mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
763 lines
19 KiB
C++
763 lines
19 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
*
|
|
* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is Mozilla Communicator client code, released
|
|
* March 31, 1998.
|
|
*
|
|
* The Initial Developer of the Original Code is
|
|
* Netscape Communications Corporation.
|
|
* Portions created by the Initial Developer are Copyright (C) 1998
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either of the GNU General Public License Version 2 or later (the "GPL"),
|
|
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
|
|
/*
|
|
* JS math package.
|
|
*/
|
|
#include <stdlib.h>
|
|
#include "jstypes.h"
|
|
#include "jsstdint.h"
|
|
#include "jslong.h"
|
|
#include "prmjtime.h"
|
|
#include "jsapi.h"
|
|
#include "jsatom.h"
|
|
#include "jsbuiltins.h"
|
|
#include "jscntxt.h"
|
|
#include "jsversion.h"
|
|
#include "jslock.h"
|
|
#include "jsmath.h"
|
|
#include "jsnum.h"
|
|
#include "jslibmath.h"
|
|
#include "jsobj.h"
|
|
|
|
#ifndef M_E
|
|
#define M_E 2.7182818284590452354
|
|
#endif
|
|
#ifndef M_LOG2E
|
|
#define M_LOG2E 1.4426950408889634074
|
|
#endif
|
|
#ifndef M_LOG10E
|
|
#define M_LOG10E 0.43429448190325182765
|
|
#endif
|
|
#ifndef M_LN2
|
|
#define M_LN2 0.69314718055994530942
|
|
#endif
|
|
#ifndef M_LN10
|
|
#define M_LN10 2.30258509299404568402
|
|
#endif
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
#ifndef M_SQRT2
|
|
#define M_SQRT2 1.41421356237309504880
|
|
#endif
|
|
#ifndef M_SQRT1_2
|
|
#define M_SQRT1_2 0.70710678118654752440
|
|
#endif
|
|
|
|
static JSConstDoubleSpec math_constants[] = {
|
|
{M_E, "E", 0, {0,0,0}},
|
|
{M_LOG2E, "LOG2E", 0, {0,0,0}},
|
|
{M_LOG10E, "LOG10E", 0, {0,0,0}},
|
|
{M_LN2, "LN2", 0, {0,0,0}},
|
|
{M_LN10, "LN10", 0, {0,0,0}},
|
|
{M_PI, "PI", 0, {0,0,0}},
|
|
{M_SQRT2, "SQRT2", 0, {0,0,0}},
|
|
{M_SQRT1_2, "SQRT1_2", 0, {0,0,0}},
|
|
{0,0,0,{0,0,0}}
|
|
};
|
|
|
|
JSClass js_MathClass = {
|
|
js_Math_str,
|
|
JSCLASS_HAS_CACHED_PROTO(JSProto_Math),
|
|
JS_PropertyStub, JS_PropertyStub, JS_PropertyStub, JS_PropertyStub,
|
|
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, NULL,
|
|
JSCLASS_NO_OPTIONAL_MEMBERS
|
|
};
|
|
|
|
static JSBool
|
|
math_abs(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = cx->runtime->NaNValue;
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
z = fabs(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
static JSBool
|
|
math_acos(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = cx->runtime->NaNValue;
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
#if defined(SOLARIS) && defined(__GNUC__)
|
|
if (x < -1 || 1 < x) {
|
|
*vp = cx->runtime->NaNValue;
|
|
return JS_TRUE;
|
|
}
|
|
#endif
|
|
z = acos(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
static JSBool
|
|
math_asin(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = cx->runtime->NaNValue;
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
#if defined(SOLARIS) && defined(__GNUC__)
|
|
if (x < -1 || 1 < x) {
|
|
*vp = cx->runtime->NaNValue;
|
|
return JS_TRUE;
|
|
}
|
|
#endif
|
|
z = asin(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
static JSBool
|
|
math_atan(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = cx->runtime->NaNValue;
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
z = atan(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
static inline jsdouble JS_FASTCALL
|
|
math_atan2_kernel(jsdouble x, jsdouble y)
|
|
{
|
|
#if defined(_MSC_VER)
|
|
/*
|
|
* MSVC's atan2 does not yield the result demanded by ECMA when both x
|
|
* and y are infinite.
|
|
* - The result is a multiple of pi/4.
|
|
* - The sign of x determines the sign of the result.
|
|
* - The sign of y determines the multiplicator, 1 or 3.
|
|
*/
|
|
if (JSDOUBLE_IS_INFINITE(x) && JSDOUBLE_IS_INFINITE(y)) {
|
|
jsdouble z = js_copysign(M_PI / 4, x);
|
|
if (y < 0)
|
|
z *= 3;
|
|
return z;
|
|
}
|
|
#endif
|
|
|
|
#if defined(SOLARIS) && defined(__GNUC__)
|
|
if (x == 0) {
|
|
if (JSDOUBLE_IS_NEGZERO(y))
|
|
return js_copysign(M_PI, x);
|
|
if (y == 0)
|
|
return x;
|
|
}
|
|
#endif
|
|
return atan2(x, y);
|
|
}
|
|
|
|
static JSBool
|
|
math_atan2(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, y;
|
|
|
|
if (argc <= 1) {
|
|
*vp = cx->runtime->NaNValue;
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
y = js_ValueToNumber(cx, &vp[3]);
|
|
if (JSVAL_IS_NULL(vp[3]))
|
|
return JS_FALSE;
|
|
return js_NewNumberInRootedValue(cx, math_atan2_kernel (x, y), vp);
|
|
}
|
|
|
|
static inline jsdouble JS_FASTCALL
|
|
math_ceil_kernel(jsdouble x)
|
|
{
|
|
#ifdef __APPLE__
|
|
if (x < 0 && x > -1.0)
|
|
return js_copysign(0, -1);
|
|
#endif
|
|
return ceil(x);
|
|
}
|
|
|
|
JSBool
|
|
js_math_ceil(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = cx->runtime->NaNValue;
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
z = math_ceil_kernel(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
static JSBool
|
|
math_cos(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = cx->runtime->NaNValue;
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
z = cos(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
static JSBool
|
|
math_exp(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = cx->runtime->NaNValue;
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
#ifdef _WIN32
|
|
if (!JSDOUBLE_IS_NaN(x)) {
|
|
if (x == js_PositiveInfinity) {
|
|
*vp = cx->runtime->positiveInfinityValue;
|
|
return JS_TRUE;
|
|
}
|
|
if (x == js_NegativeInfinity) {
|
|
*vp = JSVAL_ZERO;
|
|
return JS_TRUE;
|
|
}
|
|
}
|
|
#endif
|
|
z = exp(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
JSBool
|
|
js_math_floor(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = cx->runtime->NaNValue;
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
z = floor(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
static JSBool
|
|
math_log(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = cx->runtime->NaNValue;
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
#if defined(SOLARIS) && defined(__GNUC__)
|
|
if (x < 0) {
|
|
*vp = cx->runtime->NaNValue;
|
|
return JS_TRUE;
|
|
}
|
|
#endif
|
|
z = log(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
JSBool
|
|
js_math_max(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z = js_NegativeInfinity;
|
|
jsval *argv;
|
|
uintN i;
|
|
|
|
if (argc == 0) {
|
|
*vp = cx->runtime->negativeInfinityValue;
|
|
return JS_TRUE;
|
|
}
|
|
argv = vp + 2;
|
|
for (i = 0; i < argc; i++) {
|
|
x = js_ValueToNumber(cx, &argv[i]);
|
|
if (JSVAL_IS_NULL(argv[i]))
|
|
return JS_FALSE;
|
|
if (JSDOUBLE_IS_NaN(x)) {
|
|
*vp = cx->runtime->NaNValue;
|
|
return JS_TRUE;
|
|
}
|
|
if (x == 0 && x == z) {
|
|
if (js_copysign(1.0, z) == -1)
|
|
z = x;
|
|
} else {
|
|
z = (x > z) ? x : z;
|
|
}
|
|
}
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
JSBool
|
|
js_math_min(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z = js_PositiveInfinity;
|
|
jsval *argv;
|
|
uintN i;
|
|
|
|
if (argc == 0) {
|
|
*vp = cx->runtime->positiveInfinityValue;
|
|
return JS_TRUE;
|
|
}
|
|
argv = vp + 2;
|
|
for (i = 0; i < argc; i++) {
|
|
x = js_ValueToNumber(cx, &argv[i]);
|
|
if (JSVAL_IS_NULL(argv[i]))
|
|
return JS_FALSE;
|
|
if (JSDOUBLE_IS_NaN(x)) {
|
|
*vp = cx->runtime->NaNValue;
|
|
return JS_TRUE;
|
|
}
|
|
if (x == 0 && x == z) {
|
|
if (js_copysign(1.0, x) == -1)
|
|
z = x;
|
|
} else {
|
|
z = (x < z) ? x : z;
|
|
}
|
|
}
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
static JSBool
|
|
math_pow(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, y, z;
|
|
|
|
if (argc <= 1) {
|
|
*vp = cx->runtime->NaNValue;
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
y = js_ValueToNumber(cx, &vp[3]);
|
|
if (JSVAL_IS_NULL(vp[3]))
|
|
return JS_FALSE;
|
|
/*
|
|
* Because C99 and ECMA specify different behavior for pow(),
|
|
* we need to wrap the libm call to make it ECMA compliant.
|
|
*/
|
|
if (!JSDOUBLE_IS_FINITE(y) && (x == 1.0 || x == -1.0)) {
|
|
*vp = cx->runtime->NaNValue;
|
|
return JS_TRUE;
|
|
}
|
|
/* pow(x, +-0) is always 1, even for x = NaN. */
|
|
if (y == 0) {
|
|
*vp = JSVAL_ONE;
|
|
return JS_TRUE;
|
|
}
|
|
z = pow(x, y);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
static const int64 RNG_MULTIPLIER = 0x5DEECE66DLL;
|
|
static const int64 RNG_ADDEND = 0xBLL;
|
|
static const int64 RNG_MASK = (1LL << 48) - 1;
|
|
static const jsdouble RNG_DSCALE = jsdouble(1LL << 53);
|
|
|
|
/*
|
|
* Math.random() support, lifted from java.util.Random.java.
|
|
*/
|
|
static inline void
|
|
random_setSeed(JSThreadData *data, int64 seed)
|
|
{
|
|
data->rngSeed = (seed ^ RNG_MULTIPLIER) & RNG_MASK;
|
|
}
|
|
|
|
void
|
|
js_InitRandom(JSThreadData *data)
|
|
{
|
|
/* Finally, set the seed from current time. */
|
|
random_setSeed(data, PRMJ_Now() / 1000);
|
|
}
|
|
|
|
static inline uint64
|
|
random_next(JSThreadData *data, int bits)
|
|
{
|
|
uint64 nextseed = data->rngSeed * RNG_MULTIPLIER;
|
|
nextseed += RNG_ADDEND;
|
|
nextseed &= RNG_MASK;
|
|
data->rngSeed = nextseed;
|
|
return nextseed >> (48 - bits);
|
|
}
|
|
|
|
static inline jsdouble
|
|
random_nextDouble(JSThreadData *data)
|
|
{
|
|
return jsdouble((random_next(data, 26) << 27) + random_next(data, 27)) / RNG_DSCALE;
|
|
}
|
|
|
|
static JSBool
|
|
math_random(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble z = random_nextDouble(JS_THREAD_DATA(cx));
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
#if defined _WIN32 && !defined WINCE && _MSC_VER < 1400
|
|
/* Try to work around apparent _copysign bustage in VC7.x. */
|
|
double
|
|
js_copysign(double x, double y)
|
|
{
|
|
jsdpun xu, yu;
|
|
|
|
xu.d = x;
|
|
yu.d = y;
|
|
xu.s.hi &= ~JSDOUBLE_HI32_SIGNBIT;
|
|
xu.s.hi |= yu.s.hi & JSDOUBLE_HI32_SIGNBIT;
|
|
return xu.d;
|
|
}
|
|
#endif
|
|
|
|
JSBool
|
|
js_math_round(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = cx->runtime->NaNValue;
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
z = js_copysign(floor(x + 0.5), x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
static JSBool
|
|
math_sin(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = cx->runtime->NaNValue;
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
z = sin(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
static JSBool
|
|
math_sqrt(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = cx->runtime->NaNValue;
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
z = sqrt(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
static JSBool
|
|
math_tan(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
jsdouble x, z;
|
|
|
|
if (argc == 0) {
|
|
*vp = cx->runtime->NaNValue;
|
|
return JS_TRUE;
|
|
}
|
|
x = js_ValueToNumber(cx, &vp[2]);
|
|
if (JSVAL_IS_NULL(vp[2]))
|
|
return JS_FALSE;
|
|
z = tan(x);
|
|
return js_NewNumberInRootedValue(cx, z, vp);
|
|
}
|
|
|
|
#if JS_HAS_TOSOURCE
|
|
static JSBool
|
|
math_toSource(JSContext *cx, uintN argc, jsval *vp)
|
|
{
|
|
*vp = ATOM_KEY(CLASS_ATOM(cx, Math));
|
|
return JS_TRUE;
|
|
}
|
|
#endif
|
|
|
|
#ifdef JS_TRACER
|
|
|
|
#define MATH_BUILTIN_1(name) MATH_BUILTIN_CFUN_1(name, name)
|
|
#define MATH_BUILTIN_CFUN_1(name, cfun) \
|
|
static jsdouble FASTCALL math_##name##_tn(jsdouble d) { return cfun(d); } \
|
|
JS_DEFINE_TRCINFO_1(math_##name, \
|
|
(1, (static, DOUBLE, math_##name##_tn, DOUBLE, 1, 1)))
|
|
|
|
MATH_BUILTIN_CFUN_1(abs, fabs)
|
|
MATH_BUILTIN_1(atan)
|
|
MATH_BUILTIN_1(sin)
|
|
MATH_BUILTIN_1(cos)
|
|
MATH_BUILTIN_1(sqrt)
|
|
MATH_BUILTIN_1(tan)
|
|
|
|
static jsdouble FASTCALL
|
|
math_acos_tn(jsdouble d)
|
|
{
|
|
#if defined(SOLARIS) && defined(__GNUC__)
|
|
if (d < -1 || 1 < d) {
|
|
return js_NaN;
|
|
}
|
|
#endif
|
|
return acos(d);
|
|
}
|
|
|
|
static jsdouble FASTCALL
|
|
math_asin_tn(jsdouble d)
|
|
{
|
|
#if defined(SOLARIS) && defined(__GNUC__)
|
|
if (d < -1 || 1 < d) {
|
|
return js_NaN;
|
|
}
|
|
#endif
|
|
return asin(d);
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
|
|
static jsdouble FASTCALL
|
|
math_exp_tn(JSContext *cx, jsdouble d)
|
|
{
|
|
if (!JSDOUBLE_IS_NaN(d)) {
|
|
if (d == js_PositiveInfinity)
|
|
return js_PositiveInfinity;
|
|
if (d == js_NegativeInfinity)
|
|
return 0.0;
|
|
}
|
|
return exp(d);
|
|
}
|
|
|
|
JS_DEFINE_TRCINFO_1(math_exp,
|
|
(2, (static, DOUBLE, math_exp_tn, CONTEXT, DOUBLE, 1, 1)))
|
|
|
|
#else
|
|
|
|
MATH_BUILTIN_1(exp)
|
|
|
|
#endif
|
|
|
|
static jsdouble FASTCALL
|
|
math_log_tn(jsdouble d)
|
|
{
|
|
#if defined(SOLARIS) && defined(__GNUC__)
|
|
if (d < 0)
|
|
return js_NaN;
|
|
#endif
|
|
return log(d);
|
|
}
|
|
|
|
static jsdouble FASTCALL
|
|
math_max_tn(jsdouble d, jsdouble p)
|
|
{
|
|
if (JSDOUBLE_IS_NaN(d) || JSDOUBLE_IS_NaN(p))
|
|
return js_NaN;
|
|
|
|
if (p == 0 && p == d) {
|
|
// Max prefers 0.0 to -0.0.
|
|
if (js_copysign(1.0, d) == -1)
|
|
return p;
|
|
return d;
|
|
}
|
|
return (p > d) ? p : d;
|
|
}
|
|
|
|
static jsdouble FASTCALL
|
|
math_min_tn(jsdouble d, jsdouble p)
|
|
{
|
|
if (JSDOUBLE_IS_NaN(d) || JSDOUBLE_IS_NaN(p))
|
|
return js_NaN;
|
|
|
|
if (p == 0 && p == d) {
|
|
// Min prefers -0.0 to 0.0.
|
|
if (js_copysign (1.0, p) == -1)
|
|
return p;
|
|
return d;
|
|
}
|
|
return (p < d) ? p : d;
|
|
}
|
|
|
|
static jsdouble FASTCALL
|
|
math_pow_tn(jsdouble d, jsdouble p)
|
|
{
|
|
if (!JSDOUBLE_IS_FINITE(p) && (d == 1.0 || d == -1.0))
|
|
return js_NaN;
|
|
if (p == 0)
|
|
return 1.0;
|
|
return pow(d, p);
|
|
}
|
|
|
|
static jsdouble FASTCALL
|
|
math_random_tn(JSContext *cx)
|
|
{
|
|
return random_nextDouble(JS_THREAD_DATA(cx));
|
|
}
|
|
|
|
static jsdouble FASTCALL
|
|
math_round_tn(jsdouble x)
|
|
{
|
|
return js_copysign(floor(x + 0.5), x);
|
|
}
|
|
|
|
static jsdouble FASTCALL
|
|
math_ceil_tn(jsdouble x)
|
|
{
|
|
return math_ceil_kernel(x);
|
|
}
|
|
|
|
static jsdouble FASTCALL
|
|
math_floor_tn(jsdouble x)
|
|
{
|
|
return floor(x);
|
|
}
|
|
|
|
JS_DEFINE_TRCINFO_1(math_acos,
|
|
(1, (static, DOUBLE, math_acos_tn, DOUBLE, 1, 1)))
|
|
JS_DEFINE_TRCINFO_1(math_asin,
|
|
(1, (static, DOUBLE, math_asin_tn, DOUBLE, 1, 1)))
|
|
JS_DEFINE_TRCINFO_1(math_atan2,
|
|
(2, (static, DOUBLE, math_atan2_kernel, DOUBLE, DOUBLE, 1, 1)))
|
|
JS_DEFINE_TRCINFO_1(js_math_floor,
|
|
(1, (static, DOUBLE, math_floor_tn, DOUBLE, 1, 1)))
|
|
JS_DEFINE_TRCINFO_1(math_log,
|
|
(1, (static, DOUBLE, math_log_tn, DOUBLE, 1, 1)))
|
|
JS_DEFINE_TRCINFO_1(js_math_max,
|
|
(2, (static, DOUBLE, math_max_tn, DOUBLE, DOUBLE, 1, 1)))
|
|
JS_DEFINE_TRCINFO_1(js_math_min,
|
|
(2, (static, DOUBLE, math_min_tn, DOUBLE, DOUBLE, 1, 1)))
|
|
JS_DEFINE_TRCINFO_1(math_pow,
|
|
(2, (static, DOUBLE, math_pow_tn, DOUBLE, DOUBLE, 1, 1)))
|
|
JS_DEFINE_TRCINFO_1(math_random,
|
|
(1, (static, DOUBLE, math_random_tn, CONTEXT, 0, 0)))
|
|
JS_DEFINE_TRCINFO_1(js_math_round,
|
|
(1, (static, DOUBLE, math_round_tn, DOUBLE, 1, 1)))
|
|
JS_DEFINE_TRCINFO_1(js_math_ceil,
|
|
(1, (static, DOUBLE, math_ceil_tn, DOUBLE, 1, 1)))
|
|
|
|
#endif /* JS_TRACER */
|
|
|
|
static JSFunctionSpec math_static_methods[] = {
|
|
#if JS_HAS_TOSOURCE
|
|
JS_FN(js_toSource_str, math_toSource, 0, 0),
|
|
#endif
|
|
JS_TN("abs", math_abs, 1, 0, &math_abs_trcinfo),
|
|
JS_TN("acos", math_acos, 1, 0, &math_acos_trcinfo),
|
|
JS_TN("asin", math_asin, 1, 0, &math_asin_trcinfo),
|
|
JS_TN("atan", math_atan, 1, 0, &math_atan_trcinfo),
|
|
JS_TN("atan2", math_atan2, 2, 0, &math_atan2_trcinfo),
|
|
JS_TN("ceil", js_math_ceil, 1, 0, &js_math_ceil_trcinfo),
|
|
JS_TN("cos", math_cos, 1, 0, &math_cos_trcinfo),
|
|
JS_TN("exp", math_exp, 1, 0, &math_exp_trcinfo),
|
|
JS_TN("floor", js_math_floor, 1, 0, &js_math_floor_trcinfo),
|
|
JS_TN("log", math_log, 1, 0, &math_log_trcinfo),
|
|
JS_TN("max", js_math_max, 2, 0, &js_math_max_trcinfo),
|
|
JS_TN("min", js_math_min, 2, 0, &js_math_min_trcinfo),
|
|
JS_TN("pow", math_pow, 2, 0, &math_pow_trcinfo),
|
|
JS_TN("random", math_random, 0, 0, &math_random_trcinfo),
|
|
JS_TN("round", js_math_round, 1, 0, &js_math_round_trcinfo),
|
|
JS_TN("sin", math_sin, 1, 0, &math_sin_trcinfo),
|
|
JS_TN("sqrt", math_sqrt, 1, 0, &math_sqrt_trcinfo),
|
|
JS_TN("tan", math_tan, 1, 0, &math_tan_trcinfo),
|
|
JS_FS_END
|
|
};
|
|
|
|
JSObject *
|
|
js_InitMathClass(JSContext *cx, JSObject *obj)
|
|
{
|
|
JSObject *Math;
|
|
|
|
Math = JS_NewObject(cx, &js_MathClass, NULL, obj);
|
|
if (!Math)
|
|
return NULL;
|
|
if (!JS_DefineProperty(cx, obj, js_Math_str, OBJECT_TO_JSVAL(Math),
|
|
JS_PropertyStub, JS_PropertyStub, 0)) {
|
|
return NULL;
|
|
}
|
|
|
|
if (!JS_DefineFunctions(cx, Math, math_static_methods))
|
|
return NULL;
|
|
if (!JS_DefineConstDoubles(cx, Math, math_constants))
|
|
return NULL;
|
|
return Math;
|
|
}
|