gecko/js/src/jsinfer.h

1652 lines
54 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* Definitions related to javascript type inference. */
#ifndef jsinfer_h
#define jsinfer_h
#include "mozilla/MemoryReporting.h"
#include "mozilla/TypedEnum.h"
#include "jsalloc.h"
#include "jsfriendapi.h"
#include "jstypes.h"
#include "ds/IdValuePair.h"
#include "ds/LifoAlloc.h"
#include "gc/Barrier.h"
#include "gc/Marking.h"
#include "js/Utility.h"
#include "js/Vector.h"
namespace js {
#ifdef DEBUG
bool CurrentThreadCanWriteCompilationData();
bool CurrentThreadCanReadCompilationData();
#endif
class TypeRepresentation;
class TaggedProto
{
public:
static JSObject * const LazyProto;
TaggedProto() : proto(nullptr) {}
TaggedProto(JSObject *proto) : proto(proto) {}
uintptr_t toWord() const { return uintptr_t(proto); }
bool isLazy() const {
return proto == LazyProto;
}
bool isObject() const {
/* Skip nullptr and LazyProto. */
return uintptr_t(proto) > uintptr_t(TaggedProto::LazyProto);
}
JSObject *toObject() const {
JS_ASSERT(isObject());
return proto;
}
JSObject *toObjectOrNull() const {
JS_ASSERT(!proto || isObject());
return proto;
}
JSObject *raw() const { return proto; }
bool operator ==(const TaggedProto &other) { return proto == other.proto; }
bool operator !=(const TaggedProto &other) { return proto != other.proto; }
private:
JSObject *proto;
};
template <>
struct RootKind<TaggedProto>
{
static ThingRootKind rootKind() { return THING_ROOT_OBJECT; }
};
template <> struct GCMethods<const TaggedProto>
{
static TaggedProto initial() { return TaggedProto(); }
static ThingRootKind kind() { return THING_ROOT_OBJECT; }
static bool poisoned(const TaggedProto &v) { return IsPoisonedPtr(v.raw()); }
};
template <> struct GCMethods<TaggedProto>
{
static TaggedProto initial() { return TaggedProto(); }
static ThingRootKind kind() { return THING_ROOT_OBJECT; }
static bool poisoned(const TaggedProto &v) { return IsPoisonedPtr(v.raw()); }
};
template<class Outer>
class TaggedProtoOperations
{
const TaggedProto *value() const {
return static_cast<const Outer*>(this)->extract();
}
public:
uintptr_t toWord() const { return value()->toWord(); }
inline bool isLazy() const { return value()->isLazy(); }
inline bool isObject() const { return value()->isObject(); }
inline JSObject *toObject() const { return value()->toObject(); }
inline JSObject *toObjectOrNull() const { return value()->toObjectOrNull(); }
JSObject *raw() const { return value()->raw(); }
};
template <>
class HandleBase<TaggedProto> : public TaggedProtoOperations<Handle<TaggedProto> >
{
friend class TaggedProtoOperations<Handle<TaggedProto> >;
const TaggedProto * extract() const {
return static_cast<const Handle<TaggedProto>*>(this)->address();
}
};
template <>
class RootedBase<TaggedProto> : public TaggedProtoOperations<Rooted<TaggedProto> >
{
friend class TaggedProtoOperations<Rooted<TaggedProto> >;
const TaggedProto *extract() const {
return static_cast<const Rooted<TaggedProto> *>(this)->address();
}
};
class CallObject;
/*
* Execution Mode Overview
*
* JavaScript code can execute either sequentially or in parallel, such as in
* PJS. Functions which behave identically in either execution mode can take a
* ThreadSafeContext, and functions which have similar but not identical
* behavior between execution modes can be templated on the mode. Such
* functions use a context parameter type from ExecutionModeTraits below
* indicating whether they are only permitted constrained operations (such as
* thread safety, and side effects limited to being thread-local), or whether
* they can have arbitrary side effects.
*/
enum ExecutionMode {
/* Normal JavaScript execution. */
SequentialExecution,
/*
* JavaScript code to be executed in parallel worker threads in PJS in a
* fork join fashion.
*/
ParallelExecution,
/*
* Modes after this point are internal and are not counted in
* NumExecutionModes below.
*/
/*
* MIR analysis performed when invoking 'new' on a script, to determine
* definite properties. Used by the optimizing JIT.
*/
DefinitePropertiesAnalysis
};
/*
* Not as part of the enum so we don't get warnings about unhandled enum
* values.
*/
static const unsigned NumExecutionModes = ParallelExecution + 1;
template <ExecutionMode mode>
struct ExecutionModeTraits
{
};
template <> struct ExecutionModeTraits<SequentialExecution>
{
typedef JSContext * ContextType;
typedef ExclusiveContext * ExclusiveContextType;
static inline JSContext *toContextType(ExclusiveContext *cx);
};
template <> struct ExecutionModeTraits<ParallelExecution>
{
typedef ForkJoinContext * ContextType;
typedef ForkJoinContext * ExclusiveContextType;
static inline ForkJoinContext *toContextType(ForkJoinContext *cx) { return cx; }
};
namespace jit {
struct IonScript;
class IonAllocPolicy;
class TempAllocator;
}
namespace analyze {
class ScriptAnalysis;
}
namespace types {
class TypeZone;
class TypeSet;
class TypeObjectKey;
/*
* Information about a single concrete type. We pack this into a single word,
* where small values are particular primitive or other singleton types, and
* larger values are either specific JS objects or type objects.
*/
class Type
{
uintptr_t data;
Type(uintptr_t data) : data(data) {}
public:
uintptr_t raw() const { return data; }
bool isPrimitive() const {
return data < JSVAL_TYPE_OBJECT;
}
bool isPrimitive(JSValueType type) const {
JS_ASSERT(type < JSVAL_TYPE_OBJECT);
return (uintptr_t) type == data;
}
JSValueType primitive() const {
JS_ASSERT(isPrimitive());
return (JSValueType) data;
}
bool isSomeObject() const {
return data == JSVAL_TYPE_OBJECT || data > JSVAL_TYPE_UNKNOWN;
}
bool isAnyObject() const {
return data == JSVAL_TYPE_OBJECT;
}
bool isUnknown() const {
return data == JSVAL_TYPE_UNKNOWN;
}
/* Accessors for types that are either JSObject or TypeObject. */
bool isObject() const {
JS_ASSERT(!isAnyObject() && !isUnknown());
return data > JSVAL_TYPE_UNKNOWN;
}
inline TypeObjectKey *objectKey() const;
/* Accessors for JSObject types */
bool isSingleObject() const {
return isObject() && !!(data & 1);
}
inline JSObject *singleObject() const;
/* Accessors for TypeObject types */
bool isTypeObject() const {
return isObject() && !(data & 1);
}
inline TypeObject *typeObject() const;
bool operator == (Type o) const { return data == o.data; }
bool operator != (Type o) const { return data != o.data; }
static inline Type UndefinedType() { return Type(JSVAL_TYPE_UNDEFINED); }
static inline Type NullType() { return Type(JSVAL_TYPE_NULL); }
static inline Type BooleanType() { return Type(JSVAL_TYPE_BOOLEAN); }
static inline Type Int32Type() { return Type(JSVAL_TYPE_INT32); }
static inline Type DoubleType() { return Type(JSVAL_TYPE_DOUBLE); }
static inline Type StringType() { return Type(JSVAL_TYPE_STRING); }
static inline Type MagicArgType() { return Type(JSVAL_TYPE_MAGIC); }
static inline Type AnyObjectType() { return Type(JSVAL_TYPE_OBJECT); }
static inline Type UnknownType() { return Type(JSVAL_TYPE_UNKNOWN); }
static inline Type PrimitiveType(JSValueType type) {
JS_ASSERT(type < JSVAL_TYPE_UNKNOWN);
return Type(type);
}
static inline Type ObjectType(JSObject *obj);
static inline Type ObjectType(TypeObject *obj);
static inline Type ObjectType(TypeObjectKey *obj);
};
/* Get the type of a jsval, or zero for an unknown special value. */
inline Type GetValueType(const Value &val);
/*
* Type inference memory management overview.
*
* Type information about the values observed within scripts and about the
* contents of the heap is accumulated as the program executes. Compilation
* accumulates constraints relating type information on the heap with the
* compilations that should be invalidated when those types change. Type
* information and constraints are allocated in the zone's typeLifoAlloc,
* and on GC all data referring to live things is copied into a new allocator.
* Thus, type set and constraints only hold weak references.
*/
/*
* A constraint which listens to additions to a type set and propagates those
* changes to other type sets.
*/
class TypeConstraint
{
public:
/* Next constraint listening to the same type set. */
TypeConstraint *next;
TypeConstraint()
: next(nullptr)
{}
/* Debugging name for this kind of constraint. */
virtual const char *kind() = 0;
/* Register a new type for the set this constraint is listening to. */
virtual void newType(JSContext *cx, TypeSet *source, Type type) = 0;
/*
* For constraints attached to an object property's type set, mark the
* property as having its configuration changed.
*/
virtual void newPropertyState(JSContext *cx, TypeSet *source) {}
/*
* For constraints attached to the JSID_EMPTY type set on an object,
* indicate a change in one of the object's dynamic property flags or other
* state.
*/
virtual void newObjectState(JSContext *cx, TypeObject *object) {}
/*
* If the data this constraint refers to is still live, copy it into the
* zone's new allocator. Type constraints only hold weak references.
*/
virtual TypeConstraint *sweep(TypeZone &zone) = 0;
};
/* Flags and other state stored in TypeSet::flags */
enum MOZ_ENUM_TYPE(uint32_t) {
TYPE_FLAG_UNDEFINED = 0x1,
TYPE_FLAG_NULL = 0x2,
TYPE_FLAG_BOOLEAN = 0x4,
TYPE_FLAG_INT32 = 0x8,
TYPE_FLAG_DOUBLE = 0x10,
TYPE_FLAG_STRING = 0x20,
TYPE_FLAG_LAZYARGS = 0x40,
TYPE_FLAG_ANYOBJECT = 0x80,
/* Mask containing all primitives */
TYPE_FLAG_PRIMITIVE = TYPE_FLAG_UNDEFINED | TYPE_FLAG_NULL | TYPE_FLAG_BOOLEAN |
TYPE_FLAG_INT32 | TYPE_FLAG_DOUBLE | TYPE_FLAG_STRING,
/* Mask/shift for the number of objects in objectSet */
TYPE_FLAG_OBJECT_COUNT_MASK = 0x1f00,
TYPE_FLAG_OBJECT_COUNT_SHIFT = 8,
TYPE_FLAG_OBJECT_COUNT_LIMIT =
TYPE_FLAG_OBJECT_COUNT_MASK >> TYPE_FLAG_OBJECT_COUNT_SHIFT,
/* Whether the contents of this type set are totally unknown. */
TYPE_FLAG_UNKNOWN = 0x00002000,
/* Mask of normal type flags on a type set. */
TYPE_FLAG_BASE_MASK = 0x000020ff,
/* Additional flags for HeapTypeSet sets. */
/*
* Whether the property has ever been deleted or reconfigured to behave
* differently from a plain data property, other than making the property
* non-writable.
*/
TYPE_FLAG_NON_DATA_PROPERTY = 0x00004000,
/* Whether the property has ever been made non-writable. */
TYPE_FLAG_NON_WRITABLE_PROPERTY = 0x00008000,
/*
* Whether the property is definitely in a particular slot on all objects
* from which it has not been deleted or reconfigured. For singletons
* this may be a fixed or dynamic slot, and for other objects this will be
* a fixed slot.
*
* If the property is definite, mask and shift storing the slot + 1.
* Otherwise these bits are clear.
*/
TYPE_FLAG_DEFINITE_MASK = 0xffff0000,
TYPE_FLAG_DEFINITE_SHIFT = 16
};
typedef uint32_t TypeFlags;
/* Flags and other state stored in TypeObject::flags */
enum MOZ_ENUM_TYPE(uint32_t) {
/* Whether this type object is associated with some allocation site. */
OBJECT_FLAG_FROM_ALLOCATION_SITE = 0x1,
/* If set, addendum information should not be installed on this object. */
OBJECT_FLAG_ADDENDUM_CLEARED = 0x2,
/*
* If set, the object's prototype might be in the nursery and can't be
* used during Ion compilation (which may be occurring off thread).
*/
OBJECT_FLAG_NURSERY_PROTO = 0x4,
/*
* Whether we have ensured all type sets in the compartment contain
* ANYOBJECT instead of this object.
*/
OBJECT_FLAG_SETS_MARKED_UNKNOWN = 0x8,
/* Mask/shift for the number of properties in propertySet */
OBJECT_FLAG_PROPERTY_COUNT_MASK = 0xfff0,
OBJECT_FLAG_PROPERTY_COUNT_SHIFT = 4,
OBJECT_FLAG_PROPERTY_COUNT_LIMIT =
OBJECT_FLAG_PROPERTY_COUNT_MASK >> OBJECT_FLAG_PROPERTY_COUNT_SHIFT,
/* Whether any objects this represents may have sparse indexes. */
OBJECT_FLAG_SPARSE_INDEXES = 0x00010000,
/* Whether any objects this represents may not have packed dense elements. */
OBJECT_FLAG_NON_PACKED = 0x00020000,
/*
* Whether any objects this represents may be arrays whose length does not
* fit in an int32.
*/
OBJECT_FLAG_LENGTH_OVERFLOW = 0x00040000,
/* Whether any objects have been iterated over. */
OBJECT_FLAG_ITERATED = 0x00080000,
/* For a global object, whether flags were set on the RegExpStatics. */
OBJECT_FLAG_REGEXP_FLAGS_SET = 0x00100000,
/*
* For the function on a run-once script, whether the function has actually
* run multiple times.
*/
OBJECT_FLAG_RUNONCE_INVALIDATED = 0x00200000,
/*
* Whether objects with this type should be allocated directly in the
* tenured heap.
*/
OBJECT_FLAG_PRE_TENURE = 0x00400000,
/*
* Whether all properties of this object are considered unknown.
* If set, all other flags in DYNAMIC_MASK will also be set.
*/
OBJECT_FLAG_UNKNOWN_PROPERTIES = 0x00800000,
/* Flags which indicate dynamic properties of represented objects. */
OBJECT_FLAG_DYNAMIC_MASK = 0x00ff0000,
/* Mask for objects created with unknown properties. */
OBJECT_FLAG_UNKNOWN_MASK =
OBJECT_FLAG_DYNAMIC_MASK
| OBJECT_FLAG_SETS_MARKED_UNKNOWN
};
typedef uint32_t TypeObjectFlags;
class StackTypeSet;
class HeapTypeSet;
class TemporaryTypeSet;
/*
* Information about the set of types associated with an lvalue. There are
* three kinds of type sets:
*
* - StackTypeSet are associated with TypeScripts, for arguments and values
* observed at property reads. These are implicitly frozen on compilation
* and do not have constraints attached to them.
*
* - HeapTypeSet are associated with the properties of TypeObjects. These
* may have constraints added to them to trigger invalidation of compiled
* code.
*
* - TemporaryTypeSet are created during compilation and do not outlive
* that compilation.
*/
class TypeSet
{
protected:
/* Flags for this type set. */
TypeFlags flags;
/* Possible objects this type set can represent. */
TypeObjectKey **objectSet;
public:
TypeSet()
: flags(0), objectSet(nullptr)
{}
void print();
/* Whether this set contains a specific type. */
inline bool hasType(Type type) const;
TypeFlags baseFlags() const { return flags & TYPE_FLAG_BASE_MASK; }
bool unknown() const { return !!(flags & TYPE_FLAG_UNKNOWN); }
bool unknownObject() const { return !!(flags & (TYPE_FLAG_UNKNOWN | TYPE_FLAG_ANYOBJECT)); }
bool empty() const { return !baseFlags() && !baseObjectCount(); }
bool hasAnyFlag(TypeFlags flags) const {
JS_ASSERT((flags & TYPE_FLAG_BASE_MASK) == flags);
return !!(baseFlags() & flags);
}
bool nonDataProperty() const {
return flags & TYPE_FLAG_NON_DATA_PROPERTY;
}
bool nonWritableProperty() const {
return flags & TYPE_FLAG_NON_WRITABLE_PROPERTY;
}
bool definiteProperty() const { return flags & TYPE_FLAG_DEFINITE_MASK; }
unsigned definiteSlot() const {
JS_ASSERT(definiteProperty());
return (flags >> TYPE_FLAG_DEFINITE_SHIFT) - 1;
}
/* Join two type sets into a new set. The result should not be modified further. */
static TemporaryTypeSet *unionSets(TypeSet *a, TypeSet *b, LifoAlloc *alloc);
/* Add a type to this set using the specified allocator. */
inline bool addType(Type type, LifoAlloc *alloc);
/* Get a list of all types in this set. */
typedef Vector<Type, 1, SystemAllocPolicy> TypeList;
bool enumerateTypes(TypeList *list);
/*
* Iterate through the objects in this set. getObjectCount overapproximates
* in the hash case (see SET_ARRAY_SIZE in jsinferinlines.h), and getObject
* may return nullptr.
*/
inline unsigned getObjectCount() const;
inline TypeObjectKey *getObject(unsigned i) const;
inline JSObject *getSingleObject(unsigned i) const;
inline TypeObject *getTypeObject(unsigned i) const;
inline bool getTypeOrSingleObject(JSContext *cx, unsigned i, TypeObject **obj) const;
/* The Class of an object in this set. */
inline const Class *getObjectClass(unsigned i) const;
bool canSetDefinite(unsigned slot) {
// Note: the cast is required to work around an MSVC issue.
return (slot + 1) <= (unsigned(TYPE_FLAG_DEFINITE_MASK) >> TYPE_FLAG_DEFINITE_SHIFT);
}
void setDefinite(unsigned slot) {
JS_ASSERT(canSetDefinite(slot));
flags |= ((slot + 1) << TYPE_FLAG_DEFINITE_SHIFT);
JS_ASSERT(definiteSlot() == slot);
}
/* Whether any values in this set might have the specified type. */
bool mightBeType(JSValueType type);
/*
* Get whether this type set is known to be a subset of other.
* This variant doesn't freeze constraints. That variant is called knownSubset
*/
bool isSubset(TypeSet *other);
/* Forward all types in this set to the specified constraint. */
void addTypesToConstraint(JSContext *cx, TypeConstraint *constraint);
// Clone a type set into an arbitrary allocator.
TemporaryTypeSet *clone(LifoAlloc *alloc) const;
bool clone(LifoAlloc *alloc, TemporaryTypeSet *result) const;
protected:
uint32_t baseObjectCount() const {
return (flags & TYPE_FLAG_OBJECT_COUNT_MASK) >> TYPE_FLAG_OBJECT_COUNT_SHIFT;
}
inline void setBaseObjectCount(uint32_t count);
inline void clearObjects();
};
/* Superclass common to stack and heap type sets. */
class ConstraintTypeSet : public TypeSet
{
public:
/* Chain of constraints which propagate changes out from this type set. */
TypeConstraint *constraintList;
ConstraintTypeSet() : constraintList(nullptr) {}
/*
* Add a type to this set, calling any constraint handlers if this is a new
* possible type.
*/
inline void addType(ExclusiveContext *cx, Type type);
/* Add a new constraint to this set. */
void add(JSContext *cx, TypeConstraint *constraint, bool callExisting = true);
inline void sweep(JS::Zone *zone);
};
class StackTypeSet : public ConstraintTypeSet
{
public:
};
class HeapTypeSet : public ConstraintTypeSet
{
inline void newPropertyState(ExclusiveContext *cx);
public:
/* Mark this type set as representing a non-data property. */
inline void setNonDataProperty(ExclusiveContext *cx);
/* Mark this type set as representing a non-writable property. */
inline void setNonWritableProperty(ExclusiveContext *cx);
};
class CompilerConstraintList;
CompilerConstraintList *
NewCompilerConstraintList(jit::TempAllocator &alloc);
class TemporaryTypeSet : public TypeSet
{
public:
TemporaryTypeSet() {}
TemporaryTypeSet(Type type);
TemporaryTypeSet(uint32_t flags, TypeObjectKey **objectSet) {
this->flags = flags;
this->objectSet = objectSet;
}
/*
* Constraints for JIT compilation.
*
* Methods for JIT compilation. These must be used when a script is
* currently being compiled (see AutoEnterCompilation) and will add
* constraints ensuring that if the return value change in the future due
* to new type information, the script's jitcode will be discarded.
*/
/* Get any type tag which all values in this set must have. */
JSValueType getKnownTypeTag();
bool isMagicArguments() { return getKnownTypeTag() == JSVAL_TYPE_MAGIC; }
/* Whether this value may be an object. */
bool maybeObject() { return unknownObject() || baseObjectCount() > 0; }
/*
* Whether this typeset represents a potentially sentineled object value:
* the value may be an object or null or undefined.
* Returns false if the value cannot ever be an object.
*/
bool objectOrSentinel() {
TypeFlags flags = TYPE_FLAG_UNDEFINED | TYPE_FLAG_NULL | TYPE_FLAG_ANYOBJECT;
if (baseFlags() & (~flags & TYPE_FLAG_BASE_MASK))
return false;
return hasAnyFlag(TYPE_FLAG_ANYOBJECT) || baseObjectCount() > 0;
}
/* Whether the type set contains objects with any of a set of flags. */
bool hasObjectFlags(CompilerConstraintList *constraints, TypeObjectFlags flags);
/* Get the class shared by all objects in this set, or nullptr. */
const Class *getKnownClass();
/* Get the prototype shared by all objects in this set, or nullptr. */
JSObject *getCommonPrototype();
/* Get the typed array type of all objects in this set, or TypedArrayObject::TYPE_MAX. */
int getTypedArrayType();
/* Whether all objects have JSCLASS_IS_DOMJSCLASS set. */
bool isDOMClass();
/* Whether clasp->isCallable() is true for one or more objects in this set. */
bool maybeCallable();
/* Whether clasp->emulatesUndefined() is true for one or more objects in this set. */
bool maybeEmulatesUndefined();
/* Get the single value which can appear in this type set, otherwise nullptr. */
JSObject *getSingleton();
/* Whether any objects in the type set needs a barrier on id. */
bool propertyNeedsBarrier(CompilerConstraintList *constraints, jsid id);
/*
* Whether this set contains all types in other, except (possibly) the
* specified type.
*/
bool filtersType(const TemporaryTypeSet *other, Type type) const;
enum DoubleConversion {
/* All types in the set should use eager double conversion. */
AlwaysConvertToDoubles,
/* Some types in the set should use eager double conversion. */
MaybeConvertToDoubles,
/* No types should use eager double conversion. */
DontConvertToDoubles,
/* Some types should use eager double conversion, others cannot. */
AmbiguousDoubleConversion
};
/*
* Whether known double optimizations are possible for element accesses on
* objects in this type set.
*/
DoubleConversion convertDoubleElements(CompilerConstraintList *constraints);
};
bool
AddClearDefiniteGetterSetterForPrototypeChain(JSContext *cx, TypeObject *type, HandleId id);
void
AddClearDefiniteFunctionUsesInScript(JSContext *cx, TypeObject *type,
JSScript *script, JSScript *calleeScript);
/* Is this a reasonable PC to be doing inlining on? */
inline bool isInlinableCall(jsbytecode *pc);
/* Type information about a property. */
struct Property
{
/* Identifier for this property, JSID_VOID for the aggregate integer index property. */
HeapId id;
/* Possible types for this property, including types inherited from prototypes. */
HeapTypeSet types;
Property(jsid id)
: id(id)
{}
Property(const Property &o)
: id(o.id.get()), types(o.types)
{}
static uint32_t keyBits(jsid id) { return uint32_t(JSID_BITS(id)); }
static jsid getKey(Property *p) { return p->id; }
};
struct TypeNewScript;
struct TypeTypedObject;
struct TypeObjectAddendum
{
enum Kind {
NewScript,
TypedObject
};
TypeObjectAddendum(Kind kind);
const Kind kind;
bool isNewScript() {
return kind == NewScript;
}
TypeNewScript *asNewScript() {
JS_ASSERT(isNewScript());
return (TypeNewScript*) this;
}
bool isTypedObject() {
return kind == TypedObject;
}
TypeTypedObject *asTypedObject() {
JS_ASSERT(isTypedObject());
return (TypeTypedObject*) this;
}
static inline void writeBarrierPre(TypeObjectAddendum *type);
static void writeBarrierPost(TypeObjectAddendum *newScript, void *addr) {}
};
/*
* Information attached to a TypeObject if it is always constructed using 'new'
* on a particular script. This is used to manage state related to the definite
* properties on the type object: these definite properties depend on type
* information which could change as the script executes (e.g. a scripted
* setter is added to a prototype object), and we need to ensure both that the
* appropriate type constraints are in place when necessary, and that we can
* remove the definite property information and repair the JS stack if the
* constraints are violated.
*/
struct TypeNewScript : public TypeObjectAddendum
{
TypeNewScript();
HeapPtrFunction fun;
/*
* Template object to use for newly constructed objects. Reflects all
* definite properties the object will have and the allocation kind to use
* for the object. The allocation kind --- and template object itself ---
* is subject to change if objects allocated with this type are given
* dynamic slots later on due to new properties being added after the
* constructor function finishes.
*/
HeapPtrObject templateObject;
/*
* Order in which properties become initialized. We need this in case a
* scripted setter is added to one of the object's prototypes while it is
* in the middle of being initialized, so we can walk the stack and fixup
* any objects which look for in-progress objects which were prematurely
* set with their final shape. Property assignments in inner frames are
* preceded by a series of SETPROP_FRAME entries specifying the stack down
* to the frame containing the write.
*/
struct Initializer {
enum Kind {
SETPROP,
SETPROP_FRAME,
DONE
} kind;
uint32_t offset;
Initializer(Kind kind, uint32_t offset)
: kind(kind), offset(offset)
{}
};
Initializer *initializerList;
static inline void writeBarrierPre(TypeNewScript *newScript);
};
struct TypeTypedObject : public TypeObjectAddendum
{
enum Kind {
TypeDescriptor,
Datum,
};
TypeTypedObject(Kind kind, TypeRepresentation *repr);
const Kind kind;
TypeRepresentation *const typeRepr;
bool isTypeDescriptor() const {
return kind == TypeDescriptor;
}
bool isDatum() const {
return kind == Datum;
}
};
/*
* Lazy type objects overview.
*
* Type objects which represent at most one JS object are constructed lazily.
* These include types for native functions, standard classes, scripted
* functions defined at the top level of global/eval scripts, and in some
* other cases. Typical web workloads often create many windows (and many
* copies of standard natives) and many scripts, with comparatively few
* non-singleton types.
*
* We can recover the type information for the object from examining it,
* so don't normally track the possible types of its properties as it is
* updated. Property type sets for the object are only constructed when an
* analyzed script attaches constraints to it: the script is querying that
* property off the object or another which delegates to it, and the analysis
* information is sensitive to changes in the property's type. Future changes
* to the property (whether those uncovered by analysis or those occurring
* in the VM) will treat these properties like those of any other type object.
*/
/* Type information about an object accessed by a script. */
struct TypeObject : gc::BarrieredCell<TypeObject>
{
private:
/* Class shared by object using this type. */
const Class *clasp_;
/* Prototype shared by objects using this type. */
HeapPtrObject proto_;
#ifdef DEBUG
void assertCanAccessProto() const;
#else
void assertCanAccessProto() const {}
#endif
/*
* Whether there is a singleton JS object with this type. That JS object
* must appear in type sets instead of this; we include the back reference
* here to allow reverting the JS object to a lazy type.
*/
HeapPtrObject singleton_;
public:
const Class *clasp() const {
AutoThreadSafeAccess ts(this);
return clasp_;
}
void setClasp(const Class *clasp) {
JS_ASSERT(CurrentThreadCanWriteCompilationData());
JS_ASSERT(singleton());
clasp_ = clasp;
}
TaggedProto proto() const {
AutoThreadSafeAccess ts(this);
assertCanAccessProto();
return TaggedProto(proto_);
}
JSObject *singleton() const {
AutoThreadSafeAccess ts(this);
return singleton_;
}
// For use during marking, don't call otherwise.
HeapPtrObject &protoRaw() { return proto_; }
HeapPtrObject &singletonRaw() { return singleton_; }
void setProto(JSContext *cx, TaggedProto proto);
void setProtoUnchecked(TaggedProto proto) {
proto_ = proto.raw();
}
void initSingleton(JSObject *singleton) {
singleton_ = singleton;
}
/*
* Value held by singleton if this is a standin type for a singleton JS
* object whose type has not been constructed yet.
*/
static const size_t LAZY_SINGLETON = 1;
bool lazy() const { return singleton() == (JSObject *) LAZY_SINGLETON; }
private:
/* Flags for this object. */
TypeObjectFlags flags_;
/*
* This field allows various special classes of objects to attach
* additional information to a type object:
*
* - `TypeNewScript`: If addendum is a `TypeNewScript`, it
* indicates that objects of this type have always been
* constructed using 'new' on the specified script, which adds
* some number of properties to the object in a definite order
* before the object escapes.
*/
HeapPtr<TypeObjectAddendum> addendum;
public:
TypeObjectFlags flags() const {
JS_ASSERT(CurrentThreadCanReadCompilationData());
AutoThreadSafeAccess ts(this);
return flags_;
}
void addFlags(TypeObjectFlags flags) {
JS_ASSERT(CurrentThreadCanWriteCompilationData());
flags_ |= flags;
}
void clearFlags(TypeObjectFlags flags) {
JS_ASSERT(CurrentThreadCanWriteCompilationData());
flags_ &= ~flags;
}
bool hasNewScript() const {
JS_ASSERT(CurrentThreadCanReadCompilationData());
AutoThreadSafeAccess ts(this);
return addendum && addendum->isNewScript();
}
TypeNewScript *newScript() {
JS_ASSERT(CurrentThreadCanReadCompilationData());
AutoThreadSafeAccess ts(this);
return addendum->asNewScript();
}
bool hasTypedObject() {
JS_ASSERT(CurrentThreadCanReadCompilationData());
AutoThreadSafeAccess ts(this);
return addendum && addendum->isTypedObject();
}
TypeTypedObject *typedObject() {
JS_ASSERT(CurrentThreadCanReadCompilationData());
AutoThreadSafeAccess ts(this);
return addendum->asTypedObject();
}
void setAddendum(TypeObjectAddendum *addendum);
/*
* Tag the type object for a binary data type descriptor, instance,
* or handle with the type representation of the data it points at.
* If this type object is already tagged with a binary data addendum,
* this addendum must already be associated with the same TypeRepresentation,
* and the method has no effect.
*/
bool addTypedObjectAddendum(JSContext *cx,
TypeTypedObject::Kind kind ,
TypeRepresentation *repr);
private:
/*
* Properties of this object. This may contain JSID_VOID, representing the
* types of all integer indexes of the object, and/or JSID_EMPTY, holding
* constraints listening to changes to the object's state.
*
* The type sets in the properties of a type object describe the possible
* values that can be read out of that property in actual JS objects.
* Properties only account for native properties (those with a slot and no
* specialized getter hook) and the elements of dense arrays. For accesses
* on such properties, the correspondence is as follows:
*
* 1. If the type has unknownProperties(), the possible properties and
* value types for associated JSObjects are unknown.
*
* 2. Otherwise, for any JSObject obj with TypeObject type, and any jsid id
* which is a property in obj, before obj->getProperty(id) the property
* in type for id must reflect the result of the getProperty.
*
* There is an exception for properties of global JS objects which
* are undefined at the point where the property was (lazily) generated.
* In such cases the property type set will remain empty, and the
* 'undefined' type will only be added after a subsequent assignment or
* deletion. After these properties have been assigned a defined value,
* the only way they can become undefined again is after such an assign
* or deletion.
*
* There is another exception for array lengths, which are special cased
* by the compiler and VM and are not reflected in property types.
*
* We establish these by using write barriers on calls to setProperty and
* defineProperty which are on native properties, and on any jitcode which
* might update the property with a new type.
*/
Property **propertySet;
public:
/* If this is an interpreted function, the function object. */
HeapPtrFunction interpretedFunction;
#if JS_BITS_PER_WORD == 32
uint32_t padding;
#endif
inline TypeObject(const Class *clasp, TaggedProto proto, TypeObjectFlags initialFlags);
bool hasAnyFlags(TypeObjectFlags flags) {
JS_ASSERT((flags & OBJECT_FLAG_DYNAMIC_MASK) == flags);
return !!(this->flags() & flags);
}
bool hasAllFlags(TypeObjectFlags flags) {
JS_ASSERT((flags & OBJECT_FLAG_DYNAMIC_MASK) == flags);
return (this->flags() & flags) == flags;
}
bool unknownProperties() {
JS_ASSERT_IF(flags() & OBJECT_FLAG_UNKNOWN_PROPERTIES,
hasAllFlags(OBJECT_FLAG_DYNAMIC_MASK));
return !!(flags() & OBJECT_FLAG_UNKNOWN_PROPERTIES);
}
bool shouldPreTenure() {
return hasAnyFlags(OBJECT_FLAG_PRE_TENURE) && !unknownProperties();
}
bool hasTenuredProto() const {
return !(flags() & OBJECT_FLAG_NURSERY_PROTO);
}
gc::InitialHeap initialHeap(CompilerConstraintList *constraints);
bool canPreTenure() {
// Only types associated with particular allocation sites or 'new'
// scripts can be marked as needing pretenuring. Other types can be
// used for different purposes across the compartment and can't use
// this bit reliably.
if (unknownProperties())
return false;
return (flags() & OBJECT_FLAG_FROM_ALLOCATION_SITE) || hasNewScript();
}
void setShouldPreTenure(ExclusiveContext *cx) {
JS_ASSERT(canPreTenure());
setFlags(cx, OBJECT_FLAG_PRE_TENURE);
}
/*
* Get or create a property of this object. Only call this for properties which
* a script accesses explicitly.
*/
inline HeapTypeSet *getProperty(ExclusiveContext *cx, jsid id);
/* Get a property only if it already exists. */
inline HeapTypeSet *maybeGetProperty(jsid id);
inline unsigned getPropertyCount();
inline Property *getProperty(unsigned i);
/* Helpers */
bool addProperty(ExclusiveContext *cx, jsid id, Property **pprop);
bool addDefiniteProperties(ExclusiveContext *cx, JSObject *obj);
bool matchDefiniteProperties(HandleObject obj);
void addPrototype(JSContext *cx, TypeObject *proto);
void addPropertyType(ExclusiveContext *cx, jsid id, Type type);
void addPropertyType(ExclusiveContext *cx, jsid id, const Value &value);
void addPropertyType(ExclusiveContext *cx, const char *name, Type type);
void addPropertyType(ExclusiveContext *cx, const char *name, const Value &value);
void markPropertyNonData(ExclusiveContext *cx, jsid id);
void markPropertyNonWritable(ExclusiveContext *cx, jsid id);
void markStateChange(ExclusiveContext *cx);
void setFlags(ExclusiveContext *cx, TypeObjectFlags flags);
void markUnknown(ExclusiveContext *cx);
void clearAddendum(ExclusiveContext *cx);
void clearNewScriptAddendum(ExclusiveContext *cx);
void clearTypedObjectAddendum(ExclusiveContext *cx);
bool isPropertyNonData(jsid id);
bool isPropertyNonWritable(jsid id);
void print();
inline void clearProperties();
inline void sweep(FreeOp *fop);
size_t sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const;
/*
* Type objects don't have explicit finalizers. Memory owned by a type
* object pending deletion is released when weak references are sweeped
* from all the compartment's type objects.
*/
void finalize(FreeOp *fop) {}
static inline ThingRootKind rootKind() { return THING_ROOT_TYPE_OBJECT; }
static inline uint32_t offsetOfClasp() {
return offsetof(TypeObject, clasp_);
}
static inline uint32_t offsetOfProto() {
return offsetof(TypeObject, proto_);
}
private:
inline uint32_t basePropertyCount() const;
inline void setBasePropertyCount(uint32_t count);
static void staticAsserts() {
JS_STATIC_ASSERT(offsetof(TypeObject, proto_) == offsetof(js::shadow::TypeObject, proto));
}
};
/*
* Entries for the per-compartment set of type objects which are 'new' types to
* use for some prototype and constructed with an optional script. This also
* includes entries for the set of lazy type objects in the compartment, which
* use a null script (though there are only a few of these per compartment).
*/
struct TypeObjectWithNewScriptEntry
{
ReadBarriered<TypeObject> object;
// Note: This pointer is only used for equality and does not need a read barrier.
JSFunction *newFunction;
TypeObjectWithNewScriptEntry(TypeObject *object, JSFunction *newFunction)
: object(object), newFunction(newFunction)
{}
struct Lookup {
const Class *clasp;
TaggedProto hashProto;
TaggedProto matchProto;
JSFunction *newFunction;
Lookup(const Class *clasp, TaggedProto proto, JSFunction *newFunction)
: clasp(clasp), hashProto(proto), matchProto(proto), newFunction(newFunction)
{}
#ifdef JSGC_GENERATIONAL
/*
* For use by generational post barriers only. Look up an entry whose
* proto has been moved, but was hashed with the original value.
*/
Lookup(const Class *clasp, TaggedProto hashProto, TaggedProto matchProto, JSFunction *newFunction)
: clasp(clasp), hashProto(hashProto), matchProto(matchProto), newFunction(newFunction)
{}
#endif
};
static inline HashNumber hash(const Lookup &lookup);
static inline bool match(const TypeObjectWithNewScriptEntry &key, const Lookup &lookup);
static void rekey(TypeObjectWithNewScriptEntry &k, const TypeObjectWithNewScriptEntry& newKey) { k = newKey; }
};
typedef HashSet<TypeObjectWithNewScriptEntry,
TypeObjectWithNewScriptEntry,
SystemAllocPolicy> TypeObjectWithNewScriptSet;
/* Whether to use a new type object when calling 'new' at script/pc. */
bool
UseNewType(JSContext *cx, JSScript *script, jsbytecode *pc);
bool
UseNewTypeForClone(JSFunction *fun);
/*
* Whether Array.prototype, or an object on its proto chain, has an
* indexed property.
*/
bool
ArrayPrototypeHasIndexedProperty(CompilerConstraintList *constraints, JSScript *script);
/* Whether obj or any of its prototypes have an indexed property. */
bool
TypeCanHaveExtraIndexedProperties(CompilerConstraintList *constraints, TemporaryTypeSet *types);
/* Persistent type information for a script, retained across GCs. */
class TypeScript
{
friend class ::JSScript;
/* Analysis information for the script, cleared on each GC. */
analyze::ScriptAnalysis *analysis;
public:
/* Array of type type sets for variables and JOF_TYPESET ops. */
StackTypeSet *typeArray() const { return (StackTypeSet *) (uintptr_t(this) + sizeof(TypeScript)); }
static inline unsigned NumTypeSets(JSScript *script);
static inline StackTypeSet *ThisTypes(JSScript *script);
static inline StackTypeSet *ArgTypes(JSScript *script, unsigned i);
/* Get the type set for values observed at an opcode. */
static inline StackTypeSet *BytecodeTypes(JSScript *script, jsbytecode *pc);
template <typename TYPESET>
static inline TYPESET *BytecodeTypes(JSScript *script, jsbytecode *pc,
uint32_t *hint, TYPESET *typeArray);
/* Get a type object for an allocation site in this script. */
static inline TypeObject *InitObject(JSContext *cx, JSScript *script, jsbytecode *pc,
JSProtoKey kind);
/*
* Monitor a bytecode pushing any value. This must be called for any opcode
* which is JOF_TYPESET, and where either the script has not been analyzed
* by type inference or where the pc has type barriers. For simplicity, we
* always monitor JOF_TYPESET opcodes in the interpreter and stub calls,
* and only look at barriers when generating JIT code for the script.
*/
static inline void Monitor(JSContext *cx, JSScript *script, jsbytecode *pc,
const js::Value &val);
static inline void Monitor(JSContext *cx, const js::Value &rval);
/* Monitor an assignment at a SETELEM on a non-integer identifier. */
static inline void MonitorAssign(JSContext *cx, HandleObject obj, jsid id);
/* Add a type for a variable in a script. */
static inline void SetThis(JSContext *cx, JSScript *script, Type type);
static inline void SetThis(JSContext *cx, JSScript *script, const js::Value &value);
static inline void SetArgument(JSContext *cx, JSScript *script, unsigned arg, Type type);
static inline void SetArgument(JSContext *cx, JSScript *script, unsigned arg,
const js::Value &value);
/*
* Freeze all the stack type sets in a script, for a compilation. Returns
* copies of the type sets which will be checked against the actual ones
* under FinishCompilation, to detect any type changes.
*/
static bool FreezeTypeSets(CompilerConstraintList *constraints, JSScript *script,
TemporaryTypeSet **pThisTypes,
TemporaryTypeSet **pArgTypes,
TemporaryTypeSet **pBytecodeTypes);
static void Purge(JSContext *cx, HandleScript script);
static void Sweep(FreeOp *fop, JSScript *script);
void destroy();
size_t sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) const {
return mallocSizeOf(this);
}
#ifdef DEBUG
void printTypes(JSContext *cx, HandleScript script) const;
#endif
};
class RecompileInfo;
// Allocate a CompilerOutput for a finished compilation and generate the type
// constraints for the compilation. Returns whether the type constraints
// still hold.
bool
FinishCompilation(JSContext *cx, HandleScript script, ExecutionMode executionMode,
CompilerConstraintList *constraints, RecompileInfo *precompileInfo);
// Update the actual types in any scripts queried by constraints with any
// speculative types added during the definite properties analysis.
void
FinishDefinitePropertiesAnalysis(JSContext *cx, CompilerConstraintList *constraints);
struct ArrayTableKey;
typedef HashMap<ArrayTableKey,ReadBarriered<TypeObject>,ArrayTableKey,SystemAllocPolicy> ArrayTypeTable;
struct ObjectTableKey;
struct ObjectTableEntry;
typedef HashMap<ObjectTableKey,ObjectTableEntry,ObjectTableKey,SystemAllocPolicy> ObjectTypeTable;
struct AllocationSiteKey;
typedef HashMap<AllocationSiteKey,ReadBarriered<TypeObject>,AllocationSiteKey,SystemAllocPolicy> AllocationSiteTable;
class HeapTypeSetKey;
// Type set entry for either a JSObject with singleton type or a non-singleton TypeObject.
struct TypeObjectKey
{
static intptr_t keyBits(TypeObjectKey *obj) { return (intptr_t) obj; }
static TypeObjectKey *getKey(TypeObjectKey *obj) { return obj; }
static TypeObjectKey *get(JSObject *obj) {
JS_ASSERT(obj);
return (TypeObjectKey *) (uintptr_t(obj) | 1);
}
static TypeObjectKey *get(TypeObject *obj) {
JS_ASSERT(obj);
return (TypeObjectKey *) obj;
}
bool isTypeObject() {
return (uintptr_t(this) & 1) == 0;
}
bool isSingleObject() {
return (uintptr_t(this) & 1) != 0;
}
TypeObject *asTypeObject() {
JS_ASSERT(isTypeObject());
return (TypeObject *) this;
}
JSObject *asSingleObject() {
JS_ASSERT(isSingleObject());
return (JSObject *) (uintptr_t(this) & ~1);
}
const Class *clasp();
TaggedProto proto();
bool hasTenuredProto();
JSObject *singleton();
TypeNewScript *newScript();
bool unknownProperties();
bool hasFlags(CompilerConstraintList *constraints, TypeObjectFlags flags);
void watchStateChangeForInlinedCall(CompilerConstraintList *constraints);
void watchStateChangeForNewScriptTemplate(CompilerConstraintList *constraints);
void watchStateChangeForTypedArrayBuffer(CompilerConstraintList *constraints);
HeapTypeSetKey property(jsid id);
void ensureTrackedProperty(JSContext *cx, jsid id);
TypeObject *maybeType();
};
// Representation of a heap type property which may or may not be instantiated.
// Heap properties for singleton types are instantiated lazily as they are used
// by the compiler, but this is only done on the main thread. If we are
// compiling off thread and use a property which has not yet been instantiated,
// it will be treated as empty and non-configured and will be instantiated when
// rejoining to the main thread. If it is in fact not empty, the compilation
// will fail; to avoid this, we try to instantiate singleton property types
// during generation of baseline caches.
class HeapTypeSetKey
{
friend class TypeObjectKey;
// Object and property being accessed.
TypeObjectKey *object_;
jsid id_;
// If instantiated, the underlying heap type set.
HeapTypeSet *maybeTypes_;
public:
HeapTypeSetKey()
: object_(nullptr), id_(JSID_EMPTY), maybeTypes_(nullptr)
{}
TypeObjectKey *object() const { return object_; }
jsid id() const { return id_; }
HeapTypeSet *maybeTypes() const { return maybeTypes_; }
bool instantiate(JSContext *cx);
void freeze(CompilerConstraintList *constraints);
JSValueType knownTypeTag(CompilerConstraintList *constraints);
bool nonData(CompilerConstraintList *constraints);
bool nonWritable(CompilerConstraintList *constraints);
bool isOwnProperty(CompilerConstraintList *constraints);
bool knownSubset(CompilerConstraintList *constraints, const HeapTypeSetKey &other);
JSObject *singleton(CompilerConstraintList *constraints);
bool needsBarrier(CompilerConstraintList *constraints);
};
/*
* Information about the result of the compilation of a script. This structure
* stored in the TypeCompartment is indexed by the RecompileInfo. This
* indirection enables the invalidation of all constraints related to the same
* compilation.
*/
class CompilerOutput
{
// If this compilation has not been invalidated, the associated script and
// kind of compilation being performed.
JSScript *script_;
ExecutionMode mode_ : 2;
// Whether this compilation is about to be invalidated.
bool pendingInvalidation_ : 1;
// During sweeping, the list of compiler outputs is compacted and invalidated
// outputs are removed. This gives the new index for a valid compiler output.
uint32_t sweepIndex_ : 29;
public:
CompilerOutput()
: script_(nullptr), mode_(SequentialExecution), pendingInvalidation_(false)
{}
CompilerOutput(JSScript *script, ExecutionMode mode)
: script_(script), mode_(mode), pendingInvalidation_(false)
{}
JSScript *script() const { return script_; }
inline ExecutionMode mode() const { return mode_; }
inline jit::IonScript *ion() const;
bool isValid() const {
return script_ != nullptr;
}
void invalidate() {
script_ = nullptr;
}
void setPendingInvalidation() {
pendingInvalidation_ = true;
}
bool pendingInvalidation() {
return pendingInvalidation_;
}
void setSweepIndex(uint32_t index) {
if (index >= 1 << 29)
MOZ_CRASH();
sweepIndex_ = index;
}
uint32_t sweepIndex() {
return sweepIndex_;
}
};
class RecompileInfo
{
uint32_t outputIndex;
public:
RecompileInfo(uint32_t outputIndex = uint32_t(-1))
: outputIndex(outputIndex)
{}
bool operator == (const RecompileInfo &o) const {
return outputIndex == o.outputIndex;
}
CompilerOutput *compilerOutput(TypeZone &types) const;
CompilerOutput *compilerOutput(JSContext *cx) const;
bool shouldSweep(TypeZone &types);
};
/* Type information for a compartment. */
struct TypeCompartment
{
/* Constraint solving worklist structures. */
/* Number of scripts in this compartment. */
unsigned scriptCount;
/* Table for referencing types of objects keyed to an allocation site. */
AllocationSiteTable *allocationSiteTable;
/* Tables for determining types of singleton/JSON objects. */
ArrayTypeTable *arrayTypeTable;
ObjectTypeTable *objectTypeTable;
private:
void setTypeToHomogenousArray(ExclusiveContext *cx, JSObject *obj, Type type);
public:
void fixArrayType(ExclusiveContext *cx, JSObject *obj);
void fixObjectType(ExclusiveContext *cx, JSObject *obj);
void fixRestArgumentsType(ExclusiveContext *cx, JSObject *obj);
JSObject *newTypedObject(JSContext *cx, IdValuePair *properties, size_t nproperties);
TypeCompartment();
~TypeCompartment();
inline JSCompartment *compartment();
/* Prints results of this compartment if spew is enabled or force is set. */
void print(JSContext *cx, bool force);
/*
* Make a function or non-function object associated with an optional
* script. The 'key' parameter here may be an array, typed array, function
* or JSProto_Object to indicate a type whose class is unknown (not just
* js_ObjectClass).
*/
TypeObject *newTypeObject(ExclusiveContext *cx, const Class *clasp, Handle<TaggedProto> proto,
TypeObjectFlags initialFlags = 0);
/* Get or make an object for an allocation site, and add to the allocation site table. */
TypeObject *addAllocationSiteTypeObject(JSContext *cx, AllocationSiteKey key);
/* Mark all types as needing destruction once inference has 'finished'. */
void setPendingNukeTypes(ExclusiveContext *cx);
/* Mark any type set containing obj as having a generic object type. */
void markSetsUnknown(JSContext *cx, TypeObject *obj);
void sweep(FreeOp *fop);
void finalizeObjects();
void addSizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf,
size_t *allocationSiteTables,
size_t *arrayTypeTables,
size_t *objectTypeTables);
};
void FixRestArgumentsType(ExclusiveContext *cxArg, JSObject *obj);
struct TypeZone
{
JS::Zone *zone_;
/* Pool for type information in this zone. */
static const size_t TYPE_LIFO_ALLOC_PRIMARY_CHUNK_SIZE = 8 * 1024;
js::LifoAlloc typeLifoAlloc;
/*
* All Ion compilations that have occured in this zone, for indexing via
* RecompileInfo. This includes both valid and invalid compilations, though
* invalidated compilations are swept on GC.
*/
Vector<CompilerOutput> *compilerOutputs;
/* Pending recompilations to perform before execution of JIT code can resume. */
Vector<RecompileInfo> *pendingRecompiles;
/*
* Bit set if all current types must be marked as unknown, and all scripts
* recompiled. Caused by OOM failure within inference operations.
*/
bool pendingNukeTypes;
/* Whether type inference is enabled in this compartment. */
bool inferenceEnabled;
TypeZone(JS::Zone *zone);
~TypeZone();
void init(JSContext *cx);
JS::Zone *zone() const { return zone_; }
void sweep(FreeOp *fop, bool releaseTypes);
/* Mark all types as needing destruction once inference has 'finished'. */
void setPendingNukeTypes();
/* Mark a script as needing recompilation once inference has finished. */
void addPendingRecompile(JSContext *cx, const RecompileInfo &info);
void addPendingRecompile(JSContext *cx, JSScript *script);
void processPendingRecompiles(FreeOp *fop);
void nukeTypes(FreeOp *fop);
};
enum SpewChannel {
ISpewOps, /* ops: New constraints and types. */
ISpewResult, /* result: Final type sets. */
SPEW_COUNT
};
#ifdef DEBUG
const char * InferSpewColorReset();
const char * InferSpewColor(TypeConstraint *constraint);
const char * InferSpewColor(TypeSet *types);
void InferSpew(SpewChannel which, const char *fmt, ...);
const char * TypeString(Type type);
const char * TypeObjectString(TypeObject *type);
/* Check that the type property for id in obj contains value. */
bool TypeHasProperty(JSContext *cx, TypeObject *obj, jsid id, const Value &value);
#else
inline const char * InferSpewColorReset() { return nullptr; }
inline const char * InferSpewColor(TypeConstraint *constraint) { return nullptr; }
inline const char * InferSpewColor(TypeSet *types) { return nullptr; }
inline void InferSpew(SpewChannel which, const char *fmt, ...) {}
inline const char * TypeString(Type type) { return nullptr; }
inline const char * TypeObjectString(TypeObject *type) { return nullptr; }
#endif
/* Print a warning, dump state and abort the program. */
MOZ_NORETURN void TypeFailure(JSContext *cx, const char *fmt, ...);
} /* namespace types */
} /* namespace js */
#endif /* jsinfer_h */