gecko/gfx/layers/ipc/ShadowLayers.h
James Willcox 706ba55f37 Bug 829747 - Update WebGL canvases asynchronously r=bgirard,jgilbert
--HG--
extra : rebase_source : ba0f95badd9b5d7e537b3c83e0057665bd5ced86
2013-03-22 12:13:21 -04:00

726 lines
22 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: sw=2 ts=8 et :
*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef mozilla_layers_ShadowLayers_h
#define mozilla_layers_ShadowLayers_h 1
#include "gfxASurface.h"
#include "GLDefs.h"
#include "ImageLayers.h"
#include "mozilla/ipc/SharedMemory.h"
#include "mozilla/WidgetUtils.h"
#include "mozilla/dom/ScreenOrientation.h"
class gfxSharedImageSurface;
namespace mozilla {
namespace gl {
class GLContext;
class TextureImage;
}
namespace layers {
class Edit;
class EditReply;
class OptionalThebesBuffer;
class PLayerChild;
class PLayersChild;
class PLayersParent;
class ShadowableLayer;
class ShadowThebesLayer;
class ShadowContainerLayer;
class ShadowImageLayer;
class ShadowColorLayer;
class ShadowCanvasLayer;
class ShadowRefLayer;
class SurfaceDescriptor;
class ThebesBuffer;
class TiledLayerComposer;
class Transaction;
class SharedImage;
class CanvasSurface;
class BasicTiledLayerBuffer;
enum BufferCapabilities {
DEFAULT_BUFFER_CAPS = 0,
/**
* The allocated buffer must be efficiently mappable as a
* gfxImageSurface.
*/
MAP_AS_IMAGE_SURFACE = 1 << 0
};
enum OpenMode {
OPEN_READ_ONLY,
OPEN_READ_WRITE
};
/**
* We want to share layer trees across thread contexts and address
* spaces for several reasons; chief among them
*
* - a parent process can paint a child process's layer tree while
* the child process is blocked, say on content script. This is
* important on mobile devices where UI responsiveness is key.
*
* - a dedicated "compositor" process can asynchronously (wrt the
* browser process) composite and animate layer trees, allowing a
* form of pipeline parallelism between compositor/browser/content
*
* - a dedicated "compositor" process can take all responsibility for
* accessing the GPU, which is desirable on systems with
* buggy/leaky drivers because the compositor process can die while
* browser and content live on (and failover mechanisms can be
* installed to quickly bring up a replacement compositor)
*
* The Layers model has a crisply defined API, which makes it easy to
* safely "share" layer trees. The ShadowLayers API extends Layers to
* allow a remote, parent process to access a child process's layer
* tree.
*
* ShadowLayerForwarder publishes a child context's layer tree to a
* parent context. This comprises recording layer-tree modifications
* into atomic transactions and pushing them over IPC.
*
* ShadowLayerManager grafts layer subtrees published by child-context
* ShadowLayerForwarder(s) into a parent-context layer tree.
*
* (Advanced note: because our process tree may have a height >2, a
* non-leaf subprocess may both receive updates from child processes
* and publish them to parent processes. Put another way,
* LayerManagers may be both ShadowLayerManagers and
* ShadowLayerForwarders.)
*
* There are only shadow types for layers that have different shadow
* vs. not-shadow behavior. ColorLayers and ContainerLayers behave
* the same way in both regimes (so far).
*/
class ShadowLayerForwarder
{
friend class AutoOpenSurface;
public:
typedef gfxASurface::gfxContentType gfxContentType;
virtual ~ShadowLayerForwarder();
/**
* Begin recording a transaction to be forwarded atomically to a
* ShadowLayerManager.
*/
void BeginTransaction(const nsIntRect& aTargetBounds,
ScreenRotation aRotation,
const nsIntRect& aClientBounds,
mozilla::dom::ScreenOrientation aOrientation);
/**
* The following methods may only be called after BeginTransaction()
* but before EndTransaction(). They mirror the LayerManager
* interface in Layers.h.
*/
/**
* Notify the shadow manager that a new, "real" layer has been
* created, and a corresponding shadow layer should be created in
* the compositing process.
*/
void CreatedThebesLayer(ShadowableLayer* aThebes);
void CreatedContainerLayer(ShadowableLayer* aContainer);
void CreatedImageLayer(ShadowableLayer* aImage);
void CreatedColorLayer(ShadowableLayer* aColor);
void CreatedCanvasLayer(ShadowableLayer* aCanvas);
void CreatedRefLayer(ShadowableLayer* aRef);
/**
* The specified layer is destroying its buffers.
* |aBackBufferToDestroy| is deallocated when this transaction is
* posted to the parent. During the parent-side transaction, the
* shadow is told to destroy its front buffer. This can happen when
* a new front/back buffer pair have been created because of a layer
* resize, e.g.
*/
void DestroyedThebesBuffer(ShadowableLayer* aThebes,
const SurfaceDescriptor& aBackBufferToDestroy);
/**
* At least one attribute of |aMutant| has changed, and |aMutant|
* needs to sync to its shadow layer. This initial implementation
* forwards all attributes when any is mutated.
*/
void Mutated(ShadowableLayer* aMutant);
void SetRoot(ShadowableLayer* aRoot);
/**
* Insert |aChild| after |aAfter| in |aContainer|. |aAfter| can be
* NULL to indicated that |aChild| should be appended to the end of
* |aContainer|'s child list.
*/
void InsertAfter(ShadowableLayer* aContainer,
ShadowableLayer* aChild,
ShadowableLayer* aAfter=NULL);
void RemoveChild(ShadowableLayer* aContainer,
ShadowableLayer* aChild);
void RepositionChild(ShadowableLayer* aContainer,
ShadowableLayer* aChild,
ShadowableLayer* aAfter=NULL);
/**
* Set aMaskLayer as the mask on aLayer.
* Note that only image layers are properly supported
* ShadowLayersParent::UpdateMask and accompanying ipdl
* will need changing to update properties for other kinds
* of mask layer.
*/
void SetMask(ShadowableLayer* aLayer,
ShadowableLayer* aMaskLayer);
/**
* Notify the shadow manager that the specified layer's back buffer
* has new pixels and should become the new front buffer, and be
* re-rendered, in the compositing process. The former front buffer
* is swapped for |aNewFrontBuffer| and becomes the new back buffer
* for the "real" layer.
*/
/**
* |aBufferRect| is the screen rect covered as a whole by the
* possibly-toroidally-rotated |aNewFrontBuffer|. |aBufferRotation|
* is buffer's rotation, if any.
*/
void PaintedThebesBuffer(ShadowableLayer* aThebes,
const nsIntRegion& aUpdatedRegion,
const nsIntRect& aBufferRect,
const nsIntPoint& aBufferRotation,
const SurfaceDescriptor& aNewFrontBuffer);
/**
* Notify the compositor that a tiled layer buffer has changed
* that needs to be synced to the shadow retained copy. The tiled
* layer buffer will operate directly on the shadow retained buffer
* and is free to choose it's own internal representation (double buffering,
* copy on write, tiling).
*/
void PaintedTiledLayerBuffer(ShadowableLayer* aThebes,
BasicTiledLayerBuffer* aTiledLayerBuffer);
/**
* NB: this initial implementation only forwards RGBA data for
* ImageLayers. This is slow, and will be optimized.
*/
void PaintedImage(ShadowableLayer* aImage,
const SharedImage& aNewFrontImage);
void PaintedCanvas(ShadowableLayer* aCanvas,
bool aNeedYFlip,
const SurfaceDescriptor& aNewFrontSurface);
void PaintedCanvasNoSwap(ShadowableLayer* aCanvas,
bool aNeedYFlip,
const SurfaceDescriptor& aNewFrontSurface);
/**
* End the current transaction and forward it to ShadowLayerManager.
* |aReplies| are directions from the ShadowLayerManager to the
* caller of EndTransaction().
*/
bool EndTransaction(InfallibleTArray<EditReply>* aReplies);
/**
* Set an actor through which layer updates will be pushed.
*/
void SetShadowManager(PLayersChild* aShadowManager)
{
mShadowManager = aShadowManager;
}
void SetParentBackendType(LayersBackend aBackendType)
{
mParentBackend = aBackendType;
}
/**
* True if this is forwarding to a ShadowLayerManager.
*/
bool HasShadowManager() const { return !!mShadowManager; }
PLayersChild* GetShadowManager() const { return mShadowManager; }
/**
* The following Alloc/Open/Destroy interfaces abstract over the
* details of working with surfaces that are shared across
* processes. They provide the glue between C++ Layers and the
* ShadowLayer IPC system.
*
* The basic lifecycle is
*
* - a Layer needs a buffer. Its ShadowableLayer subclass calls
* AllocBuffer(), then calls one of the Created*Buffer() methods
* above to transfer the (temporary) front buffer to its
* ShadowLayer in the other process. The Layer needs a
* gfxASurface to paint, so the ShadowableLayer uses
* OpenDescriptor(backBuffer) to get that surface, and hands it
* out to the Layer.
*
* - a Layer has painted new pixels. Its ShadowableLayer calls one
* of the Painted*Buffer() methods above with the back buffer
* descriptor. This notification is forwarded to the ShadowLayer,
* which uses OpenDescriptor() to access the newly-painted pixels.
* The ShadowLayer then updates its front buffer in a Layer- and
* platform-dependent way, and sends a surface descriptor back to
* the ShadowableLayer that becomes its new back back buffer.
*
* - a Layer wants to destroy its buffers. Its ShadowableLayer
* calls Destroyed*Buffer(), which gives up control of the back
* buffer descriptor. The actual back buffer surface is then
* destroyed using DestroySharedSurface() just before notifying
* the parent process. When the parent process is notified, the
* ShadowLayer also calls DestroySharedSurface() on its front
* buffer, and the double-buffer pair is gone.
*/
/**
* Shmem (gfxSharedImageSurface) buffers are available on all
* platforms, but they may not be optimal.
*
* In the absence of platform-specific buffers these fall back to
* Shmem/gfxSharedImageSurface.
*/
bool AllocBuffer(const gfxIntSize& aSize,
gfxASurface::gfxContentType aContent,
SurfaceDescriptor* aBuffer);
bool AllocBufferWithCaps(const gfxIntSize& aSize,
gfxASurface::gfxContentType aContent,
uint32_t aCaps,
SurfaceDescriptor* aBuffer);
void DestroySharedSurface(SurfaceDescriptor* aSurface);
/**
* Construct a shadow of |aLayer| on the "other side", at the
* ShadowLayerManager.
*/
PLayerChild* ConstructShadowFor(ShadowableLayer* aLayer);
LayersBackend GetParentBackendType()
{
return mParentBackend;
}
/**
* Flag the next paint as the first for a document.
*/
void SetIsFirstPaint() { mIsFirstPaint = true; }
virtual int32_t GetMaxTextureSize() const { return mMaxTextureSize; }
void SetMaxTextureSize(int32_t aMaxTextureSize) { mMaxTextureSize = aMaxTextureSize; }
static void PlatformSyncBeforeUpdate();
protected:
ShadowLayerForwarder();
PLayersChild* mShadowManager;
private:
bool AllocBuffer(const gfxIntSize& aSize,
gfxASurface::gfxContentType aContent,
gfxSharedImageSurface** aBuffer);
bool PlatformAllocBuffer(const gfxIntSize& aSize,
gfxASurface::gfxContentType aContent,
uint32_t aCaps,
SurfaceDescriptor* aBuffer);
/**
* Try to query the content type efficiently, but at worst map the
* surface and return it in *aSurface.
*/
static gfxContentType
GetDescriptorSurfaceContentType(const SurfaceDescriptor& aDescriptor,
OpenMode aMode,
gfxASurface** aSurface);
/**
* It can be expensive to open a descriptor just to query its
* content type. If the platform impl can do this cheaply, it will
* set *aContent and return true.
*/
static bool
PlatformGetDescriptorSurfaceContentType(const SurfaceDescriptor& aDescriptor,
OpenMode aMode,
gfxContentType* aContent,
gfxASurface** aSurface);
// (Same as above, but for surface size.)
static gfxIntSize
GetDescriptorSurfaceSize(const SurfaceDescriptor& aDescriptor,
OpenMode aMode,
gfxASurface** aSurface);
static bool
PlatformGetDescriptorSurfaceSize(const SurfaceDescriptor& aDescriptor,
OpenMode aMode,
gfxIntSize* aSize,
gfxASurface** aSurface);
static already_AddRefed<gfxASurface>
OpenDescriptor(OpenMode aMode, const SurfaceDescriptor& aSurface);
static already_AddRefed<gfxASurface>
PlatformOpenDescriptor(OpenMode aMode, const SurfaceDescriptor& aDescriptor);
/** Make this descriptor unusable for gfxASurface clients. A
* private interface with AutoOpenSurface. */
static void
CloseDescriptor(const SurfaceDescriptor& aDescriptor);
static bool
PlatformCloseDescriptor(const SurfaceDescriptor& aDescriptor);
bool PlatformDestroySharedSurface(SurfaceDescriptor* aSurface);
Transaction* mTxn;
int32_t mMaxTextureSize;
LayersBackend mParentBackend;
bool mIsFirstPaint;
};
class ShadowLayerManager : public LayerManager
{
public:
virtual ~ShadowLayerManager() {}
virtual void GetBackendName(nsAString& name) { name.AssignLiteral("Shadow"); }
void DestroySharedSurface(gfxSharedImageSurface* aSurface,
PLayersParent* aDeallocator);
void DestroySharedSurface(SurfaceDescriptor* aSurface,
PLayersParent* aDeallocator);
/** CONSTRUCTION PHASE ONLY */
virtual already_AddRefed<ShadowThebesLayer> CreateShadowThebesLayer() = 0;
/** CONSTRUCTION PHASE ONLY */
virtual already_AddRefed<ShadowContainerLayer> CreateShadowContainerLayer() = 0;
/** CONSTRUCTION PHASE ONLY */
virtual already_AddRefed<ShadowImageLayer> CreateShadowImageLayer() = 0;
/** CONSTRUCTION PHASE ONLY */
virtual already_AddRefed<ShadowColorLayer> CreateShadowColorLayer() = 0;
/** CONSTRUCTION PHASE ONLY */
virtual already_AddRefed<ShadowCanvasLayer> CreateShadowCanvasLayer() = 0;
/** CONSTRUCTION PHASE ONLY */
virtual already_AddRefed<ShadowRefLayer> CreateShadowRefLayer() { return nullptr; }
virtual void NotifyShadowTreeTransaction() {}
/**
* Try to open |aDescriptor| for direct texturing. If the
* underlying surface supports direct texturing, a non-null
* TextureImage is returned. Otherwise null is returned.
*/
static already_AddRefed<gl::TextureImage>
OpenDescriptorForDirectTexturing(gl::GLContext* aContext,
const SurfaceDescriptor& aDescriptor,
GLenum aWrapMode);
static void PlatformSyncBeforeReplyUpdate();
void SetCompositorID(uint32_t aID)
{
NS_ASSERTION(mCompositorID==0, "The compositor ID must be set only once.");
mCompositorID = aID;
}
uint32_t GetCompositorID() const
{
return mCompositorID;
}
protected:
ShadowLayerManager()
: mCompositorID(0) {}
bool PlatformDestroySharedSurface(SurfaceDescriptor* aSurface);
uint32_t mCompositorID;
};
/**
* A ShadowableLayer is a Layer can be shared with a parent context
* through a ShadowLayerForwarder. A ShadowableLayer maps to a
* Shadow*Layer in a parent context.
*
* Note that ShadowLayers can themselves be ShadowableLayers.
*/
class ShadowableLayer
{
public:
virtual ~ShadowableLayer() {}
virtual Layer* AsLayer() = 0;
/**
* True if this layer has a shadow in a parent process.
*/
bool HasShadow() { return !!mShadow; }
/**
* Return the IPC handle to a Shadow*Layer referring to this if one
* exists, NULL if not.
*/
PLayerChild* GetShadow() { return mShadow; }
protected:
ShadowableLayer() : mShadow(NULL) {}
PLayerChild* mShadow;
};
/**
* SurfaceDeallocator interface
*/
class ISurfaceDeAllocator
{
public:
virtual void DestroySharedSurface(gfxSharedImageSurface* aSurface) = 0;
virtual void DestroySharedSurface(SurfaceDescriptor* aSurface) = 0;
protected:
~ISurfaceDeAllocator() {}
};
/**
* A ShadowLayer is the representation of a child-context's Layer in a
* parent context. They can be transformed, clipped,
* etc. independently of their origin Layers.
*
* Note that ShadowLayers can themselves have a shadow in a parent
* context.
*/
class ShadowLayer
{
public:
virtual ~ShadowLayer() {}
/**
* Set deallocator for data recieved from IPC protocol
* We should be able to set allocator right before swap call
* that is why allowed multiple call with the same Allocator
*/
virtual void SetAllocator(ISurfaceDeAllocator* aAllocator)
{
NS_ASSERTION(!mAllocator || mAllocator == aAllocator, "Stomping allocator?");
mAllocator = aAllocator;
}
virtual void DestroyFrontBuffer() { }
/**
* The following methods are
*
* CONSTRUCTION PHASE ONLY
*
* They are analogous to the Layer interface.
*/
void SetShadowVisibleRegion(const nsIntRegion& aRegion)
{
mShadowVisibleRegion = aRegion;
}
void SetShadowOpacity(float aOpacity)
{
mShadowOpacity = aOpacity;
}
void SetShadowClipRect(const nsIntRect* aRect)
{
mUseShadowClipRect = aRect != nullptr;
if (aRect) {
mShadowClipRect = *aRect;
}
}
void SetShadowTransform(const gfx3DMatrix& aMatrix)
{
mShadowTransform = aMatrix;
}
// These getters can be used anytime.
float GetShadowOpacity() { return mShadowOpacity; }
const nsIntRect* GetShadowClipRect() { return mUseShadowClipRect ? &mShadowClipRect : nullptr; }
const nsIntRegion& GetShadowVisibleRegion() { return mShadowVisibleRegion; }
const gfx3DMatrix& GetShadowTransform() { return mShadowTransform; }
virtual TiledLayerComposer* AsTiledLayerComposer() { return NULL; }
protected:
ShadowLayer()
: mAllocator(nullptr)
, mShadowOpacity(1.0f)
, mUseShadowClipRect(false)
{}
ISurfaceDeAllocator* mAllocator;
nsIntRegion mShadowVisibleRegion;
gfx3DMatrix mShadowTransform;
nsIntRect mShadowClipRect;
float mShadowOpacity;
bool mUseShadowClipRect;
};
class ShadowThebesLayer : public ShadowLayer,
public ThebesLayer
{
public:
virtual void InvalidateRegion(const nsIntRegion& aRegion)
{
NS_RUNTIMEABORT("ShadowThebesLayers can't fill invalidated regions");
}
/**
* CONSTRUCTION PHASE ONLY
*/
virtual void SetValidRegion(const nsIntRegion& aRegion)
{
mValidRegion = aRegion;
Mutated();
}
/**
* CONSTRUCTION PHASE ONLY
*
* Publish the remote layer's back ThebesLayerBuffer to this shadow,
* swapping out the old front ThebesLayerBuffer (the new back buffer
* for the remote layer).
*/
virtual void
Swap(const ThebesBuffer& aNewFront, const nsIntRegion& aUpdatedRegion,
OptionalThebesBuffer* aNewBack, nsIntRegion* aNewBackValidRegion,
OptionalThebesBuffer* aReadOnlyFront, nsIntRegion* aFrontUpdatedRegion) = 0;
/**
* CONSTRUCTION PHASE ONLY
*
* Destroy the current front buffer.
*/
virtual void DestroyFrontBuffer() = 0;
virtual ShadowLayer* AsShadowLayer() { return this; }
MOZ_LAYER_DECL_NAME("ShadowThebesLayer", TYPE_SHADOW)
protected:
ShadowThebesLayer(LayerManager* aManager, void* aImplData)
: ThebesLayer(aManager, aImplData)
{}
};
class ShadowContainerLayer : public ShadowLayer,
public ContainerLayer
{
public:
virtual ShadowLayer* AsShadowLayer() { return this; }
MOZ_LAYER_DECL_NAME("ShadowContainerLayer", TYPE_SHADOW)
protected:
ShadowContainerLayer(LayerManager* aManager, void* aImplData)
: ContainerLayer(aManager, aImplData)
{}
};
class ShadowCanvasLayer : public ShadowLayer,
public CanvasLayer
{
public:
/**
* CONSTRUCTION PHASE ONLY
*
* Publish the remote layer's back surface to this shadow, swapping
* out the old front surface (the new back surface for the remote
* layer).
*/
virtual void Swap(const CanvasSurface& aNewFront, bool needYFlip,
CanvasSurface* aNewBack) = 0;
virtual ShadowLayer* AsShadowLayer() { return this; }
MOZ_LAYER_DECL_NAME("ShadowCanvasLayer", TYPE_SHADOW)
protected:
ShadowCanvasLayer(LayerManager* aManager, void* aImplData)
: CanvasLayer(aManager, aImplData)
{}
};
class ShadowImageLayer : public ShadowLayer,
public ImageLayer
{
public:
/**
* CONSTRUCTION PHASE ONLY
* @see ShadowCanvasLayer::Swap
*/
virtual void Swap(const SharedImage& aFront,
SharedImage* aNewBack) = 0;
virtual ShadowLayer* AsShadowLayer() { return this; }
MOZ_LAYER_DECL_NAME("ShadowImageLayer", TYPE_SHADOW)
protected:
ShadowImageLayer(LayerManager* aManager, void* aImplData)
: ImageLayer(aManager, aImplData),
mImageContainerID(0),
mImageVersion(0)
{}
// ImageBridge protocol:
uint32_t mImageContainerID;
uint32_t mImageVersion;
};
class ShadowColorLayer : public ShadowLayer,
public ColorLayer
{
public:
virtual ShadowLayer* AsShadowLayer() { return this; }
MOZ_LAYER_DECL_NAME("ShadowColorLayer", TYPE_SHADOW)
protected:
ShadowColorLayer(LayerManager* aManager, void* aImplData)
: ColorLayer(aManager, aImplData)
{}
};
class ShadowRefLayer : public ShadowLayer,
public RefLayer
{
public:
virtual ShadowLayer* AsShadowLayer() { return this; }
MOZ_LAYER_DECL_NAME("ShadowRefLayer", TYPE_SHADOW)
protected:
ShadowRefLayer(LayerManager* aManager, void* aImplData)
: RefLayer(aManager, aImplData)
{}
};
bool IsSurfaceDescriptorValid(const SurfaceDescriptor& aSurface);
ipc::SharedMemory::SharedMemoryType OptimalShmemType();
} // namespace layers
} // namespace mozilla
#endif // ifndef mozilla_layers_ShadowLayers_h