gecko/js/src/jsmath.cpp

763 lines
19 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Mozilla Communicator client code, released
* March 31, 1998.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1998
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the terms of
* either of the GNU General Public License Version 2 or later (the "GPL"),
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
/*
* JS math package.
*/
#include <stdlib.h>
#include "jstypes.h"
#include "jsstdint.h"
#include "jslong.h"
#include "prmjtime.h"
#include "jsapi.h"
#include "jsatom.h"
#include "jsbuiltins.h"
#include "jscntxt.h"
#include "jsversion.h"
#include "jslock.h"
#include "jsmath.h"
#include "jsnum.h"
#include "jslibmath.h"
#include "jsobj.h"
#ifndef M_E
#define M_E 2.7182818284590452354
#endif
#ifndef M_LOG2E
#define M_LOG2E 1.4426950408889634074
#endif
#ifndef M_LOG10E
#define M_LOG10E 0.43429448190325182765
#endif
#ifndef M_LN2
#define M_LN2 0.69314718055994530942
#endif
#ifndef M_LN10
#define M_LN10 2.30258509299404568402
#endif
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#ifndef M_SQRT2
#define M_SQRT2 1.41421356237309504880
#endif
#ifndef M_SQRT1_2
#define M_SQRT1_2 0.70710678118654752440
#endif
static JSConstDoubleSpec math_constants[] = {
{M_E, "E", 0, {0,0,0}},
{M_LOG2E, "LOG2E", 0, {0,0,0}},
{M_LOG10E, "LOG10E", 0, {0,0,0}},
{M_LN2, "LN2", 0, {0,0,0}},
{M_LN10, "LN10", 0, {0,0,0}},
{M_PI, "PI", 0, {0,0,0}},
{M_SQRT2, "SQRT2", 0, {0,0,0}},
{M_SQRT1_2, "SQRT1_2", 0, {0,0,0}},
{0,0,0,{0,0,0}}
};
JSClass js_MathClass = {
js_Math_str,
JSCLASS_HAS_CACHED_PROTO(JSProto_Math),
JS_PropertyStub, JS_PropertyStub, JS_PropertyStub, JS_PropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, NULL,
JSCLASS_NO_OPTIONAL_MEMBERS
};
static JSBool
math_abs(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = cx->runtime->NaNValue;
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
z = fabs(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
static JSBool
math_acos(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = cx->runtime->NaNValue;
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
#if defined(SOLARIS) && defined(__GNUC__)
if (x < -1 || 1 < x) {
*vp = cx->runtime->NaNValue;
return JS_TRUE;
}
#endif
z = acos(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
static JSBool
math_asin(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = cx->runtime->NaNValue;
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
#if defined(SOLARIS) && defined(__GNUC__)
if (x < -1 || 1 < x) {
*vp = cx->runtime->NaNValue;
return JS_TRUE;
}
#endif
z = asin(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
static JSBool
math_atan(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = cx->runtime->NaNValue;
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
z = atan(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
static inline jsdouble JS_FASTCALL
math_atan2_kernel(jsdouble x, jsdouble y)
{
#if defined(_MSC_VER)
/*
* MSVC's atan2 does not yield the result demanded by ECMA when both x
* and y are infinite.
* - The result is a multiple of pi/4.
* - The sign of x determines the sign of the result.
* - The sign of y determines the multiplicator, 1 or 3.
*/
if (JSDOUBLE_IS_INFINITE(x) && JSDOUBLE_IS_INFINITE(y)) {
jsdouble z = js_copysign(M_PI / 4, x);
if (y < 0)
z *= 3;
return z;
}
#endif
#if defined(SOLARIS) && defined(__GNUC__)
if (x == 0) {
if (JSDOUBLE_IS_NEGZERO(y))
return js_copysign(M_PI, x);
if (y == 0)
return x;
}
#endif
return atan2(x, y);
}
static JSBool
math_atan2(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, y;
if (argc <= 1) {
*vp = cx->runtime->NaNValue;
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
y = js_ValueToNumber(cx, &vp[3]);
if (JSVAL_IS_NULL(vp[3]))
return JS_FALSE;
return js_NewNumberInRootedValue(cx, math_atan2_kernel (x, y), vp);
}
static inline jsdouble JS_FASTCALL
math_ceil_kernel(jsdouble x)
{
#ifdef __APPLE__
if (x < 0 && x > -1.0)
return js_copysign(0, -1);
#endif
return ceil(x);
}
JSBool
js_math_ceil(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = cx->runtime->NaNValue;
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
z = math_ceil_kernel(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
static JSBool
math_cos(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = cx->runtime->NaNValue;
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
z = cos(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
static JSBool
math_exp(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = cx->runtime->NaNValue;
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
#ifdef _WIN32
if (!JSDOUBLE_IS_NaN(x)) {
if (x == js_PositiveInfinity) {
*vp = cx->runtime->positiveInfinityValue;
return JS_TRUE;
}
if (x == js_NegativeInfinity) {
*vp = JSVAL_ZERO;
return JS_TRUE;
}
}
#endif
z = exp(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
JSBool
js_math_floor(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = cx->runtime->NaNValue;
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
z = floor(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
static JSBool
math_log(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = cx->runtime->NaNValue;
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
#if defined(SOLARIS) && defined(__GNUC__)
if (x < 0) {
*vp = cx->runtime->NaNValue;
return JS_TRUE;
}
#endif
z = log(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
JSBool
js_math_max(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z = js_NegativeInfinity;
jsval *argv;
uintN i;
if (argc == 0) {
*vp = cx->runtime->negativeInfinityValue;
return JS_TRUE;
}
argv = vp + 2;
for (i = 0; i < argc; i++) {
x = js_ValueToNumber(cx, &argv[i]);
if (JSVAL_IS_NULL(argv[i]))
return JS_FALSE;
if (JSDOUBLE_IS_NaN(x)) {
*vp = cx->runtime->NaNValue;
return JS_TRUE;
}
if (x == 0 && x == z) {
if (js_copysign(1.0, z) == -1)
z = x;
} else {
z = (x > z) ? x : z;
}
}
return js_NewNumberInRootedValue(cx, z, vp);
}
JSBool
js_math_min(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z = js_PositiveInfinity;
jsval *argv;
uintN i;
if (argc == 0) {
*vp = cx->runtime->positiveInfinityValue;
return JS_TRUE;
}
argv = vp + 2;
for (i = 0; i < argc; i++) {
x = js_ValueToNumber(cx, &argv[i]);
if (JSVAL_IS_NULL(argv[i]))
return JS_FALSE;
if (JSDOUBLE_IS_NaN(x)) {
*vp = cx->runtime->NaNValue;
return JS_TRUE;
}
if (x == 0 && x == z) {
if (js_copysign(1.0, x) == -1)
z = x;
} else {
z = (x < z) ? x : z;
}
}
return js_NewNumberInRootedValue(cx, z, vp);
}
static JSBool
math_pow(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, y, z;
if (argc <= 1) {
*vp = cx->runtime->NaNValue;
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
y = js_ValueToNumber(cx, &vp[3]);
if (JSVAL_IS_NULL(vp[3]))
return JS_FALSE;
/*
* Because C99 and ECMA specify different behavior for pow(),
* we need to wrap the libm call to make it ECMA compliant.
*/
if (!JSDOUBLE_IS_FINITE(y) && (x == 1.0 || x == -1.0)) {
*vp = cx->runtime->NaNValue;
return JS_TRUE;
}
/* pow(x, +-0) is always 1, even for x = NaN. */
if (y == 0) {
*vp = JSVAL_ONE;
return JS_TRUE;
}
z = pow(x, y);
return js_NewNumberInRootedValue(cx, z, vp);
}
static const int64 RNG_MULTIPLIER = 0x5DEECE66DLL;
static const int64 RNG_ADDEND = 0xBLL;
static const int64 RNG_MASK = (1LL << 48) - 1;
static const jsdouble RNG_DSCALE = jsdouble(1LL << 53);
/*
* Math.random() support, lifted from java.util.Random.java.
*/
static inline void
random_setSeed(JSThreadData *data, int64 seed)
{
data->rngSeed = (seed ^ RNG_MULTIPLIER) & RNG_MASK;
}
void
js_InitRandom(JSThreadData *data)
{
/* Finally, set the seed from current time. */
random_setSeed(data, PRMJ_Now() / 1000);
}
static inline uint64
random_next(JSThreadData *data, int bits)
{
uint64 nextseed = data->rngSeed * RNG_MULTIPLIER;
nextseed += RNG_ADDEND;
nextseed &= RNG_MASK;
data->rngSeed = nextseed;
return nextseed >> (48 - bits);
}
static inline jsdouble
random_nextDouble(JSThreadData *data)
{
return jsdouble((random_next(data, 26) << 27) + random_next(data, 27)) / RNG_DSCALE;
}
static JSBool
math_random(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble z = random_nextDouble(JS_THREAD_DATA(cx));
return js_NewNumberInRootedValue(cx, z, vp);
}
#if defined _WIN32 && !defined WINCE && _MSC_VER < 1400
/* Try to work around apparent _copysign bustage in VC7.x. */
double
js_copysign(double x, double y)
{
jsdpun xu, yu;
xu.d = x;
yu.d = y;
xu.s.hi &= ~JSDOUBLE_HI32_SIGNBIT;
xu.s.hi |= yu.s.hi & JSDOUBLE_HI32_SIGNBIT;
return xu.d;
}
#endif
JSBool
js_math_round(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = cx->runtime->NaNValue;
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
z = js_copysign(floor(x + 0.5), x);
return js_NewNumberInRootedValue(cx, z, vp);
}
static JSBool
math_sin(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = cx->runtime->NaNValue;
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
z = sin(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
static JSBool
math_sqrt(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = cx->runtime->NaNValue;
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
z = sqrt(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
static JSBool
math_tan(JSContext *cx, uintN argc, jsval *vp)
{
jsdouble x, z;
if (argc == 0) {
*vp = cx->runtime->NaNValue;
return JS_TRUE;
}
x = js_ValueToNumber(cx, &vp[2]);
if (JSVAL_IS_NULL(vp[2]))
return JS_FALSE;
z = tan(x);
return js_NewNumberInRootedValue(cx, z, vp);
}
#if JS_HAS_TOSOURCE
static JSBool
math_toSource(JSContext *cx, uintN argc, jsval *vp)
{
*vp = ATOM_KEY(CLASS_ATOM(cx, Math));
return JS_TRUE;
}
#endif
#ifdef JS_TRACER
#define MATH_BUILTIN_1(name) MATH_BUILTIN_CFUN_1(name, name)
#define MATH_BUILTIN_CFUN_1(name, cfun) \
static jsdouble FASTCALL math_##name##_tn(jsdouble d) { return cfun(d); } \
JS_DEFINE_TRCINFO_1(math_##name, \
(1, (static, DOUBLE, math_##name##_tn, DOUBLE, 1, 1)))
MATH_BUILTIN_CFUN_1(abs, fabs)
MATH_BUILTIN_1(atan)
MATH_BUILTIN_1(sin)
MATH_BUILTIN_1(cos)
MATH_BUILTIN_1(sqrt)
MATH_BUILTIN_1(tan)
static jsdouble FASTCALL
math_acos_tn(jsdouble d)
{
#if defined(SOLARIS) && defined(__GNUC__)
if (d < -1 || 1 < d) {
return js_NaN;
}
#endif
return acos(d);
}
static jsdouble FASTCALL
math_asin_tn(jsdouble d)
{
#if defined(SOLARIS) && defined(__GNUC__)
if (d < -1 || 1 < d) {
return js_NaN;
}
#endif
return asin(d);
}
#ifdef _WIN32
static jsdouble FASTCALL
math_exp_tn(JSContext *cx, jsdouble d)
{
if (!JSDOUBLE_IS_NaN(d)) {
if (d == js_PositiveInfinity)
return js_PositiveInfinity;
if (d == js_NegativeInfinity)
return 0.0;
}
return exp(d);
}
JS_DEFINE_TRCINFO_1(math_exp,
(2, (static, DOUBLE, math_exp_tn, CONTEXT, DOUBLE, 1, 1)))
#else
MATH_BUILTIN_1(exp)
#endif
static jsdouble FASTCALL
math_log_tn(jsdouble d)
{
#if defined(SOLARIS) && defined(__GNUC__)
if (d < 0)
return js_NaN;
#endif
return log(d);
}
static jsdouble FASTCALL
math_max_tn(jsdouble d, jsdouble p)
{
if (JSDOUBLE_IS_NaN(d) || JSDOUBLE_IS_NaN(p))
return js_NaN;
if (p == 0 && p == d) {
// Max prefers 0.0 to -0.0.
if (js_copysign(1.0, d) == -1)
return p;
return d;
}
return (p > d) ? p : d;
}
static jsdouble FASTCALL
math_min_tn(jsdouble d, jsdouble p)
{
if (JSDOUBLE_IS_NaN(d) || JSDOUBLE_IS_NaN(p))
return js_NaN;
if (p == 0 && p == d) {
// Min prefers -0.0 to 0.0.
if (js_copysign (1.0, p) == -1)
return p;
return d;
}
return (p < d) ? p : d;
}
static jsdouble FASTCALL
math_pow_tn(jsdouble d, jsdouble p)
{
if (!JSDOUBLE_IS_FINITE(p) && (d == 1.0 || d == -1.0))
return js_NaN;
if (p == 0)
return 1.0;
return pow(d, p);
}
static jsdouble FASTCALL
math_random_tn(JSContext *cx)
{
return random_nextDouble(JS_THREAD_DATA(cx));
}
static jsdouble FASTCALL
math_round_tn(jsdouble x)
{
return js_copysign(floor(x + 0.5), x);
}
static jsdouble FASTCALL
math_ceil_tn(jsdouble x)
{
return math_ceil_kernel(x);
}
static jsdouble FASTCALL
math_floor_tn(jsdouble x)
{
return floor(x);
}
JS_DEFINE_TRCINFO_1(math_acos,
(1, (static, DOUBLE, math_acos_tn, DOUBLE, 1, 1)))
JS_DEFINE_TRCINFO_1(math_asin,
(1, (static, DOUBLE, math_asin_tn, DOUBLE, 1, 1)))
JS_DEFINE_TRCINFO_1(math_atan2,
(2, (static, DOUBLE, math_atan2_kernel, DOUBLE, DOUBLE, 1, 1)))
JS_DEFINE_TRCINFO_1(js_math_floor,
(1, (static, DOUBLE, math_floor_tn, DOUBLE, 1, 1)))
JS_DEFINE_TRCINFO_1(math_log,
(1, (static, DOUBLE, math_log_tn, DOUBLE, 1, 1)))
JS_DEFINE_TRCINFO_1(js_math_max,
(2, (static, DOUBLE, math_max_tn, DOUBLE, DOUBLE, 1, 1)))
JS_DEFINE_TRCINFO_1(js_math_min,
(2, (static, DOUBLE, math_min_tn, DOUBLE, DOUBLE, 1, 1)))
JS_DEFINE_TRCINFO_1(math_pow,
(2, (static, DOUBLE, math_pow_tn, DOUBLE, DOUBLE, 1, 1)))
JS_DEFINE_TRCINFO_1(math_random,
(1, (static, DOUBLE, math_random_tn, CONTEXT, 0, 0)))
JS_DEFINE_TRCINFO_1(js_math_round,
(1, (static, DOUBLE, math_round_tn, DOUBLE, 1, 1)))
JS_DEFINE_TRCINFO_1(js_math_ceil,
(1, (static, DOUBLE, math_ceil_tn, DOUBLE, 1, 1)))
#endif /* JS_TRACER */
static JSFunctionSpec math_static_methods[] = {
#if JS_HAS_TOSOURCE
JS_FN(js_toSource_str, math_toSource, 0, 0),
#endif
JS_TN("abs", math_abs, 1, 0, &math_abs_trcinfo),
JS_TN("acos", math_acos, 1, 0, &math_acos_trcinfo),
JS_TN("asin", math_asin, 1, 0, &math_asin_trcinfo),
JS_TN("atan", math_atan, 1, 0, &math_atan_trcinfo),
JS_TN("atan2", math_atan2, 2, 0, &math_atan2_trcinfo),
JS_TN("ceil", js_math_ceil, 1, 0, &js_math_ceil_trcinfo),
JS_TN("cos", math_cos, 1, 0, &math_cos_trcinfo),
JS_TN("exp", math_exp, 1, 0, &math_exp_trcinfo),
JS_TN("floor", js_math_floor, 1, 0, &js_math_floor_trcinfo),
JS_TN("log", math_log, 1, 0, &math_log_trcinfo),
JS_TN("max", js_math_max, 2, 0, &js_math_max_trcinfo),
JS_TN("min", js_math_min, 2, 0, &js_math_min_trcinfo),
JS_TN("pow", math_pow, 2, 0, &math_pow_trcinfo),
JS_TN("random", math_random, 0, 0, &math_random_trcinfo),
JS_TN("round", js_math_round, 1, 0, &js_math_round_trcinfo),
JS_TN("sin", math_sin, 1, 0, &math_sin_trcinfo),
JS_TN("sqrt", math_sqrt, 1, 0, &math_sqrt_trcinfo),
JS_TN("tan", math_tan, 1, 0, &math_tan_trcinfo),
JS_FS_END
};
JSObject *
js_InitMathClass(JSContext *cx, JSObject *obj)
{
JSObject *Math;
Math = JS_NewObject(cx, &js_MathClass, NULL, obj);
if (!Math)
return NULL;
if (!JS_DefineProperty(cx, obj, js_Math_str, OBJECT_TO_JSVAL(Math),
JS_PropertyStub, JS_PropertyStub, 0)) {
return NULL;
}
if (!JS_DefineFunctions(cx, Math, math_static_methods))
return NULL;
if (!JS_DefineConstDoubles(cx, Math, math_constants))
return NULL;
return Math;
}