProcess) {
return single_process_sslMutex_Unlock(pMutex);
}
do {
rv = sem_post(&pMutex->u.sem);
} while (rv < 0 && errno == EINTR);
if (rv < 0) {
nss_MD_unix_map_default_error(errno);
return SECFailure;
}
return SECSuccess;
}
SECStatus
sslMutex_Lock(sslMutex *pMutex)
{
int rv;
if (PR_FALSE == pMutex->isMultiProcess) {
return single_process_sslMutex_Lock(pMutex);
}
do {
rv = sem_wait(&pMutex->u.sem);
} while (rv < 0 && errno == EINTR);
if (rv < 0) {
nss_MD_unix_map_default_error(errno);
return SECFailure;
}
return SECSuccess;
}
#else
SECStatus
sslMutex_Init(sslMutex *pMutex, int shared)
{
PR_ASSERT(pMutex);
pMutex->isMultiProcess = (PRBool)(shared != 0);
if (!shared) {
return single_process_sslMutex_Init(pMutex);
}
PORT_Assert(!("sslMutex_Init not implemented for multi-process applications !"));
PORT_SetError(PR_NOT_IMPLEMENTED_ERROR);
return SECFailure;
}
SECStatus
sslMutex_Destroy(sslMutex *pMutex)
{
PR_ASSERT(pMutex);
if (PR_FALSE == pMutex->isMultiProcess) {
return single_process_sslMutex_Destroy(pMutex);
}
PORT_Assert(!("sslMutex_Destroy not implemented for multi-process applications !"));
PORT_SetError(PR_NOT_IMPLEMENTED_ERROR);
return SECFailure;
}
SECStatus
sslMutex_Unlock(sslMutex *pMutex)
{
PR_ASSERT(pMutex);
if (PR_FALSE == pMutex->isMultiProcess) {
return single_process_sslMutex_Unlock(pMutex);
}
PORT_Assert(!("sslMutex_Unlock not implemented for multi-process applications !"));
PORT_SetError(PR_NOT_IMPLEMENTED_ERROR);
return SECFailure;
}
SECStatus
sslMutex_Lock(sslMutex *pMutex)
{
PR_ASSERT(pMutex);
if (PR_FALSE == pMutex->isMultiProcess) {
return single_process_sslMutex_Lock(pMutex);
}
PORT_Assert(!("sslMutex_Lock not implemented for multi-process applications !"));
PORT_SetError(PR_NOT_IMPLEMENTED_ERROR);
return SECFailure;
}
#endif
#endif