mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
295 lines
12 KiB
C++
295 lines
12 KiB
C++
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is Thebes gfx.
|
|
*
|
|
* The Initial Developer of the Original Code is Mozilla Foundation.
|
|
* Portions created by the Initial Developer are Copyright (C) 2007
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
* Vladimir Vukicevic <vladimir@pobox.com>
|
|
* Bas Schouten <bschouten@mozilla.com>
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
|
|
#include "gfxAlphaRecovery.h"
|
|
|
|
#include "gfxImageSurface.h"
|
|
|
|
#define MOZILLA_SSE_INCLUDE_HEADER_FOR_SSE2
|
|
#include "mozilla/SSE.h"
|
|
|
|
/** from cairo-xlib-utils.c, modified */
|
|
/**
|
|
* Given the RGB data for two image surfaces, one a source image composited
|
|
* with OVER onto a black background, and one a source image composited with
|
|
* OVER onto a white background, reconstruct the original image data into
|
|
* black_data.
|
|
*
|
|
* Consider a single color channel and a given pixel. Suppose the original
|
|
* premultiplied color value was C and the alpha value was A. Let the final
|
|
* on-black color be B and the final on-white color be W. All values range
|
|
* over 0-255.
|
|
* Then B=C and W=(255*(255 - A) + C*255)/255. Solving for A, we get
|
|
* A=255 - (W - C). Therefore it suffices to leave the black_data color
|
|
* data alone and set the alpha values using that simple formula. It shouldn't
|
|
* matter what color channel we pick for the alpha computation, but we'll
|
|
* pick green because if we went through a color channel downsample the green
|
|
* bits are likely to be the most accurate.
|
|
*/
|
|
|
|
static inline PRUint32
|
|
RecoverPixel(PRUint32 black, PRUint32 white)
|
|
{
|
|
const PRUint32 GREEN_MASK = 0x0000FF00;
|
|
const PRUint32 ALPHA_MASK = 0xFF000000;
|
|
|
|
/* |diff| here is larger when the source image pixel is more transparent.
|
|
If both renderings are from the same source image composited with OVER,
|
|
then the color values on white will always be greater than those on
|
|
black, so |diff| would not overflow. However, overflow may happen, for
|
|
example, when a plugin plays a video and the image is rapidly changing.
|
|
If there is overflow, then behave as if we limit to the difference to
|
|
>= 0, which will make the rendering opaque. (Without this overflow
|
|
will make the rendering transparent.) */
|
|
PRUint32 diff = (white & GREEN_MASK) - (black & GREEN_MASK);
|
|
/* |diff| is 0xFFFFxx00 on overflow and 0x0000xx00 otherwise, so use this
|
|
to limit the transparency. */
|
|
PRUint32 limit = diff & ALPHA_MASK;
|
|
/* The alpha bits of the result */
|
|
PRUint32 alpha = (ALPHA_MASK - (diff << 16)) | limit;
|
|
|
|
return alpha | (black & ~ALPHA_MASK);
|
|
}
|
|
|
|
/* static */ PRBool
|
|
gfxAlphaRecovery::RecoverAlpha(gfxImageSurface* blackSurf,
|
|
const gfxImageSurface* whiteSurf,
|
|
Analysis* analysis)
|
|
{
|
|
gfxIntSize size = blackSurf->GetSize();
|
|
|
|
if (size != whiteSurf->GetSize() ||
|
|
(blackSurf->Format() != gfxASurface::ImageFormatARGB32 &&
|
|
blackSurf->Format() != gfxASurface::ImageFormatRGB24) ||
|
|
(whiteSurf->Format() != gfxASurface::ImageFormatARGB32 &&
|
|
whiteSurf->Format() != gfxASurface::ImageFormatRGB24))
|
|
return PR_FALSE;
|
|
|
|
if (!analysis && RecoverAlphaSSE2(blackSurf, whiteSurf)) {
|
|
return PR_TRUE;
|
|
}
|
|
|
|
blackSurf->Flush();
|
|
whiteSurf->Flush();
|
|
|
|
unsigned char* blackData = blackSurf->Data();
|
|
unsigned char* whiteData = whiteSurf->Data();
|
|
|
|
/* Get the alpha value of 'first' */
|
|
PRUint32 first;
|
|
if (size.width == 0 || size.height == 0) {
|
|
first = 0;
|
|
} else {
|
|
if (!blackData || !whiteData)
|
|
return PR_FALSE;
|
|
|
|
first = RecoverPixel(*reinterpret_cast<PRUint32*>(blackData),
|
|
*reinterpret_cast<PRUint32*>(whiteData));
|
|
}
|
|
|
|
PRUint32 deltas = 0;
|
|
for (PRInt32 i = 0; i < size.height; ++i) {
|
|
PRUint32* blackPixel = reinterpret_cast<PRUint32*>(blackData);
|
|
const PRUint32* whitePixel = reinterpret_cast<PRUint32*>(whiteData);
|
|
for (PRInt32 j = 0; j < size.width; ++j) {
|
|
PRUint32 recovered = RecoverPixel(blackPixel[j], whitePixel[j]);
|
|
blackPixel[j] = recovered;
|
|
deltas |= (first ^ recovered);
|
|
}
|
|
blackData += blackSurf->Stride();
|
|
whiteData += whiteSurf->Stride();
|
|
}
|
|
|
|
blackSurf->MarkDirty();
|
|
|
|
if (analysis) {
|
|
analysis->uniformAlpha = (deltas >> 24) == 0;
|
|
analysis->uniformColor = PR_FALSE;
|
|
if (analysis->uniformAlpha) {
|
|
double d_first_alpha = first >> 24;
|
|
analysis->alpha = d_first_alpha/255.0;
|
|
/* we only set uniformColor when the alpha is already uniform.
|
|
it's only useful in that case ... and if the alpha was nonuniform
|
|
then computing whether the color is uniform would require unpremultiplying
|
|
every pixel */
|
|
analysis->uniformColor = deltas == 0;
|
|
if (analysis->uniformColor) {
|
|
if (d_first_alpha == 0.0) {
|
|
/* can't unpremultiply, this is OK */
|
|
analysis->r = analysis->g = analysis->b = 0.0;
|
|
} else {
|
|
analysis->r = (first & 0xFF)/d_first_alpha;
|
|
analysis->g = ((first >> 8) & 0xFF)/d_first_alpha;
|
|
analysis->b = ((first >> 16) & 0xFF)/d_first_alpha;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return PR_TRUE;
|
|
}
|
|
|
|
// Align these for all platforms supporting MOZILLA_COMPILE_WITH_SSE2
|
|
#if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_AMD64))
|
|
__declspec(align(16)) PRUint32 greenMaski[] =
|
|
{ 0x0000ff00, 0x0000ff00, 0x0000ff00, 0x0000ff00 };
|
|
__declspec(align(16)) PRUint32 alphaMaski[] =
|
|
{ 0xff000000, 0xff000000, 0xff000000, 0xff000000 };
|
|
#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
|
|
PRUint32 greenMaski[] __attribute__ ((aligned (16))) =
|
|
{ 0x0000ff00, 0x0000ff00, 0x0000ff00, 0x0000ff00 };
|
|
PRUint32 alphaMaski[] __attribute__ ((aligned (16))) =
|
|
{ 0xff000000, 0xff000000, 0xff000000, 0xff000000 };
|
|
#elif defined(__SUNPRO_CC) && (defined(__i386) || defined(__x86_64__))
|
|
#pragma align 16 (greenMaski, alphaMaski)
|
|
PRUint32 greenMaski[] = { 0x0000ff00, 0x0000ff00, 0x0000ff00, 0x0000ff00 };
|
|
PRUint32 alphaMaski[] = { 0xff000000, 0xff000000, 0xff000000, 0xff000000 };
|
|
#endif
|
|
|
|
PRBool
|
|
gfxAlphaRecovery::RecoverAlphaSSE2(gfxImageSurface* blackSurf,
|
|
const gfxImageSurface* whiteSurf)
|
|
{
|
|
#if defined(MOZILLA_COMPILE_WITH_SSE2)
|
|
if (!mozilla::supports_sse2()) {
|
|
return PR_FALSE;
|
|
}
|
|
|
|
gfxIntSize size = blackSurf->GetSize();
|
|
|
|
if (size != whiteSurf->GetSize() ||
|
|
(blackSurf->Format() != gfxASurface::ImageFormatARGB32 &&
|
|
blackSurf->Format() != gfxASurface::ImageFormatRGB24) ||
|
|
(whiteSurf->Format() != gfxASurface::ImageFormatARGB32 &&
|
|
whiteSurf->Format() != gfxASurface::ImageFormatRGB24))
|
|
return PR_FALSE;
|
|
|
|
blackSurf->Flush();
|
|
whiteSurf->Flush();
|
|
|
|
unsigned char* blackData = blackSurf->Data();
|
|
unsigned char* whiteData = whiteSurf->Data();
|
|
|
|
if ((NS_PTR_TO_UINT32(blackData) & 0xf) != (NS_PTR_TO_UINT32(whiteData) & 0xf) ||
|
|
(blackSurf->Stride() - whiteSurf->Stride()) & 0xf) {
|
|
// Cannot keep these in alignment.
|
|
return PR_FALSE;
|
|
}
|
|
|
|
__m128i greenMask = _mm_load_si128((__m128i*)greenMaski);
|
|
__m128i alphaMask = _mm_load_si128((__m128i*)alphaMaski);
|
|
|
|
for (PRInt32 i = 0; i < size.height; ++i) {
|
|
PRInt32 j = 0;
|
|
// Loop single pixels until at 4 byte alignment.
|
|
while (NS_PTR_TO_UINT32(blackData) & 0xf && j < size.width) {
|
|
*((PRUint32*)blackData) =
|
|
RecoverPixel(*reinterpret_cast<PRUint32*>(blackData),
|
|
*reinterpret_cast<PRUint32*>(whiteData));
|
|
blackData += 4;
|
|
whiteData += 4;
|
|
j++;
|
|
}
|
|
// This extra loop allows the compiler to do some more clever registry
|
|
// management and makes it about 5% faster than with only the 4 pixel
|
|
// at a time loop.
|
|
for (; j < size.width - 8; j += 8) {
|
|
__m128i black1 = _mm_load_si128((__m128i*)blackData);
|
|
__m128i white1 = _mm_load_si128((__m128i*)whiteData);
|
|
__m128i black2 = _mm_load_si128((__m128i*)(blackData + 16));
|
|
__m128i white2 = _mm_load_si128((__m128i*)(whiteData + 16));
|
|
|
|
// Execute the same instructions as described in RecoverPixel, only
|
|
// using an SSE2 packed saturated subtract.
|
|
white1 = _mm_subs_epu8(white1, black1);
|
|
white2 = _mm_subs_epu8(white2, black2);
|
|
white1 = _mm_subs_epu8(greenMask, white1);
|
|
white2 = _mm_subs_epu8(greenMask, white2);
|
|
// Producing the final black pixel in an XMM register and storing
|
|
// that is actually faster than doing a masked store since that
|
|
// does an unaligned storage. We have the black pixel in a register
|
|
// anyway.
|
|
black1 = _mm_andnot_si128(alphaMask, black1);
|
|
black2 = _mm_andnot_si128(alphaMask, black2);
|
|
white1 = _mm_slli_si128(white1, 2);
|
|
white2 = _mm_slli_si128(white2, 2);
|
|
white1 = _mm_and_si128(alphaMask, white1);
|
|
white2 = _mm_and_si128(alphaMask, white2);
|
|
black1 = _mm_or_si128(white1, black1);
|
|
black2 = _mm_or_si128(white2, black2);
|
|
|
|
_mm_store_si128((__m128i*)blackData, black1);
|
|
_mm_store_si128((__m128i*)(blackData + 16), black2);
|
|
blackData += 32;
|
|
whiteData += 32;
|
|
}
|
|
for (; j < size.width - 4; j += 4) {
|
|
__m128i black = _mm_load_si128((__m128i*)blackData);
|
|
__m128i white = _mm_load_si128((__m128i*)whiteData);
|
|
|
|
white = _mm_subs_epu8(white, black);
|
|
white = _mm_subs_epu8(greenMask, white);
|
|
black = _mm_andnot_si128(alphaMask, black);
|
|
white = _mm_slli_si128(white, 2);
|
|
white = _mm_and_si128(alphaMask, white);
|
|
black = _mm_or_si128(white, black);
|
|
_mm_store_si128((__m128i*)blackData, black);
|
|
blackData += 16;
|
|
whiteData += 16;
|
|
}
|
|
// Loop single pixels until we're done.
|
|
while (j < size.width) {
|
|
*((PRUint32*)blackData) =
|
|
RecoverPixel(*reinterpret_cast<PRUint32*>(blackData),
|
|
*reinterpret_cast<PRUint32*>(whiteData));
|
|
blackData += 4;
|
|
whiteData += 4;
|
|
j++;
|
|
}
|
|
blackData += blackSurf->Stride() - j * 4;
|
|
whiteData += whiteSurf->Stride() - j * 4;
|
|
}
|
|
|
|
blackSurf->MarkDirty();
|
|
|
|
return PR_TRUE;
|
|
#else
|
|
return PR_FALSE;
|
|
#endif
|
|
}
|